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Abstract

Misinformation poses a critical societal chal-
lenge, and current approaches have yet to pro-
duce an effective solution. We propose focus-
ing on generalization, uncertainty, and how to
leverage recent large language models, in or-
der to create more practical tools to evaluate
information veracity in contexts where perfect
classification is impossible. We first demon-
strate that GPT-4 can outperform prior methods
in multiple settings and languages. Next, we ex-
plore generalization, revealing that GPT-4 and
RoBERTa-large exhibit differences in failure
modes. Third, we propose techniques to handle
uncertainty that can detect impossible exam-
ples and strongly improve outcomes. We also
discuss results on other language models, tem-
perature, prompting, versioning, explainability,
and web retrieval, each one providing practical
insights and directions for future research. Fi-
nally, we publish the LIAR-New dataset with
novel paired English and French misinforma-
tion data and Possibility labels that indicate if
there is sufficient context for veracity evalua-
tion. Overall, this research lays the ground-
work for future tools that can drive real-world
progress to combat misinformation.

1 Introduction

Misinformation represents a significant societal
challenge, with detrimental effects observed in var-
ious domains spanning elections (Meel and Vish-
wakarma, 2020), public health (Loomba et al.,
2021), the economy (Marcelo, 2023), and more.
Recent developments in generative models have en-
abled the creation of increasingly sophisticated and
convincing AI-generated misinformation, includ-
ing deepfakes and bots using large language mod-
els, which further exacerbate the potential harm of
“fake news” (Zhou et al., 2023). As a result, de-
veloping systems to limit the spread and impact of
misinformation is of critical importance. Although
there is a great deal of research in this area (Shu

et al., 2017; Sharma et al., 2019; Shu et al., 2020;
Kumar et al., 2021; Shahid et al., 2022), practical
solutions remain elusive. Could the recent progress
in generative language models provide a path to
reliable veracity evaluation?

In this work, we investigate the predictive capa-
bilities of GPT-4 compared to previous approaches.
We propose going beyond the focus on direct classi-
fication performance that is common in this domain
and also prioritizing understanding of generaliza-
tion and uncertainty. We believe this is critical
since, despite extensive prior work on misinforma-
tion detection, existing solutions often fail to gen-
eralize and work in real-world settings, and there
is no path to a perfect classifier that will solve this
challenge with oracle-like answers alone. There-
fore, a better understanding of generalization will
help shrink the gap between research and deploy-
ment. Similarly, a better understanding of uncer-
tainty will enable systems to fail gracefully, inform-
ing users and practitioners when predictions are
certain enough to be relied upon, and providing
useful information without requiring impossibly
perfect accuracy. Overall, this paper aims to lay
groundwork that will lead to more practical sys-
tems and, hopefully, improvements in real-world
misinformation mitigation.

We examine three datasets: the widely-used
LIAR (Wang, 2017), CT-FAN-22 (Köhler et al.,
2022) that contains both English and German cor-
pora, and a new dataset LIAR-New. The latter was
constructed to provide data beyond GPT-4’s main
knowledge cutoff, to include examples in English
and French, and to understand whether examples
have sufficient context for evaluating their verac-
ity. We show superior classification results with
GPT-4 compared with the literature, both directly
and in transfer and multilingual settings. We ana-
lyze the errors made by GPT-4 and find they are
quite different from a standard RoBERTa approach.
We also conduct extensive experiments on uncer-



tainty and context, examining ways to productively
quantify uncertainty and evaluate how results are af-
fected by insufficient input information. One of the
approaches here (GPT-4 Uncertainty-Enabled) de-
tects many Impossible examples and significantly
increases performance. In addition, we show how
extra label information can improve existing ap-
proaches, and that hard classification performance
does not necessarily predict soft (probabilistic) per-
formance. Finally, we provide preliminary analysis
of web retrieval, showing that it provides a path
to greatly improving performance, and explainabil-
ity, showing it yields insights that motivate future
work.

In summary, our key contributions are the fol-
lowing:
• We show that GPT-4 can work for both hard

and soft classification tasks for misinformation,
including multilingual ones, and give better per-
formance than existing approaches.

• We conduct extensive analyses on the generaliza-
tion of GPT-4 in relation to prior work, finding
that the errors made are substantially different
and that GPT-4 has superior generalization.

• We propose a method to account for uncertainty
with GPT-4 that excludes examples it cannot clas-
sify well and improves results by 8 percentage
points on LIAR-New and 14 on LIAR.

• We conduct a number of experiments aimed at
important practical factors or showing paths to
build on this work, including other language
models, temperature, prompting, versioning, ex-
plainability, and web retrieval.

• We release a new dataset, LIAR-New, which has
novel English plus French data and Possibility la-
bels. We demonstrate how this data can be used
to better understand generalization and contex-
tual uncertainty.
Reproducibility: We open-source our code and

other contributions on Github.1

2 Data

We experiment on several misinformation datasets.
First, we analyze the LIAR dataset (Wang, 2017),
which is one of the most widely-used benchmarks
for fake news detection. It contains nearly 13K
examples with veracity labeled on a 6-point scale.
We mainly follow the common approach in the lit-
erature of binarizing these labels, but also report

1https://github.com/ComplexData-MILA/
MitigateMisinfo

6-way results. Second, we use the CT-FAN-22
dataset (Köhler et al., 2022) for additional tests,
including transfer and multilingual settings. It con-
tains an English and a German corpus with 4-way
labels, 3 of which represent gradations of veracity
and an “Other” category for uncertain or unveri-
fied examples. Finally, we provide a new dataset,
LIAR-New. This dataset goes beyond the GPT-4
main knowledge cutoff of September 2021. It also
provides novel contributions to the misinformation
literature: first, every input is provided in both the
original English language version and in French
through human translation. Second, it includes Pos-
sibility labels that assess if an example is missing
the necessary context and information to determine
whether it is misinformation or not. We discuss the
first two datasets in detail in Appendix B, and our
new dataset below.

2.1 LIAR-New

To minimize the possibility of test label leakage
with GPT-4—i.e., to ensure that it is not relying on
directly seeing the labels somewhere in its training
data—we scraped PolitiFact for recent fact-checks
that are beyond the main GPT-4 knowledge cutoff.
There is no 100% fixed endpoint, but “the vast ma-
jority of its data cuts off” in September 2021 (Ope-
nAI, 2023). We scraped all fact-checks between
IDs 21300 and 23300, which represents roughly the
end of September 2021 to mid-November 2022. In
our experiments we remove the 27 examples from
September 2021, leaving only data from October
1st, 2021 and beyond.

The form and source of the statements are the
same as LIAR, as well as the labels, with the excep-
tion that PolitiFact changed the name of the class
“Barely-true” to “Mostly-false”. We note, however,
that the class balance is very different: this dataset
contains far more False examples than any other
classes, and does not contain many True ones. This
could correspond, for example, to a real-world sce-
nario where users of a system are mostly interested
in fact-checking statements that seem suspicious.
Here, we do not train on this dataset, rather we use
it solely for evaluation purposes.

In addition to experiments on the English state-
ments provided by PolitiFact, we also translated
all examples into French. This was done by two
authors who are native French speakers and also
fluent in English. The translation was done without
the aid of machine translation, in order to avoid

https://github.com/ComplexData-MILA/MitigateMisinfo
https://github.com/ComplexData-MILA/MitigateMisinfo


Pants-fire False Mostly-false Half-true Mostly-true True Total
Test 359 1067 237 147 99 48 1957

Table 1: LIAR-New dataset statistics.

potential biases that might make the task easier
for systems that incorporate such translation. Al-
though this is not the first misinformation dataset
in French, there are not many, and we struggled
to find one that is easily accessible and has clear
provenance and quality. Thus, this French data may
be practical both in and of itself, and for compar-
ative analysis with the English pairing. We make
the full data available on Zenodo.2

2.2 Possible vs. Impossible Examples

Not all inputs can be evaluated for veracity because
certain claims cannot be verified without the proper
context. To better understand this problem in rela-
tion to our data, we define the following labels for
a given statement:

Definition 1. Possible: the statement’s claim is
clear without any additional context, or any miss-
ing context does not make it difficult to evaluate the
claim.

Hard: the claim is missing important context
that makes it hard to evaluate, but it might still be
possible.

Impossible: there is missing context that cannot
be resolved ("The senator said the earth is flat"—
not possible without knowing which senator). Or,
the statement contains no claim for which veracity
could be evaluated regardless how much context is
available.

It is important to note that, in an extreme sense,
no statement can be verified without some level of
additional context (for example, a speaker could
reference an imaginary world in which the sun
does orbit the earth). Therefore, these definitions
are not meant to be an ironclad, encyclopedic for-
mulations; they is instead intended to capture a
reasonable standard whereby a model with train-
ing knowledge—but without additional context for
a given statement—can reasonably evaluate that
statement’s veracity. They aim to strike a balance
between practicality and accuracy, allowing for the
effective categorization of statements containing
misinformation while acknowledging the inherent
complexity and context-dependency of language.

Three annotators each labeled the entire dataset
2https://zenodo.org/records/10033607

according to this definition. After a process of dis-
agreement resolution, this yielded 927 Possible,
581 Hard, and 449 Impossible examples. The nu-
merous Impossible examples show that such anal-
ysis is critical—training and evaluating on these
examples unknowingly could lead to results that
will not generalize well to real-world systems. In
the Experiments section we examine the different
cases. We present more detailed definitions and
information on the labeling process in Appendix C.

3 Methodology

3.1 GPT-4
Main Prompting To test the effectiveness of
GPT-4 for both hard and soft classification, we
crafted a concise prompt asking GPT-4 to rate the
truthfulness of a statement on a scale of 0 to 100,
without providing any explanations. We denote the
approaches using this prompt as “GPT-4 Score”.

“role”: “user”, “content”: ‘Rate the truthfulness
of the following statement: “STATEMENT” Pro-
vide a score from 0 to 100, where 0 represents
definitively false and 100 represents definitively
true. Do not provide any explanations, only re-
spond with the numerical score.’

We also test a binary classification prompt,
which we tried to make as similar as possible to the
score prompt above. We denote this approach as
“GPT-4 Binary”.

“role”: “user”, “content”: ‘Rate the truthfulness
of the following statement: “STATEMENT” Pro-
vide a number 0 or 1, where 0 represents false
and 1 represents true. Do not provide any expla-
nations, only respond with the number.’

Finally, we examine a prompt that explicitly al-
lows for GPT-4 to refuse to pass a judgment. It was
constructed from the above binary prompt based on
the observation that GPT-4 sometimes responded
with a score of “0.5”, despite the prompt instruct-
ing it to respond 0 or 1 only (see also discussion
below). We denote this approach “GPT-4 Binary
Uncertainty-Enabled”.

“role”: “user”, “content”: ‘Rate the truthfulness
of the following statement: “STATEMENT” Pro-
vide a number 0 or 1, where 0 represents false
and 1 represents true. If you are uncertain or there
is not enough context in the statement to be sure
what it refers to, instead answer 0.5. Do not make
assumptions. Do not provide any explanations,
only respond with the number.’

https://zenodo.org/records/10033607


Other Prompting We experimented with several
other types of prompts. Explainability prompts are
discussed in Section 4.8 and Appendix Q. Web re-
trieval prompts are discussed in Section 4.9 and
Appendix R. Several attempts at in-context learn-
ing with automatically chosen demonstration are
detailed in Appendix D.

Other GPT-4 Implementation Details In most
of our experiments, we opted for a moderate tem-
perature value of 0.5 in the API to balance repro-
ducibility and noise against nuance and model ef-
fectiveness. We later found that 0.0 temperature
seems to yield better results, as discussed in Ap-
pendix J,. Due to time and cost limits, however, we
did not rerun the other experiments. To ensure that
the full output was captured in cases where it did
not return a number, we set the “max tokens” value
to 1000. Cost estimates are available in Appendix I.

To convert the GPT-4 output to predictions we
could evaluate, we first separated integer and non-
integer predictions. We found the latter cases gen-
erally occurred when GPT-4 refused or stated it
was incapable of evaluating the veracity of the in-
put. With GPT-4 Score, in the LIAR dataset, this
occurred 40 times in the validation set and 69 times
in the test set, out of 1284 and 1267 examples re-
spectively. In CT-FAN-22 it occurred 2 times on
English data and 0 on German. In LIAR-New, it
occurred only once.

One of the authors manually examined the LIAR
test set cases. According to Definition 2, all were
Impossible without additional information. These
included statements like “On [...]” that seem to
be a recurring PolitiFact headline and have no ve-
racity on their own to evaluate: e.g., “On banning
earmarks” or “On redistricting”. Other examples
GPT-4 refused to answer would require in-depth
speaker and context information, such as “I said
no to these big bank bailouts” (one would need
to know the speaker and which big bank bailouts
they are talking about). Therefore, on these 69
examples, GPT-4 has perfect precision in determin-
ing that these statements cannot be evaluated in
isolation.

In the Experiments section, when not otherwise
stated, we nonetheless make a prediction for these
examples in the GPT-4 results by selecting a label
uniformly at random. This ensures our results are
fully comparable to other studies in the literature.
Separately, we further investigate these examples
in relation to other models.

To convert GPT-4 Score’s 0-100 predictions to
hard classification predictions, we examine two
approaches. First, GPT-4 Score Zero-Shot simply
divides the range evenly (e.g., for the binary case,
splitting at 50). This is arbitrary but intuitive. Sec-
ond, on binary LIAR, we tested GPT-4 Score Opti-
mized which uses the threshold that gives optimal
weighted F1 on the validation set. There, we found
that the optimal threshold is 71—GPT-4 appears to
be biased towards predicting “True” compared to
the labels in the LIAR dataset. Note that neither of
these (nor GPT-4 Binary) use any of the training
data, and even GPT-4 Score Optimized does not
maintain any memory of the validation set inputs
beyond this threshold.

For testing on non-English data, we keep every-
thing unchanged, including leaving the prompt in
English.

3.2 RoBERTa-large
Prior work, such as Pelrine et al. (2021) and Truică
and Apostol (2023), has shown that older, mostly
non-causal (bidirectional) transformer-based lan-
guage models can give strong performance for
misinformation classification. We used the code
made public by Pelrine et al. (2021) to implement
RoBERTa-large (Liu et al., 2019), which had the
best performance in their study. We trained the
model for 10 epochs with the given hyperparame-
ter configuration and other implementation details,
using an RTX8000 GPU. For conciseness in ta-
bles, we refer to this model as RoBERTa-L Binary
or RoBERTa-L 6-way, depending on whether it
was trained with binary or 6-way labels. We focus
our error analysis and a number of other experi-
ments on this model compared to GPT-4, because
by using the existing code we can ensure its im-
plementation is unbiased, and it has already shown
consistently strong performance on a number of
datasets in the literature.

3.3 Other Models
Other Small Language Models We also fine-
tuned a selection of SLMs besides RoBERTa. Im-
plementations are detailed in Appendix E and re-
sults are reported in several experiments.

Fuzzy Clustering We performed limited tests
with Fuzzy Clustering but the performance was not
promising. We discuss this method in Appendix F.

GPT-3.5 This model gave solid performance on
LIAR, but it appeared brittle and did not perform



well on other datasets. We discuss the results in
Appendix G.

PaLM 2 Bison We conducted a limited evalua-
tion of PaLM 2 (Anil et al., 2023), and found that
the second largest version gives passable, though
not impressive, performance on LIAR. The largest
version was not accessible to us as of this writ-
ing. We discuss this model and the results in Ap-
pendix O.

3.4 Evaluation Metrics
We note our evaluation metrics in Appendix H.

4 Experiments

4.1 LIAR Binary Classification
In Table 2 we present binary classification results
on the LIAR dataset (6-way classification results
are presented in Appendix N). We see here that
GPT-4 Score Optimized performs best, suggesting
it can be a powerful new tool for misinformation
detection. GPT-4 Score Zero-Shot is significantly
worse but still better than several approaches that
rely on the training data. GPT-4 Binary is in be-
tween the two, equal or better than all prior ap-
proaches.

We also find that some of our other language
model approaches give performance exceeding pre-
vious state-of-the-art methods in the literature, par-
alleling older findings of Pelrine et al. (2021). Fi-
nally, we note that training RoBERTa-L on 6-way
labels gives better performance than training on
binary labels. This indicates the 6-way labels pro-
vide additional helpful information even when the
goal is binary prediction. There is a parallel here
with the work of Matsoukas et al. (2020) in other
domains.

4.2 CT-FAN-22 Classification
We next present in Table 3 our results on CT-FAN-
22. We compare zero-shot GPT-4, RoBERTa-large
trained on 6-way LIAR classification (converted to
3-way output here by dividing the 6 labels evenly
in 3), and the previous SOTA. We see that GPT-4
has a clear advantage in this setting, both in En-
glish and in German. RoBERTa performs poorly.
This provides additional evidence for the strength
of GPT-4 in general compared to models trained on
in-distribution data. It also demonstrates that this
model provides a large advantage in transferability
to new data, and shows it can also work in multilin-
gual settings better than previous approaches.

Method Accuracy F1
SOTA (2022; 2021) 62 -

GPT-4 Score Optimized 68.2 68.1
GPT-4 Score Zero-Shot 64.9 60.9

GPT-4 Binary 66.5 66.5
RoBERTa-L Binary 63.5 62.1
RoBERTa-L 6-way 64.7 64.1

BERT 65.0 64.5
ConvBERT 66.7 65.8
DeBERTA 63.0 63.8

DeBERTA-V3 65.0 64.4
LUKE 65.3 64.4

RoBERTa 64.7 64.2
SqueezeBERT 63.1 62.2

XLMRoBERTA 61.1 61.0
Fuzzy (Word2Vec) 60.2 60.4

Fuzzy (BERT) 59.6 60.1
Fuzzy (GloVe) 60.1 59.7

Table 2: Binary Classification Results (percentages).
GPT-4 shows superior performance. For RoBERTa-L,
even though the test is binary classification, training on
6-way labels provides an advantage.

Method Accuracy F1

English
SOTA (2022) 54.7 33.9

GPT-4 Score Zero-Shot 67.8 42.8
RoBERTa-L 6-way 47.5 26.8

German SOTA (2022) 42.7 29.0
GPT-4 Score Zero-Shot 57.6 38.7

Table 3: 4-way classification in a transfer setting. On
English data, GPT-4 beats the SOTA approach trained
on in-distribution data, while RoBERTa trained on
LIAR degrades. On German data, where there is no in-
distribution training data available, GPT-4 again beats
SOTA—even without changing the prompt, which is
written in English and makes no mention of German.

In Table 4, we remove the “Other” label cate-
gory, which is not well-defined and for which we
automatically marked all GPT-4 and RoBERTa pre-
dictions as wrong. Performance improves by quite
a large margin. These results set the bar for fu-
ture work on this dataset with the “Other” label
excluded, which we recommend, as discussed in
Section B.2.

4.3 LIAR-New Classification

We next examine new data beyond the main GPT-4
knowledge cutoff. We see in Table 5 that it can
nonetheless make effective predictions. This sug-
gests the model is taking advantage of its overall
knowledge to make predictions on examples re-
lated to older events and facts (and perhaps make
educated guesses on newer ones), rather than just



Method Accuracy F1

English GPT-4 Score Zero-Shot 71.4 58.6
RoBERTa-L 6-way 50.0 36.5

German GPT-4 Score Zero-Shot 63.6 54.3

Table 4: 3-way classification in a transfer setting, exclud-
ing the label “Other” which is not well-defined. GPT-4
again beats RoBERTa.

seeing the label during its training. This also sug-
gests that GPT-4 has great potential if it could be
combined with an effective web search to evaluate
examples that require recent knowledge that it is
missing. We also find that:
• GPT-4 Binary again outperforms GPT-4 Score

Zero-Shot, suggesting the score the latter pre-
dicts is not quite aligned with the labels in this
binarization.

• RoBERTa-L 6-way is again better than
RoBERTa-L Binary, further confirming the
benefit of training on 6-way labels.

• GPT-4’s performance decreases significantly as
we move from Possible to Hard to Impossible ex-
amples, while RoBERTa has the opposite trend.
This suggests GPT-4 in many cases may be re-
lying on a generalizable information to assess
veracity, while RoBERTa may be taking advan-
tage of distributional patterns that provide cues
in this dataset but won’t generalize (as we saw in
the preceding transfer experiment).

• GPT-4 gives superior performance overall.

Method Accuracy F1

Possible

GPT-4 Binary 91.0 73.7
GPT-4 Score Zero-Shot 82.9 61.5

RoBERTa-L 6-way 79.4 57.3
RoBERTa-L Binary 71.9 55.3

Hard

GPT-4 Binary 74.0 68.8
GPT-4 Score Zero-Shot 64.6 61.1

RoBERTa-L 6-way 63.9 60.9
RoBERTa-L Binary 60.1 58.2

Impossible

GPT-4 Binary 71.0 58.5
GPT-4 Score Zero-Shot 56.1 49.9

RoBERTa-L 6-way 83.6 71.5
RoBERTa-L Binary 76.2 66.1

All

GPT-4 Binary 81.2 68.8
GPT-4 Score Zero-Shot 71.3 60.5

RoBERTa-L 6-way 75.8 64.0
RoBERTa-L Binary 69.4 60.3

Table 5: LIAR-New binary classification. GPT-4 shows
strong performance, even beyond its main knowledge
cutoff.

4.3.1 Misinformation in French
In Table 6, we test GPT-4 on the French version
of the dataset. We see that performance decreases

noticeably compared to English (i.e., Table 5). Part
of this is likely due to GPT-4’s overall performance
in different languages, but we also hypothesize that
the language can affect how GPT-4 imagines the
context—for example, the best guess at who “the
president” refers to might be the US president in
English but the French president in French. We
see that the drop in performance is a bit smaller
on the Possible examples compared to the others.
These are examples where there should be no need
to guess the context, so this weakly supports the
above hypothesis, but could warrant further inves-
tigation. Moreover, the significant drop in perfor-
mance in French, which is still a relatively common
language, should motivate more misinformation
mitigation work in low-resource languages. As
seen in the previous German experiments, GPT-
4 may be doing better than previous approaches
in other languages, but still has a lot of room for
improvement.

Method Accuracy F1

Possible GPT-4 Binary 89.6 66.1
GPT-4 Score Zero-Shot 77.3 59.9

Hard GPT-4 Binary 71.1 60.6
GPT-4 Score Zero-Shot 60.3 58.9

Impossible GPT-4 Binary 73.9 53.5
GPT-4 Score Zero-Shot 53.5 46.4

All GPT-4 Binary 80.5 61.8
GPT-4 Score Zero-Shot 70.1 57.5

Table 6: Results on the French translation of LIAR-New.
Performance in French is lower. GPT-4 is still very
capable of identifying misinformation in that language,
but future work to close this gap would be beneficial.

We also observed that in the case of GPT-4 Score
Zero-Shot on the French data, there were 107 ex-
amples that it refused to classify, of which 62 were
Impossible and 30 were Hard. This compares to
single-digit numbers where it refused for GPT-4
Binary in French, and both models in English. This
difference between the two versions of GPT-4 on
the French data, and likewise on French vs. En-
glish data, suggests prompt engineering can have
a significant impact on examples it might refuse
to classify, and in turn on how a system would
work if it encountered missing context or otherwise
Impossible examples in the real world.

4.4 Uncertainty Assessment

In Table 7, we consider the uncertainty quantifi-
cation of GPT-4 Score vs. RoBERTa-L on LIAR-
New. We remove all examples predicted between
49 and 51 inclusive (resp. 0.49 and 0.51) by GPT-4



(resp. RoBERTa-L’s final softmax), i.e., the ones
each model is the most uncertain about. We see
that this significantly increases the performance of
GPT-4 (compared to the respective rows of Table 5)
while leaving RoBERTa-L virtually unchanged.

Method Accuracy F1

Possible GPT-4 Score Zero-Shot 90.6 62.7
RoBERTa-L Binary 72.3 55.6

Hard GPT-4 Score Zero-Shot 72.9 64.3
RoBERTa-L Binary 60.7 58.8

Impossible GPT-4 Score Zero-Shot 69.9 58.5
RoBERTa-L Binary 76.3 66.2

All GPT-4 Score Zero-Shot 81.1 64.3
RoBERTa-L Binary 80.4 60.7

Table 7: Removing the examples where each model
indicated the most uncertainty on LIAR-New. GPT-4
performance improves, giving an example of productive
uncertainty quantification in this context.

We next examine GPT-4 Binary Uncertainty-
Enabled. It responded “0.5” to 906 total examples
(i.e., indicating it was not sure about their evalua-
tion), out of which 306 were Impossible and 352
were Hard. This seems like a reasonable result—
the majority of the “0.5” cases are Impossible ones
that should receive that rating or Hard ones where
it is reasonable for the model to be uncertain. It
is also not unreasonable for the model to be un-
certain about some of the Possible cases as well,
especially considering the challenge of this dataset
being beyond the main knowledge cutoff. It is also
detecting over two thirds of the Impossible exam-
ples, although we note around 140 remain unde-
tected, so its judgment is not perfect. Nonetheless,
when we exclude these “0.5” examples and look
at the classification performance on the remaining
examples (Table 8), we see a marked increase in
performance compared to other approaches.

Method Accuracy F1

LIAR-New

Possible GPT-4 Binary Uncertainty-Enabled 94.4 75.1
Hard GPT-4 Binary Uncertainty-Enabled 86.5 78.4

Impossible GPT-4 Binary Uncertainty-Enabled 91.4 70.4
All GPT-4 Binary Uncertainty-Enabled 92.3 76.8

LIAR GPT-4 Binary Uncertainty-Enabled 82.2 82.0

Table 8: Allowing GPT-4 to refuse to answer examples it
is not confident on excludes many Impossible examples
and greatly improves performance on LIAR-New, as
well as LIAR.

We also report in the same table the results on
LIAR. Here, we do not have Possibility labels to
compare with. We observed that this approach
excluded 914 examples, which is considerable, ap-
proximately 75% of the dataset. Based on the
LIAR-New results, it is not unlikely that a large
portion of these examples are Impossible. However,

the distributions are different (LIAR was sampled
to have relatively balanced classes), so labeling
would be needed to confirm. Regardless, perfor-
mance on the remaining data is approximately 14
percentage points better than the best performance
on LIAR in Table 2.

These results show a clear ability to leverage
GPT-4’s assessment of its confidence in classify-
ing examples in this domain. Indeed, GPT-4 Bi-
nary Uncertainty-Enabled gives the strongest per-
formance of any method in this paper excluding
web retrieval (which could likely be combined with
Uncertainty-Enabled). Granted, this is at the cost
of excluding a significant number of examples. But
the majority of the ones that were excluded are
Impossible, and this is a domain where wrong an-
swers can potentially be much more costly than
no answer (for example, human users of a misin-
formation detection system might be misled by an
inaccurate machine judgment, instead of making
their own judgment from external sources). We
believe future work should build on this capability,
especially integrating it with explainability, which
GPT-4 also has natural capabilities for.

4.5 Error Analysis

We compare the errors made by GPT-4 Score Zero-
Shot and RoBERTa-L Binary on LIAR. Exclud-
ing cases GPT-4 refused to classify (which were
found to be Impossible; see Section 3.1, “Other
GPT-4 Implementation Details”), we find there are
241 examples that GPT-4 correctly classifies and
RoBERTa-L does not, and 174 cases where the re-
verse is true. On LIAR-New, when we restrict the
analysis to the 911 Possible examples after Octo-
ber 1st, 2021, there are 182 examples that GPT-4
correctly classifies and Roberta-L does not, and 82
cases the reverse. In both datasets, this represents
a sizeable proportion, so it indicates a substantial
difference in these models’ failure modes.

We further investigated this by embedding ex-
amples with OpenAI’s Ada-002 model (Greene
et al., 2022). We found a statistically significant dif-
ference (p=0.0005) in embedding space distances
between train and test examples, depending on
whether GPT-4 was correct and RoBERTa-L wrong,
or vice versa. These results suggest methods to help
GPT-4 leverage the training data could lead to a
nearly 10 percentage point improvement. More
detailed discussion can be found in Appendix L.

In Appendix M, we present a case study of ex-



Figure 1: GPT-4 Score calibrated by Platt’s method can
predict probabilities (ECE=5.9%).

amples where RoBERTa was correct and GPT-4
wrong. It shows the training data directly matches
some of these examples, which both shows the po-
tential of leveraging that data and also that it might
lead to unrealistic memorization.

4.6 Soft Classification

Our next experiment compares GPT-4 and other
language models’ capabilities for making probabil-
ity predictions. We found GPT-4 Score can give
reasonable probability predictions once calibrated
(Figure 1), but SqueezeBERT’s results appear to
be even better, depending on how much weight
one puts on identifying more certain examples vs.
avoiding overconfidence. This experiment is dis-
cussed in more detail in Appendix P.

4.7 GPT-4 Version

The experiments in Table 2, where GPT-4 Binary
achieved 66.5% accuracy, were conducted with the
gpt-4-0314 version. We revisited the performance
with GPT-4-0613, and found a large drop to 56.0%.
Large differences from different versions been re-
ported in other domains (Chen et al., 2023), but to
our knowledge we are the first to report it in the
misinformation context. We suspect that the binary
prompt may cause brittleness, and explainability
prompts (see Section 4.8) may be more robust by
ensuring the results are based on reasoning chains
rather than on the spot verdicts. We recommend
this as a topic for future experimentation.

All of our experiments except for those in the
following two sections were conducted with gpt-4-
0314 (or the generic one, before versioning existed).
Before knowing these results, Explainability used
0613, while Web Retrieval was unversioned and

run in August 2023. The Explainability perfor-
mance conclusions should be taken with a grain
of salt - an updated version of this paper will con-
firm them with 0314. The Retrieval results show
huge improvement margins which are not due to
versioning, so the conclusions are unaffected.

4.8 Explainability

GPT-4 naturally has explainability capabilities. To
investigate these, we created two simple variations
on the “Score” prompt, one of which consistently
improves Score Zero-Shot performance in gen-
eral (though see caveats in Section 4.7). The full
prompts and performance evaluations are available
in Appendix Q.

We performed a small sample, preliminary eval-
uation where an author checked each explanation
for reasonableness. We found that the explanation
always matched the score. Furthermore, many of
the explanations for answers with the wrong label
predicted were actually reasonable or partially rea-
sonable, especially in cases with scores near 50,
where a slight difference in GPT-4’s evaluation vs.
PolitiFact’s could result in a different label. This
might indicate limitations in the evaluation and that
GPT-4 has better results than the metrics captured.
See Appendix Q.3 for further details.

We then sampled LIAR-New examples that were
Impossible3 to investigate the model’s output. In
cases it got correct, besides ones it does not re-
ally know but gets lucky, it seems to either rely
on general information or assume a United States
context. This might be a noteworthy geopolitical
bias but would need further investigation and repli-
cation. In the wrong predictions, generally it seems
to know it is missing context. Sometimes issues
are caused by not having photos or videos, which
might merit a targeted solution. We present more
details and case studies in Appendix Q.4. Overall,
these results, while preliminary, show the potential
of recent LLMs to help researchers understand how
they are making their veracity evaluations, and in
turn figure out how to improve them.

4.9 Web Retrieval

We conducted a preliminary experiment on the po-
tential of web retrieval. When collecting LIAR-
New, we scraped the full text of the PolitiFact ar-
ticles. We provide the model with this evidence
through a simple adjustment of our prompt (de-

3By V1 Possibility label—please see Appendix C



tailed in Appendix R). Because the article is guar-
anteed to be relevant and informative with respect
to veracity, we call this approach “GPT-4 Web Ora-
cle”. We also examine a version “Web Answerless
Oracle” where we remove the final veracity verdict
from the PolitiFact article.

Method Macro F1
GPT-4 Web Oracle 98.6

GPT-4 Web Answerless Oracle 90.7
GPT-4 Score Zero-Shot 60.5

GPT-4 Score Binary 68.8

Table 9: Performance with oracle web retrieval. The
improvement is massive.

We see in Table 9 a huge increase in performance.
Of course, these conditions are not realistic, be-
cause we are assuming we can perfectly retrieve
the PolitiFact article, which might not even exist.
We note, however, that in spite of this limitation,
these results are not true upper bounds, because
this is a simple prompt using only a single piece
of evidence. This highlights the potential of web
retrieval combined with recent LLMs like GPT-4,
and we suggest it is the clearest path to increasing
raw performance.

5 Conclusions

In conclusion, this study presented a multifaceted
investigation to determine if we can use GPT-4,
combined with careful analysis of generalization
and uncertainty, to produce more practical misin-
formation detection. We found, first, that GPT-4
can give superior performance for information eval-
uation in multiple datasets and contexts. Second,
we found that GPT-4 has different failure modes
from previous approaches like RoBERTa. This
could help produce better results for detecting mis-
information and countering its spread. Third, we
investigated uncertainty quantification in this con-
text, showing that GPT-4 can provide information
linked to uncertainty and that that information can
be leveraged towards significantly improved per-
formance. Fourth, it is not easy to guarantee inputs
have sufficient context for a valid judgment to be
made. We provide a new dataset and analysis that
starts to address this issue. However, we believe
that such explorations remain important to consider
in future work. Fifth and finally, we showed that
both web retrieval and explainability offer promis-
ing avenues for future progress. Overall, we hope
this work will provide a starting point towards both

better performance in general, and creating systems
that will address key real-world factors that have
so far prevented machine learning from reliably
mitigating misinformation.

6 Limitations

We hope future work will resolve limitations of this
study, including the following:

• Our analysis focused on GPT-4, which is the
strongest LLM available for many tasks. We rea-
son that if it were incapable of producing good
results here, it is unlikely that weaker LLMs of
the same type could do any better. Now that we
know that GPT-4 gives strong performance, it
is an open question to what extent these results
can be replicated with other systems. For closed-
source models, the largest version of PaLM 2
(Anil et al., 2023) (Unicorn), along with Bard
(for which Unicorn is the foundation model)
would be promising models for future evalua-
tion. Similarly, Claude 2 would also be promis-
ing, as another leading closed-source model. For
open-source models, in more recent work by au-
thors here and collaborators (Yu et al., 2023), we
showed that similar prompting of Llama-2 strug-
gles to give good performance. However, more
recent open-source models such as Zephyr4 have
generally shown superior performance to Llama-
2, and are therefore also well worth evaluation.

• While our analysis shows GPT-4 improves on
prior approaches, the overall results are still not
as strong as one would like in many real-world
applications, whether in terms of raw perfor-
mance, generalization, uncertainty quantifica-
tion, or many other considerations. More work
is needed to produce real-world ready systems.
Besides directly building on the ideas explored
here, two of the most promising parallel direc-
tions are building web search systems to address
examples beyond the knowledge cutoff and in
general cases that are not Impossible but where
GPT-4 lacks sufficient information, and building
explainability systems, to create more trustwor-
thy predictions and more graceful failure. We
reported on some initial experiments in both of
these directions, but there is a great deal more
ground to cover in future work.

4https://huggingface.co/HuggingFaceH4/zephyr-7b-
alpha



7 Ethical Considerations

Given the recent shifts in the spread of misinforma-
tion which has been amplified by global events such
as the COVID-19 pandemic, the war in Ukraine,
and the Capitol Hills riots, it is imperative that
researchers improve their approach to detecting
“fake news” online. The results of this study sug-
gest a path forward to address this challenge by
using the power of advanced language models like
GPT-4. These systems can not only provide better
performance—through careful attention to errors,
uncertainty, and other real-world factors—they can
also limit harms like confident mistakes and biased
predictions. However, more work is needed, and
we hope future research will build on this to deliver
a positive real-world impact.
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A Related Work

Misinformation and the spread of false information
have become increasingly prevalent in today’s digi-
tal age (Shu et al., 2017; Sharma et al., 2019; Shu
et al., 2020; Kumar et al., 2021; Shahid et al., 2022).
A wide range of solutions have been proposed to
tackle this problem, from fact-checking and expert-
based assessments to automated machine learning
approaches (Wang, 2017; Meel and Vishwakarma,
2020). Broadly, the literature can be divided into
content-based and network-based approaches (Shu
et al., 2017). Content-based approaches focus on
analyzing the text, images, or multimedia elements
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of a message to determine its veracity. Some exam-
ples of this approach include (Wang, 2017), which
uses a hybrid CNN and LSTM model, and (Kaliyar
et al., 2021) which employs BERT. Network-based
approaches, on the other hand, examine the propa-
gation patterns and user interactions surrounding
the information (Hu et al., 2019; Long et al., 2017).
Our approach is part of the content-based category.

A key challenge for practical misinformation de-
tection is the generalizability of models across var-
ious types of datasets and domains. Several recent
studies have addressed these issues from different
angles. Suprem et al. (2022) investigated the gener-
alizability of pretrained and fine-tuned fake news
detectors, introducing the KMeans-Proxy method
for identifying overlapping subsets of unseen data.
Ni et al. (2020) employed Propensity Score Match-
ing to select generalizable features for fake news
detection, while Lee et al. (2021) proposed UNI-
FIEDM2, a unified model for multiple misinfor-
mation domains. Furthermore, Hoy and Koulouri
(2022) explored the generalizability of popular fake
news detection models and features across similar
news. These studies highlight the importance of
addressing generalizability challenges for effective
misinformation detection. Our work here is novel
in focusing on the generalizability of GPT-4 in
this domain, particularly in relation to the data and
other LMs.

Our approach also emphasizes uncertainty as-
sessment, as opposed to a more rigid pursuit of
overall performance metrics. The misinformation-
related literature on uncertainty is very limited,
lacking thorough comparative evaluations for ap-
proaches like soft classification (i.e., predicting
probabilities instead of class labels) and investiga-
tions of the latest approaches, such as GPT-4 (Gua-
cho et al., 2018; Jlifi et al., 2022; Levchuk and
Shabarekh, 2017; Qu et al., 2022). Our work ad-
dresses some of the many gaps in this literature by
proposing approaches to productively assess uncer-
tainty with GPT-4, and benchmarking methods for
soft classification.

B LIAR and CT-FAN-22 Dataset Details

B.1 LIAR

This dataset was collected by Wang (2017) from
the PolitiFact.com API and includes 12.8K human-
labeled short political statements. For the de-
gree of truthfulness, there are six labels: Pants-
on-Fire, False, Barely-true, Half-true, Mostly-true,

and True. The labels are fairly balanced, except
for the Pants-on-Fire label, which has roughly half
as many examples as the others. The dataset pro-
vides an approximately 80-10-10 train-val-test split.
Table 10 shows the basic statistics.

In addition to statements, each example includes
metadata: the statement topic, and the speaker’s
name, job, state, party, and total “credit history”.
The latter refers to the counts of statements of each
label by the speaker in the training set, excluding
“True”. Prior research (Hu et al., 2019; Long et al.,
2017) has found that most of the metadata did not
give significant performance benefits, but the credit
history improved performance significantly. How-
ever, because statements for fact-checking by Politi-
Fact are not sampled randomly, using this metadata
may cause models to learn sampling bias that can
aid classification in this dataset, but will not gener-
alize well to the real world. For instance, a speaker
might have controversial false statements which
are fact-checked by PolitiFact, leading to a neg-
ative credit history, when they make many other
uncontroversial true statements that are not fact-
checked by PolitiFact and consequently not part
of the dataset. This contrasts with content-based
classification: both may fail to classify unseen top-
ics or speakers, but speaker-based classification
(particularly when based on a biased sample) may
fail even for speakers seen in the training data. In
addition, the credit history may be impossible to
use for classifying statements from non-famous in-
dividuals (such as newly-created social media bot
accounts) and introduce ethical issues. For these
reasons, we exclude metadata and focus exclusively
on the statements themselves. This is also a com-
mon experimental setup in the literature (Shu et al.,
2017; Sharma et al., 2019; Shu et al., 2020; Kumar
et al., 2021; Shahid et al., 2022).

Both 6-way classification with the full set of
labels, and binary classification with the labels col-
lapsed into two, are common approaches to this
dataset in the literature. We focus on the binary
case for more lucid error and generalization anal-
yses, but also report 6-way classification results.
For the binary experiments, we dichotomized the
categories by splitting the labels in the middle—
i.e., mapping Pants-on-Fire, False, and Barely-true
to “False” and Half-true, Mostly-true, and True to
“True”. While not the only option, this is the most
typical binarization used in the literature (Qu et al.,
2022; Orsini et al., 2022; Khan et al., 2021; Flores



Pants-fire False Barely-true Half-true Mostly-true True Total
Train 839 1995 1654 2114 1962 1676 10240

Val 116 263 237 248 251 169 1284
Test 92 249 212 265 241 208 1267

Table 10: LIAR dataset statistics.

and Hao, 2022).
Note that it is also common for studies to code

the LIAR dataset in a slightly different way than
the original splits—e.g., testing on both the valida-
tion and test sets together. Although these may not
be perfectly comparable, we include this classifica-
tion in consideration for the state-of-the-art method
to compare with our results, providing a more ro-
bust benchmarking for our own approach. On the
other hand, in addition to studies using the meta-
data as discussed above, we exclude from compari-
son some studies like Pryzant et al. (2023), which
evaluate their approach on a very different subset
of the LIAR dataset, as well as ones which use a
different binarization, such as Dong et al. (2022);
Panda and Levitan (2022). To our knowledge, the
resulting state-of-the-art approaches are Orsini et al.
(2022) and Khan et al. (2021) tied at 62% accuracy
for binary classification, and Flores and Hao (2022)
with 29.4% for 6-way classification.

B.2 CT-FAN-22
Köhler et al. (2022) derived this dataset from 20
different fact-checking websites. The labels were
converted from each website’s own system to four:
False, Partially False, True, and Other. There is
both a large English corpus, and a test-set-only Ger-
man corpus (collected separately, not translated).

False Partially False True Other Total

English
Train 465 217 142 76 900

Val 113 141 69 41 364
Test 315 97 243 55 612

German Test 191 97 243 55 586

Table 11: CT-FAN-22 dataset statistics.

The “Other” label could be problematic because
it cannot guarantee something for which veracity
is unverifiable; it only reflects that an entry has
not been verified in this dataset. Furthermore, it
is not a category which can be synchronized with
other datasets, impeding transfer analyses. In one
of our experiments, we maintain this category for
comparative purposes only, and directly mark ev-
ery prediction by our models on examples with
this ground truth label as wrong. This leads to a
maximally stringent evaluation favoring previous
approaches. In another set of experiments, we re-

move this category and evaluate on the remaining
examples. While we believe going beyond sim-
plistic labeling and metrics is critical to capturing
more real-world information and producing more
generalizable systems, we suggest that this “Other”
label is not well-defined and should be excluded
from future datasets, either in testing or directly in
the dataset construction.

The state-of-the-art approaches are reported by
Köhler et al. (2022) from a competition run on this
dataset. For English, the strongest performance
is by Taboubi et al. (2022) with 54.7% accuracy
and 33.9% macro F1. For the more challenging
German corpus, the strongest approach was found
by Tran and Kruschwitz (2022), with 42.7% ac-
curacy and 29.0% macro F1. We note that these
approaches used both the article title and text that
the dataset provides, while for our experiments, we
only used the article text because of limited time
and resources.

C Possible vs. Impossible Example
Labeling

We created two versions of LIAR-New Possibility
labels. We start by describing the first version and
its limitations that led us to revisit the labeling. We
then discuss the second, current version. The sec-
ond version is now used in all experiments unless
otherwise noted.

C.1 V1 Possibility labels

We began with the following definition:

Definition 2. A statement is considered “Impossi-
ble” with respect to veracity judgment if it meets
one of the following criteria: 1. it does not contain
any statement of verifiable fact (e.g., the phrase

“On taxes” in isolation has no claim that could be
evaluated) or 2. the fact that the statement refer-
ences cannot be verified without unavailable con-
text (e.g., “they voted for it” requires knowing who

“they” are and what “it” refers to). Conversely,
a statement is considered “Possible” if it can be
confirmed or disproven with external knowledge,
but does not require additional unavailable context
(e.g., “the sun orbits the earth” may require astron-



omy or physics knowledge to disprove, but does not
require additional context).

In this definition, there are only two categories,
Possible and Impossible. Two authors (Anne
Imouza and Camille Thibault) each annotated half
of LIAR-New according to this definition. This
yielded 892 Possible and 1063 Impossible exam-
ples.

Each annotating author then annotated 100 ex-
amples from the other’s set, and we evaluated dis-
agreement. We found that disagreement on this
combined set of 200 examples was significant, with
Cohen Kappa 0.312 and 72/200 cases disagreeing.

The annotating authors discussed each of these
200 disagreement cases and resolved the disagree-
ment. We did not observe a clear pattern such as
all disagreements being resolved to one label or
the other; it varied case by case. Consequently,
although this is a challenging and potentially sub-
jective labeling task, to improve quality as much
as possible we decided it would be beneficial to re-
vise all the labels. Based on the annotating authors’
observations and group discussion, we decided to
add a third category, leading to Version 2 discussed
below.

We note however that the experimental conclu-
sions did not change substantially between the two
versions, suggesting the original version was unbi-
ased, if noisy.

C.2 V2 Possibility labels

The following definitions are the full versions of
the ones we revised to, including examples (which
were agreed upon in advance of the labeling) omit-
ted in the main text:

Definition 3. Possible: the statement’s claim is
clear without any additional context (e.g., a state-
ment "the earth is flat"), or any missing context
does not make it difficult to evaluate the claim ("at
the press conference, Senator X said the earth is
flat" - we may not know which press conference this
refers to, but we can give a strong veracity evalua-
tion just examining if Senator X has said the earth
is flat at all, in a particular context, or frequently).

Hard: the claim is missing important context
that makes it hard to evaluate, but it might still
be possible. For example, "Senator X is against
the $15 million cut." We might be able to trace
the amount and the senator’s name and figure out
what this refers, and give a practical evaluation
likely beginning with "Assuming the cut here refers

to..." But it’s challenging and might be impossible
in some cases, for example if it’s not possible to
figure out which cut this refers to.

Impossible: there is missing context that cannot
be resolved ("The senator said the earth is flat" -
without a name, this could be any senator through-
out history, so it’s not possible to give a valid or
productive veracity evaluation). Or, the statement
contains no claim for which veracity could be eval-
uated regardless how much context is available (for
example, a statement "on the shape of the earth"
contains no claim).

The 3-way labels here provide more information
and can make it easier to handle edge cases than
the rigid 2-way labels. We also recruited a third
person (Yury Orliovsky) to provide a third set of
labels to further reduce noise.

In this round, each annotator annotated every
example. The resultant counts of labels are shown
in Table 12.

We see that the dominant cases are either agree-
ment or a relatively mild form of disagreement
between Possible vs. Hard or Impossible vs. Hard.
We consider this type of disagreement to be within
acceptable bounds, since by definition the Hard
class might in fact be either Possible or Impossible.
Therefore, for the final dataset, we resolved these
disagreements by taking the majority vote.

Nonetheless, there are also 342 cases where at
least one annotator marked Possible and another
marked Impossible. In these cases, the labels are
clearly conflicting. To resolve these disagreements,
we split them into two categories: 127 “maxi-
mal” disagreement cases where each label is repre-
sented, and 215 “nonmaximal” where two annota-
tors marked one label and one marked the other.

For the maximal disagreements, the annotators
discussed each example live and resolved the dis-
agreement to produce a final label. For the non-
maximal disagreements, the minority vote author
first went through each case individually to assess
if they had mislabeled it on their end. Finally, for
cases where the minority vote author in their indi-
vidual assessment still disagreed with the majority,
all the annotators discussed live to produce a final
label.

This yielded 927 Possible, 581 Hard, and 449 Im-
possible examples. We note that in the experiments
here we only examine these three categories, how-
ever, potentially the raw labels from the individual
annotators could be used to form a finer-grained



Labels Count
ppp 270
hhp 157
hii 129
hpp 69
php 62
ppi 59
iii 52
hhh 41
hhi 39
pph 34
pii 31
phh 25
phi 22
hpi 19
hih 16
hip 16
ihp 15
iip 14
pip 14
ipp 11
hph 10
iih 9
ihi 7
ihh 7
pih 4
ipi 3
iph 2

Table 12: Counts of each label combination, with or-
der preserved from the annotators. "ppp", for example,
indicates all three annotators marked the example “Pos-
sible”.

scale. For example, a case all three annotators la-
beled Hard might be harder than a case where two
labeled Hard and one labeled Possible. However,
caution would be needed here as it could result in
noise.

We make both the raw and final labels available
for future work through our GitHub.

D In-context learning with automatically
chosen demonstration

D.1 Prompts

We tested several prompts in which GPT-4 is pro-
vided an example chosen automatically from the
training set. These were motivated by the obser-
vation that GPT-4 and RoBERTa make different
errors in a way that is tied to embedding similarity
with training set examples (Section 4.5). Conse-
quently, by providing the most similar training set
example, we hoped to provide both a demonstration
and potentially a direct source of information rele-
vant to the target example. Related procedures to
retrieve semantically similar examples have shown
performance benefits in other contexts (Luo et al.,
2023).

In the below prompts, CLOS-
EST_TRAIN_LABEL refers to the label of
the closest training example according to Ada-002
embedding distance, uniformly mapped onto the
0-100 range. CLOSEST_TRAIN_TEXT refers
to the corresponding training example input
statement.

Version 1:

“role”: “user”, “content”: ‘Rate the truthfulness
of the following statement: "STATEMENT"

Here is the rating of a similar statement. The
rating is accurate, but the statement may or may
not be relevant to this one. Similar statement:
"CLOSEST_TRAIN_TEXT" Rating: CLOS-
EST_TRAIN_LABEL

Provide a score for the original statement from 0
to 100, where 0 represents definitively false and
100 represents definitively true. Do not provide
any explanations, only respond with the numerical
score.’

Version 2:

“role”: “user”, “content”: ‘Here is a similar
statement that is CLOSEST_TRAIN_LABEL:
"CLOSEST_TRAIN_TEXT” Now rate the truth-
fulness of the following statement: "STATE-
MENT” Provide a score from 0 to 100, where
0 represents definitively false and 100 represents
definitively true. Do not provide any explanations,
only respond with the numerical score. ’



Finally, Version 3 is a meta-prompt where we
set a condition to select between Version 2 and
the original (no demonstration) Score Zero-Shot
prompt. Given the example we want to classify, as
in previous versions, we find the most similar train-
ing set example. Then if this train-test example
pair is among the top 10% most similar train-test
example pairs (i.e., the similarity between the tar-
get, test set example and it’s most similar training
set example is in the top 10% similarity of all such
pairs), we use the Version 2 prompt. Otherwise, we
use the Score Zero-Shot prompt. The motivating
intuition here is that if we have a very similar train-
ing set example, then we try to take advantage of
that. In contrast, if none of the training set exam-
ples are very similar, then we hypothesize they may
not be relevant and therefore including them might
confuse the model, so we revert to the Zero-Shot
prompt.

D.2 Results
We report results in Table 13. We see that ver-
sion 1 seriously damages performance. Version
2 is more reasonable but still slightly worse than
Zero-Shot. Version 3 is better than Zero-Shot, but
the difference is marginal and unlikely to be worth
the complications and potential detriment to gen-
eralization of relying on a limited, static training
set.

Method Accuracy
Version 1 57.2
Version 2 64.2
Version 3 65.2

GPT-4 Score Zero-Shot 64.9

Table 13: Results of 3 versions of in-context learning
with an automatically chosen demonstration. Version 3
improves performance compared to Zero-Shot, but only
marginally, so the benefit is likely not worth implemen-
tation complications and potential impact on generaliza-
tion.

We note that this is only using a single example—
perhaps more are necessary to minimize the impact
of noise. Also, there could be many other ways to
do the prompting, for instance maybe this does not
synergize well with the Score prompt but would
work better for Binary. So we cannot rule out some
related approach doing better. But we believe other
ways to provide the model additional information,
especially web retrieval (see Section 4.9), are much
more promising.

E Small Language Models

We fine-tuned a selection of pre-trained SLMs from
HuggingFace. Due to limited computational re-
sources, we restricted our analysis to models that
were runnable on one Tesla T4 GPU. We exam-
ined BERT (base) (Devlin et al., 2018), ConvBERT
(Jiang et al., 2020), DeBERTa and DeBERTa-v3
(base) (He et al., 2020), LUKE (Yamada et al.,
2020), RoBERTa (base) (Liu et al., 2019), Squeeze-
BERT (Iandola et al., 2020) and XLM-RoBERTa
(Conneau et al., 2019).

A small hyperparameter search was performed
on the given models, however, we rapidly found
that this was not significantly increasing perfor-
mance and began showing signs of overfitting.
Hence, for this purpose, all the reported values
in Table 2 as well as Table 20 are based on default
configurations for pre-training BERT-like models,
as stated in the original BERT paper. All the mod-
els were finetuned for 2 epochs, using the base
embeddings with the learning rate 5e-05 using the
AdamW optimizer.

F Fuzzy Clustering

K-Means Fuzzy Clustering has shown promising
results for misinformation detection in some re-
cent studies (Chen and Lai, 2022; Raj and Meel,
2021). This method initializes centroids in a
pseudo-random fashion, then each datapoint is as-
signed a probabilistic membership to each clus-
ter proportional to the distance between the data
point and centroid. Following this, the centroids
themselves are moved relative to the averages of
their data points. Memberships and centroids are
updated repeatedly until convergence. The final
membership values can be converted to a class pre-
diction with an argmax or an additional classifier.

We tested fuzzy clustering using three types of
word embeddings with various levels of global con-
textualization: Word2Vec, GloVE, and BERT. The
models were trained using adaptations to the SciKit-
Fuzzy cluster cmeans library.

Unfortunately, in our experiments (Tables 2 and
20), this approach did not give good results, so we
did not investigate it further.

G GPT-3.5

G.1 Base Performance

We prompt GPT-3.5 in the same way as GPT-4, and
evaluate its performance in Table 14.



Dataset Method Accuracy
LIAR GPT-3.5 Score Zero-Shot 67.3
LIAR GPT-3.5 Binary 53.6

LIAR-New GPT-3.5 Score Zero-Shot 61.1
LIAR-New GPT-3.5 Binary 55.7
LIAR-New GPT-3.5 Binary Uncertainty-Enabled 67.7

Table 14: Results with GPT-3.5.

We note that GPT 3.5 performs surprisingly well
on LIAR, better than GPT-4 in the same Score
Zero-Shot setup. However, there are some caveats.
First, its score is already maximized at the zero-
shot binarization threshold of 50, meaning it cannot
achieve higher performance through tuning on the
validation set like GPT-4 can. The margins are
small, however, so this may not have a big impact.
More significantly, the performance seems brittle
and does not extend to other prompts or datasets.

G.2 Fine-Tuning

We conduct a preliminary experiment on fine-
tuning using the following prompt:

“role”: “user”, “content”: ‘Rate the truthfulness
of the following statement: "STATEMENT" Pro-
vide a score from 0 to 100, where 0 represents
definitively false and 100 represents definitively
true.’

This is the same as the usual Score prompt, ex-
cept we remove the last sentence “Do not provide
any explanations, only respond with the numerical
score.” We hypothesized that the finetuning should
already be sufficient to get it to respond with only
the numerical score—and in practice it does, 100%
of the time.

For the output side of the fine-tuning, we map
the original 6-way LIAR labels uniformly to 0-100
scores, i.e., [0,20,40,60,80,100]. Then we fine-tune
with default settings, which resulted in 2 epochs of
fine-tuning.

On the test set, this approach achieved 57.2%
accuracy. Considering the corresponding untuned
approach (Score Zero-Shot) achieved 67.3% ac-
curacy, the fine-tuning was not successful. We
hypothesize that finetuning to Impossible examples
might be particularly damaging. In addition, the
Score prompting may not be well suited for this
since the uniform mapping may not reflect the true
variation in the labels. So there is considerable
room for more experimentation here that might
yield a better result. We recommend this, along
with testing GPT-4 fine-tuning that OpenAI has

said it plans to release in the future, as areas for
future work.

H Evaluation Metrics

To measure the performance of our misinformation
detection approaches in hard classification settings
we mainly report accuracy and weighted F1 score.
For LIAR-New, where the classes are very imbal-
anced, we report accuracy and macro F1 score,
which gives a more stringent assessment. Mean-
while, for soft classification, we provide reliability
diagrams and measure Expected Calibration Error
(ECE), which are standard ways to measure perfor-
mance in this context (Abdar et al., 2021). Both
were applied using 10 bins with quantile scaling,
i.e., the bins are scaled to have the same number of
examples in each.

I GPT-4 Cost Evaluation

We report in Table 15 approximate API costs of
some of the main experiments run. These num-
bers can vary between runs of the model (due to
randomness in the completion tokens) but should
provide reasonable estimates. This is based on cur-
rent pricing for GPT-4 (8K context window) as of
October 2023, i.e., USD 0.03/1K input tokens and
0.06/1K output tokens.

We also note that the finetuning of GPT-3.5 on
the LIAR train set comprised 609k tokens costing
4.9 USD.

Overall, we see that there is a very large range
depending on different data and prompts. We note
that if an explanation is not needed, prompts that
avoid it can be quite effective in reducing cost
in cases where the input is not long (e.g., LIAR
and LIAR-New). Furthermore, the overall bud-
get needed for these experiments is not trivial, es-
pecially considering that not all experiments are
included here and many need multiple runs (e.g.,
when evaluating temperature in the following sec-
tion, doing exploratory analysis, debugging, etc.).
In the short-term, thoughtful prompting and choice
of experiments to target can help keep costs down
when budget is limited. In the long-term, cheaper
models with comparable performance will hope-
fully (and quite likely) be found or created, which
will be a significant advantage for both research
and real-world deployment.



Dataset Prompt Input Tokens Output Tokens Total Cost (USD)
LIAR Score 100K 3K 3.19
LIAR Binary 93K 2K 2.88
LIAR Explain-then-Score 142K 314K 23.1
LIAR Score-then-Explain 104K 118K 10.21

LIAR-New Score 154K 2K 4.73
LIAR-New Binary 140K 2K 4.32
LIAR-New Binary Uncertainty-Enabled 205K 4K 6.37
LIAR-New Explain-then-Score 216K 464K 34.35
LIAR-New Web Oracle 1.8M 2K 53.07
LIAR-New Web Answerless Oracle 1.7M 2K 51.07

CT-FAN English Score 725K 1K 21.79
CT-FAN English Explain-then-Score 691K 197K 32.57
CT-FAN German Score 956K 1K 28.72

Table 15: GPT-4 API costs.

J Temperature and Variation

We examine here the effect of varying the sam-
pling temperature from 0.5, used in the main exper-
iments, to 0.0 or 1.0. There are two outcomes to
consider: first, the effect on overall performance.
Second, the variation of GPT-4’s responses for each
example over multiple runs. We test these by run-
ning GPT-4 10 times on the test data at each tem-
perature level, in the binary setting.

In Table 16 we report first the mean accuracy and
its standard deviation over 10 runs. Then we report
the number of non-numeric answers, e.g., when
GPT-4 refuses to answer or returns an explanation
instead of following the directive to only return a
score 0-100. Note that for the accuracy calculation,
we replaced these with a random number uniformly
drawn between 0 and 100, while in the subsequent
metrics we exclude these examples. For each exam-
ple, we then compute the standard deviation of the
scores, and report the mean and maximum of that
value over all the examples in the dataset (Mean
SD and Max SD). Finally, we look at peak-to-peak
distance, i.e., the difference between the largest and
smallest GPT-4 scores for each example over the
10 runs. We report the maximum (Max PtP) and
the number of examples for which the PtP distance
is over 50 (# Large PtP).

We find that lower temperature generally gives
better results, with both a small increase in accu-
racy and a reduced variation amongst the responses.
The mean standard deviation between runs with 0.0
temperature is quite reasonable at 2.2, indicating
the responses are generally consistent. We do how-
ever note that a small number of examples still have

Temp. Accuracy # Non- SD PtP
numeric Mean Max Max # Large

0.0 67.9 ± 0.3 95 2.2 51.6 100 5
0.5 67.4 ± 0.7 108 5.3 48.3 100 11
1.0 66.5 ± 0.8 129 7.7 40.7 100 40

Table 16: Temperature vs. accuracy and several mea-
sures of variation in the responses. In general, lower
temperature gives better results.

a very large variation in responses—regardless of
the temperature, there is always an example with
the maximal 100 peak-to-peak distance, and even
with 0.0 temperature there are 5 examples with
over 50 peak-to-peak distance. This might be trou-
blesome for user-facing systems built on this, as
occasionally it can give very different answers to
different users querying the veracity of the same
statement, or one user querying multiple times,
which could cause some confusion or distrust.

Consequently, future work that addresses this
limitation would be helpful. This might be done
with better prompts or with techniques such as
multi-agent debate (Du et al., 2023; Liang et al.,
2023), or possibly giving the system more context
and evidence.

We also note that the maximum standard devia-
tion shows a counterintuitive result, increasing as
temperature decreases. This might be noise, or it
might be due to lower temperature following the
instruction to respond with a number more consis-
tently and still giving an answer in cases where it is
more confused. We found that of the 95 examples
where at least one run at 0.0 temperature returned
a non-numeric answer, all but one were contained



within the 129 examples where a run at 1.0 temper-
ature returned a non-numeric answer. Furthermore,
excluding the full 129+1 examples increased per-
formance to 69.6 ± 0.2, reduced Mean SD to 2.1,
and removed one of the 5 large PtP cases. It did not
change the maximum standard deviation or peak-to-
peak distance, but nonetheless, this might suggest
that higher temperature has an edge in realizing
cases it cannot answer properly. Further investiga-
tion is needed to determine if an adjusted prompt,
which directly allows the model to refuse to answer,
would have a positive effect here.

Finally, we also considered the potential effect
of changing the temperature, as well as repeated
runs in general, on the optimal threshold. We evalu-
ated all possible thresholds to determine the oracle
threshold that would give the best performance at
each temperature. Results are shown in Table 17.
We see that the original threshold found on the vali-
dation set (with 0.5 temperature) was a bit high for
the test set, especially at 0.0 temperature. However,
the difference in accuracy between this threshold
and the oracle one is quite small. Thus, it does not
appear that temperature has a large practical effect
on the optimal threshold.

Temp. Original Thre. Accu. Oracle Thre. Accu.
0.0 71 67.9 62 68.1
0.5 71 67.4 66 67.7
1.0 71 66.5 67 67.5

Table 17: Temperature vs. performance with the original
threshold from one run on the validation set (71), and
the oracle threshold that maximizes performance. The
original threshold is somewhat high, but the difference
in accuracy is low.

K LIAR Possible vs. Impossible
Examples

In addition to the larger scale analysis on LIAR-
New, we also examined the Possible vs. Impossible
examples in LIAR (i.e., using the ones that GPT-
4 found for the Impossible case, as discussed in
Section 3.1). We restrict the test set to only one or
the other category, and compare results with GPT-
4 and RoBERTa-large. First, in Table 18 we see
that performance improves slightly (compared to
Table 2) when restricting to the Possible examples,
which confirms our initial intuition.

Next, for the Impossible examples, we see the
results of flipping a coin vs. RoBERTa-large.
RoBERTa outperforms random classifications here,

which means it may be learning information or a
bias which helps on this data but will not general-
ize. On the other hand, if we look at RoBERTa’s
soft classification of these examples, the results are
more encouraging: the mean absolute deviation
from 0.5 (which would match “can’t be determined
one way or another”) is 0.232 in the Impossible
case, compared to .338 in the Possible case. This
suggests more certainty overall on Possible exam-
ples, which is the direction one would want, even if
it is not sufficient to achieve the desired outcome.

Method Accuracy F1

Possible GPT-4 69.4 69.1
RoBERTa-large 63.8 62.3

Impossible 50-50 Random 50.0 50.2
RoBERTa-large 59.4 58.4

Table 18: Possible vs. Impossible examples. RoBERTa-
large beats random on Impossible ones – which is might
not generalize.

Finally, we further tested what happens to the
GPT-4 classification threshold when these exam-
ples are included, as in Table 2, by assigning them
a random prediction. The threshold increased
from the optimal 71 to a mean over 100 runs (re-
randomizing the Impossible predictions) of 72.31.
Although not a large change, this does illustrate
concretely how including these examples can bias
the predictions.

Overall, these results confirm that noise in the
data can affect downstream results. RoBERTa-
large can somewhat account for them, but not
nearly to the extent of GPT-4. Since it can detect
many Impossible examples, GPT-4 has a robust-
ness advantage in this area, and might also be used
for cleaning the data if approaches like RoBERTa-
large are needed.

L Investigating Errors in Relation to the
Training Data

We embedded all examples with OpenAI’s Ada-
002 model (Greene et al., 2022). This is a docu-
ment embedding model which is suitable for evalu-
ating their semantic similarity. For each example
in the test set, we find the most similar statement in
the training set by calculating the cosine distance
in Ada-002 embeddings between the statements.
We find the training set statement that minimizes
the distance to each test set statement. Finally, we
compare the minimum distances averaged over all



the test set examples.

For the cases where GPT-4 was correct and
RoBERTa-L wrong, the average distance is 0.127,
while for the reverse, the average is 0.116. The dif-
ference is statistically significant (p=0.0005). This
suggests RoBERTa is using similar examples in the
training data to make correct predictions for cases
GPT-4 gets wrong, while GPT-4 must be using the
information it learned during its own training pro-
cess to correctly predict cases that do not relate
well to the examples RoBERTa sees in the train-
ing set. We publish on our Github these examples
and the associated cosine distances so that further
analysis on the generalizability of RoBERTa’s pre-
dictions can be conducted. If replicable in other
contexts, these results suggest GPT-4 or similar
models could benefit significantly from effective
finetuning or few-shot setups in this domain, if they
can be optimized beyond the failed attempts we
made here (Appendix G and Appendix D). In other
words, if GPT-4 could correctly classify all the ex-
amples RoBERTa does without compromising its
current correct examples, there would be a nearly
10 percentage point improvement. However, the
optimal methods to achieve that—without compro-
mising generalization—remain an open question.

M LIAR Error Analysis Case Study

We present here some examples that RoBERTa-L
Binary gets correct and GPT-4 Score Zero-Shot
gets wrong, along with their closest training set
example by Ada-002 embedding cosine distance.
Specifically, we randomly sampled 50 examples for
qualitative analysis, and here we print the five with
the lowest cosine distance, the five in the middle,
and the five with the highest cosine distance among
the 50. From the closest five, we see that a number
of examples in the LIAR test data are near-replicas
of an example in the training data. Some others
are very similar. On the one hand, this means that
the training data is helpful to classify some exam-
ples, explaining why RoBERTa-L gets some right
that GPT-4 gets wrong, and suggesting a potential
benefit if GPT-4 could ingest the training data di-
rectly. On the other hand, this also means some
examples might be artificially easy for models that
have seen the training data, and can be classified
by memorization rather than learning generalizable
patterns.

N LIAR 6-Way Classification

In Table 20, we present results for 6-way
classification—i.e., using the original LIAR dataset
labels, without dichotomizing the ratings. In this
case, DeBERTa performs best. GPT-4 Zero-Shot
is not far behind, but this suggests that more in-
formation is needed to match the finer-grained la-
bels here, either from the training set or by tuning
the GPT-4 classification thresholds on the valida-
tion set. Performance is very low overall, but this
matches the literature, and in the case of DeBERTa,
exceeds it (Flores and Hao, 2022). It is important
to note that, as shown by the low metrics across the
board, this task is extremely difficult. Besides cur-
rent approaches just being insufficiently capable in
general, this could potentially occur if there were a
lack of consistency in the fine-grained labeling, so
further validation of the labels could be a valuable
area for future work.

O PaLM 2 Bison

In Table 21, we examine the performance of the
Score prompt with PaLM 2 Bison (Anil et al.,
2023). We report accuracy for LIAR and Macro
F1 for CT-FAN (the most used metrics for those
datasets).

We see that Bison performs OK, if not impres-
sively, on LIAR. It is significantly worse than GPT-
4 and other approaches on CT-FAN. In addition,
unlike with GPT-4, we did not find any significant
performance gains from tuning the score threshold.
Nonetheless, the results on LIAR do suggest rea-
sonable misinformation detection is no artifact of
GPT-4 alone among recent LLMs. and similarly
capable models might give similarly strong results.

Bison is the second largest PaLM 2 model. The
largest, Unicorn, is not publicly accessible in a
direct way as of this writing. Unicorn can be used
indirectly as it powers Google Bard, but Bard is not
accessible in the authors’ country (Canada), and
to our knowledge does not offer an API anywhere.
Consequently, we were unfortunately not able to
test test the most powerful version of PaLM 2. If
accessibility issues can be resolved, we believe that
would be a worthwhile evaluation for future work.

P Soft Classification

Here we evaluate the capabilities of GPT-4 and
other language models for making probability pre-
dictions. We first discuss the calibration method
we used, then the results.



Test Set Statement Closest Train Statement

Closest 5

Weve doubled the production of clean energy. Weve doubled our use of renewable energy.
Says the National Labor Relations Board told Boe-
ing that it cant build a factory in a non-union state.

Says the National Labor Relations Board told Boe-
ing that it couldnt build a factory in South Carolina
because South Carolina is a right-to-work state.

Under Barack Obama, the U.S. now has the lowest
workforce since (President Jimmy) Carter.

Under Barack Obama, the fewest number of adults
are working since Jimmy Carters presidency.

Says (Clinton) called President Assad a reformer.
She called Assad a different kind of leader.

Says Hillary Clinton defended Syrias President As-
sad as a possible reformer at the start of that coun-
trys civil war.

Gov. McDonnells proposed budget is cutting public
education.

Says Gov. Bob McDonnells budget would cut pre-
kindergarten programs.

Middle 5

PolitiFact Texas says Congressman Edwards at-
tacks on Bill Flores are false.

Says PolitiFact has ruled that Ed Gillespies ads are
false and misleading.

One in five American households have nobody un-
der the same roof thats got a job.

We have 25 million Americans out of work.

Says Bill Pascrell voted to eliminate all estate taxes
for billionaires, and I voted no.

Says Congressman Bill Pascrell voted to remove
the public option from the Affordable Health Care
Act.

Of all cities in the United States with more than
100,000 people, Providence is the 183rd safest.

[When I was mayor] Providence was one of the five
renaissance cities of America, according to USA
Today in those days. Money magazine said it was
the fifth best city to live in in America. In addition
to that, All Cities Almanac said in 1994, I believe,
that it was the safest city in America.

Says critics who say he cut Medicaid are wrong;
his budget added $1.2 billion to the program

Says he opposed $716 billion cut to Medicare.

Furthest 5

Says Republican Rep. Charlie Dent wants to kick
the Freedom Caucus out of the Republican confer-
ence for voting our conscience.

Says Congressman Eric Cantor wants to eliminate
Social Security.

Active duty males in the military are twice as likely
to develop prostate cancer than their civilian coun-
terparts.

One in five women in the military are receiving
unwanted sexual contact, as are 3.3 percent of men.

We have 41,000 people right now on the waitlist
for financial-based assistance for our tech colleges
and universities, most of them for tech schools.

The 2013-15 state budget backed by Gov. Scott
Walker and Republican lawmakers left our techni-
cal colleges funded at 1989 levels.

Ninety percent of the people in Arkansas still love
Bill Clinton.

59 percent of Americans today believe that Barack
Obama is still a Muslim.

When people enter the service, theres not a mental
health evaluation.

Seventy-five percent of the young adults in this
country are not mentally or physically fit to serve.

Table 19: Samples of LIAR examples that RoBERTa-L Binary classified correctly and GPT-4 Score Zero-Shot
classified incorrectly, grouped by semantic similarity according to Ada-002 embeddings. The closest ones are near
identical, the middle ones are similar, the furthest ones are only tangentially related.

P.1 Calibration

For soft classification (probabilities), we first use
the scores our models provide out-of-the-box. In
the case of GPT-4, we use the raw output it returns
(divided by 100 to put it between 0 and 1). For
the other language models, we take the output of
the final softmax, right before the argmax converts
this value to a single class prediction. These ap-
proaches have the advantage of simplicity and not
introducing potential confounding variables.

Note, however, that the literature suggests deep
learning models are often over-confident and their
out-of-the-box probabilities may be of low quality
(Moon et al., 2020). Therefore, we apply Platt’s
method (Jiang et al., 2011) to calibrate. This in-
volves fitting a logistic regression model to the

model’s output probabilities. We do this on the
validation set. This will in theory help correct for
overconfidence and lead to better performance. For
evaluation metrics, please see Appendix H.

Aside from GPT-4 which is not trained, all the
models for this section were trained in the binary
classification setting of Table 2.

P.2 Results

Results are shown in Figure 2 and the following
figures. We first observe that Platt’s method gen-
erally improves the quality of the predictions. We
next see that GPT-4 predictions are not very well
calibrated out-of-the-box, but after Platt they show
a decent relationship between prediction and actual
probability, indicating this approach has potential
to give more informative predictions. We suspect



Method Accuracy F1
SOTA (2022) 29.4 -

GPT-4 Zero-Shot 28.1 25.5
BERT 28.1 26.4

ConvBERT 27.9 27.2
DeBERTa 29.9 29.2

DeBERTa-V3 28.9 27.5
LUKE 28.3 27.0

RoBERTa 26.5 22.1
SqueezeBERT 26.6 25.3

XLMRoBERTA 20.9 07.0
Fuzzy (Word2Vec) 22.3 22.8

Fuzzy (BERT) 23.1 23.2
Fuzzy (GloVE) 21.5 21.1

Table 20: 6-Way Classification Results (percentages)

Dataset Method Result
LIAR PaLM 2 Bison 62.4
LIAR GPT-4 Score Zero-Shot 64.9

CT-FAN English PaLM 2 Bison 21.3
CT-FAN English GPT-4 Score Zero-Shot 42.8
CT-FAN German PaLM 2 Bison 22.3
CT-FAN German GPT-4 Score Zero-Shot 38.7

Table 21: Comparison with PaLM 2 Bison. GPT-4
performs better, but Bison does give passsable results
on LIAR. Note that this is only the second largest PaLM
2 model; the largest was not accessible to the authors as
of this writing.

that this could be improved even further with a
better prompt.

More surprisingly, we find that superior perfor-
mance on hard classification does not translate to
superior performance on soft classification. The
best soft classification model is SqueezeBERT (af-
ter calibration), which gave thoroughly unremark-
able performance in the hard classification exper-
iments. We believe this warrants further investi-
gation for two reasons. On the one hand, this
could lead to an effective, nuanced misinforma-
tion mitigation tool leveraging the best-performing
approaches here like SqueezeBERT. On the other
hand, understanding why different approaches per-
form better or worse here for soft classification
despite their hard classification performance could
lead to better soft classification in general.

Finally, we see that although after calibration the
different approaches do overall follow the perfect
prediction line, especially SqueezeBERT, they do
not give many predictions with very high certainty

(close to 0 or 1). This can be an issue because we
still want systems that make strong predictions in
clear cut cases. While this is likely better than mak-
ing numerous confident but wrong predictions, as
one gets with standard hard classification, it sug-
gests a line of future work aimed at fully realizing
the potential of soft classification approaches.

Q Explainability

In many experiments, we have examined prompts
that explicitly discourage explanations. This gives
advantages in speed and reduced cost (see Ap-
pendix I), and such outputs are easier to evalu-
ate quantitatively. However, in the research and
development context, explanations could provide
insights into how the system is making evaluations
and how we could improve it. In a deployment
context, they could enable a user to see if its eval-
uations seem complete or if something is missing,
leading to improved trust and more graceful failure.
In the following subsections we go into more detail
on our explainability experiments.

Q.1 Prompts
We considered two prompts. The first, “Score-
then-Explain” is very close to the original “Score”
prompt. We simply replace the last line in the orig-
inal, which discourages explanations, with a line
requesting them.

“role”: “user”, “content”: ‘Rate the truthfulness
of the following statement: "STATEMENT" Pro-
vide a score from 0 to 100, where 0 represents
definitively false and 100 represents definitively
true. Then write a vertical bar "|", followed by
explaining your reasoning for the score.’

The second prompt, “Explain-then-Score”, asks
the model to write an explanation before deciding
on its score. The intuition here is that if we ask
for a score first and lock that in, then the explana-
tion will likely be written to match the score. But
if we ask for the explanation first, the model will
have a chance to reason further about the input as
it writes the explanation, which might lead to a
more thoughtful and accurate score. This approach
was directly inspired by (Tian et al., 2023), and
has connections to general chain-of-thought (Wei
et al., 2022) literature which has shown various ap-
proaches to promote intermediate reasoning steps
can improve a final result.

“role”: “user”, “content”: ‘Rate the truthfulness
of the following statement: "STATEMENT" Your
task is to provide a score from 0 to 100, where



(a) Out-of-the-box (ECE=14.0%) (b) Platt’s method (ECE=5.9%)

(c) Out-of-the-box (ECE=20.1%) (d) Platt’s method (ECE=6.3%)

(e) Out-of-the-box (ECE=4.0%) (f) Platt’s method (ECE=1.6%)

Figure 2: GPT-4 (top), RoBERTa-large (middle), and SqueezeBERT (bottom) probability predictions, out-of-the-box
or calibrated with Platt’s method.



(a) Out-of-the-box (ECE=6.9%) (b) Platt’s method (ECE=4.0%)

Figure 3: BERT probability predictions, out-of-the-box or calibrated with Platt’s method.

(a) Out-of-the-box (ECE=6.9%) (b) Platt’s method (ECE=2.1%)

Figure 4: ConvBERT probability predictions, out-of-the-box or calibrated with Platt’s method.

(a) Out-of-the-box (ECE=2.2%) (b) Platt’s method (ECE=2.4%)

Figure 5: DeBERTa probability predictions, out-of-the-box or calibrated with Platt’s method.



(a) Out-of-the-box (ECE=3.9%) (b) Platt’s method (ECE=3.3%)

Figure 6: DeBERTa-v3 probability predictions, out-of-the-box or calibrated with Platt’s method.

(a) Out-of-the-box (ECE=4.9%) (b) Platt’s method (ECE=2.5%)

Figure 7: LUKE probability predictions, out-of-the-box or calibrated with Platt’s method.

(a) Out-of-the-box (ECE=4.9%) (b) Platt’s method (ECE=2.5%)

Figure 8: RoBERTa probability predictions, out-of-the-box or calibrated with Platt’s method.



(a) Out-of-the-box (ECE=4.0%) (b) Platt’s method (ECE=1.6%)

Figure 9: SqueezeBERT probability predictions, out-of-the-box or calibrated with Platt’s method.

(a) Out-of-the-box (ECE=3.6%) (b) Platt’s method (ECE=5.6%)

Figure 10: XLM-RoBERTa probability predictions, out-of-the-box or calibrated with Platt’s method.



0 represents definitively false and 100 represents
definitively true, but you must not state your score
until you’ve presented a thorough analysis. Do
not begin your response with a number. First
write your analysis, then write a vertical bar "|",
then finally state your score.’

Q.2 Predictive Performance

We test the scores these prompts produce compared
to no explanation GPT-4 Score Zero-Shot. We re-
port results (the primary metrics for the datasets:
accuracy for LIAR, macro F1 for others) in Ta-
ble 22.

Q.3 Evaluation of the Explanations:
Reasonableness

To perform an initial evaluation of whether the ex-
planations made sense and would be helpful, one
of the authors manually examined samples of ex-
planations according to the following directive:

Definition 4. “GT-Reasonable”: if the explanation
is reasonable in evaluating the statement - in rela-
tion to the ground truth PolitiFact or other actual
information - please put "y" for "yes". Otherwise,
"n" for "no" (e.g., its explanation is false, does not
explain the answer, illogical or outright nonsensi-
cal, no explanation given at all, etc.).

We note that this is only a proxy for the ultimate
question in explainability: whether the explanation
will help a user of an information evaluation system
based on this framework. However, that question
cannot be answered without knowing the user, a
precise definition of “help”, etc. This definition
ignores all those factors and more, so we do not
recommend it for in depth analysis; we use it here
simply as a tool to explore the results.

We sampled 30 random examples where GPT-
4 gives the correct answer, 10 where it gives the
wrong answer, and 10 where it gives the right an-
swer and RoBERTa gives the wrong one. Although
we might expect to only get a reasonable explana-
tion if it is giving the right answer, it is conceivable
that we could somehow have a correct explanation
but a wrong answer. We would also like to better
understand why it gives wrong answers. Mean-
while, analyzing the examples GPT-4 got correct
and RoBERTa wrong might provide further insights
on what GPT-4 relied on to get those answers that
RoBERTa could not.

We then did a second round of another 50 exam-
ples with the same the same sampling setup, but
with the addition of a second evaluation criteria:

Definition 5. “Score-Reasonable”: is the explana-
tion reasonable in relation to the score it gives? If
so please put “y” for “yes”. It would be "n" for
"no" if for example it is very confident the state-
ment is true but gave a score around 50 (indicating
uncertainty) or well below (indicating false).

This criteria is quite similar to the previous GT-
Reasonable, just making the evaluation compared
to the score instead of the ground truth.

We found that 100% of the examples were Score-
Reasonable. This is not surprising but confirms the
score is stable in relation to the explanation and the
model seldom if ever suddenly changes its mind
at that stage. We report GT-Reasonable rates in
Table 23.

We see that the explanations are generally rea-
sonable when correct. More unexpectedly, they
are also often reasonable even when the prediction
is wrong. We believe there are two main reasons.
First, this often occurs when GPT-4 gives an answer
indicating the statement is murky, e.g. score in the
40-60 range, while PolitiFact agrees it is mixed but
labels it slightly differently. Due to the threshold
at 50, the binary class can end up different, even
if both GPT-4 and PolitiFact are largely saying the
same thing.

Second, there is some uncertainty and subjectiv-
ity in the evaluation. For example, if GPT-4 gives
correct framing and general info about the state-
ment, but says it lacks a particular piece of data,
is that a good explanation or not? If it gives an
explanation with the context of 2021, when really
the statement was made in 2008, is that a good
explanation?

More refinement of the process is needed. This
would likely include more precision in the defi-
nition and breaking it down into more categories,
as well as larger sample size and more labelers.
Nonetheless, these preliminary results already sug-
gest an approach like this can have great potential
for explainability, and it is far easier to get here
than with previous models like RoBERTa.

We do not recommend training on them, but
in case these explanations are useful for further
analysis, we publish them on our Github.

Q.4 Evaluation of the Explanations:
Impossible Cases

We took the LIAR-New predictions, filtered for
Impossible examples only according to V1 Possi-
bility labels (Appendix C), and randomly sampled



Dataset Method Result
LIAR GPT-4 Score-then-Explain 62.9
LIAR GPT-4 Explain-then-Score 64.9
LIAR GPT-4 Score Zero-Shot 64.9

LIAR-New All GPT-4 Explain-then-Score 65.3
LIAR-New All GPT-4 Score Zero-Shot 60.5

CT-FAN English 4-Way GPT-4 Explain-then-Score 43.6
CT-FAN English 4-Way GPT-4 Score Zero-Shot 42.8
CT-FAN English 3-Way GPT-4 Explain-then-Score 63.1
CT-FAN English 3-Way GPT-4 Score Zero-Shot 58.6

Table 22: Predictive performance of explainability prompts. Explain-then-Score works well, matching or outper-
forming Score Zero-Shot.

Sample Type Round 1 Round 2
Correct 28/30 29/30
Wrong 5/10 8/10

GPT Correct RoBERTa Wrong 9/10 10/10

Table 23: GT-Reasonable proportions on examples ran-
domly sampled from each group. Not only are the ex-
planations reasonable in cases it predicted correctly, but
also a significant number in which it did not.

50 where GPT-4 made the correct prediction and
50 where it was wrong.

Correct Answers Besides cases it does not really
know (potentially even saying it does not know)
but gets lucky, it seems to either rely on general
information or assume a United States context.

The following is an example of relying on
general information to evaluate the statement “A
Phoenix TV station aired the election results more
than a week early.”

The statement refers to a specific event
that could be verified through reliable
sources. However, without any specific
details such as the name of the TV sta-
tion, the date of the alleged early airing,
or the specific election in question, it is
difficult to confirm the truthfulness of
the claim. Furthermore, it is important
to note that the broadcasting of election
results before the official end of voting is
generally considered unethical and poten-
tially illegal, as it could influence the out-
come of the election. Therefore, it would
be unusual for a reputable TV station to
do so. Finally, it’s also worth consider-
ing that this could be a misunderstanding

or misinterpretation of a forecast or pre-
diction being mistaken for actual results.

Given these considerations, it is impos-
sible to definitively confirm or deny the
statement without additional information.
| 50

PolitiFact rated this statement “Half True” not-
ing the tv station accidentally aired mock election
results, similar to GPT-4’s suggestion that it might
be a misinterpretation of a “forecast or prediction”
(https://www.politifact.com/factchecks/2022/oct/28/instagram-

posts/phoenix-tv-station-did-not-call-election-katie-hob/).
The following are examples of assuming a

United States context.
Statement: “There are 63 million abortions a

year in this country.”

The statement asserts that there are 63
million abortions a year in the United
States. The Guttmacher Institute, a
leading research and policy organization
committed to advancing sexual and re-
productive health and rights, reported
that there were approximately 862,320
abortions in the United States in 2017
[...]

Statement: “$2,000 stimulus checks were due
on Jan. 19.”

The statement is suggesting that $2,000
stimulus checks were due on Jan. 19.
This statement is ambiguous because it
does not specify the year or the country
it is referring to. However, assuming it
refers to the United States and the year
2021, we can analyze its truthfulness [...]



Statement: “Our Supreme Court has never taken
away a constitutional right.”

The Supreme Court of the United States
has the power to interpret the Constitu-
tion and determine the constitutionality
of laws [...]

Although PolitiFact focuses largely on US poli-
tics leading to correct answers here, assuming US
context could be a substantial issue if using a sys-
tem based on this in other countries, or even in
the US in the case of evaluating statements that
are actually about other countries. While many bi-
ases like race, gender, and political ideology are
commonly studied in relation to LLMs, this sort of
“geographical” bias is less explored, particularly in
the misinformation domain. These results suggest
it merits further research.

Incorrect Answers
In the majority of cases, GPT-4 appears to know

it is missing context. In some cases, it seems to
assume an image or video which it does not have
access to exists, leading to it incorrectly predicting
a statement is true.

The following is an example where it knows
context is missing when evaluating the statement
“A royal guard member collapsed because of the
COVID-19 vaccine.”

The statement “A royal guard member
collapsed because of the COVID-19 vac-
cine” is not verifiable without specific
information and context. The statement
is vague and does not provide enough
detail to determine its truthfulness. It
doesn’t specify which royal guard (from
which country or monarchy), nor does
it provide any timeline or source of this
information. Furthermore, it directly at-
tributes the collapse to the COVID-19
vaccine, which is a complex medical con-
clusion that would require professional
medical evaluation to confirm. Vaccines
can have side effects, but serious side
effects are rare, and it’s also possible
for someone to collapse due to other
health conditions. Without any specific
information or context, it’s impossible to
definitively confirm or refute this state-
ment. | 50

In a binary evaluation (or even many forms of
multiclass evaluation) where a label must be as-

signed one way or another, errors of this type are
not distinguishable from more egregiously wrong
and misleading answers. Solutions for such fail-
ures may look very different (e.g., querying user or
knowledge base for additional information, vs. mit-
igating hallucinations or overconfidence). So this
suggests a need for more uncertainty-aware classi-
fication and evaluation methods, such as some of
the approaches we propose or hopefully even better
future approaches.

The following is an example where GPT-4 seems
to take it at face value that images exist, evaluating
the statement “Images show how climate change
destroyed the Greenland ice sheet and harmed a
polar bear from 2009 to 2019.”

The statement is making two claims: 1)
climate change has destroyed the Green-
land ice sheet and 2) climate change has
harmed a polar bear from 2009 to 2019.
In conclusion, while the statement cap-
tures the essence of the effects of climate
change, its use of the term ’destroyed’
and the lack of specific evidence regard-
ing the polar bear make it not entirely
accurate. | 70

In reality, PolitiFact rates this statement
False, explaining “experts pointed out that the
image of Greenland has nothing to do with
the polar bear image, since polar bears face
sea-ice loss in the Arctic Ocean, not Greenland”
(https://www.politifact.com/factchecks/2022/jan/19/facebook-

posts/10-years-challenge-climate-change-exaggerates-

impa/).
Such errors might be addressed by targeted in-

terventions, such as a classifier to detect when an
image/video is referenced, making user aware the
system cannot see the pictures and might give inac-
curate answers, or simply multimodal models that
can process pictures smoothly (in theory, GPT-4
might already do this, but this feature is not yet
enabled through the API and we were unable to
evaluate it).

R Web Retrieval

R.1 Prompt
“role”: “user”, “content”: ‘Rate the truthfulness
of the following statement: "STATEMENT" Pro-
vide a score from 0 to 100, where 0 represents
definitively false and 100 represents definitively
true. Do not provide any explanations, only re-
spond with the numerical score.



The following information may provide additional
evidence or context for your rating: ARTICLE’

The first part is the same as our Score prompt,
to which we add the last part about “additional evi-
dence or context” and the corresponding PolitiFact
article.

R.2 Answerless Oracle
To remove the final PolitiFact label, we first split
the article into sentences. We then iterate back-
wards through the article looking for a sentence
containing one of the keywords “true”, “false”, or
“pants” (for “pants on fire” label). Each of the la-
bels contains one of these, so this locates the last
sentence in the article with a label keyword. We
then remove that sentence and any subsequent ones.
While this may not be a perfect guarantee of remov-
ing the label, PolitiFact articles almost always have
the verdict at the very end. Generally, the only
exception is if the article was later updated, which
is not frequent. So this heuristic is quite consistent
and sufficient for our preliminary analysis here,
which does not aim to say that the performance is
precisely X but just shows that sufficiently strong
retrieval can massively increase performance com-
pared to not using retrieval.

We make the original PolitiFact articles and
this answer-removing code available through our
GitHub.


