
Towards Real-world Scenario: Imbalanced New Intent Discovery

Anonymous ACL submission

Abstract

New Intent Discovery (NID) aims at detecting001
known and previously undefined categories of002
user intent by utilizing limited labeled and mas-003
sive unlabeled data. Most prior works often004
operate under the unrealistic assumption that005
the distribution of both familiar and new in-006
tent classes is uniform, overlooking the skewed007
and long-tailed distributions frequently encoun-008
tered in real-world scenarios. To bridge the gap,009
our work introduces the imbalanced new intent010
discovery (i-NID) task, which seeks to iden-011
tify familiar and novel intent categories within012
long-tailed distributions. A new benchmark013
(ImbaNID-Bench) comprised of three datasets014
is created to simulate the real-world long-tail015
distributions. ImbaNID-Bench ranges from016
broad cross-domain to specific single-domain017
intent categories, providing a thorough repre-018
sentation of practical use cases. Besides, a ro-019
bust baseline model ImbaNID is proposed to020
achieve cluster-friendly intent representations.021
It includes three stages: model pre-training,022
generation of reliable pseudo-labels, and ro-023
bust representation learning that strengthens024
the model performance to handle the intrica-025
cies of real-world data distributions. Our ex-026
tensive experiments on previous benchmarks027
and the newly established benchmark demon-028
strate the superior performance of ImbaNID029
in addressing the i-NID task, highlighting its030
potential as a powerful baseline for uncovering031
and categorizing user intents in imbalanced and032
long-tailed distributions1.033

1 Introduction034

New intent discovery (NID) has captured increas-035

ing attention due to its adaptability to the evolving036

user needs in open-world scenarios (Mou et al.,037

2022a; Siddique et al., 2021; Yang et al., 2020;038

Chrabrowa et al., 2023; Raedt et al., 2023). NID039

methods generally follow a two-stage training pro-040

1The benchmark and code will be released.
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Figure 1: Illustration of proposed i-NID task: (a) i-NID
unifies open-world and long-tail learning paradigms; (b)
i-NID uses labeled and unlabeled data following a long-
tail distribution to identify and categorize user intents.

cess, including a knowledge transfer and a discov- 041

ery stage. The prior knowledge is injected into the 042

model via pre-training and then the discriminative 043

representation is learned for known and novel in- 044

tent categories (Zhang et al., 2021a, 2022; Zhou 045

et al., 2023; Zhang et al., 2023b; Shi et al., 2023). 046

Despite the considerable advancements in NID, 047

there remain two salient challenges impeding adop- 048

tion in practical scenarios. In Fig. 1, most NID 049

approaches predominantly address the issue of in- 050

tent discovery within the framework of balanced 051

datasets. But the distribution of intents often fol- 052

lows a long-tailed pattern (Mou et al., 2022a), par- 053

ticularly in dialogue systems, wherein a small num- 054

ber of intents are highly represented and a wide 055

variety of intents (unknown intents) are sparsely 056

exemplified. Secondly, NID methods suffer from 057

severe clustering degradation, where lack of im- 058

proved methods for unbalanced data distributions 059

and leading to poor performance in unbalanced 060

scenarios. Therefore, we explore the new meth- 061

ods under the Imbalanced New Intent Discovery 062

(i-NID) task to bridge the gap between the NID 063

and real-world applications. 064

To break out the aforementioned limitations, we 065

propose a novel framework ImbaNID, which in- 066

cludes three key components: model pre-training, 067

reliable pseudo-labeling (RPL), and robust repre- 068
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sentation learning (RRL). Specifically, the multi-069

task pre-training incorporates the generalized prior070

knowledge into the mode for establishing a robust071

representational foundation conducive to cluster-072

ing known and novel intents. The RPL compo-073

nent formulates the pseudo-label generation as a074

relaxed optimal transport problem, applying adap-075

tive constraints to recalibrate the class distribution076

for enhanced uniformity. The model bias issues can077

be mitigated in long-tail settings while furnishing078

reliable supervisory cues for downstream represen-079

tation learning. Then, a novel distribution-aware080

and quality-aware noise regularization technique081

is introduced in RRL to effectively distinguish be-082

tween clean and noisy samples. A contrastive loss083

function is subsequently used to facilitate the for-084

mation of distinct and well-separated clusters of085

representations for known and novel intent cate-086

gories. The collaborative synergy between RPL087

and RRL fosters an iterative training process to088

create a symbiotic relationship. This iterative ap-089

proach cultivates intent representations conducive090

to clustering, significantly aiding the i-NID task.091

For better evaluation of unbalanced distribution, we092

introduce a comprehensive benchmark ImbaNID-093

Bench for i-NID evaluation.094

Extensive experiments of ImbaNID are evalu-095

ated on the previous common benchmarks and our096

proposed benchmark ImbaNID-Bench. The results097

demonstrate that ImbaNID consistently achieves098

state-of-the-art performance across all clusters, no-099

tably surpassing standard NID models by an aver-100

age margin of 2.7% in long-tailed scenarios. The101

contributions are summarized as follows:102

• We introduce the imbalanced new intent dis-103

covery (i-NID) task, which first encapsulates104

the challenges of clustering known and novel105

intent classes within long-tailed distributions.106

Different model performances under unbal-107

anced distribution are sufficiently explored.108

• We construct three comprehensive i-NID109

datasets to facilitate further advancements in110

i-NID research. Our extensive experiments on111

these datasets validate the superiority of the112

proposed method ImbaNID.113

• For i-NID, we develop a novel ImbaNID ap-114

proach that iteratively enhances pseudo-label115

generation and representation learning to en-116

sure cluster-adaptive intent representations.117

ImbaNID-Bench |Yk| |Yn| |Dl| |Du| |Dt|

CLINC150-LT 113 37 583 6395 2250
BANKING77-LT 58 19 383 4658 3080
StackOverflow20-LT 15 5 510 6669 1000

Table 1: Statistics of the ImbaNID-Bench datasets when
γ = 10. |Yk|, |Yn|, |Dl|, |Du| and |Dt| represent the
number of known categories, novel categories, labeled
data, unlabeled data, and testing data.
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Figure 2: Number of training samples per class in artifi-
cially created long-tailed CLINC150-LT datasets with
different imbalance factors.

2 Datasets 118

We introduce a new benchmark (called ImbaNID- 119

Bench) for NID evaluation tailored to long-tail dis- 120

tribution scenarios, which comprises three datasets 121

named CLINC150-LT, BANKING77-LT, and 122

StackOverflow20-LT, derived from CLINC (Larson 123

et al., 2019), BANKING (Casanueva et al., 2020) 124

and StackOverflow (Xu et al., 2015). Comprehen- 125

sive statistics for each dataset are documented in 126

Appendix B. Here, we describe the details of the 127

ImbaNID-Bench datasets. 128

Data Construction The first step is to simu- 129

late the long-tail distribution frequently encoun- 130

tered in real-world scenarios (Cui et al., 2019). 131

Each class is assigned an index i (1 ≤ k ≤ 132

K), where K denotes the total number of in- 133

tent categories. γ = nmax
nmin

denotes the imbal- 134

ance ratio, where nk denotes the data size of 135

class k, nmax = max1≤k≤K(nk), and nmin = 136

min1≤k≤K(nk). We sample from each class based 137

on nk = nmaxγ
(j−1)/K . To explore the impact 138

of data imbalance in NID, we construct ImbaNID- 139

Bench by sampling with diverse imbalance ratios 140

γ ∈ {3, 5, 10}. Fig. 2 shows the datasets created 141

for CLINC150-LT with different imbalance factors 142

(More details can be found in Appendix B). To 143

simulate an open-world NID setting. We randomly 144

select 75% of intents as known intents, and sample 145

only 10% instances from known intent categories 146

to form a labeled subset, while the remaining in- 147
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Figure 3: Overview of ImbaNID. The relaxed optimal transport (ROT) technique is used to produce high-quality
pseudo-labels. Distribution-aware regularization (DR) and quality-aware regularization (QR) aim at filtering clean
pseudo-labels. Finally, our framework incorporates class-wise contrastive learning (CWCL) and instance-wise
contrastive learning (IWCL) to embed the data into a representation space where similar samples cluster together.

stances are treated as unlabeled data.148

Data Statistics Since different proportions of im-149

balance ratios γ have different statistics, here we150

only display the results of γ = 10 for brevity.151

Table 1 shows the statistics of CLINC150-LT,152

BANKING77-LT and StackOverflow20-LT. We153

will release these datasets for future research.154

3 Methodology155

3.1 i-NID156

Supposing we have a set of labeled intent data157

Dl = {(xi, yi)|yi ∈ Yk} only comprised of known158

intent categories Yk, the deployed model in the159

wild may encounter inputs from unlabeled data160

Du = {xi|yi ∈ {Yk,Yn}}.The unlabeled data Du161

contains both known intent categories Yk and novel162

intent categories Yn, where Yk and Yn denote the163

data with the Known and Novel intents data, re-164

spectively. Both Dl and Du present a long-tail165

distribution with imbalance ratio γ > 1. The goal166

of i-NID is to classify known classes and cluster167

novel intent classes in Du by leveraging Dl. Finally,168

model performance will be evaluated on a balanced169

testing set Dt = {(xi, yi)|yi ∈ {Yk,Yn}}.170

3.2 Overall Framework171

To achieve the learning objective of i-NID, we pro-172

pose an iterative method to bootstrap model per-173

formance on reliable pseudo-labeling and robust174

representation learning. As shown in Fig. 3, our175

model mainly consists of three stages. Firstly, we176

pre-train a feature extractor on both labeled and177

unlabeled data to optimize better knowledge trans-178

fer (Sec. 3.3). Secondly, we obtain more accu-179

rate pseudo-labels by solving a relaxed optimal180

transport problem (Sec. 3.4). Thirdly, we pro- 181

pose two noise regularization techniques to divide 182

pseudo-labels and employ contrastive loss to gen- 183

erate well-separated clusters of representations for 184

both known and novel intent categories(Sec. 3.5). 185

3.3 Model Pre-training 186

Intent Representation Extraction To trigger the 187

power of pre-trained language models in NID, we 188

use BERT (Devlin et al., 2019; Yang et al., 2023) 189

as the intent encoder (Eθ : X → RH). Firstly, we 190

feed the ith input sentence xi to BERT, and take all 191

token embeddings [t0, . . . , tM ] ∈R(M+1)×H from 192

the last hidden layer (t0 is the embedding of the 193

[CLS] token). The mean pooling is applied to get 194

the averaged sentence representation zi ∈ RH : 195

zi =
1

M + 1

M∑
i=0

ti (1) 196

where [CLS] is the vector for text classification, M 197

is the sequence length, and H is the hidden size. 198

Knowledge Sharing To effectively generalize 199

prior knowledge through pre-training to unlabeled 200

data, we fine-tuned BERT on labeled data (Dl) us- 201

ing the cross-entropy (CE) loss and on all available 202

data (Da = Dl ∪ Du) using the masked language 203

modeling (MLM) loss. The training objective of 204

the fine-tuning can be formulated as follows: 205

Lp = −Ex∈Dl
logP (y|x)−Ex∈Da

logP (x̂|x\m(x)) (2) 206

where Dl and Du are labeled and unlabeled intent 207

corpus, respectively. P (x̂|x\m(x))predicts masked 208

tokens x̂ based on the masked sentence x\m(x), 209

where m(x) denotes the masked tokens. The model 210

is trained on the whole corpus Da = Dl ∪ Du. 211
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3.4 Reliable Pseudo-labeling212

Optimal Transport Here we briefly recap the213

well-known formulation of optimal transport (OT).214

Given two probability simplex vectors α and β215

indicating two distributions, as well as a cost matrix216

C ∈ R|α|×|β| , where |α| denotes the dimension217

of α, OT aims to seek the optimal coupling matrix218

Q by minimizing the following objective:219

min
Q∈Π(α,β)

⟨Q,C⟩ (3)220

where ⟨·, ·⟩ denotes frobenius dot-product. The cou-221

pling matrix Q satisfies the polytope Π(α,β) =222 {
Q ∈ R|α|×|β|

+ | Q1|β| = α,Q⊤1|α| = β
}

,223

where α and β are essentially marginal probability224

vectors. Intuitively speaking, these two marginal225

probability vectors can be interpreted as coupling226

budgets, which control the mapping intensity of227

each row and column in Q.228

Relaxed Optimal Transport for Pseudo-labeling229

The variables Q ∈ RN×K
+ and P ∈ RN×K

+ repre-230

sent pseudo-labels matrix and classifier predictions,231

respectively, where N is the number of samples,232

and K 2 is the number of classes. The OT-based PL233

considers mapping samples to class and the cost234

matrix C can be formulated as − logP. So, we235

can rewrite the objective for OT-based PL based on236

the problem (3) as follows:237

min
Q,b

⟨Q,− logP⟩+ λH(Q)

s.t. Q1 = α,QT1 = β,Q ≥ 0
(4)238

where the function H is the entropy regularization,239

λ is a scalar factor, α = 1
N 1 is the sample distri-240

bution and β is class distribution. So the pseudo-241

labels matrix Ua can be obtained by normalization:242

NQ. However, in the i-NID setup, the class distri-243

bution is often long-tailed and unknown, and the244

model optimized based on the problem (4) tends to245

learn degenerate solutions. This mismatched class246

distribution will lead to unreliable pseudo-labels.247

To mitigate this issue, we impose a soft constraint248

(ROT) on the problem (4). Instead of the traditional249

equality constraint (Asano et al., 2020; Caron et al.,250

2020a), we use Kullback-Leibler divergence to en-251

courage a uniform class distribution and address252

class degeneration in long-tailed scenarios. The253

2We estimate the number of classes K based on previous
works (Zhang et al., 2021a) to ensure a fair comparison. We
provide a detailed discussion on estimating K in Appendix F.

formulation of ROT is articulated as follows: 254

min
Q,β

⟨Q,− logP⟩+ λ1H(Q) + λ2DKL(
1

K
1,β)

s.t. Q1 = α,QT1 = β,Q ≥ 0,βT1 = 1
(5) 255

where λ2 is a hyper-parameter and DKL is the 256

Kullback-Leibler divergence. The optimization 257

problem (5) can be tractably solved using the 258

Sinkhorn-Knopp algorithm (Cuturi, 2013) and we 259

detail the optimization process in Appendix A. 260

3.5 Robust Representation Learning 261

Directly using generated pseudo-labels for repre- 262

sentational learning is risky due to significant noise 263

in early-stage pseudo-labeling. Consequently, we 264

categorize pseudo-labels as clean or noisy based on 265

their distribution and quality, applying contrastive 266

loss to achieve cluster-friendly representations. 267

Noise Regularization We initially introduce a 268

distribution-aware regularization (DR) to align the 269

sample selection ratio with the class prior distribu- 270

tion, effectively mitigating selection bias in i-NID 271

setup. This regularization combines small-loss in- 272

stances with class distributions, ensuring inclusive 273

representation of all classes, particularly Tail cat- 274

egories, during training. Specifically, the final set 275

of selected samples S′ is represented as follows: 276

S′ =
K⋃
j=1

s′j (6) 277

where K is total classes, s′j is the set of samples 278

selected from the j-th category slice sj , defined as: 279

s′j = {h | (h ∈ sj) ∧ (sort(l(h)) ≤ kj)} (7) 280

where l(h) is the instance-level loss of h, ρ is 281

threshold hyper-parameter, rj is the class distri- 282

bution, kj = min(|sj | , ⌈Nρrj⌉). 283

In addition, to select high-confidence pseudo- 284

labels that closely align with the predicted labels, 285

we propose a quality-aware regularization (QR). 286

Specifically, we calculate confidence scores for 287

each pseudo-label and then select the clean sam- 288

ples, denoted as h, whose confidence scores exceed 289

a certain threshold τg: 290

A′ = {h | (h ∈ Ua) ∧ (max (p) > τg)} (8) 291

where p is the probability vector for h and τg ∈ 292

[0, 1] is a confidence threshold hyper-parameter. 293
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Then the overall pseudo-labels Ua can filter out the294

clean pseudo-labels Uclean as follows:295

Uclean =
{
h |

(
h ∈ S ′) ∨ (

h ∈ A′)} (9)296

Contrastive Clustering Following the extraction297

of clean pseudo-labels, we extend the traditional298

contrastive loss (Khosla et al., 2020) to utilize la-299

bel information, forming positive pairs from same-300

class samples within Uclean. Additionally, to en-301

hance the model’s emphasis on clean samples, we302

introduce a method for encoding soft positive corre-303

lation among pseudo-positive pairs, enabling adap-304

tive contribution. Specifically, for an intent sample305

xi, we first acquire its L2-normalized embedding306

zi. By multiplying the confidence scores q of two307

samples, we obtain an adaptive weight wij = qi ·qj .308

The class-wise contrastive loss (CWCL) is then de-309

fined as follows:310

Lc(i) =
∑

p∈P (i)

wip · log exp (zi · zp/τ)∑
j 1i ̸=j exp

(
zi · zj/τ

)
P (i) = {p | (p ∈ Uclean) ∧ (ci = cp)}

(10)311

where P (i) represents the indices of instances312

sharing the same label as xi, and τ is a hyper-313

parameter. Fundamentally, CWCL loss brings in-314

tents of the same class closer together while distanc-315

ing clusters of different classes, effectively creating316

a clustering effect. To enhance the generalization317

of intent representation, we incorporate instance-318

wise contrastive learning (Chen et al., 2020). The319

augmented views of instances in Ua are used as320

positive examples. The instance-wise contrastive321

loss (IWCL) is defined as follows:322

Li(i) = − log
exp (zi · z̄i/τ)∑

j 1i ̸=j exp (zi · zj/τ)
(11)323

where zi, z̄i regard an anchor and its augmented324

sample, respectively, and z̄i denotes the random325

token replacement augmented view of zi.326

Joint Training To mitigate the risk of catas-327

trophic forgetting of knowledge, we incorporate328

cross-entropy loss on Uclean into the training pro-329

cess. Overall, the optimization of ImbaNID is to330

minimize the combined training objective:331

Lall = ω · (
∑
i∈N

1

1 + |P (i)| (Lc(i)+Li(i)))+(1−ω) ·Lce

(12)332

where ω is a hyper-parameter and | · | is the cardi-333

nality computation. When xi is a noisy example,334

Lc(i) = 0 and |P (i)| = 0. During inference, we335

only utilize the cluster-level head and compute the336

argmax to get the cluster results.337

4 Experiments 338

4.1 Experimental Setup 339

Baseline Methods We compare our method 340

with various baselines and state-of-the-art meth- 341

ods, including DeepAligned (Zhang et al., 2021a), 342

GCD (Vaze et al., 2022), CLNN (Zhang et al., 343

2022), DPN (An et al., 2023), LatentEM (Zhou 344

et al., 2023), and USNID (Zhang et al., 2023b). 345

Please see Appendix C for more comprehensive 346

comparison and implementation details. 347

Evaluation Metrics We adopt three metrics for 348

evaluating clustering results: Normalized Mutual 349

Information (NMI), Adjusted Rand Index (ARI), and 350

clustering Accuracy (ACC) based on the Hungar- 351

ian algorithm. Furthermore, to more easily as- 352

sess the impact of long tail distribution on perfor- 353

mance, we divide Yk and Yn into three distinct 354

groups {Head, Medium, Tail} with the proportions 355

|Head| : |Medium| : |Tail| = 3 : 4 : 3. 356

Implementation Details To ensure a fair compar- 357

ison for ImbaNID and all baselines, we adopt the 358

pre-trained 12-layer bert-uncased BERT model3 359

(Devlin et al., 2019) as the backbone encoder in all 360

experiments and only fine-tune the last transformer 361

layer parameters to expedite the training process 362

(Zhang et al., 2021a). We adopt the AdamW op- 363

timizer with the weight decay of 0.01 and gradi- 364

ent clipping of 1.0 for parameter updating. For 365

CLNN (Zhang et al., 2022), the external dataset 366

is not used as in other baselines, the parameter of 367

top-k nearest neighbors is set to {100, 50, 500} 368

for CLINC, BANKING, and StackOverflow, re- 369

spectively, as utilized in Zhang et al. (2022). For 370

all experiments, we set the batch size as 512 and 371

the temperature scale as τ = 0.07 in Eq. (10) and 372

Eq. (11). We set the parameter ρ = 0.7 in Eq. (7) 373

and the confidence threshold τg = 0.9 in Eq. (8). 374

We adopt the data augmentation of random token 375

replacement as Zhang et al. (2022). All experi- 376

ments are conducted on 4 Tesla V100 GPUs and 377

averaged over 3 runs. 378

4.2 Main Results 379

ImbaNID achieves SOTA results in both bal- 380

anced and imbalanced settings. In Table 2, we 381

present a comprehensive comparison of ImbaNID 382

with prior start-of-the-art baselines in both bal- 383

anced and multiple imbalanced settings. We ob- 384

serve that ImbaNID significantly outperforms prior 385

3https://huggingface.co/bert-base-uncased
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Methods

CLINC150-LT

γ = 1 γ = 3 γ = 5 γ = 10

NMI ARI ACC NMI ARI ACC NMI ARI ACC NMI ARI ACC

GCD 91.13 67.44 77.50 87.61 59.71 73.07 84.18 53.04 67.96 80.21 47.64 61.91
DeepAligned 93.89 79.75 86.49 92.29 73.79 81.78 90.93 70.19 79.02 88.43 62.47 71.47

CLNN 95.45 84.30 89.46 93.52 78.02 85.42 92.54 73.05 79.38 89.52 63.92 72.00
DPN 95.11 86.72 89.06 94.84 79.98 85.64 94.51 79.32 84.49 92.43 70.62 77.51

LatentEM 95.01 83.00 88.99 93.74 78.16 84.62 93.39 77.23 83.78 92.01 72.77 80.22
USNID 96.55 88.43 92.18 94.67 80.30 85.33 94.06 77.60 82.49 91.62 68.61 74.40

ImbaNID 97.26 91.78 95.64 95.60 85.36 90.44 94.65 81.90 88.04 93.40 76.21 82.40

Methods

BANKING77-LT

γ = 1 γ = 3 γ = 5 γ = 10

NMI ARI ACC NMI ARI ACC NMI ARI ACC NMI ARI ACC

GCD 77.86 46.87 58.95 71.92 42.35 56.98 69.16 37.93 53.41 66.89 33.38 46.92
DeepAligned 79.39 53.09 64.63 78.93 51.65 63.64 77.99 48.56 60.06 75.01 44.11 54.03

CLNN 86.19 66.98 77.22 85.64 65.34 75.75 82.95 58.87 70.65 79.99 52.04 62.63
DPN 82.58 61.21 72.96 84.43 61.36 72.27 80.88 49.75 61.69 77.17 43.41 57.95

LatentEM 84.02 62.92 74.03 83.37 61.23 73.08 81.38 56.78 69.51 80.55 55.65 65.05
USNID 87.53 69.88 79.92 86.62 67.01 75.03 83.59 60.56 70.06 80.49 54.26 63.15

ImbaNID 87.66 70.13 81.14 86.79 67.35 76.72 83.60 61.18 72.89 81.08 55.80 66.59

Methods

StackOverflow20-LT

γ = 1 γ = 3 γ = 5 γ = 10

NMI ARI ACC NMI ARI ACC NMI ARI ACC NMI ARI ACC

GCD 62.07 45.11 66.81 61.86 40.59 65.30 57.84 36.15 59.10 48.04 27.55 48.60
DeepAligned 76.47 62.52 80.26 75.27 62.73 77.10 75.47 64.19 78.50 73.47 61.82 73.80

CLNN 77.12 69.36 82.90 78.78 68.98 84.30 77.67 65.81 76.70 75.29 60.46 76.60
DPN 61.13 52.59 48.09 79.64 69.22 85.00 78.91 51.81 81.00 76.56 63.15 78.30

LatentEM 77.32 65.70 80.50 75.54 63.04 77.40 77.42 65.72 79.20 77.07 65.20 78.17
USNID 81.47 76.08 86.43 81.99 74.64 86.90 81.34 72.28 83.00 78.09 66.24 78.90

ImbaNID 83.52 77.06 88.30 82.12 75.09 87.40 81.42 73.09 86.50 79.78 71.15 82.60

Table 2: The main results on three datasets under various imbalance ratios γ (γ = 1 is the balanced NID setting).
We set the known class ratio |Yk|/|Yk ∩ Yn| to 0.75, and the labeled ratio of known intent classes to 0.1 to conduct
experiments. Results are averaged over three random run (p-value < 0.01 under t-test). We bold the best result.

rivals by a notable margin of 3.9% under various386

settings of imbalance ratio. Specifically, on the387

broad cross-domain CLINC150-LT dataset, Im-388

baNID beats the previous state-of-the-art with an389

increase of 3.5% in ACC, 0.7% in NMI, and 3.9% in390

ARI on average. On the StackOverflow20-LT with391

fewer categories, ImbaNID demonstrates its effec-392

tiveness with significant improvements of 2.6% in393

ACC, 0.6% in NMI, and 2.4% in ARI on average, con-394

sistently delivering substantial performance gains395

across each imbalanced subset. When applied396

to the specific single-domain BANKING77-LT397

datasets, ImbaNID reliably achieves significant398

performance improvements, underscoring its ef-399

fectiveness in narrow-domain scenarios with indis-400

tinguishable intents. These results show the con-401

ventional NID models with naive pseudo-labeling402

and representation learning methods encounter a403

great challenge in handling the i-NID task. Our404

method efficiently produces accurate pseudo-labels405

under imbalanced conditions by employing soft406

constraints and utilizes these pseudo-labels to con-407

struct cluster-friendly representations.408

Effectiveness on Long-tailed Distribution We 409

also provide a detailed analysis of the results for the 410

Head, Medium, and Tail classes, offering a more 411

comprehensive understanding of our method’s per- 412

formance across three i-NID datasets. Fig. 4 413

presents the comparative accuracy among various 414

groups under the condition γ = 3. It is noteworthy 415

that in Tail classes, the gaps between ImbaNID 416

and the best baseline are 4.2%, 3.5% and 3.7% 417

across three datasets. In contrast, most baselines 418

exhibit degenerated performance, particularly on 419

CLINC150-LT and BANKING77-LT. Moreover, 420

ImbaNID retains a competitive performance on 421

Head classes. These results highlight the effective- 422

ness of ImbaNID in i-NID setup, making it particu- 423

larly advantageous for Head and Tail classes. 424

4.3 Effect of Pseudo-label Assignment 425

To evaluate ROT in reliable pseudo-labels gener- 426

ation of the i-NID setup, we compare three OT- 427

based optimizations for pseudo-labels generation, 428

including COT (Caron et al., 2020a), EOT (Asano 429

et al., 2020), and MOT (Li et al.). (1) COT denotes 430
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Figure 4: Head, Medium, and Tail comparison on the ImbaNID-Bench datasets.

Methods
CLINC150-LT BANKING77-LT StackOverflow20-LT

Head Medium Tail Head Medium Tail Head Medium Tail

ImbaNID 82.52 90.67 71.26 68.26 66.05 65.87 90.67 87.25 81.67

① w/ COT 72.74 87.44 58.67 62.72 63.11 48.70 86.63 85.75 79.67
② w/ EOT 81.41 83.00 65.33 66.59 65.40 57.61 90.00 86.11 81.60
③ w/ MOT 69.33 57.67 30.52 62.07 57.34 26.20 88.97 66.00 64.33

④ w/o DR 80.74 88.57 71.21 67.17 65.08 49.67 88.33 86.75 81.33
⑤ w/o QR 82.50 88.94 70.52 63.91 65.42 59.02 87.67 86.00 81.57
⑥ w/o DR and QR 81.19 87.19 71.05 67.50 64.88 50.00 88.33 86.51 80.33

⑦ w/o Adaptive Weight 82.37 90.22 71.11 68.18 65.81 64.57 90.30 87.00 79.67
⑧ w/o CWCL 81.93 90.11 70.81 67.83 66.03 58.70 90.33 85.22 78.00
⑨ w/o IWCL 81.78 86.44 71.23 65.54 64.22 65.20 90.51 76.75 80.33

Table 3: Experimental results of the ablation study on the ImbaNID-Bench datasets at imbalance ratios γ = 10.

the removal of the KL term from our optimization431

problem (5). (2) EOT signifies the replacement432

of the KL term in our optimization problem (5)433

with a typical entropy regularization KL(β∥β̂). (3)434

MOT operates without any assumption on the class435

distribution β, allowing β to be updated by the436

model prediction using a moving-average mecha-437

nism. Specifically, β = µβ̂ + (1 − µ)v, where438

µ is the moving-average parameter, β̂ is the last439

updated β and vj =
1
N

∑N
i=1 1 (j = argmaxPi).440

From Table 3, we can observe that ImbaNID out-441

performs the model ①, which indicates the ne-442

cessity of imposing constraints on the class443

distribution. Compared to the model ②, Im-444

baNID achieves the most gains for Head and445

Tail classes, indicating it better constrains the446

class distribution towards uniformity. Finally,447

when compared to the above strategies, the per-448

formance of the model ② in the Tail classes449

is notably inferior. The results stem from inad-450

equate constraints on the category distribution,451

leading to a decline in cluster quality. The452

comparisons underscore that ImbaNID demon-453

strates strong proficiency in generating accu-454

rate pseudo-labels within the i-NID setup.455

4.4 Effect of Noise Regularization456

To investigate the effectiveness of noise regu-457

larization (NR) in filtering noisy pseudo-labels,458

we conduct ablation experiments to analyze459

its contributions. In Table 3, eliminating DR 460

diminishes intent discovery performance, par- 461

ticularly in Tail classes. This occurs because 462

a higher proportion of Head classes in pseudo- 463

labels inevitably results in model bias. Fur- 464

thermore, removing QR results in decreased 465

performance, primarily because fewer exam- 466

ples are initially selected due to the classifier’s 467

low confidence, leading to degenerate solu- 468

tions. Notably, considering all pseudo-labels 469

as clean leads to significant performance drops 470

across all datasets, indicating that numerous 471

noisy pseudo-labels may cause model overfit- 472

ting and reduced generalization. The results 473

indicate that NR is indispensable to ImbaNID 474

in handling i-NID setup. 475

4.5 Effect of Contrastive Clustering 476

To assess the impact of contrastive cluster- 477

ing in representation learning, we carry out 478

ablation experiments to analyze its individ- 479

ual effects in Table 3. When the adaptive 480

weight strategy is removed from Eq. (10), the 481

model disregards probability distribution in- 482

formation and becomes more susceptible to 483

noisy pseudo-labels. Then, removing CWCL 484

or IWCL from Eq. (12) results in performance 485

degradation, suggesting that class-wise and 486

instance-wise contrastive learning respectively 487

aid in developing compact cluster representa- 488

7



(a) USNID (b) ImbaNID

Figure 5: The t-SNE visualizations of embeddings.

tions and enhancing representation generaliza-489

tion. In Fig. 5, we use t-SNE to illustrate em-490

beddings learned on the StackOverflow20-LT491

dataset, where ImbaNID visibly forms more492

distinct clusters than comparative methods, un-493

derscoring the effectiveness of our model.494

4.6 Effect of Known Class Ratio495

To investigate the impact of varying numbers496

of known intents, we vary the ratio of known497

intents ranging in {25%, 50%, 75%} during498

training. Fig. 6 illustrates the comparative499

accuracy among various ratio of known in-500

tents under the condition γ = 3. We ob-501

serve that even when only a few known in-502

tents are available, our method still performs503

better than other strong baselines. This demon-504

strates its strength in learning from labeled505

data and discovering inherent patterns from un-506

labeled data. At the same time, we see that the507

performance increases as more labeled data508

is utilized, which is expected. In short, our509

proposed methods have strong robustness and510

generalization capability.511

5 Related Work512

New Intent Discovery (NID) An et al. (2023);513

Zhou et al. (2023) similar to generalized cate-514

gory discovery (GCD) (Vaze et al., 2022) orig-515

inating from computer vision, which aims to516

discover novel intents by utilizing the prior517

knowledge of known intents. Lin et al. (2020)518

conducts pair-wise similarity prediction to dis-519

cover novel intents, and Zhang et al. (2021a)520

used aligned pseudo-labels to help the model521

learn clustering-friendly representations. Shen522

et al. (2021); Kumar et al. (2022); Zhang et al.523

(2022, 2023b) adopt contrastive learning to ac-524

quire compact clusters. In contrast, we explore525

the imbalanced NID scenario.526

Optimal Transport (OT) aims to find the527
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Figure 6: Impact of varying the known class ratio on
two datasets. The x-axis represents different models and
the y-axis denotes their corresponding accuracy values.

most efficient transportation plan while ad- 528

hering to marginal distribution constraints. It 529

has been used in a broad spectrum of various 530

tasks, including generative model (Gulrajani 531

et al., 2017), semi-supervised learning (Tai 532

et al., 2021; Taherkhani et al., 2020), cluster- 533

ing (Caron et al., 2020a; Zhang et al., 2023a). 534

However, all these methods impose an equal- 535

ity constraint when solving the OT problem, 536

while we explore generating pseudo-labels by 537

solving a relaxed OT problem, which encour- 538

ages a uniform class distribution and addresses 539

class degeneration in long-tailed scenarios. 540

Contrastive Learning (CL) has been widely 541

used to generate representations for various 542

tasks (Chen et al., 2020; Khosla et al., 2020; 543

Li et al., 2021; Ming et al., 2023). The primary 544

intuition of CL is to pull together positive pairs 545

in feature space while pushing away negative 546

pairs. Recently, many works (Zhang et al., 547

2022; Mou et al., 2022b; An et al., 2023; Zhou 548

et al., 2023; Zhang et al., 2023b) leverage con- 549

trastive learning for NID. We use it to help us 550

learn cluster-friendly intent representations. 551

6 Conclusion 552

In this work, we first propose the i-NID task to 553

identify known and infer novel intents within 554

these long-tailed distributions. Then, we de- 555

velop an effective ImbaNID baseline method 556

for the i-NID task, where pseudo-label gen- 557

eration and representation learning mutually 558

iterate to achieve cluster-friendly representa- 559

tions. Comprehensive experimental results 560

on our ImbaNID-Bench benchmark datasets 561

demonstrate the effectiveness of our ImbaNID 562

method for i-NID. We hope our work will draw 563

more attention from the community toward a 564

broader view of tackling the i-NID problem. 565
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7 Limitations566

To better enlighten the follow-up research, we567

conclude the limitations of our method as fol-568

lows: (1) Enhancing interpretability. Our Im-569

baNID automatically assigns labels to unla-570

beled utterances in real-world long-tail data571

distributions, yet it does not generate inter-572

pretable intent names for each cluster. (2) In-573

tegration with LLMs. Large-scale language574

models (LLMs) have shown an impressive abil-575

ity in a variety of NLP tasks, we plan to ex-576

plore the integration of ImbaNID with LLMs577

to boost performance in practical scenarios.578

(3) Reducing time complexity. The time com-579

plexity of relaxed optimal transport (ROT) is580

O (n2), we plan to further develop a fast matrix581

scaling algorithm to reduce the complexity.582
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2020. Efficient intent detection with dual 620

sentence encoders. In Proceedings of the 621

2nd Workshop on Natural Language Pro- 622

cessing for Conversational AI, pages 38–45. 623

Ting Chen, Simon Kornblith, Mohammad 624

Norouzi, and Geoffrey E. Hinton. 2020. A 625

simple framework for contrastive learning of 626

visual representations. In Proceedings of the 627

37th International Conference on Machine 628

Learning, ICML 2020, 13-18 July 2020, Vir- 629

tual Event, volume 119 of Proceedings of 630

Machine Learning Research, pages 1597– 631

1607. 632

Aleksandra Chrabrowa, Tsimur Hadeliya, Dar- 633

iusz Kajtoch, Robert Mroczkowski, and Pi- 634

otr Rybak. 2023. Going beyond research 635

datasets: Novel intent discovery in the indus- 636

try setting. In Findings of the Association 637

for Computational Linguistics: EACL 2023, 638

Dubrovnik, Croatia, May 2-6, 2023, pages 639

895–911. 640

Yin Cui, Menglin Jia, Tsung-Yi Lin, Yang 641

Song, and Serge J. Belongie. 2019. Class- 642

balanced loss based on effective number of 643

samples. In IEEE Conference on Computer 644

Vision and Pattern Recognition, CVPR 2019, 645

Long Beach, CA, USA, June 16-20, 2019, 646

pages 9268–9277. 647

Marco Cuturi. 2013. Sinkhorn distances: 648

Lightspeed computation of optimal trans- 649

port. Advances in neural information pro- 650

cessing systems, 26. 651

J. Devlin, Ming-Wei Chang, Kenton Lee, 652

and Kristina Toutanova. 2019. Bert: Pre- 653

training of deep bidirectional transformers 654

for language understanding. In NAACL. 655

9



Ishaan Gulrajani, Faruk Ahmed, Martín Ar-656

jovsky, Vincent Dumoulin, and Aaron C.657

Courville. 2017. Improved training of658

wasserstein gans. In Advances in Neural659

Information Processing Systems 30: An-660

nual Conference on Neural Information Pro-661

cessing Systems 2017, December 4-9, 2017,662

Long Beach, CA, USA, pages 5767–5777.663

Prannay Khosla, Piotr Teterwak, Chen Wang,664

Aaron Sarna, Yonglong Tian, Phillip Isola,665

Aaron Maschinot, Ce Liu, and Dilip Krish-666

nan. 2020. Supervised contrastive learning.667

In Advances in Neural Information Process-668

ing Systems 33: Annual Conference on Neu-669

ral Information Processing Systems 2020,670

NeurIPS 2020, December 6-12, 2020, vir-671

tual.672

Rajat Kumar, Mayur Patidar, Vaibhav Varsh-673

ney, Lovekesh Vig, and Gautam Shroff.674

2022. Intent detection and discovery from675

user logs via deep semi-supervised con-676

trastive clustering. In Proceedings of the677

2022 Conference of the North American678

Chapter of the Association for Computa-679

tional Linguistics: Human Language Tech-680

nologies, NAACL 2022, Seattle, WA, United681

States, July 10-15, 2022, pages 1836–1853.682

Stefan Larson, Anish Mahendran, Joseph J.683

Peper, Christopher Clarke, Andrew Lee,684

Parker Hill, Jonathan K. Kummerfeld, Kevin685

Leach, Michael A. Laurenzano, Lingjia686

Tang, and Jason Mars. 2019. An evalua-687

tion dataset for intent classification and out-688

of-scope prediction. In Proceedings of the689

2019 Conference on Empirical Methods in690

Natural Language Processing and the 9th691

International Joint Conference on Natural692

Language Processing (EMNLP-IJCNLP),693

pages 1311–1316.694

Junnan Li, Pan Zhou, Caiming Xiong, and695

Steven C. H. Hoi. 2021. Prototypical con-696

trastive learning of unsupervised represen-697

tations. In 9th International Conference on698

Learning Representations, ICLR 2021, Vir-699

tual Event, Austria, May 3-7, 2021.700

Ziyun Li, Ben Dai, Furkan Simsek, Christoph701

Meinel, and Haojin Yang. Imbagcd: Imbal-702

anced generalized category discovery.703

Ting-En Lin, Hua Xu, and Hanlei Zhang. 2020. 704

Discovering new intents via constrained 705

deep adaptive clustering with cluster refine- 706

ment. In Proceedings of the AAAI Confer- 707

ence on Artificial Intelligence, volume 34, 708

pages 8360–8367. 709

Yifei Ming, Yiyou Sun, Ousmane Dia, and 710

Yixuan Li. 2023. How to exploit hyperspher- 711

ical embeddings for out-of-distribution de- 712

tection? In Proceedings of the International 713

Conference on Learning Representations. 714

Yutao Mou, Keqing He, Yanan Wu, Pei Wang, 715

Jingang Wang, Wei Wu, Yi Huang, Junlan 716

Feng, and Weiran Xu. 2022a. Generalized 717

intent discovery: Learning from open world 718

dialogue system. In Proceedings of the 29th 719

International Conference on Computational 720

Linguistics, COLING 2022, Gyeongju, Re- 721

public of Korea, October 12-17, 2022, pages 722

707–720. 723

Yutao Mou, Keqing He, Yanan Wu, Zhiyuan 724

Zeng, Hong Xu, Huixing Jiang, Wei Wu, 725

and Weiran Xu. 2022b. Disentangled knowl- 726

edge transfer for OOD intent discovery with 727

unified contrastive learning. In Proceedings 728

of the 60th Annual Meeting of the Associ- 729

ation for Computational Linguistics (Vol- 730

ume 2: Short Papers), pages 46–53, Dublin, 731

Ireland. Association for Computational Lin- 732

guistics. 733

Maarten De Raedt, Fréderic Godin, Thomas 734

Demeester, and Chris Develder. 2023. 735

IDAS: intent discovery with abstractive sum- 736

marization. CoRR, abs/2305.19783. 737

Xiang Shen, Yinge Sun, Yao Zhang, and Mani 738

Najmabadi. 2021. Semi-supervised intent 739

discovery with contrastive learning. In Pro- 740

ceedings of the 3rd Workshop on Natural 741

Language Processing for Conversational AI, 742

pages 120–129. 743

Wenkai Shi, Wenbin An, Feng Tian, Qinghua 744

Zheng, QianYing Wang, and Ping Chen. 745

2023. A diffusion weighted graph frame- 746

work for new intent discovery. arXiv 747

preprint arXiv:2310.15836. 748

10



A. B. Siddique, Fuad T. Jamour, Luxun Xu,749

and Vagelis Hristidis. 2021. Generalized750

zero-shot intent detection via commonsense751

knowledge. In SIGIR ’21: The 44th Interna-752

tional ACM SIGIR Conference on Research753

and Development in Information Retrieval,754

Virtual Event, Canada, July 11-15, 2021,755

pages 1925–1929.756

Fariborz Taherkhani, Ali Dabouei, Sobhan So-757

leymani, Jeremy M. Dawson, and Nasser M.758

Nasrabadi. 2020. Transporting labels via759

hierarchical optimal transport for semi-760

supervised learning. In Computer Vision -761

ECCV 2020 - 16th European Conference,762

Glasgow, UK, August 23-28, 2020, Pro-763

ceedings, Part IV, volume 12349 of Lecture764

Notes in Computer Science, pages 509–526.765

Springer.766

Kai Sheng Tai, Peter Bailis, and Gregory767

Valiant. 2021. Sinkhorn label allocation:768

Semi-supervised classification via annealed769

self-training. In Proceedings of the 38th In-770

ternational Conference on Machine Learn-771

ing, ICML 2021, 18-24 July 2021, Vir-772

tual Event, volume 139 of Proceedings of773

Machine Learning Research, pages 10065–774

10075. PMLR.775

Sagar Vaze, Kai Han, Andrea Vedaldi, and776

Andrew Zisserman. 2022. Generalized cat-777

egory discovery. In Proceedings of the778

IEEE/CVF Conference on Computer Vision779

and Pattern Recognition, pages 7492–7501.780

Jiaming Xu, Peng Wang, Guanhua Tian,781

Bo Xu, Jun Zhao, Fangyuan Wang, and782

Hongwei Hao. 2015. Short text cluster-783

ing via convolutional neural networks. In784

Proceedings of the 1st Workshop on Vector785

Space Modeling for Natural Language Pro-786

cessing, pages 62–69.787

Jian Yang, Shuming Ma, Li Dong, Shaohan788

Huang, Haoyang Huang, Yuwei Yin, Dong-789

dong Zhang, Liqun Yang, Furu Wei, and790

Zhoujun Li. 2023. Ganlm: Encoder-decoder791

pre-training with an auxiliary discriminator.792

In Proceedings of the 61st Annual Meeting793

of the Association for Computational Lin-794

guistics (Volume 1: Long Papers), ACL 2023,795

Toronto, Canada, July 9-14, 2023, pages 796

9394–9412. 797

Jian Yang, Shuming Ma, Dongdong Zhang, 798

Shuangzhi Wu, Zhoujun Li, and Ming Zhou. 799

2020. Alternating language modeling for 800

cross-lingual pre-training. In The Thirty- 801

Fourth AAAI Conference on Artificial In- 802

telligence, AAAI 2020, The Thirty-Second 803

Innovative Applications of Artificial Intel- 804

ligence Conference, IAAI 2020, The Tenth 805

AAAI Symposium on Educational Advances 806

in Artificial Intelligence, EAAI 2020, New 807

York, NY, USA, February 7-12, 2020, pages 808

9386–9393. 809

Chuyu Zhang, Ruijie Xu, and Xuming He. 810

2023a. Novel class discovery for long-tailed 811

recognition. CoRR, abs/2308.02989. 812

Hanlei Zhang, Hua Xu, Ting-En Lin, and Rui 813

Lyu. 2021a. Discovering new intents with 814

deep aligned clustering. In Proceedings of 815

the AAAI Conference on Artificial Intelli- 816

gence, volume 35, pages 14365–14373. 817

Hanlei Zhang, Hua Xu, Ting-En Lin, and Rui 818

Lyu. 2021b. Discovering new intents with 819

deep aligned clustering. Proceedings of the 820

AAAI Conference on Artificial Intelligence, 821

35(16):14365–14373. 822

Hanlei Zhang, Hua Xu, Xin Wang, Fei Long, 823

and Kai Gao. 2023b. USNID: A framework 824

for unsupervised and semi-supervised new 825

intent discovery. CoRR, abs/2304.07699. 826

Yuwei Zhang, Haode Zhang, Li-Ming Zhan, 827

Xiao-Ming Wu, and Albert Lam. 2022. New 828

intent discovery with pre-training and con- 829

trastive learning. In Proceedings of the 60th 830

Annual Meeting of the Association for Com- 831

putational Linguistics (Volume 1: Long Pa- 832

pers), pages 256–269. 833

Yunhua Zhou, Guofeng Quan, and Xipeng Qiu. 834

2023. A probabilistic framework for discov- 835

ering new intents. In Proceedings of the 836

61st Annual Meeting of the Association for 837

Computational Linguistics (Volume 1: Long 838

Papers), pages 3771–3784. 839

11



Dataset Classes #Training #Validation #Testing Vocabulary Length (Max / Avg)

CLINC 150 18000 2250 2250 7283 28 / 8.32
BANKING 77 9003 1000 3080 5028 79 / 11.91
StackOverflow 20 12000 2000 1000 17182 41 / 9.18

Table 4: Statistics of original datasets. # denotes the total number of utterances.
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Figure 7: Number of training samples per class in artificially created long-tailed BANKING77-LT and
StackOverflow20-LT datasets with different imbalance factors.

ImbaNID-Bench (γ = 3) |Yk| |Yn| |Dl| |Du| |Dt|

CLINC150-LT 113 37 868 9995 2250
BANKING77-LT 58 19 607 7163 3080
StackOverflow20-LT 15 5 830 10140 1000

ImbaNID-Bench (γ = 5) |Yk| |Yn| |Dl| |Du| |Dt|

CLINC150-LT 113 37 719 8164 2250
BANKING77-LT 58 19 487 5924 3080
StackOverflow20-LT 15 5 686 8350 1000

Table 5: Statistics of the ImbaNID-Bench datasets when
γ = 3 and γ = 5. |Yk|, |Yn|, |Dl|, |Du| and |Dt| repre-
sent the number of known categories, novel categories,
labeled data, unlabeled data, and testing data.

A ROT840

In this section, we provide a comprehensive841

optimization process for the ROT problem (5),842

the ROT objective is:843

min
Q,β

⟨Q,− logP⟩+ λ1H(Q) + λ2DKL(
1

K
1,β)

s.t. Q1 = α,QT1 = β,Q ≥ 0,βT1 = 1.

(13)844

where λ1 and λ2 are hyper-parameters, and845

DKL(A,B) denotes the Kullback-Leibler Di-846

vergence. We utilize the Lagrangian multiplier847

algorithm for optimization:848

L(Q,β,f , g, h) = ⟨Q,− logP⟩+ λ1H(Q)

+ λ2DKL(
1

K
1,β)− fT (Q1−α)

− gT (QT1− β)− h(βT1− 1)

(14)849

where f , g, and h are Lagrangian multipliers. 850

Differentiating Eq. (14) yields the following 851

result: 852

∂L

∂Qij

= λ1log(Qij)− log(Pij)− fi − gj

(15) 853854

∂L

∂fi
= −(

K∑
j

Qij) + αi (16) 855

856

∂L

∂gj
= −(

N∑
i

Qij) + βj (17) 857

858
∂L

∂βj

= − λ2

Kβj

+ gj − h (18) 859

860

∂L

∂h
= −(

K∑
j

βj) + 1 (19) 861

Initially, we fix β and h, and then update Q, 862

f , and g. By setting ∂L
∂Qij

, ∂L
∂fi

, and ∂L
∂gj

to zero, 863

we obtain the following results: 864

Qij = exp(
fi + log(Pij) + gj

λ1

)

= exp(
fi
λ1

) · exp(log(Pij)

λ1

) · exp( gj
λ1

)

(20) 865
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Algorithm 1 The optimization of ROT
Input: The cost matrix: − logP.
Output:
The transport matrix: Q,
The class distribution: β.
Procedure:

1: Initialize β as uniform distribution;
2: for i = 1 to T do
3: Fix β and h, calculate Q, f and g with

Sinkhorn algorithm.
4: Fix Q, f and g, update β and h with

Eq. (23) and (24).
5: end for
6: Return Q and β.

866
K∑
j

Qij = αi,

N∑
i

Qij = βj (21)867

Based on Eq. (20), we derive the following:868

Q = diag(exp(
f

λ1

)) exp(
logP

λ1

)diag(exp(
g

λ1

))

(22)869

Considering the constraints (21) and the con-870

ditions βT1 = αT1 = 1, we solve Eq. (22)871

to determine the values of Q, f , and g using872

the Sinkhorn algorithm (Cuturi, 2013). Sub-873

sequently, with f , g, and Q fixed, we update874

β and h. Setting Eq. (18) to zero yields the875

following solution:876

βj =
λ2

K(gj − h)
(23)877

Take Eq. (23) into the Eq. (19) and let Eq. (19)878

equal to 0, we can obtain:879

(
K∑
j

βj(h))− 1 = 0 (24)880

We obtain h from Eq.(24) using the bisection881

method and subsequently determine the cor-882

responding β. In the final step, we iteratively883

update f , g, Q, and β, h. The iterative opti-884

mization process for ROT is outlined in Algo-885

rithm1.886

B Statistics of Datasets887

We present detailed statistics of the888

CLINC (Larson et al., 2019), BANK-889

ING (Casanueva et al., 2020) and StackOver- 890

flow (Xu et al., 2015) datasets in Table 4. 891

In addition, we display the number of sam- 892

ples per class for BANKING77-LT and 893

StackOverflow20-LT under various imbalance 894

factors, as shown in Fig. 7. We also provide 895

dataset statistics for the ImbaNID-Bench 896

datasets with imbalance factors of 3 and 5, as 897

shown in Table 5. 898

C Comparison Methods 899

In this work, we compare the proposed Im- 900

baNID method against several representative 901

baselines including: 902

GCD (Vaze et al., 2022) introduces a combi- 903

nation of supervised and self-supervised con- 904

trastive learning to learn distinctive representa- 905

tions, which are then clustered using k-means. 906

DeepAligned (Zhang et al., 2021a) is an im- 907

proved DeepClustering (Caron et al., 2018) 908

that uses an alignment strategy to alleviate the 909

label inconsistency problem. 910

MTP-CLNN (Zhang et al., 2022) is a method 911

that applies multi-task pre-training and nearest 912

neighbors contrastive learning for NID. 913

DPN (An et al., 2023) proposes a decoupled 914

prototypical network that, by framing a bi- 915

partite matching problem for category proto- 916

types, separates known and novel categories to 917

meet their distinct training objectives and trans- 918

fers category-specific knowledge for capturing 919

high-level semantics. 920

LatentEM (Zhou et al., 2023) introduces a 921

principled probabilistic framework optimized 922

with the EM algorithm. In the E-step, it assigns 923

pseudo-labels, and in the M-step, it learns 924

cluster-friendly representations and updates pa- 925

rameters through contrastive learning. 926

USNID (Zhang et al., 2023b) is a two-stage 927

framework for both unsupervised and semi- 928

supervised NID with an efficient centroid- 929

guided clustering mechanism. 930

D Implementation Details 931

To ensure a fair comparison for ImbaNID and 932

all baselines, we consistently adopt the pre- 933

trained 12-layer bert-uncased BERT model4 934

(Devlin et al., 2019) as the backbone encoder 935

4https://huggingface.co/bert-base-uncased
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Figure 8: Effects of ω on ImbaNID-Bench.

in all experiments and only fine-tune the last936

transformer layer parameters to expedite the937

training process as suggested in (Zhang et al.,938

2021a). We adopt the AdamW optimizer with939

0.01 weight decay and 1.0 gradient clipping940

for parameter update. During pre-training, we941

set the learning rate to 5e-5 and adopt the early942

stopping strategy with a patience of 20 epochs.943

For CLNN (Zhang et al., 2022), the external944

dataset is not used as in other baselines, the945

parameter of top-k nearest neighbors is set946

to {100, 50, 500} for CLINC, BANKING,947

and StackOverflow, respectively, as utilized948

in Zhang et al. (2022). For all experiments,949

we set the batch size as 512 and the tempera-950

ture scale as τ = 0.1 in Eq. (10) and Eq. (11).951

We set the parameter ρ = 0.65 in Eq. (7), the952

confidence threshold τg = 0.9 in Eq. (8). We953

adopt the data augmentation of random token954

replacement as Zhang et al. (2022). All exper-955

iments are conducted on 4 Tesla V100 GPUs956

and averaged over 3 runs. we split the datasets957

into train, valid, and test sets, and randomly958

select 25% of categories as unknown and only959

10% of training data as labeled. The number960

of intent categories is set as ground truth.961

E Effect of Exploration and Utilization962

The weight of the multitask learning ω in963

Eq. 12 adjusts the contribution of two objec-964

tives. Intuitively, the first term aims to explore965

cluster-friendly intent representations across966

all samples, while the second term focuses on967

mitigating the risk of catastrophic forgetting,968

ensuring the effective utilization of knowledge969

derived from clean samples. We vary the value970

of ω and conduct experiments on ImbaNID-971

Bench (γ = 10) to explore the effect of ω,972

which also reflects the inference of exploration973

and utilization. In Fig. 8, only utilizing clean974
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Figure 9: Effects of λ2 on ImbaNID-Bench.

samples (ω = 0.0) or only exploring(ω = 1.0) 975

the intent representation will not achieve the 976

best results. Interestingly, the effect of ω 977

shows a similar trend (increase first and then 978

decrease) on all metrics and datasets, which in- 979

dicates that we can adjust the value of ω to give 980

full play to the role of both so that the model 981

can make better use of known knowledge to 982

discover intents accurately. 983

F Estimate the Number of Intents (K) 984

In practical dialogue systems, new intents 985

emerge constantly and we cannot know the ex- 986

act number of the intent clusters. In this paper, 987

following the work of (Zhang et al., 2021b), we 988

take the full usage of the well-initialized intent 989

features to automatically estimate the intent 990

cluster number K. Specifically, we first assign 991

a big K ′ as the initial intent cluster number. 992

Then we directly use the pre-trained model 993

to extract the feature representations for the 994

training data and perform the K-means algo- 995

rithm to group these feature representations 996

into different clusters. From these clusters, we 997

can distinguish the dense and boundary-clear 998

clusters as the real intent clusters, while the re- 999

maining low-size clusters are filtered out. The 1000

filtering function can be formulated as follows: 1001

K =
K′∑
i=1

δ (|Ti| ≥ t) (25) 1002

where |Ti| is the size the ith grouped cluster, t 1003

is the threshold of filtering. δ(·) is the indicator 1004

function, whose output is 1 if the condition is 1005

satisfied. 1006

G Hyper-Parameter Analyses 1007

To investigate the sensitiveness of the hyper- 1008

parameters in Eq. 5, we first referred to the 1009

14



experience from previous studies (Asano et al.,1010

2020; Caron et al., 2020b) and identified λ1 =1011

0.05 on the all datasets. Then we examine1012

the impact of λ2 on model performance by1013

varying the value of λ2 to observe the perfor-1014

mance changes. The results are reported in1015

Fig. 9. Specifically, Fig. 9(a) shows the impact1016

of λ2 variation on the performance of balanced1017

datasets, while Fig. 9(b) demonstrates the ef-1018

fect of λ2 on the performance of imbalanced1019

datasets. Empirically, we choose λ2 = 7 on1020

the balanced datasets, and λ2 = 2 on the im-1021

balanced ImbaNID-Bench datasets.1022

H Comparison of Time Complexity1023

The majority of existing methods (Zhang et al.,1024

2022; An et al., 2023; Zhou et al., 2023) are1025

mostly based on k-means for pseudo-labeling,1026

while we propose a novel ROT approach for1027

pseudo-labeling. We discuss the compari-1028

son and selection of time complexity between1029

pseudo-labeling methods based on k-means1030

and ROT. Specifically, the k-means method1031

is a clustering-based approach that iteratively1032

computes distances between data points and1033

assigns them to k cluster centers. Its time com-1034

plexity, typically around O(nkt), depends on1035

the dataset size (n), the number of cluster cen-1036

ters (k), and the convergence speed (t). While1037

the k-means method has lower time complex-1038

ity, it is sensitive to the selection of initial1039

cluster centers and convergence, leading to1040

potentially unstable outcomes. On the other1041

hand, ROT involves iteratively optimizing the1042

distance or similarity between two data distri-1043

butions to find the best mapping. Although1044

the time complexity of ROT methods, such as1045

those based on the Sinkhorn algorithm, is typi-1046

cally polynomial (e.g., O(n2m) where n is the1047

number of source domain data points and m is1048

the number of target domain data points), they1049

generally provide more accurate and robust1050

pseudo-labeling.1051
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