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ABSTRACT

Chain-of-thought (CoT) has become the de facto paradigm for large language
models (LLMs) to solve complex reasoning tasks. However, due to the sequential
nature of token generation, the inference time can be formidable if the CoT is
exceedingly long. This paper identifies a fundamental information bottleneck that
can cause the CoT to be long: although each forward pass can activate a vast
amount of neurons, in the end, the information the model writes down is limited to
a single token, making it inevitable to produce many more CoT steps than necessary.
We first theoretically establish this bottleneck by showing that for some natural
problems, such as pointer chasing and computing parity, either 1-layer transformers
or constant-layer finite-precision transformers require a rather long CoT to solve.
We then demonstrate that for these same problems, allowing the Transformer to
write high-dimensional embeddings to the CoT (i.e., using latent CoT) significantly
reduces the CoT length, establishing a provably theoretical benefit for using latent
CoT. We further validate our theory with controlled experiments: training a small
transformer to simulate Conway’s Game of Life with latent CoT, we vary the
per-step write bandwidth to the latent CoT and observe a sharp success threshold
proportional to the board size.

1 INTRODUCTION

Chain-of-thought (CoT) reasoning has emerged as a powerful paradigm for large language models,
which enables them to tackle complex reasoning tasks by decomposing them into intermediate
steps before producing a final answer. However, since every token in CoT needs to be sequentially
generated, the inference time of CoT grows linearly or even quadratically with the length of CoT.

Recently, a growing body of works has focused on reducing the length of CoT while maintaining
the reasoning capability. Many studies incorporate length penalty designs into Reinforcement
Learning (RL) (Kimi Team et al. 2025} [Luo et al.| [2025; |Aggarwal & Welleckl 2025} |Arora &
Zanette|, |2025; |Gao et al.| 2025). Others investigate prompting strategies that encourage LLMs to
produce concise CoT in certain concise forms (Renze & Guven, 2024; Xu et al.| [2025; |Aytes et al.}
2025)), or fine-tuning approaches that train LLMs on compressed CoT samples (Kang et al., 2025}
Xia et al., |2025; |(Cheng & Van Durme, [2024)).

Information Bottleneck in CoT. How much can the CoT be made shorter without sacrificing
the reasoning capability of LLMs? In this paper, we identify a fundamental limitation of all the
above methods that cannot be overcome without changing the current CoT paradigm: the information
bottleneck in CoT.

More specifically, each forward pass of a LLM only appends a single token to the transcript, which
only conveys O(log |V|) bits of information if the vocabulary size is |V|. Therefore, in every decoding
step, the model can only use O(log |V|) more bits of information than the previous step, and write
back O(log |V|) bits of new information to the transcript. This slow accumulation of information
forces the model to use many more CoT steps than necessary if the reasoning process needs a large
amount of information to make progress.

This information bottleneck would not be called a “bottleneck” if the model is indeed only able to
produce O(log |V|) bits of new information at each step. However, modern Transformer architectures
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generate high-dimensional internal states at each forward pass. These rich hidden representations
propagate layer by layer through residual streams, MLPs, and attention mechanisms. But at the final
layer, they are abruptly compressed into a single token. This means that the model can “think” in a
high-dimensional space with multiple layers of computation, but can only “write down” its thoughts
through a narrow, low-bandwidth token, which limits the amount of information that can be passed to
the next step.

Latent CoT Overcomes the Information Bottleneck. Instead of appending a single token to the
transcript at each step, allowing the model to append a high-dimensional embedding to the transcript
at each step can overcome the information bottleneck and significantly reduce the CoT length. This
strategy is commonly referred to as latent CoT (Hao et al.[(2024); Zhu et al.| (2025); [Su et al.| (20235);
Shen et al.| (2025))), which means each entry of CoT is not a token but a dy;,qe] dimentional vector. In
this work, we focus on the efficiency aspect of latent CoT. Using latent CoT, if properly designed to
convey more information at each step, the CoT length can be significantly reduced.

1.1 OUR CONTRIBUTIONS

In this paper, we formalize the intuition above and demonstrate the information bottleneck in CoT
with a series of theoretical results.

Lower Bound for CoT Length. First, we show theoretical results for two classical problems:
Pointer Chasing and Parity. B

For both problems, we need a large number of token CoTs due to the information bottleneck.
Theorem 1.1. The following holds:

* For a variant of the pointer chasing function (Definition[3.6)), a single-layer transformer
with dimension d needs Q(n/d) CoT steps.

* For the parity function, a constant-layer finite-precision transformer with poly(n) model
dimension needs £)(n/polylog(n)) CoT steps to solve.

Remarkably, our lower bounds for the parity function hold regardless of the model dimension width
and the computational cost of each forward pass per step.

The Benefit of Latent CoT. Further, we show that if we use latent CoT, the CoT length can be
significantly reduced.

Theorem 1.2. The following holds:

* A single-layer transformer with dimension d can solve the same variant of pointer chasing
in O(n/d?+1) latent CoT steps.

o For the parity function, a constant-layer finite-precision transformer with d model dimension
can solve it in O(n/d + logn) steps with latent CoT.

Both of the upper bounds with latent CoT improve roughly a factor of d compared to the token CoT
steps. This is close to the theoretical maximum improvement since one can always use roughly O(d)
tokens to record a d-dimensional embedding. Moreover, when d is large enough (at least v/n in the
first case and at least n in the second case), latent CoT only needs O(1) or O(logn) steps, while
token CoT requires significantly more steps.

Taking our lower bounds and upper bounds together demonstrates that the inability of the trans-
formers with token CoT to solve either pointer chasing or parity is not a lack of computational
power—switching to latent CoT does not give the transformer any more computational bandwidth,
but rather the inforamtion bottleneck as we identified—the only difference between latent CoT and
token Cot is that now the transformer can write more information to the transcript.

Experimental Verification. We validate the information—bandwidth view with a controlled study
on Conway’s Game of Life. We generate n by n (n = 6,8, 10) boards with a random initial state
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(alive/dead independently sampled for each cell). Then simulate it for k¥ = 10 steps using a short
CoT of the same length. The key experimental knob is the width of the info_bottleneck layer
that gates what the model can communicate by CoT from one latent step to the next.

Roughly speaking, we have a tunable knob info_bottleneck, which corresponds to the dimen-
sionality of the vectors in our short latent CoT. Interetstingly, this provides a unified view of different
CoTs. When we set the bottleneck to 0, each CoT output carrys no information, and this is the same

as dot-by-dot CoT (Pfau et al.|(2024)). When we set it to log, (vocab size), each CoT output carries
the same amount of information as a single token, and this captures the usual token CoT. Finally,

when we set the bottleneck to the model dimension dimegel, it captures latent CoT (Hao et al.| (2024)).

In our experiment, across n = 6, 8, 10, we observe a threshold in bottleneck (Figure[T). Below the
threshold, test accuracy stays near chance and test loss remains high; above it, accuracy jumps to
near-perfect while test loss drops steeply. This threshold grows as the problem complexity (n?)
Srows.

We can draw two conclusions: (i) The performance of token CoT suffers from its small information
bottleneck; (ii) Note that we do not set any bottleneck on the information that is moving around by
attention. This means that although attention is good at moving information around, it cannot replace
the information that CoT passes from one latent step to another through the bottleneck.

These results are consistent with our theory: when the information bottleneck of CoT is too small,
the model cannot propagate enough information through time and fails abruptly; once the bottleneck
clears that threshold, the same architecture and training budget solve the task reliably. Latent CoT
removes the discrete-token bottleneck and allows the transformer to efficiently utilize the short CoT.

1.2 ADDITIONAL RELATED WORKS

Theoretical Limitations of CoT. Recent work has begun to probe the fundamental limits of
CoT reasoning. [Bavandpour et al] (2023) prove lower bounds on the length of CoT required for
Hard-attention Transformers to solve certain reasoning tasks, such as Parity or Multiplication. A
Hard-attention Transformers is a tranformer where each attention head can only attend to the unique
position with maximum attention score. Similar to our result, they prove that parity requires €2(n)
length CoT, but only for Hard-attention Transformers, while our result holds for general transformers.
The key insight to their result is how Hard-attention Tranformers simplifies under random restictions,
a technique first applied to tranformers by [Hahn & Rofin] (2024)). In contrast, our work identifies the
information bottleneck of token CoT as a critical constraint, which is a completely different insight
into the limitation of token CoTs.

Token Complexity and Optimal Length. Our theoretical analysis provides a formal grounding for
recent empirical observations regarding CoT efficiency. The "Token Complexity Hypothesis" (Lee]
suggests that each task has its intrinsic token complexity, and LLMs struggle to compress
their reasoning into fewer tokens than this complexity. Our results explain this by showing that the
channel capacity of a single token is insufficient to carry complex state updates, necessitating a long
chain of uncompressed tokens. Similarly, empirically identify a "sample optimal
length" for inference; our work theoretically justifies why this length cannot be arbitrarily shortened
with discrete tokens but can be significantly reduced with latent embeddings.

Information Bottlenecks. The concept of information bottlenecks in LLMs has also been explored
in the context of the attention mechanism itself. [Schnabel et al](2023)) argue that information is "lost
in transmission" across attention layers, hindering global reasoning. Their bottleck is mainly for
transformers without CoT, and they additionally showed that CoT can break their bottleneck. Our
work highlights a distinct bottleneck: the token CoT itself. Even if the internal attention mechanism
preserves global information, and even if with token CoT, the requirement to output a single token
forces a lossy compression at every step.

Latent CoT and Looped Transformers. Finally, our proposed solution aligns with the growing

interest in continuous reasoning and latent CoT (Hao et al] 2024} [Zhu et al] 2023), demonstrating its

advantages in practice.
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It worth mentioning that in the COCONUT paper [2024), they observes that in their
experiment, latent CoT outperforms token CoT on logical reasoning datasets like ProntoQA and
the authors’ new dataset ProsQA. They argue this is because COCONUT’s continuous latent state
can encode multiple potential next steps simultaneously.This is exactly one of the capabilities that
requires a high-capacity information channel. Our paper provides a theoretical explanation and a
more general view for these mixed results: For tasks with low state-passing needs (e.g., simple
reasoning), the O(log |V|) bottleneck of token CoT is sufficient; For tasks with high state-passing
needs (like our PARITY or GoL), the O(log |V|) bottleneck is insufficient. Here, latent CoT shows a
massive performance gain, as predicted by our theory.

The other related line of work is the study of Looped Transformers (Saunshi et al] 2025} [Geiping]

et al] 2023} [Chen et al ] 2023} [Yang et al} 2023} [Li et al] [2023} [Eyuboglu et al] 2024} [Xu & Sato]

2025). Expressibility-wise, They are equivalent to an internal latent CoT of the model. In particular,

(Xu_& Sato] 2023) shows that in terms of abstract complexity class, looped transformer (same holds
for latent CoT) with log” n steps is a larger class than token CoT of same number of steps. In
comparison, our work not only shows conrete problems that seperate the two but also indentifies
information bottleneck as the fundamental reason behind.

2 PRELIMINARY

Throughout the paper, we use n to denote the maximum prompt length, d the model dimension.
We consider a decoder-only Transformer architecture and the detailed description can be found at

Appendix[A]

Definitions of classical problems. We first present a few definition of classical problems studied in
our paper.

1. Pointer Chasing. Given two functions f4, fg: [m| — [m] and an integer k, find out
(fBo fa)*)(1). Here fg o fa denotes function composition, and the superscript (k) denote
composing the underlying function with itself & times.

2. Parity. Given a sequence of n tokens 1, . .., x,, each of which is either 0 or 1, compute
the parity of the sequence, i.e., x1 @ - - - D x,,.

3. Conway’s Game of Life. Given an initial board S(*) € {0,1}"*™ (1 = alive, 0 = dead) and
an integer k, iteratively compute S*) for t = 1, ..., k under the standard Life rule: a cell is
alive in step ¢ iff it had exactly three live neighbors at step ¢ — 1, or it had two live neighbors

and was already alive. The task is to output the final configuration S(*) (or any statistic
derived from it, such as the number of live cells).

In all three problems, the prompt is provided as a tokenized textual description (e.g., enumerating
function tables, the bit string, or the initial board), but our results depends only on the underlying
information content and therefore not on the specific input encoding scheme.

Boolean function analysis We present some basic terminology for boolean function analysis. Let
f:{-1,1}" — R be a Boolean function. Its Fourier expansion is given by

fx) =Y f(S)xs(@),

SC[n]
where xs(z) = [[;cg i is the character function and

F(S) =Epi 11y [f(2)xs(2)]

is the Fourier coefficient corresponding to subset S C [n]. When the output domain is {—1, 1}, one
further have

Z f (S)? =1 (Parseval’s Identity) e))
SCn]
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Definition 2.1 (Sensitivity). Let f : {—1,1}" — {—1,1} be a Boolean function. The average
sensitivity of f, denoted AS(f), is defined as:

AS(f) = ;% Pr o @) # £,

where £ is the vector x with the i-th bit flipped. Alternatively, using the Fourier expansion of f, we

have:
AS(f)=4> " IS]- f(5)*.

SC[n]

For further background on Boolean function analysis, please refer to the classical textbook by

[0DonneTl| (20T4).

Communication Complexity. Communication complexity studies the number of bits that dis-
tributed parties must exchange to jointly compute a function of their distributed inputs. We rely on
standard definitions for randomized protocols with public randomness.

* Two-party Randomized Protocol. Alice holds input x € X and Bob holds input y € ). They
share a public random string r. The protocol proceeds in rounds where parties exchange messages
depending on their private input, the public randomness, and prior messages. The communication
cost is the maximum total number of bits transmitted over all inputs and random strings. The round
complexity is the number of message exchanges.

* Success Probability and Advantage. A protocol computes a Boolean function f(z,y) with
success probability 1/2 + 7 if and only if Pr[output = f(z,y)] > 1/2 + n for every input pair
(x,y). We call n € [0,1/2] the advantage. We say a protocol has nontrivial constant success
probability if n = O(1).

* Direct Sum (XOR Lemma). For a Boolean function f, let f&(x(1), y@® 2, y*)) £
D:_, f (2@ y®) denote the XOR of s independent instances. Strong XOR lemmas (e.g.,
) state that if any r-round protocol for f with constant success probability requires communi-
cation cost C, then computing f®* with advantage 2~°(*) requires cost roughly Q(s - C).

* Laconic (Three-party) Communication. To model the information bottleneck in token-based
CoT, we introduce a three-party model with Alice, Bob, and a central coordinator Charlie. In each
round ¢:

1. Charlie broadcasts the current "token" z;_1 € {0, 1}? (where p is small, e.g., O(logn)) to
Alice and Bob.
2. Alice and Bob send high-dimensional messages m 4, mp € {0, 1}°(%) to Charlie based on
their inputs and z;_1.
3. Charlie computes the next token z; from (ma, mpg, z;—1) and discards m 4, mp.
Crucially, only the low-bandwidth token z; persists to the next round. This mirrors a Trans-
former where high-dimensional internal activations (m 4, mp) are compressed into a single output
token (z;). This is the information bottleneck.

3 SEPARATIONS FOR ONE-LAYER TRANSFORMER

Theorem 3.1. Let n be the maximum prompt length, d be the model dimension, all arithmetic
operations are performed with p = O(log(n)) bits of precisions and the vocabulary size is of
[V| = poly(n). For 1-layer Transformer, there is a task such that

* it requires at least neor = U(n/dlog(n)) CoT steps, while
s it can be solved with O(n/d* + 1) latent CoT steps.

We sketch the proof idea of the lower bound for CoT, the missing details can be found at Appendix [C]

We propose a fine grained communication model that not only captures the information bottleck of
an attention layer, but also the information bottleneck of token representation.
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Definition 3.2 (Laconic communication model). Consider the following three-party communication
model. Alice and Bob each hold a private input z4 and zp ((z4, 25) € {0,1}"P) and Charlie initially
holds the empty string. They wish to collectively compute some function value f(za,zp) € {0,1}.
The communciation proceeds in a sequence of R rounds and at roundr = 1,2,... R,

* Charlie sends its input zc < € {0,1}"=YP to Alice and Bob

* Alice (resp. Bob) then replies with 114, € {0, I}de (resp. HBW) based on zc <, and its
own input z 4 (resp. zp).

* Given z¢ <, € {0, 1}(T_1)p and the transcript 114 ., 11 g ., Charlie compresses them into
zr € {0,1}? and then augments zc <, € {0,1}r=1P ¢ zo<r+1 = (20,<r,2r) €
{0,1}(=1P x {0, 1}P.

Note the information of 114 ., 11 - has been forgot except those in z,. At the end, Charlie outputs
the answer of f(za, zB).

Intuitively, this model catpures a key feature of token-based CoT: after a lot of computation (resp.
communication), only a token (resp. logarithmic bits) is written to the CoT (transcript).

We first prove that lower bounds in this model can be translated to CoT lower bounds against 1-layer
transformers. We say that a Transformer solves the task in Definition [3.2] within nc. steps, if given
zA, Zp as prompt, it correctly outputs the value of f(z4, 2p)

Lemma 3.3 (Reduction). If there is a 1-layer Transformer that solves the task in Definition[3.2] after
Neot Steps, then there is a (Neor + 1)-round communication protocol.

It remains to present a hard function f for the laconic communication model. We first introduce the
pointer chasing task, which is a classic problem that has been extensively studied in the communication
complexity literature (Papadimitriou & Sipser, |[1982; |[Nisan & Widgerson, [1991; [Klauck, [2000;
Yehudayoff} 2020; Mao et al., 2024)

Definition 3.4 (Pointer chasing). In two-party pointer chasing problem, Alice and Bob each holds
a function fa, fg : [m] — [m]. Given k € [m], they are asked to compute the parity of the

PCr(fa. ) = (fo fa)®(1).

We make use of the following communication lower bound.
Lemma 3.5 (Lower bound for pointer chasing Mao et al.|(2024)). For any k € [m] and (2k — 1)-

round communcation protocol that exchanges 1 bit per round and that succeeds with probability at
least 2/3 over the uniform distribution, its communication complexity is Q(m/k + k).

In the proof, we would take k = 2 and m = d. The actual hard function f is the XOR of n/m pointer
chasing instance.

Definition 3.6 (XOR pointer chasing). Alice and Bob each holds n/2d functions fa ; : [d] — [d]
(it € [n/d])and fp; : [d] — [d] (i € [n/d]). They wish the compute the XOR of these pointer chasing,
that iS ®1€[n/d] PCQ(fA,’U fB,’L)

We need to following XOR Lemma for bounded round communication protocol.

Lemma 3.7 (Strong XOR Lemma for bounded round communication |Yu| (2022)). Suppose the
communication complexity of an {0, 1}-valued function f is C within r-round of communication
(with success prob 2/3), then the randomized communication complexity of computing f®° with
advantage 1/2 + 275 is at least s - (r=°(") . C' — 1)

We have the following lower bound for XOR pointer chasing.

solves the XOR pointer chasing task (Definition with advantage % + 277/24jts communication

Lemma 3.8 (Lower bound for XOR pointer cha). For any 3-round communication protocol that
complexity is at least Q(n).

Finally, we prove a lower bound for XOR pointer chasing under the laconic communication model
using Lemma|[3.7} this is the key step of our proof.
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Lemma 3.9 (Lower bound for laconic communcation). The number of communication rounds to
solve the XOR pointer chasing in the laconic communication is Q(n/dp).

Combining Lemma[3.3]and Lemma 3.9 we have proved the CoT lower bound in Theorem 3.1} The
construction for the latent CoT is formally proved at Appendix [C|

4  SEPERATION FOR MULTI-LAYER FINITE PRECISION TRANSFORMER

Theorem 4.1. Let n be the maximum prompt length, d be the model dimension. Consider the task of
PARITY, for a constant depth, finite precision Transformer

* it needs at least Neor = (NZ(n) CoT steps to solve PARIT' while

* latent CoT requires only O(n/d + log n) steps to solve PARITY.

We the proof for the CoT lower bound in Theorem [4.1] the construction for latent CoT is
formally stated and proved as Theorem [B.4

Indeed, we prove a stronger result, which characterizes the representation power of constant depth
finite precision Transformer using Fourier analysis.

Theorem 4.2. Let n be the input length. A constant depth, finite precision Transformer with model
dimension d = poly(n) and ney, CoT steps have at most |V|*"< - 2=F/POVIe(") Foyrier mass at level
k or above.

Theorem [4.2] shows that a finite-precision Transformer can be approximated by a low-degree polyno-

mial. After neo steps, its Fourier mass is concentrated mostly on levels below O(ncot). There are
many natural functions that have non-trivial mass on high degree coefficient, e.g., PARITY is the
degree n polynomial. This also include any functions with large average sensitivity.

Corollary 4.3. Let | be a function of average sensivity AS(f) (see Definition , then costant depth
finite precision Transformer requires neor = Q(AS(f)) CoT steps to compute f.

The corollary follows directly from Theorem [4.2] Definition [2.1) and Parseval’s Identity (T).
In the rest part, our goal is to prove Theorem[4.2] First, we note that, without CoT, a finite precision
Transformer can be simulated by a constant depth boolean circuit.

Theorem 4.4 (Li et al.|(2024)). A finite precision, constant depth Transformer with model dimension
d = poly(n) can be simulated by a constant depth, polynomial size boolean circuit.

We have the following bounds on the Fourier spectral of polynomial size boolean circuits.
Theorem 4.5 (Tal| (2017); Hastad| (2014)). Let f be a Boolean circuit with depth L and size m. Then,

ST f(8)? <227 OEmETh)
5:| 8|2k

Proof of Theorm Given a finite precision constant depth Transformer T, let g : {0,1}™ — {0, 1}
be the function computed by I' in net steps. For each i € [ne], let g; = {0, 1} x Y- 5y
denote the function computed by I' (without CoT) on input sequences of length n + ¢ — 1 under
greedy decoding. Without loss of generality, we assume that g(x) = 1 if and only if the last generated
token equals 1.

'this holds for any d = poly(n)
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For any t € V"=, define hy : {0,1}" — {0,1} as:
hi(@) = WYtng, =13 [[ Uoilw,t<i) = t:}
1€ [Ncot)

That is, h;(x) equals g(z) if and only if ¢ is the sequence of CoT tokens generated by I' under greedy
decoding; otherwise, h:(z) = 0.

By Theorem each indicator function within the definition of h;(z) corresponds to a constant-
depth polynomial-size Boolean circuit. Hence, h;(x) itself is a constant-depth polynomial-size circuit
(it can writen as the OR of these indicator functions).

We can express g(x) as:

g(x) = Y (). @)

teVneot

Transitioning to the {—1,1} basis, define f, {fi }teyne : {—1,1}" — {—1,1} as:

_ 1—aq 1—2x, _ 11—z 1—x, ot
fl@)y=1 29( 5 Ty >,ft(x) =1 2ht< 5 g ), YVt € Yl

Then, by Eq. (), we have:

2 2
teVncot

Thus, for any non-empty set S, the Fourier coefficients satisfy
f(8)=">_ fi(9)
teVncot
Applying the Cauchy—Schwarz inequality yields:
FSP <= Y fils)*
teVncot
Consequently, by Theorem[d.5] we derive
S AP YN SR < v 2o,
5:|S|>k teVneot 5:(S|>k

This compltes the proof. O

5 EXPERIMENTS

To empirically validate our hypothesis regarding the information bottleneck, we designed a controlled
experiment using Conway’s Game of Life. Our goal is to demonstrate that for such an iterative task,
the performance of a model is critically dependent on the bandwidth of information passed between
autoregressive steps. By employing a Latent Chain-of-Thought (Latent CoT) architecture, we directly
manipulate this bandwidth and observe its effect on task performance.

5.1 EXPERIMENTAL SETUP

Task: Conway’s Game of Life We select Conway’s Game of Life as our experimental testbed.
The task is structured as follows: the model is presented with an initial n x n board state and is
tasked with simulating the game for £ = 10 steps. The final objective is to output the total number of
live cells in the terminal configuration. We conduct experiments across three levels of complexity by
varying the board size, with n € {6,8,10}.
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Model Architecture: Latent CoT Transformer with information bottleneck Our model is
built upon a decoder-only transformer architecture with 5 decoder layers and we set dmoger =
512, ditermediate = 2048 and number of attention heads H = 4. It uses the Qwen 3 tokenizer and acts
the same as the standard transformer architecture when prefilling the input prompt.

To control the information bandwidth in CoT, instead of generating textual tokens for CoT, our model
performs k latent reasoning steps internally. The architecture is as follows:

1. m1pl (Encoder): This encodes the final hidden state into a latent representation, which
represents the model’s internal "thought" or the predicted state of the Game of Life board.

2. mlp2 (Decoder/Injector): This latent state is then processed by m1p2 and injected back
into the model as an input embedding to initiate the subsequent latent reasoning step. This
process is iterated for k£ = 10 steps.

Crucially, m1p2 is designed with an information bottleneck layer at last, implemented
as the sequential composition of nn.Linear (hidden_size, info_bottleneck and
nn.Linear (info_bottleneck, hidden_size). The info_bottleneck dimension
is the key hyperparameter we vary in our experiments, allowing us to directly control the informa-
tional capacity of the channel between latent reasoning steps.

We note that this setup gives a natural interpolation between a few CoT concepts:

* When info_bottleneck = 0, it captures the dot-by-dot CoT (Pfau et al.|(2024));

* When info_bottleneck = log,(vocab_size), this architecture captures the infor-
mation passed by usual token CoT;

* When info_bottleneck = dpegel, it captures lacent CoT (Hao et al.| (2024)).

Dataset and Representation The training data is generated procedurally,

For each sample, a random initial board is created. The
ground-truth sequence of board states for k = 10 steps is pre-computed using the canonical Game
of Life rules. Each board state is flattened and transformed into a one-hot encoded vector of size
n X n X 2, representing the alive/dead status of each cell. This sequence of vectors
serves as the ground-truth targets for our latent states. The prompt is formatted as a natural language
question specifying the initial board and the task, followed by the ground-truth sequence of board
states as CoT, and then the final answer is a string containing the number of live cells (e.g., "Answer:
23").

5.2 TRAINING DETAILS

Objective Function Our training objective is a composite loss designed to supervise both the
intermediate reasoning process and the final answer. The total loss £ is the sum of a latent state loss
Liaene and a final answer 1oss Ly

L= »Clatem + »Cﬁnal

» Latent Loss (Ljatent): To ensure the internal reasoning steps correspond to the actual game
dynamics, we apply a supervision signal at each of the k latent steps. The latent loss

is the Mean Squared Error (L2 loss) between the model’s generated latent state and the
ground-truth one-hot encoded board state for that step.

k
1 i i
[flatent = E Z HS[()re)d - St(ru)e”%
=1

where S is the latent state at step 1.
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* Final Loss (Lgpa)): To train the model to produce the correct final answer, we use a standard
cross-entropy loss on the model’s output logits, comparing the predicted token distribution
against the ground-truth answer tokens.

Hyperparameters and Optimization The model was trained using the AdamW optimizer with a
learning rate of 2 x 10~* and weight decay of 0.01. We employed a cosine learning rate schedule
with a warmup ratio of 0.02.

5.3 RESULTS AND ANALYSIS

Training and Testing. During training, we use teacher forcing, meaning that we feed the trans-
former natural-language prompt together with a perfect latent CoT supervision constructed from the
ground-truth Game-of-Life roll-out of £ = 10 steps.

During testing (inference), we provide only the prompt; the model then rolls out £ = 10
latent reasoning steps autoregressively through the information-bottleneck module (of width
info_bottleneck) without access to ground-truth latents, and finally decodes the answer from
the last hidden state. The test loss is calculated as £ = Ljyenc + Lsina as well. The test accuracy is
calculated solely based on whether the final answer is the correct final number of living cells. We
ablate the bottleneck width to study its effect on test loss and accuracy.

Impact of the Information Bottleneck The state of an n x n board requires n? bits of information
to be perfectly represented. We hypothesize that the info_bottleneck dimension must be large
enough to accommodate this information. As illustrated in Figure[I] our results reveal a sharp phase
transition: models with bottleneck dimensions below the threshold fail almost completely, while
those above the threshold achieve high accuracy and low test loss. The critical threshold is related to
the problem complexity (n?), and increases as n increases.
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A NOTATIONS AND PRELIMINARIES

Our notations and mathematical definitions of transformers follows closely from|Li et al.[(2024)). For
completeness, we list them below.

We denote by N and R the sets of natural and real numbers, respectively. For any positive integer n,
we write [n] = {1,2,...,n}. We define the ReLU activation function as relu(z) = max(x,0). For
a vector x, we use I, to represent the subvector containing elements from position a to position
b. For a matrix M, we write Mg, b, a,:b, t0 denote the submatrix formed by selecting rows from a;
to by and columns from as to by. We also use a; : to represent indices from a; to the end, : b; for
indices from the beginning (1) to by, and : for all indices.

We use ¢(x) = Z‘f:ll 2117z, to represent the decimal value of a binary string z. We denote by
biny (z) the standard binary encoding of natural number z using k bits such that ¢(bing(z)) = z, and
by sbing () the signed binary encoding, defined as 2bing(z) — (1,...,1). For any positive integer n,
we define the softmax function softmax : R™ — R™ as (softmax(z)); = exp(z;)/ >__; exp(z;)
for any x € R™ and ¢ € [n]. We use © for element-wise multiplication of vectors. We denote vector
concatenation by al|b or (a, b).

A.1 DECODER-ONLY TRANSFORMERS

Given a vocabulary V, a decoder-only transformer with parameters # and maximum input length 7,

maps an input sequence (1, ...,z,) € V" to a probability distribution over V for all n < npax,
which we denote as pg(- | 21, ..., z,). We also define TFy(z) as the token in ) that maximizes this
probability distribution: TFg(x1,...,2,) = argmax,cype(y | 21, .., Tn).
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Next-token Generator: Given a vocabulary V, a next-token generator with parameters ¢ and
maximum input length n,.y is a function from U;=3*V™ to V. The primary next-token generator
we study is the decoder-only transformer TFy(z1,...,2,) where each x; € V for i € [n]. We
recursively define TFy(z1,...,z,) = TF;;I (x1,...,%n, TFg(x1,...,2,)) for any positive integer
7 and n such that i+n < ny.x— 1, with base case TFé(ml, ceoyXpn) = TFg(21,...,xy,). Thus, forall
0 <7 < npax —n— 1, the output after ¢ steps of chain-of-thought is x,, ;411 = TF;‘*‘1 (1., ) =
TFo(Z1, . Xy Ty« -+ s Trpgi)-

Transformer Architecture Overview: The decoder-only transformer architecture we consider
closely follows GPT-style models (Radford et al.l |2019) and comprises four main components: a
token embedding layer (TE), a positional encoding layer (PE), an output linear layer (OUTPUT),
and a stack of L identical decoder layers, where L represents the model depth. Each decoder layer
contains two sublayers: a multi-head self-attention mechanism (AT TN) and a position-wise feed-
forward network (FF). Each component has its own trainable parameters indexed by the layer name
and depth for attention and feed-forward layers. E] We can decompose the model parameters 6 as:
0 = (Opg, O1e, fouTPUT, {G(AlT)TN, 9,(:lF) lL:_Ol), all of which are trainable. (See formal definition in
Algorithm 3). Throughout this work, we use d to denote the embedding dimension of the transformer.

Self-Attention Mechanism: ~ Given attention parameters Oartn = (Wo, Wi, Wy, W) € R¥X4x

RIxd » RIxd » RI*4 e define the masked attention layer for decoder-only transformers in
Algorithm [T}

Algorithm 1 Causal Self-Attention, ATTN

Require: Parameter Oarrn = (Wo, Wi, Wy, W), Input embedding i = (h1,..., hy) € R™.
Ensure: Output embedding 2’ = (hY,..., k) = ATTNgrrn (P1s -« Ap).

1: ¢; = Wth,ki = Wkh;,v; = Wy h;, Vi € [n]

2: s; = softmax({q;, k1), -, (¢, ki))|[(0,...,0).

3y =Wo 35 (si)v;-

Feed-Forward Network: Given feed-forward network parameters Ogg = (W1,by, Wa,bo) €
RIXd x R? x R4*4 x R?, we define the feed-forward layer FFy.. : R? — R as FFy__(h) =
WQI’G'U(Wlh + bl) + bs.

Token Embedding: Given token embedding parameters 61g € RdXM, we define the token
embedding layer by treating f1g as a mapping from V to R, so that for any 2 € V, the token
embedding is O1e(x).

Position Encoding: Given positional encoding parameters fpg € R?*"max, we define the positional
encoding layer by treating fpg as a mapping from [r,.x] to R%, so that for any n € [nyay], the
positional embedding is Opg(n).

Output Layer: Given output layer parameters foytpur € RIVI*?, we define the output layer
OUTPUTgyyrpyr : R = V as OUTPUT gy ey (h) = softmax(foytpyth) for any h € R

A.2 FINITE PRECISION MODELING

We now provide formal definitions for floating-point numbers and rounding operations. Recall that
oa) = Zle 2F~1q,; represents the decimal value of a binary string a € {0, 1}* for any k € N*.

Definition A.1 (Floating-point Representation). Let e denote the number of exponent bits and s the
number of significand bits. An (e+2s+1)-bit binary string a = (a1, az, . . . aey2s41) € {0,1}6T25+L

2For simplicity, we omit LayerNorm (Ba et al., [2016) from the standard transformer architecture. Our
expressiveness analysis can be extended to transformers with LayerNorm.
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Algorithm 2 Embedding Transformer

Require: Core parameters 0o = (QPE,{Q(AI%TN,QSF) ZL:_Ol), input content embeddings e =

(e1,...,e,) € R,

Ensure: Output embedding h € R¢, where h = EmbTrans Wy (€).
(GPEv{eATTN’eFF b))
WO e + Ope(i), Vi € [n]

:fori=0,...,L—1do

1

2

30 (WO RSO e PR+ ATTN e (0, n)

ATTN

4: h§l+1) - h§l+0'5) + FFe(z)(h§l+0'5)),Vz' € [n]
FF

5

6

: end for .
: return h% )

Algorithm 3 Decoder-only Transformer, TFgy and pg

Require: Transformer parameters § = (6pg, O7e, douTpPuT, {H,YT)TN,HSF) lL:_Ol) and input tokens

x=(21,...,2,) € V™.
Ensure: Output distribution pg(- | z1,. .., x;) for all ¢ € [n] and output token TFy(x).
1: e; < Ore(x;), Vi € [n]
2: hy — EmbTranS(apE,{G,i?TNﬂéQ}f;ol)(61’ cesen)
3: po(- | 21, -y xn) <= OUTPUT ggurpur (Bn)
4: TFg(x) + argmax, pg(y | T1,. .., Tn).

represents a floating-point number ¢ (a) = sign(a) - 2°¥Ponen (@) . significand(a) with e-bit expo-
nent and 2s-bit precision, where the sign is sign(a) = 2a; — 1, the significand is significand(a) =
275¢(ag.25+1), and the exponent is exponent(a) = ¢(ags+2:25+e+1) — omax(0.e=1) We denote by
Fe s the set of all floating-point numbers representable with e-bit exponent and 2s-bit precision:
Fe,s — {5_2—5+E | _225+1 <S< 223_1’ _2max(0,e—1) <E< 26_1_21’!]&){(0,6—1)’ E, S e N}
We define B, ; = maxF, ;.

We use e s : Fe s = {0, 1}e+25+1 to denote the inverse of ¢. ;. When the exponent has more than
0 bits, multiple binary strings can represent the same number in . ;; we choose . s(z) as the string
a € {0,1}¢+25F1 with the smallest |exponent(a)|, which is unique for all non-zero numbers. For 0,
we additionally set sign (i, s(0)) = 1.

Definition A.2 (Correct Rounding). For any x € R and any closed subset F C R containing 0, we
define correct rounding round(x, F) as the element in F closest to x. Ties are broken by selecting the
element with smaller absolute value.

Specifically, we denote rounding with e-bit exponent and 2s-bit precision as rounde s(-) =
round(-,F. ), also written as -], , for convenience. We extend round and round, s to vector inputs
by applying rounding coordinate-wise.

Our floating-point representation simplifies the IEEE 754 Standard (Zuras et al., |2008) by excluding
oo and —oo. When overflow occurs, we round the result to the largest representable number (positive
or negative) in F. ;. For unary functions like exp(-) and binary operations including addition,
subtraction, multiplication, and division, we define their rounded versions by rounding their outputs.
Division by 0 is treated as producing an incorrect result.

Next, we define finite-precision summation over multiple terms by decomposing it into a sequence of
rounded binary additions in a fixed order

Definition A.3 (Summation with Iterative Rounding). For any s,n € NT and vector x € R",
we define summation with iterative rounding to e-bit exponent and 2s-bit precision as sum, s :

3Technically, summation could also proceed in a tree-like fashion. This more complex case is left for future
work.
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Upen+ (Fe,s)™ — Fe s, where for any n € Nt and x € R™,

e,s

sum, ¢(2) = H[[wl + @], + xs}

e,s

e,s
We further define the following operations:
* Finite-precision inner product: (z,y), . = sumc s(z © y);

* Finite-precision matrix multiplication: (A X s B)ij = ((Ai.)", B.j), s

* Finite-precision softmax: softmax. s(z) = [[exp(:r)}eys /sume,s([exp(x)]w)]

e,s

Finally, a finite-precision transformer is defined by replacing all infinite-precision operations with
their finite-precision counterparts listed above. (See details in Algorithm[6). We provide the detailed
definitions of finite-precision transformer layers in Appendix[A.3]

A.3 DETAILS ON FINITE-PRECISION LAYERS

In this section, we provide definitions for the finite-precision versions of different transformer layers.
Recall that for s € N*, the numbers representable with 2s-bit significand and e-bit exponent form the
set Fe75 — {5.2—3+E | _228_1_1 < S < 225_17 _2max(0,e—1) < E < 2@_1_2max(0,e—1), E, S e
N}.

Self-Attention Mechanism:  Given attention parameters Oartn = (Wo, Wi, Wy, Wo) € ]Fg{xsd X

Fdxd x Faxd x FIX4, we define the causal self-attention layer for decoder-only transformers in
Algorlthm[i_q

Algorithm 4 Finite-Precision Causal Self-Attention, ATTN

Require: Integers s € N*, e € N, Parameter Oartn = (Wo, Wi, Wy, Wo), Input embedding
h=(hi,... hy) € FPL.

Ensure: Output embeddmg R = (hy,...,h,) =ATTNgrr (P1s -5 Bp).

L g = Wg Xe,s his ki = Wk xebhz,v,—Wv Xe,s hi, Vi € [n]

2 sl = softmaxqs((ql, k1)e sy (@i ki), IO, ..., 0). > n — ¢ zeros; Mask for Causal
Attention;

3: b =Wo Xe,s sume s([U1, ..., 0n] Xe,s Si).

Algorithm 5 Finite-Precision Embedding Transformer

Require: Integers s € NT, e € N; core parameters (6pg, {0ATTN, G(FZF) lL ") with entries in F, ;
input content embeddings e = (e1,...,e,) € Fffdg
Ensure: Output embedding h € F¢

— €S
¢.s» Where h = EmbTranb(f)PE,{@f\?TN 9(1)})( e).

1: b = [e; + Ope(i)], .. Vi € [1]
2: forl=0,...,L—1do
30 (WO pH08)y [(hg”, B ATTN G (B0, D)
ATTN e,s
4 hz(-lﬂ) _ [hEHO'E’) i FF9<1>(hZ(-l+O'5))} Vi € [n]
FF e,s
5: end for
6: return h%L)

Feed-Forward Network: Given s € NT, e € N, and feed-forward network parameters O =
(W1,b1, Wa,b) € FXE X FE  x FdX x F¥ _, we define the feed-forward layer FFg. : F? . — F?

e,s?

as FFg (h) = [W2 Xes relu([Wr Xe s h+ b1, ) + b2}

e,s
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Token Embedding: Given s € NT, ¢ € N, and token embedding parameters f1g € ]FZEM, we

define the token embedding layer by treating ¢ as a mapping from V to R¢, so that for any = € V,
the token embedding is e (x).

Position Encoding: Given s € NT, ¢ € N, and positional encoding parameters 0pg € Fgé"ma",

we define the positional encoding layer by treating fpg as a mapping from [, to RY, so that for
any n € [nmax|, the positional embedding is Opg(n).

Output Layer: Given s € NT, ¢ € N, and output layer parameters foytpuT € IFe‘ig‘Xd, we define

the output layer OUTPUT g, pr : F9 , — V as OUTPUT gy (h) = softmax s(Goutput Xe,sh)
for any h € F¢ .

Finally, we define finite-precision decoder-only transformers below.

Algorithm 6 Finite-precision Decoder-only Transformer, TFy and pg

Require: Integers s € Nt, e € N. Transformer parameters 6 =
(Opk, O1E, BouTPUT, {GX%TN, GSF) lL:_Ol) with 2s-bit precision and e-bit exponent. Input
tokens z = (z1,...,zy) € V"

Ensure: Output distribution pg(- | 21, ..., ;) for all ¢ € [n] and output token TFy(z).

1: e; = TE(x;), Vi € [n]
2: fort=1,...,ndo

e,s
3: h; = EmbTrans(Gps,{O,i"T)TNﬂélF)}f;ol)(61’ coe)
4: pg(' ‘ (O PR ‘rl) = [OUTPUTGOUTPUT(hi)]e,s
5: end for
6: TFo(z) = argmax, po(x | 21,...,2s).

B MISSING PROOF FROM SECTION [4]

Following [Li et al.[(2024), we introduce the following notations. We will use the shorthand F, £
Fos={c-k-27%|ce {-1,1},0 < k < 22 — 1,k € N} and rounding operation [-], £ []o .
We use 1, to denote all-one vectors of length s. Similarly we define (-, -)S, X ¢, and softmax,. We
recall that for any s € NT and integer 0 < z < 2% — 1, we use bing(z) € {0,1}* to denote the
usual binary encoding of integer z using s binary bits in the sense that z = >_;_, 2¢(bins(x)); and
sbins(z) € {—1,1}* to denote the signed binary encoding, which is 2bing(x) — (1,...,1).

We also have the following lemmas from |L1 et al.| (2024])) that will be used in our proof. Recall
B, = maxF, =25 — 275,
Lemma B.1 (Lemma E.1Li et al. (2024)). For any s € N*, it holds that [exp(—B;)], = 0.

Using the same argument above, we also have Lemma[B.2]
Lemma B.2 (Lemma E.2|Li et al.|(2024)). For any s € N7, it holds that [exp(Bjs)], = Bs.

Given two vectors z,y of the same length s, we use £y to denote their interleaving, that is,
(27y)2i—1 = 24, (7 y)2; = y; forall i € [s].

Lemma B.3 (Lemma E.3 of [Li et al|(2024)). For any s € NV, let q; = sbing(i)" 15 and k; =
By - (sbing (i) (=14)) for all i € [2° — 1), it holds that [exp({gi, k;),)], = 1[i = j] for all
i,j €2°—1]

Theorem B.4 (Finite-precision latent CoT upper bound with binary step embedding). Without loss
of generality, let n,d be powers of two withn = d - k where d > Q(logn) and let Ly, := log, k.

There exists a one-layer (L = 1) finite-precision embedding transformer (using F, roundg, sumg,
and the finite-precision attention/FFN defined in Appendix[A.3)) that, after

T = k + [logyd] = %Jr Mog, d]
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steps of latent CoT, outputs a vector hflLﬁT € FP whose first coordinate equals the parity of the input

bit string x € {0,1}", i.e., x1 @ - - - ® x,,. Moreover; the required model dimension can be taken to
be
D =d+ Lpw + 3 =d + logyk + 3.

Hence one can decode by reading the first coordinate and thresholding.

Model dimension and coordinate layout. To facilitate explicit layerwise linear/nonlinear con-
structions while minimizing dimension, write Ly, := log, k and use a model of dimension

D =d+ Lyn + 3

(written as F2 below). The coordinates are partitioned as follows:

e G-slot (coords 1:d): at input tokens, store the group one-hot €grp(5)> at scratchpad positions, store
the length-d vector of group parities p(™).

~B-Slot (coords d+1:d+Ly;y,): a signed binary code of the block/step index. For ¢t > 1, let
b(t) == sbing,,, (t—1) € {1, +1}Lvin denote the signed-binary encoding of ¢. At input tokens
J, store b(blk(j)); at scratchpad position n+r, store b(r).

* X-slot (coord d+Ly,,+1): the input bit z; € {0,1}.

1-slot (coord d+Ly;,+2): the constant 1.

Z-slot (coord d+ Ly, +3): control bits for stage/reduction level (used only in Stage II).

Input/position embeddings and latent CoT chaining. Let the token embedding 67¢ : {0,1} —
FZ and position embedding fpg : [n+71] — FL be

Ore(x) = ) earrpmrts  OPE(]) = egp() + O(BIK()) + €dsrpmizs

where e; denotes the i-th standard basis vector (one-hot within its slot), grp(j) = ((j—1) mod d)+1,
and blk(j) = [j/d]. For scratchpad position n+r, set

Ope(ntr) = b(r) + earpyns2 + L[r > K] - €at 43,

i.e., the Z-slot is 0 throughout Stage I (r < k) and flips to 1 in Stage II (r > k). Each step of

LT

latent CoT feeds the previous output as the next step’s “content embedding”: given hgjr)rf 1> set

Cntr = hgleL)Tfl and
h'ELO+)r = [en+T + 9PE(7’L+T) ]e,s .

(See the finite-precision Embedding Transformer in Algorithm [5])

Network structure (two layers per step, L. = 2). Each step consists of one finite-precision
attention layer (Algorithm ) and one finite-precision FFN (Appendix [A.3):

ATTN: 19 = |3+ ATTN,o, (10)]

ATTN ,

FEN: A = [BO9 4 FF 0 (RO

FF e,s
The attention only needs to produce the output vector at the current scratchpad position n+r; below
we analyze only that position.

STAGE I (BLOCK SCAN, k = n/d STEPS): OBTAINING THE d BITS OF THE CURRENT BLOCK IN

PARALLEL

Inductive invariant. At the beginning of step r (r = 0,1,...,k), the G-slot of hsLOJ)rr stores

p") € {0,1}%, the per-group parities over the first r blocks: py) =@ j<ra z;. Forr =0,
grp(s)=g

p® =o0.

18
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ATTN layer: interleaving-based equality with per-step gating (no Ly;,-sized accumulation).

Let s := Ly;, and reserve the first 2(s+1) coordinates of the query/key space for routing; all other

coordinates of ¢ and k; are 0 and do not affect the inner product. Define (we omit layer indices)
Gating pair (index 0): ¢, =1, k;j1 = By - (2z; — 1); g2 =0, kj2=0.
Equality pairs (indicest =1, ..., s):

Qot+1 = be(r+1), kj2e11 = B, be(blk(j)),
QPt+2 =1, kjot+2 = —Bs.
Take v; = egp(;). Writing the finite-precision partial sums ap := (q.¢, k;.¢), the interleaving
analysis of Lemma [B.3] (applied to the s equality pairs) implies
Gaiort) = { +Bs, blk(j) =r+landz; =1,
s —Bg, otherwise.

Consequently [exp(a2(3+1))] = By in the first case and 0 otherwise (Lemma , Lemma |B.2)).
With saturation in sumg, the softmax denominator clamps to B; after the first selected token, so eac
selected token receives weight 1 and others 0. Therefore

Yr = Z €erp(4) € {Oa l}d'

j: blk(j)=r+1
avj:1

FFN layer: coordinatewise XOR update p"*1) = p(") @4,.. The FEN acts only at the scratchpad
position (gated by the 1-slot), and implements on the G-slot the coordinatewise version of a ® b =
a+ b — 2ReLU(a + b — 1); other slots output 0. All intermediates lie in {0, 1,2}, and when s > 3
the rounding after addition and ReLU is exact (see the FFN definition in Appendix [A.3). Hence the
invariant holds and p(" 1 is written to the G-slot and carried forward by the latent CoT.
Slot contents at n+r+1 (after each sublayer, Stage I). Using the chaining rule e, 4,41 = hﬁ}jr
and the position embedding above,

h’gLO-l)-r—i-l = [hgllﬁ)-r + /I;(’/‘—Fl) + ed+Lbi1;+2:|

Thus at n+7r+1 we have _ (
G-slot = p™, B-slot = b(r+1), X-slot=0, 1-slot=1, Z-slot=0.
After the attention sublayer,

05 _ [0
hn+r+1 - |:hn+7‘+1

After the FFN sublayer,
hﬁ}lm = [h;oﬁ)ﬂ + FF(~)] =  G-slot = pMay, (= p" V), and all non-G slots are reset to 0.

S

+ ATTN(-)} =  G-slot = p") + y,, other slots unchanged.

S

STAGE II (BINARY REDUCTION, [log, d| STEPS): MERGE d GROUP PARITIES DOWN TO ONE BIT

Suppose at the end of step k& we have p*) € {0,1}? (in the G-slot). At step k + £ ({ =
0,1,...,loged —1):

* ATTN (copy previous scratchpad via interleaving equality): reserve the first 2( Ly, +1)
query/key coordinates; use a gating pair with ki = Bs(2Z; — 1) (where Z; is the Z-slot) to
exclude all non—Stage-II tokens (Z; = 0 = —B), followed by Ly, equality pairs on the B-slot
bits as in Stage I (target index k+/). The resulting logit equals + B iff the token is exactly the
previous scratch n+k-+¢ and — B, otherwise, so the attention output copies p(*+¢ losslessly into
the current step’s input.

¢ FFN (in-place pairwise XOR): on the G-slot, set pngH) = péﬁf? &) ngH) for g < d/2¢+!

and clear the remaining coordinates; gating is controlled by the Z-slot/position embedding to select
the correct pairing pattern at each reduction level. As in Stage I, the XOR is exact coordinatewise
under finite precision.

Finally (p(Ftlogz4)), — @?:1 x;. Read this coordinate as the output (optionally followed by a final
linear map to convert 0/1 into an answer token).
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Explicit embeddings at n+k+/¢+1 (Stage II). For ¢ =0,1,...,log, d — 1, the scratch token at
n+k+¢+1 has

hﬂkwﬂ = hlelkw + D(kH+1) + €at Ly +2 + €t Ly t3 } i

so its slots are
G-slot = p*t9  B-slot = b(k+(+1), 1-slot=1, Z-slot=1, X-slot= 0.
The ATTN sublayer (copy) keeps the G-slot unchanged:

hglofk) 4oq1 - Grslot = pFto) (all other slots unchanged).

The FEN then performs in-place pairwise XOR on the G-slot according to level £ and clears the rest:

B

ntk+e+1 G-slot = p(k+2+1)7 B, X; 1, Z slots = 0.

Precision and step count. Each step uses one finite-precision attention layer (leveraging the
interleaving equality so that [exp(Bs)], = B, for selected tokens and [exp(—B;)], = 0 for all
others; with saturation in sum; the softmax denominator clamps to Bs, yielding exact 1/0 weights)
plus one finite-precision FFN to perform coordinatewise XOR. Thus depth L = 2 suffices, and
the embedding dimension is D = d + logy k + 3. The total number of latent CoT steps is T =
k + [log, d] = % + [log, d]. All steps adhere to the finite-precision definitions and algorithms in
Appendix

C MISSING PROOF FROM SECTION[3]

Missing proof of the lower bound We first prove Lemma[3.3]

Proof of Lemma Let A C [n] be the set of positions for z4 and B C [n] be the set of positions
for zp. We use Wg, Wi, Qv to denote the query, key, value matrix at the h-th attention head of the
first layer. We use x; € V to denote the token at position 4, and use 7; € R? to denote the embedding
vector before the attention layer, y/ € R? to denote the embedding vector after the attention layer.

Consider the following communication protocol. For r = 1,2, ..., R, suppose Charlie holds the CoT
tokens 41, ..., Zntr—1 at the beginning of round r (Charlie holds an empty string at round 1) and
take zc1 = Tn41,. .., 20,r—1 = Tnyr—1. Atround r, the transcript I 4 ,- of Alice is computed as

Mar =Y exp(yy W Wiy Wyysll > exp(yy 1 Wo Wiy).
JjEA jeEA

We note the transcript depends only on {y; };c.4 and yfﬂril, which is determined by Alice’s input
za and 2z p—1 = Tp4r—1 (Wlog. we assume x,, is a dummy token). The total number of bits are at
most |[IT4,,| < (d+ 1) - p < 2dp. Similarly, Bob sends

g, =Y exp(yy, 1 Wo Wiy ) Wvysll Y exp(y,y,  Wo Wiky;).
JEB JEB

Based on I14 ,- and II 5 ,., Charlie is able to compute
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> exp (Y W Wiy Wyy;

jEA
+ Z xp(Yn1r 1 Wo Wiy ) Wyy;
jeB
n+r—1
+ > Yy 1 WG Wiy Wy
y/ _ j=n
n+r—1 — T T
Z eXp(ynJrrleQ WKyJ)
jEA
+ > exp(y W5 Wiky;)
jEB
n+r—1
+ ) exp(yn, WG Wiky;)
j=n

Based on ¢/, ,_;, it could compute the next token z,,4,. € {0, 1}1°6(V)) = {0,1}” and proceed to
the next round. This completes the proof.

O
Next we prove Lemma [3.§]

Proof of Lemma[3.8] By Lemma[3.5] taking k = 2 and m = d, the communication complexity of
any 3-round protocol that solves a single pointer chasing task is at least (d); by Lemma the
communication complexity of any 3-round protocol that solves the XOR pointer chasing task with
advatanve 1 + 27"/24 i at least (n/2d) - Q(d) = Q(n). O

We then prove Lemma [3.9]

Proof of Lemma[3.9, Given any R round laconic communication protocol, consider the following
2-round communication protocol for XOR pointer chasing. Alice and Bob first sample Rp random
bits z1,...,2r € {0, 1} using public randomness. At round 1 (Alice’s turn), Alice determines
Maa,...,dar € {0, I}le’ based on its input and 21, ..., zr according to the laconic protocol
and sends them to Bob; Bob also determines Il 1,. ..,z z € {0,1}2% based on its input and
21,...,2r. Now given {ILa,},¢[r) and{Ilp ,},¢[r), Bob could check whether zy,..., 2R are
correct under the laconic communication protocol — note the correctness of z, depends only on
21y...,%r—1 and Il 4 ., IIp ,. Atround 2, if all {zr}re[R] are correct, then Bob returns Charlie’s
output in the laconic protocol, otherwise, if some of {Zr}re[ R) are incorrect, then Bob randomly
returns 0/1 to Alice.

The above communication protocol proceeds in 2 rounds and its communication complexity equals
R - 2dp + 1. To analysis its advatange, we note that Alice/Bob correctly guess z1,...zr with
probability 277, and whenever {2+ }re|p) are correct, Alice is able to output the correct answer due
to the correctness of laconic protocol. When the guess is incorrect, Bob could spot the error so the
output is random. Hence, the overall advantage equals % (1 —278p) 427 Br = % +2-Fr=1 By
Lemma 3.8 we must have R = Q(n/dp) O

Construction of Latent CoT We next prove the second part of Theorem [3.1] in particular, we
prove that there exists a 1-layer Transformer, when equiping with latent CoT, it could solve the XOR
pointer chasing task (Definition[3.6) in O(n/d?+ 1) steps.

Proof of Theorem[3.1} Part 2. Given n/2d independent 2-step pointer chasing instances (PCs) ,
where each instance 7 € [n/2d] is defined by two functions f4, : [d] — [d] and fp; : [d] — [d].
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Our goal is to compute the total arithmetic sum Z?z/fd v; where v; = (fp,; o fA’l-)(z)(l) is the
composition outcome of the ¢-th function.

Consider a 1-layer Transformer with model dimension d and H = O(d) attention heads. We assume
these n/2d functions are encoded by prompt tokens x1, . . ., x,, and each token exactly encodes one
key-value pair, i.e., (i, z, fai(x)) or (¢,z, fpi(x)) (i € [n/2d],x € [d)).

The main idea is to use the d-dimensional latent vector to run H = O(d) compositions in par-
allel, with each of the H heads managing one composition. To this end, we group the n/2d
function pairs into batches. For b € [B], the b-th batch contains H pairs, i.e.,

{(fa, i) Yim(v—1) H4-h e H]-

The latent CoT would proceed for B macro-steps, where each macro-step b € [B] computes H values
{vi}ie(b,l) H+h,he[m) for the b-th batch and adds them to the cumulative sums. Each macro-step
futher requires 4 latent CoT steps for computing the composition, so we need not = 45 latent steps
in total. For any i € [njct), we use e, +; to denote the input embedding vector for position n + 4, by
definition, it is also the output of position n+4— 1 (up to position encoding). For any b € [B], r € [4],
it is convenient to think of the embedding vector e,, 4(5—1)4 consisting of three parts. The first part

contains [/ dimension and stores the cumulative sum e, 4 4(5—1)4r,1 = (S%bil), A Sg’*l)) e R,

where S,(lb_l) = Zi:b,H+h71<b,<b_1 v; (when b = 1, S}(LO) = 0). The first part is fixed during
each macro step b. The second part €nt4(b—1)+r,2 cOntains H dimension and it is used to perform
composition within the b-th batch during b-th macro steps. The third part has O(H) dimention and
contains positional encoding and some working information.

At each macro step b, our goal is to prove that, the 1-layer transformer would equip with the vector

b— -
Cnta(b—1)+1 = (Enta(b—1)+1,15 Cntd(b—1)+1,2, Cn+d(b—1)+1,3) = (S;S VT, PE, 14(—1)+1)-

Here PE,, | 4(4—1)+1 is the position encoding at position PE,, | 4;—1)+1. The claim holds trivially for
b = 0 and we would prove by induction. Suppose the claim holds up to b, it suffices to prove that, for
each step 4(b — 1) + r, r € [4], the transformer would compute and output the following vector at
position 4(b — 1) + 7,

b—1 T >
Cnta(b—1)+1 = (Enta(b—1)+r1> Cntd(b—1)+72> Cntd(b—1)4r3) = (571 (4! )(1))ie[(b—1)H+1:bH]aO)~

here we define
g W) = fai(D),  9PQ) = fralfaiD)),
9P = fai(fei(f2:(0), V(1) = foi(fai(fri(fai(1))))

for notation convenience. In another word, it performs one step of composition for each function in
batch b at each latent CoT step.

To this end, we construct the key, query matrix as follows. The key matrices are identical for each
head h € [H], and it is constructed such that, for each position in the prompt [n], the key value equals
aaie € RO orap,; . € RO for i € [n/2d] and x € [d], i.e, it equals some encoding
vector for the key value of the function. Here we use {; } jcpoly(a) to denote a set of encoding vector
such that (a;, o) < 7.5log(n) for j # j/, while (o, ajs) = 10log(n) for j = j’. We note this is
satisfied by random vectors in O(log(d)) dimension. The key value for position greater than [n] is
always 0 (so it would not be attended). The query matrices are different for each head h € [H]|. At

step n + 4(b— 1) 4 r, the query vector at the h-th attention head equals €A (=) H+h gD (1) if r
’ I (b—1)H+h

isoddand e, if r is even. By doing this, we can make sure that at the r-th step

(b=1)H-+h,gly 1y, (1)
of b-th macro step, the h-th attention head attends to the position that contains the value 9811) Heh:

Hence each latent CoT step would perform one step composition for H functions simultanousely (we
omit the detailed construction for the subsequent MLP layer that implements some simple logics).

In summary, the total number of latent CoT steps is , and after B
macro-steps, the embedding vector e, 445 would contain the vector (S%B), ..., SE) as the first part.

It remains to perform one step of summation S = ZhH:1 S,(lB), which can be done within one MLP
layer. This completes the proof. O
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D LLM USAGE

We have utilized LLMs to refine the writing and proofread mathematical proofs.
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