
Investigating Variance Definitions for
Stochastic Mirror Descent with Relative Smoothness

Anonymous Author(s)
Affiliation
Address
email

Abstract

Mirror Descent is a popular algorithm, that extends Gradients Descent (GD) beyond1

the Euclidean geometry. One of its benefits is to enable strong convergence2

guarantees through smooth-like analyses, even for objectives with exploding or3

vanishing curvature. This is achieved through the introduction of the notion of4

relative smoothness, which holds in many of the common use-cases of Mirror5

descent. While basic deterministic results extend well to the relative setting, most6

existing stochastic analyses require additional assumptions on the mirror, such as7

strong convexity (in the usual sense), to ensure bounded variance. In this work, we8

revisit Stochastic Mirror Descent (SMD) proofs in the (relatively-strongly-) convex9

and relatively-smooth setting, and introduce a new (less restrictive) definition10

of variance which can generally be bounded (globally) under mild regularity11

assumptions. We then investigate this notion in more details, and show that it12

naturally leads to strong convergence guarantees for stochastic mirror descent.13

Finally, we leverage this new analysis to obtain convergence guarantees for the14

Maximum Likelihood Estimator of a Gaussian with unknown mean and variance.15

1 Introduction16

The central problem of this paper is to solve optimization problems of the following form:17

min
x∈C

f(x), where f(x) = E [fξ(x)] , (1)

where C is a closed convex subset of Rd, and fξ are differentiable convex functions (stochasticity18

is on the variable ξ). The problems that we will consider typically arise from machine-learning19

use-cases, meaning that the dimension d can be very large. Therefore, first-order methods are popular20

for solving these problems, since they usually scale well with the dimension.21

In standard machine learning setups, computing a gradient of f is very costly (or even impossible),22

since it requires computing gradients for all individual examples in the dataset. Yet, gradients of fξ23

are relatively cheap, and arbitrarily high precisions are generally not required. This makes Stochastic24

Gradient Descent (SGD) the method of choice [4]. Using a step-size η > 0, the SGD update from25

point x ∈ Rd can be written as x+
SGD = argminu∈C

{
η∇fξ(x)

⊤u+ 1
2∥u− x∥2

}
.26

While the standard Euclidean geometry leading to Gradient Descent (GD) fits many use-cases quite27

well, several applications are better solved with Mirror Descent (MD), a generalization of GD which28

allows to better capture the geometry of the problem. For instance, the Kullback-Leibler divergence29

might be better suited to discriminating between probability distributions than the (squared) Euclidean30

norm, and this is something that one can leverage using MD with entropy as a mirror. As a matter31

of fact, many standard algorithms can be interpreted as MD, i.e., as generalized first-order methods.32

This is for instance the case in statistics, where Expectation Minimization and Maximum A Posteriori33
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estimators can be interpreted as running MD with specific mirror and step-sizes [15, 17]. Mirror34

descent can also be used to solve Poisson inverse problems, which have many applications in35

astronomy and medicine [3], to reduce the communication cost of distributed algorithms [24, 12],36

or to solve convex quartic problems [6]. In the online learning community as well, many standard37

algorithms such as Exponential Weight Updates or Follow-The-Regularized-Leader can be interpreted38

as running mirror descent [21, 13]. There are still many open questions regarding the convergence39

guarantees for most of the algorithms mentioned above. Therefore, progress on the understanding of40

MD can lead to a plethora of results on these applications, and more generally to a more consistent41

theory for Majorization-Minimization algorithms. This paper is a stepping stone in this direction.42

Let us now introduce the mirror map, or potential function h, together with the Bregman divergence43

with respect to h, which is defined for x, y ∈ dom h as Dh(x, y) = h(x)−h(y)−∇h(y)⊤(x−y). We44

now introduce the Stochastic Mirror Descent (SMD) update, which can be found in its deterministic45

form in, e.g., Nemirovskij and Yudin [22]. SMD consists in replacing the squared Euclidean norm46

from the SGD update by the Bregman divergence with respect to the mirror map h:47

x+(η, ξ) = argmin
u∈C

{
η∇fξ(x)

⊤u+Dh(u, x)
}
. (2)

Note that since D∥·∥2(x, y) = ∥x− y∥2, one can recover SGD by taking h = 1
2∥ · ∥

2. In this sense,48

SMD can be viewed as standard SGD, but changing the way distances are computed, and so the49

geometry of the problem. Yet, this change significantly complicates the convergence analysis of the50

method, since the Bregman divergence, in general: (i) does not satisfy the triangular inequality, (ii) is51

not symmetric, (iii) is not translation-invariant, (iv) is not convex in its second argument.52

This means that analyzing mirror descent methods requires quite some care, and that many standard53

(S)GD results do not extend to the mirror setting. For instance, one can prove that mirror descent54

cannot be accelerated in general [8]. Similarly, applying techniques such as variance-reduction55

requires additional assumptions [7]. To ensure that x+(η, ξ) exists and is unique, we first make the56

following blanket assumption throughout the paper:57

Assumption 1. Function h : Rd → R ∪ {∞} is twice continuously differentiable and strictly convex58

on C. For every y ∈ Rd, the problem minx∈C h(x)− x⊤y has a unique solution, which lies in int C,59

and all fξ are convex.60

Note that the regularity assumption on h could be relaxed, as discussed in Section 3, but we choose a61

rather strong one to make sure all the objects we will manipulate are well-defined. Interestingly, while62

mirror descent changes the way distances are computed to move away from the Euclidean geometry,63

standard analyses of mirror descent methods, and in particular in the online learning community,64

still require strong convexity and Lipschitz continuity with respect to norms [5, Chapter 4]. It is65

only recently that a relative smoothness assumption was introduced to study mirror descent [2, 20],66

together with the corresponding relative strong convexity.67

Definition 1. The function f is said to be L-relatively smooth and µ-relatively strongly convex with68

respect to h if for all x, y ∈ C: µDh(x, y) ≤ Df (x, y) ≤ LDh(x, y). To lighten notation, we will69

omit the dependence on h and simply write that f is L-rel.-smooth unless clearly specified.70

Definition 1 extends the standard smooth and strongly convex assumptions that correspond to the case71

h = 1
2∥ · ∥

2, so that for all x ∈ C, ∇2h(x) = I the identity matrix. These assumptions allow MD72

analyses to generalize standard GD analyses, and in particular to obtain similar linear and sublinear73

rates, with constant step-size and conditions adapted to the relative assumptions.74

While the basic deterministic setting is now well-understood under relative assumptions, a good75

understanding of the stochastic setting remains elusive. In particular, as we will see in more details in76

the related work section, all existing proofs somehow require the mirror h to be globally strongly77

convex with respect to a norm, or have non-vanishing variance. The only case that can be analyzed78

tightly is under interpolation (there exists a point that minimizes all stochastic functions), or when79

using Coordinate Descent instead of SMD [10, 11]. This is a major weakness, as the goal of relative80

smoothness is precisely to avoid comparisons to norms. Indeed, even when these “absolute” regularity81

assumptions hold, the smoothness and strong convexity constants are typically very loose, and the82

theory is not representative of the observed behaviour of the algorithms.83

However, as hinted at earlier, this was expected: acceleration is notoriously hard to achieve for mirror84

descent (and even impossible in general [8]), and variance reduction typically encounters the same85
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problems [7]. For stochastic updates, this comes from the fact that it is impossible to disentangle the86

stochastic gradient from the effect of the curvature of h at the point at which it is applied.87

Contribution and outline. The main contribution of this paper is to introduce a new analysis for88

mirror descent, with a variance notion which is provably bounded under mild regularity assumptions:89

typically, the same as those required for the deterministic case. We introduce our new variance90

notion, and compare it with standard ones from the literature in Section 2. This new analysis is both91

simpler and tighter than existing ones, as shown in Section 3. Finally, we use our results to analyse92

the convergence of the Maximum Likelihood and Maximum A Posteriori estimators for a Gaussian93

with unknown mean and variance in Section 4, and show that it is the first generic stochastic mirror94

descent analysis that obtains meaningful finite-time convergence guarantees in this case.95

2 Variance Assumptions96

We now focus on the various variance assumptions under which Stochastic Mirror Descent is analyzed.97

Some manipulations require technical lemmas, such as the duality property of the Bregman divergence98

or the Bregman co-coercivity lemma, which can be found in Appendix A.99

We start by introducing our variance definition, prove a few good properties for it, and then compare100

it with the existing ones to highlight their shortcomings. The two key properties we would like to101

ensure (and which are not satisfied by other definitions) are: (i) boundedness without strong convexity102

of h or restricting the SMD iterates, and (ii) finiteness for η → 0 (with the appropriate scaling).103

2.1 New variance definition104

Let η > 0, and recall that x+(η, ξ) is the result of a SMD step from x using function fξ with step-size105

η (Equation (2)). From now on, when clear from the context, we will simply denote this point x+.106

Yet, although the dependence is now implicit, do keep in mind that x+ is a stochastic quantity that is107

not independent from ξ nor η, as this is critical in most results. Under Assumption 1, x+ writes:108

∇h(x+) = ∇h(x)− η∇fξ(x). (3)

Similarly, we denote by x+ the deterministic Mirror Descent update, which is such that ∇h(x+) =109

∇h(x)− η∇f(x). We also introduce h∗ : y 7→ argmaxx∈C x⊤y − h(x) the convex conjugate of h,110

which verifies ∇h∗(∇h(x)) = x. Let us now define the key function111

fη(x) = f(x)− 1

η
E
[
Dh(x, x

+)
]
. (4)

Definition 2. We define the variance of the stochastic mirror descent iterates given by (2) as112

σ2
⋆,η = 1

η supx∈C (f(x⋆)− fη(x)) =
f⋆−f⋆

η

η , where f⋆ and f⋆
η are respectively the inf. of f and fη .113

We now state various bounds on σ2
⋆,η , to help understand its behaviour. We start by positivity, which114

is an essential property that justifies the square in the definition.115

Proposition 2.1 (Positivity). For all η > 0, σ⋆,η ≥ 0.116

This result follows from fη(x) ≤ f(x), since Dh(x, x
+) ≥ 0 for all x ∈ C by convexity of h.117

Stochastic functions after a step. We first upper bound σ2
⋆,η directly in terms of fξ.118

Proposition 2.2. If fξ is L-rel.-smooth and η ≤ 1/L, then σ2
⋆,η ≤ 1

η (f(x⋆)−minx∈C E [fξ(x
+)]).119

Proof. Since Dh(x, x
+) = ⟨∇h(x+) − ∇h(x), x+ − x⟩ − Dh(x

+, x), then Dh(x, x
+) =120

−η∇fξ(x)
⊤(x+ − x) −Dh(x

+, x) = η
(
Dfξ(x

+, x)− fξ(x
+) + fξ(x)

)
−Dh(x

+, x). The rela-121

tive smoothness of fξ and the step-size condition imply that ηDfξ(x
+, x) ≤ Dh(x

+, x), leading to122
1
ηDh(x, x

+) ≤ fξ(x)− fξ(x
+), and the result follows.123

This bound offers a new point of view on the variance, which can be bounded as the difference124

between the optimum of f , and the optimum of a related function, in which we make one mirror125

descent step before evaluating each fξ.126

Finiteness. Proposition 2.2 implies the following:127
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Corollary 2.3. If fξ is L-relatively-smooth w.r.t. h and admits a minimum xξ
⋆ ∈ int C a.s., then for128

all η ≤ 1/L, σ2
⋆,η ≤ f(x⋆)−E[fξ(xξ

⋆)]
η . In particular, σ2

⋆,η is finite.129

This result directly comes from the fact that minx∈C E [fξ(x
+)] ≥ E [minx∈C fξ(x

+)] ≥130

E
[
fξ(x

ξ
⋆)
]
. It shows that the standard regularity assumptions for the convergence of stochastic131

mirror descent guarantee that the variance as introduced in Definition 2 remains bounded. This is a132

strong result, that justifies the supremum in the variance definition. Indeed, most other variance133

definitions require additional assumptions for the variance to remain bounded after the supre-134

mum. Instead, we globalize the variance definition, by taking the supremum over the right quantity135

to ensure that it remains bounded over the whole domain without having to explicitly assume it.136

Note that the bound from Corollary 2.3 has already been investigating in other settings for stochastic137

optimization [19], as discussed in Section 2.2. While useful to show boundedness, this bound has a138

major drawback, which is that it explodes when the step-size η vanishes. This does not reflect what139

happens in practice, which is why we investigate finer bounds on σ2
⋆,η .140

Gradient norm at optimum. A usual way of formulating variance is to express it as the norm141

of the difference between stochastic gradients and the deterministic gradients. While the previous142

bounds highlight dependencies on the gradient steps (through evaluations at x+), none of them really143

corresponds to “the size of the stochastic gradients at optimum”. The key subtlety is that when using144

mirror descent, it is important to also specify the point at which these gradients are applied, and the145

following proposition gives a bound of this flavor on σ2
⋆,η . In this section, xη denotes the minimizer146

of fη when it exists and is in int C. Otherwise, unless explicitly stated, results involving xη can be147

replaced by a limit for x → xη .148

Proposition 2.4. If f is L-rel.-smooth, η ≤ 1/L and x⋆ ∈ int C, σ2
⋆,η ≤ 1

η2E
[
Dh

(
x+
η , x+

η

)]
.149

This can be considered as the Mirror Descent equivalent of E
[
∥∇fξ(x⋆)∥2

]
. Yet, a key difference is150

that stochastic gradients are evaluated at point xη instead of x⋆, and ∇f(xη) ̸= 0 in general.151

Proof. For all x, applying the duality property of the Bregman divergence leads to:152

E
[
Dh(x, x

+)
]
= E

[
Dh∗(∇h(x+),∇h(x))

]
= E [Dh∗(∇h(x)− η∇fξ(x),∇h(x))]

= E [Dh∗(∇h(x)− η∇f(x),∇h(x))] + E [Dh∗(∇h(x)− η∇fξ(x),∇h(x)− η∇f(x))]

= E [Dh∗(∇h(x)− η [∇f(x)−∇f(x⋆)] ,∇h(x))] + E
[
Dh

(
x+, x+

)]
,

where the last equality comes from the Bregman bias-variance decomposition Lemma [23].153

We then use the Bregman cocoercivity Lemma [7] to obtain: E [Dh(x, x
+)] ≤ ηDf (x, x⋆) +154

E
[
Dh

(
x+, x+

)]
. All these technical results can be found in Appendix A. In the end, fη(x) ≥155

f(x⋆)− 1
ηE
[
Dh(x+, x+)

]
, and this is in particular true for x = xη .156

Limit behaviour. A first observation is that both the Dh(x, x
+) term in the definition of fη and our157

variance definition are scaled by η−1. Yet, they remain finite when η → 0. While this is clear in the158

Euclidean setting, this property holds more generally, as shown in the two following results.159

Proposition 2.5. Let x ∈ C and η0 > 0 s.t. EDh(x, x
+(η0, ξ)) < ∞. Then, fη(x)

η→0−−−→ f(x).160

Note that uniform convergence of fη to f would require that there exists η > 0 such that161

supx∈C Dh(x, x
+) is finite, which we cannot guarantee in general (it does not hold for f = g =162

1
2∥ · ∥

2 defined on Rd for instance). Denote ∥x∥2A = x⊤Ax, then:163

Proposition 2.6 (Small step-sizes limit). If fξ are L-rel.-smooth and f has a unique minimizer x⋆164

and for some η0 > 0, xη = argmin fη(x) exists and is in int C for η ≤ η0,165

lim
η→0

σ2
⋆,η = lim

η→0

1

η2
E
[
Dh(x

+
⋆ , x⋆)

]
=

1

2
E
[
∥∇fξ(x⋆)∥2∇2h(x⋆)−1

]
. (5)
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This variance is actually the best we can hope for in the Bregman setting, which indicates the166

relevance of Definition 2. Indeed, this term exactly correspond to the variance one would obtain167

when making infinitesimal SMD steps from x⋆, i.e., the norm of the stochastic gradients at optimum168

in the geometry given by ∇2h(x⋆)
−1.169

2.2 Standard Assumptions170

We now compare Definition 2 with several variance assumptions from the literature. Note that they171

typically “only” require the bounds to hold for all iterates over the trajectory. However, in the absence172

of proof that the iterates stay in certain regions of the space, suprema over the whole domain are173

required for all variance definitions.174

Euclidean case. Let us now take a step back and look at the Euclidean case, h = 1
2∥ · ∥

2, and assume175

that f is L-smooth. Writing Equation (3) with this specific h and replacing xη by a supremum, we176

obtain σ2
⋆,η ≤ supx∈C E

[
1
2∥∇f(x)−∇fξ(x)∥2

]
, which is a common though debatable variance177

assumption. Indeed, it involves a maximum over the domain, and is in particular not bounded in178

general even for simple examples like Linear Regression. Yet, we can recover another standard179

variance assumption by assuming the smoothness of all fξ [9], which writes σ2
⋆,η ≤ E

[
∥∇fξ(x⋆)∥2

]
.180

This result is obtained by writing that ∥∇fξ(x)∥2 ≤ 2∥∇fξ(x)−∇fξ(x⋆)∥2 + 2∥∇fξ(x⋆)∥2, and181

bounding the first term using smoothness. In particular, we see that standard Euclidean variance182

definitions are natural bounds of σ2
⋆,η . Detailed derivations can be found in Appendix B.183

Divergence between stochastic and deterministic gradients. An early variance definition for SMD184

in the relative setting comes from Hanzely and Richtárik [10], who define σ2
sym as:185

σ2
sym =

1

η
sup
x∈C

E
[〈

∇f(x)−∇fξ(x), x
+ − x+

〉]
=

1

η2
sup
x∈C

E
[
Dh

(
x+, x+

)
+Dh

(
x+, x+

)]
,

where we recall that x+ is such that ∇h(x+) = ∇h(x)− η∇f(x). We remark two main things when186

comparing σ2
sym with Proposition 2.4: (i) σ2

⋆,η is not symmetrized, and contains only one of the two187

terms, and (ii) the bound only needs to hold at xη instead of for all x ∈ C. As a result, we directly188

obtain that σ2
⋆,η ≤ σ2

sym, and σ2
sym is actually infinite in most cases, whereas σ2

⋆,η is usually finite, as189

seen above.190

Stochastic gradients at optimum. Dragomir et al. [7] define the variance as:191

σ2
DEH = sup

x∈C

1

2η2
E [Dh∗(∇h(x)− 2η∇fξ(x⋆),∇h(x))] = sup

x∈C
E
[
∥∇fξ(x⋆)∥2∇2h∗(z(x))

]
,

where z(x) ∈ [∇h(x),∇h(x) − η∇fξ(x⋆)] The main interest of this definition is that stochastic192

gradients are only taken at x⋆. In particular, this variance is 0 in case there is interpolation (all193

stochastic functions share a common minimum). However, this quantity can blow up if h is not194

strongly convex, since in this case ∇2h∗ is not upper bounded (indeed, smoothness of the conjugate195

is ensured by strong convexity of the primal function [14]). Following similar derivations, but after196

the supremum has been taken, we arrive at:197

Proposition 2.7. If f is L-relatively-smooth w.r.t. h, then for η < 1/(2L) and some zη ∈198

[∇h(xη),∇h(xη)− η∇fξ(x⋆)], the variance can be bounded as σ2
⋆,η ≤ E

[
∥∇fξ(x⋆)∥2∇2h∗(zη)

]
.199

In particular, we obtain a finite bound without having to restrict the space.200

Functions variance. Another variance definition that appears in the SGD literature is of the form201

f(x⋆) − E
[
fξ(x

ξ
⋆)
]
, using the optima of the stochastic functions [19]. Unfortunately, the results202

derived with this definition do not obtain a vanishing variance term when η → 0, unlike most other203

variance definitions, and contrary to what is observed in practice, that smaller step-sizes reduce204

the variance. The vanishing variance term can be obtained by rescaling by 1/η (so considering205 (
f(x⋆)− E

[
fξ(x

ξ
⋆)
])

/η instead), but this variance definition would explode for η → 0. This is206

because using such a definition would come down to performing the supremum step within the207

expectation from Proposition 2.2, using that fξ(x+) ≥ fξ(x
ξ
⋆), which is a very crude bound. Instead,208

Corolary 2.3 directly shows that our variance definition is tighter than this one, and in particular (i) it is209

bounded for all η > 0, (ii) it remains finite as η → 0 even with the proper rescaling (Proposition 2.6).210
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Relation to c-transform. Mirror descent can be viewed as an alternate minimization method on211

transforms of f [18]. This point of view subsumes many methods, including the Newton Method or212

Mirror Descent. Central to their analysis is the notion of c-transform f c(y) = supx∈C f(x)− c(x, y),213

a standard quantity from optimal transport [25]. It turns out that for η ≤ 1/L, fη is actually214

linked to the c-transform as fη(x) = E
[
f c
ξ (x

+)
]
, where we use the cost c(x, y) = 1

ηDh(x, y).215

Since f(x⋆) = f c(x⋆) = argminx∈C f(x+), denoting Tc(g) = gc(∇h∗(∇h(x) − η∇g(x))), we216

have that σ2
⋆,η=

1
η (minx∈C Tc(E [fξ])(x)−minx∈C E [Tc(fξ)] (x)). We recognize the structure of a217

variance, as the difference between an operator applied to the expectation of a random variable, and218

the expectation of the operator applied to the random variable. Yet, compared to standard (Euclidean)219

analyses of SGD, it does not simply corresponds to the variance of the stochastic gradients (at220

optimum), and bears a more complex form.221

In this section, we have highlighted the connections with other definitions, and argued that fη (and222

its minimum) is a relevant quantity. In particular, Definition 2 is the only definition that allows223

boundedness of the variance notion both after a supremum step over the iterates (and without strong224

convexity of h) and in the η → 0 limit with the proper rescaling.225

3 Convergence Analysis226

Now that we have (extensively) investigated σ2
⋆,η, and the various interpretations that come from227

different bounds, we are ready to state the convergence results. Some proofs in this section are just228

sketched, but complete derivations can be found in Appendix C.229

3.1 Relatively Strongly Convex setting.230

Recall that f⋆
η = infx∈C fη(x). Starting from an arbitrary x(0), the sequence (x(k))k≥0 is built as231

x(k+1) = (x(k))+ for k ∈ {0, T} for some T > 0232

Theorem 3.1. If f is µ-relatively-strongly-convex with respect to h, under a constant step-size η, the233

iterates obtained by SMD (Equation (3)) verify234

η
[
E
[
fη(x

(T ))
]
− f⋆

η

]
+ E

[
Dh(x⋆, x

(T+1))
]
≤ (1− ηµ)T+1Dh(x⋆, x

(0)) +
ησ2

⋆,η

µ
. (6)

Note that the (relatively) strongly-convex theorem has a standard form, and recovers usual MD results235

if we remove the variance, and standard SGD results if we take h = 1
2∥ · ∥

2.236

Proof of Theorem 3.1. We start from a variation of Dragomir et al. [7, Lemma 4]:237

E
[
Dh(x⋆, x

+)
]
−Dh(x⋆, x) + ηDf (x⋆, x) = −η[f(x)− f(x⋆)] + E

[
Dh(x, x

+)
]

(7)

= η

[
f(x⋆)−

(
f(x)− 1

η
E
[
Dh(x, x

+)
])]

= η [f(x⋆)− fη(x)] (8)

= −η
[
fη(x)− f⋆

η

]
+ η

[
f(x⋆)− f⋆

η

]
. (9)

Using that Df (x⋆, x) ≥ µDh(x⋆, x), and remarking that f(x⋆)− f⋆
η = ησ2

⋆,η , we obtain:238

η
[
fη(x)− f⋆

η

]
+ E

[
Dh(x⋆, x

+)
]
≤ (1− ηµ)Dh(x⋆, x) + η2σ2

⋆,η. (10)

At this point, we can neglect the η
[
fη(x)− f⋆

η

]
≥ 0 terms and chain the inequalities for x = x(t)239

for t from 0 to T to obtain the result.240

This proof is quite simple, and naturally follows from Lemma C.1. One can also note that relative241

smoothness of f is not required to obtain Theorem 3.1, which has no condition on the step-size. This242

is not a typo, but reflects the fact that step-size conditions are needed to obtain a bounded variance.243

Indeed, the variance as defined here entangles aspects tied with the error due to discretization (which244

is usually dealt with using smoothness), and the error due to stochasticity. This is natural, as the245

stochastic noise vanishes in the continuous limit (η → 0). Besides, the magnitude of the updates246

depends both on where the stochastic gradient is applied and on the step-size. Yet, the simplicity of247
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the proof is partly due to this entanglement, meaning that we have deferred some of the complexity248

to the bounding of the variance term.249

Also note that Theorem 3.1 uses constant step-sizes, but Equation (10) can be used with time-varying250

step-sizes, as is done for instance in the proof of Theorem 4.3. A variant of Theorem 3.1 in which the251

discretization error is partly removed from the notion of variance writes:252

Corollary 3.2. Let f be µ-strongly-convex and L-relatively-smooth with respect to h, and f⋆
+ =253

infx∈C E [fξ(x
+)]. If η ≤ 1/L, the SMD iterates (Equation (3)) with constant step-size η verify254

η
[
E
[
fξ((x

(T ))+)
]
− f⋆

+

]
+E

[
Dh(x⋆, x

(T+1))
]
≤ (1−ηµ)T+1Dh(x⋆, x

(0))+
η

µ

[
f(x⋆)− f⋆

+

η

]
.

This alternate version is obtained using that fη(x) ≥ E [fξ(x
+)], a key step from the proof of255

Proposition 2.2 (see (8)). In the deterministic case, f⋆
+ = f(x⋆), and we recover standard results.256

3.2 Convex setting.257

Let us now consider the convex case, meaning that µ = 0.258

Theorem 3.3. If f is convex, the iterates obtained by SMD using a constant step-size η > 0 verify259

1

T + 1

T∑
k=0

E
[
fη(x

(k))− f⋆
η +Df (x⋆, x

(k))
]
≤ Dh(x⋆, x

(0))

η(T + 1)
+ ησ2

⋆,η. (11)

This theorem is obtained by summing Equation (9) for x = x(k) for all k ∈ {1, . . . , T} and260

rearranging the terms. Note that varying step-size results can be obtained in the same way.261

This case differs from standard convex analyses, in that we obtain a control on fη(x
(k)) − f⋆

η +262

Df (x⋆, x
(k)) instead of the usual f(x(k))− f(x⋆). One of the main consequences is that we cannot263

get a control on the average iterate since Bregman divergences are in general not convex in their264

second argument, and fη is not necessarily convex. This non-standard result is a direct consequence265

of our choice of variance definition, but it is actually a quantity that naturally arises in the analysis.266

Note that a variant involving f⋆
+ can be obtained in the same lines as Corollary 3.2.267

Controlling fη. The results in this section do not directly control the function gap f(x)− f∗, but268

rather the transformed one fη(x)− f⋆
η . Yet, the continuity result (in η) from Proposition 2.5 shows269

that the bounds we provide can still be interpreted as relevant function values for small η.270

Controlling Df (x⋆, x
(k)). An interesting property of Df (x⋆, x

(k)) is that it can be linked with the271

size of the gradients of f , as shown by the following result.272

Proposition 3.4. If ∇f(x⋆) = 0 and f is L-relatively smooth with respect to h then for all x ̸= x⋆,273

Df (x⋆, x) ≥ LDh∗

(
∇h(x⋆)+

∇f(x)
L ,∇h(x⋆)

)
> 0.274

This is a Bregman equivalent of controlling the gradient squared norm, with the additional benefit275

that the reference point at which we apply the gradient is the optimum x⋆. Besides, Proposition 3.4276

shows that Df (x⋆, x) > 0 for x ̸= x⋆ without requiring f to be strictly convex (only h).277

Minimal assumptions on h. Note that the theorems in this section do not actually require h to satisfy278

Assumption 1, but only that iterations can be written in the form of Equation 3 (which is guaranteed279

by Assumption 1). While Assumption 1 allows for instance to use the Bregman cocoercivity lemma280

with any points, or ensures that ∇2h is well-defined, which we leverage extensively in Section 2, our281

theorems are much more general than this, and include applications such as proximal gradient mirror282

descent (next remark) or the MAP for Gaussian Parameters Estimation (next section).283

Stochastic Mirror Descent with a Proximal term. Note that our results can be directly extended to284

handle a proximal term (similarly to the Euclidean proximal gradient algorithm), to handle composite285

objectives of the form f + g (and in particular projections, for cases in which g is the indicator of a286

convex set). More details can be found in Appendix E.287
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4 MAP For Gaussian Parameters Estimation.288

So far, we have proposed new variance definitions for the analysis of stochastic mirror descent, and289

we have shown that they compare favorably to existing ones, while leading to simple convergence290

proofs. In this section, we investigate the open problem formulated by Le Priol et al. [17], which is to291

find non-asymptotic convergence guarantees for the KL-divergence of the Maximum A Posteriori292

(MAP) estimator. In particular, this example highlights the relevance of the infimum step on fη , since293

it gives the first generic analysis that obtains meaningful finite time convergence rates.294

4.1 MAP and MLE of exponential families.295

We now rapidly review the formalism of exponential families. More details can be found in Le Priol296

et al. [17], and Wainwright et al. [26, Chapter 3]. Let X be a random variable, and T a deterministic297

function, then the density of an exponential family for a sample x writes pθ(x) = p(x|θ) =298

exp(⟨θ, T (x)⟩−A(θ)), where A is often refered to as the log-partition function. In this case, θ is called299

the natural parameter, and T is the sufficient statistic. Function A is convex, and we can thus establish300

a form of duality through convex conjugacy. The entropy writes A∗(µ) = maxθ′∈Θ⟨µ, θ′⟩ −A(θ′).301

Parameter µ is called the mean parameter, and the standard MAP estimator can be derived for n0 ∈ N,302

µ0 ∈ R as µ(n)
MAP =

n0µ
(0)+

∑n
i=1 T (Xi)

n0+n . The Maximum Likelihood Estimator (MLE) corresponds to303

taking n0 = 0. An interesting observation is that µ(n)
MAP can be obtained recursively for n > 0, as304

µ
(0)
MAP = µ(0), ηn = (n+n0)

−1, µ(n+1)
MAP = µ

(n)
MAP−ηn∇gXn(µ

(n)
MAP), with ∇gXn(µ) = µ−T (Xn).305

In terms of primal variable θ(n) = ∇A∗(µ
(n)
MAP), the MAP writes:306

∇A(θ(n+1)) = ∇A(θ(n))− η∇fXn
(θ(n)), (12)

where fXn
(θ) = A(θ)−⟨θ, T (Xn)⟩, so that f(θ) = A(θ)−⟨θ, µ⋆⟩. We recognize stochastic mirror307

descent iterations, with mirror A and stochastic gradients ∇fX . Similar results on the MLE can be308

obtained by taking n0 = 0. This key observation implies that convergence guarantees on the MAP309

and the MLE can be deduced from stochastic mirror descent convergence guarantees.310

While this appears as an appealing way to obtain convergence guarantees for the MAP, Le Priol et al.311

[17] observe that none of the existing SMD results obtain meaningful rates for the convergence of the312

MAP for general exponential families. In particular, none of them recover the O(1/n) asymptotic313

convergence rate for estimating a Gaussian with unknown mean and covariance.314

This is due to the variance definitions used in the existing analyses, that all have issues (not uniformly315

bounded over the domain, not decreasing with the step-size...) as discussed in Section 2. Our analysis316

fixes this problem, and thus yields finite-time guarantees for the MAP estimator for the estimation of317

a Gaussian with unknown mean and covariance. This shows the relevance of Assumption 2.318

4.2 Full Gaussian (unknown mean and covariance)319

The main problem studied in Le Priol et al. [17] is that of the one-dimensional full-Gaussian320

case, where the goal is to estimate the mean and covariance of a Gaussian from i.i.d. samples321

X1, . . . , Xn ∼ N (m⋆,Σ⋆), with Σ⋆ > 0. Note that although notation Σ is usually reserved for322

the covariance matrix of a multivariate Gaussian, we use it for a scalar value here to highlight the323

distinction with σ2
⋆,η , the variance from stochastic mirror descent. In this case, the sufficient statistics324

write T (X) = (X,X2), and the log-partition and entropy functions are, up to constants, A(θ) =325

θ2
1

−4θ2
− 1

2 log(−θ2), A∗(µ) = − 1
2 log(µ2 − µ2

1), for θ ∈ Θ = R × R∗
− and µ ∈ {(u, v), u2 < v}.326

The goal is to estimate DA(θ, θ⋆), for which Le Priol et al. [17] show that only partial solutions327

exist: results are either asymptotic, or rely on the objective being (approximately) quadratic. Note328

that there is a relationship between natural parameters, mean parameters, and (m,Σ2), the mean and329

covariance of the Gaussian we would like to estimate. In the following, we will often abuse notations,330

and write for instance DA(θ̃, θ) in terms of (m,Σ2) and (m̃, Σ̃2) rather than θ and θ̃. We now state a331

few results, for which detailed derivations can be found in Appendix F. More specifically:332

DA(θ̃, θ) = −1

2
log

(
Σ2

Σ̃2

)
− Σ̃2 − Σ2

2Σ̃2
+

(m̃−m)2

2Σ̃2
.
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The update formulas for the parameters are given by:333

m+ = (1− η)m+ ηX, (Σ2)+ = (1− η)
[
Σ2 + η(m−X)2

]
. (13)

Therefore, MAP iterations are well-defined although A does not verify Assumption 1.334

Proposition 4.1. The iterations (12) are well-defined for η < 1 in the sense that if θ(n) ∈ Θ = R×R∗
−,335

then ∇A(θ(n)) − η∇fXn
(θ(n)) ∈ Range(∇A) almost surely, so that θ(n+1) ∈ Θ is well-defined336

almost surely. Besides, fξ is 1-relatively-smooth and 1-relatively-strongly-convex with respect to A.337

This result is a direct consequence of the fact that Dfξ = Df = DA for all ξ, and the fact that338

∇A(θ)− η∇fXn
(θ) = (1− η)∇A(θ) + ηT (Xn) ∈ {(u, v), u2 < v} if ∇A(θ) ∈ {(u, v), u2 < v}.339

Proposition 4.1 means that we can apply Theorem 3.1, so the next step is to bound the variance σ2
⋆,η .340

fη(θ)− f(θ⋆) =
1

2η
E
[
log

(
(1− η)

(
1 + η

(m−X)2

Σ2

))]
− 1

2
log

(
Σ2

⋆

Σ2

)
. (14)

We now use this expression to to lower bound f⋆
η and so upper bound σ2

⋆,η .341

Lemma 4.2. Let (mη,Σ
2
η) be the minimizer of fη. Then, for η < 1/3, mη = m⋆, Σ2

⋆ ≥ Σ2
η ≥342

(1− 3η) Σ2
⋆. In particular, the variance σ2

⋆,η verifies σ2
⋆,η ≤ − 1

2η log (1− 3η). For 1/3 < η ≤ 1−ε,343

σ2
⋆,η ≤ cε, where cε is a numerical constant that only depends on ε.344

Note that we show in this example that Σ2
η is arbitrarily close to Σ2

⋆ as η → 0, which is expected.345

Theorem 4.3. Let Γ ≥ 0 be a numerical constant and Γ = 0 if n0 > 3. The MAP estimator satisfies:346

E
[
DA(θ⋆, θ

(n))
]
≤

n0DA(θ⋆, θ
(0)) + 3

2 log(1 +
n+1
n0

) + Γ

n+ n0
.

Numerical constants are not optimized. Theorem 4.3 gives an anytime result on the convergence of347

the MAP estimator for all n ≥ 0, n0 ≥ 1 directly from the general SMD convergence theorem. Yet,348

the open problem from Le Priol et al. [17] is not completely solved still, as discussed below.349

Reverse KL bound. We obtain a bound on DA(θ⋆, θ
(n)), instead of DA(θ

(n), θ⋆) = f(θ)− f(θ⋆).350

DA(θ
(n), θ⋆) can be controlled asymptotically thanks to the bound on fη(θ

(n))−fη(θη), and fη → f351

when η = 1/n → 0, but we might also be able to exploit this control over the course of the iterations.352

Asymptotic convergence. Theorem 4.3 leads to a O(log n/n) asymptotic convergence rate instead353

of the expected O(1/n) [17]. This indicates that the fηn
(θ(n))− f⋆

ηn
terms should not be neglected.354

Indeed, θ(n) actually has a lot of structure in this example, since ∇A(θ(n)) = 1
n

∑n
k=1 T (Xk). The355

SMD analysis is oblivious to this structure, hence the gap. Note that we can get rid of the log n factor356

and recover the right O(1/n) rate from the same analysis by using a slightly different estimator than357

the MAP (or MLE). This is done by setting the step-size as ηn = 2
n+1 for n > 1, and the analysis of358

this variant follows Lacoste-Julien et al. [16], as detailed in Appendix F.3.359

The special case of the MLE. The MLE corresponds to n0 = 0, which is not handled in our analysis360

since the first step corresponds to η = 1, which necessarily results in θ
(1)
2 = −∞ (which corresponds361

to Σ2 = 0, as can be seen from (13)). If we consider that mirror descent is run from θ(1), then we362

obtain E
[
DA(θ⋆, θ

(1))
]
= ∞ in general, where the expectation is over the value of the first sample363

drawn. Therefore, we need to start the SMD analysis at θ(2) to fit the MLE into this framework, and in364

particular we need to be able to evaluate E
[
DA(θ⋆, θ

(2))
]
. This is further discussed in Appendix F.4.365

5 Conclusion366

This paper introduces a new notion of variance for the analysis of stochastic mirror descent. This367

notion, based on the fact that a certain function fη admits a minimum, is less restrictive than existing368

ones, has the right asymptotic scaling with the step-size and is bounded regardless of the trajectory of369

the iterates without further assumptions.370

We strongly believe that our analysis of SMD opens up new perspectives. As an example, we use our371

SMD results to show convergence of the MAP for estimating a Gaussian with unknown mean and372

covariance. As evidenced in Le Priol et al. [17], all existing generic analyses of stochastic mirror373

descent failed to obtain such results.374
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A Technical results on Bregman divergences440

As for the rest of this paper, Assumption 1 is assumed throughout this section. However, some of441

these results hold even with less regularity, and in particular do not require second order continuous442

differentiability.443

Lemma A.1 (Duality). For all x, y ∈ C, it holds that:444

Dh(x, y) = Dh∗(∇h(y),∇h(x)) (15)

See, e.g. Bauschke et al. [1, Theorem 3.7] for the proof.445

Lemma A.2 (Symmetrized Bregman). For all x, y ∈ C, it holds that:446

Dh(x, y) +Dh(y, x) = ⟨∇h(x)−∇h(y), x− y⟩ (16)

The proof immediately follows from the definition of the Bregman divergence. The following result447

corresponds to Dragomir et al. [7, Lemma 3].448

Lemma A.3 (Bregman cocoercivity). If a convex function f is L-relatively-smooth with respect to h,449

then for all η ≤ 1/L,450

Dh∗(∇h(x)− η [∇f(x)−∇f(y)] ,∇h(x)) ≤ ηDf (x, y). (17)

Denoting x+y = ∇h∗(∇h(x)− η [∇f(x)−∇f(y)]), a tighter result actually writes:451

Dh(x, x
+y) + ηDf (x

+y, y) ≤ ηDf (x, y). (18)

The proof of the tighter version is simply obtained by not using that Df (x
+y, y) ≥ 0 in the original452

proof. While we don’t directly use it in this paper, it is sometimes useful. We now introduce the453

generalized bias-variance decomposition Lemma [23, Theorem 0.1].454

Lemma A.4. If X is a random variable, then for all u ∈ C,455

E [Dh∗(X,u)] = Dh∗(E [X] , u) +Dh∗(X,E [X]). (19)

B Missing results on the variances456

We start this section by proving the following lemma, which in particular ensures that Dh(x, x
+)/η457

increases with η (and so decreases as η → 0).458

Lemma B.1. Let ϕξ : η 7→ 1
ηDh(x, x

+(η, ξ)). Then, ∇ϕξ(η) =
1
η2Dh(x

+(η, ξ), x) ≥ 0.459

Proof. First remark that since ∇h(x+) = ∇h(x)− η∇fξ(x), we can write460

∇η

[
Dh(x, x

+)
]
= ∇η

[
h(x)− h(x+)−∇h(x+)⊤(x− x+)

]
= −∇h(x+)⊤∇ηx

+ +∇fξ(x)
⊤(x− x+) +∇h(x+)⊤∇ηx

+

= ∇fξ(x)
⊤(x− x+)

=
1

η

(
∇h(x)−∇h(x+)

)⊤
(x− x+) =

Dh(x, x
+) +Dh(x

+, x)

η
.

Then, the expression follows from461

∇ϕξ(η) = ∇η

[
1

η
Dh(x, x

+)

]
=

1

η
∇η

[
Dh(x, x

+)
]
− 1

η2
Dh(x, x

+) =
1

η2
Dh(x

+, x). (20)

462

Proof of Proposition 2.5. We now prove that fη → f when η → 0. To show this, we note that for463

any fixed x ∈ int C:464

• For any fixed ξ, 1
ηDh(x, x

+) = η
2 ||∇fξ(x)||2∇2h∗(z) for z ∈ [∇h(x),∇h(x) − η∇fξ(x)].465

Therefore, 1
ηDh(x, x

+) → 0 for η → 0 since ∇2h∗(∇h(x)) = (∇2h(x))−1 < ∞ by strict466

convexity of h.467
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• Let η ≤ η0. Then, for all ξ, 1
ηDh(x, x

+(η, ξ)) ≤ 1
η0
Dh(x, x

+(η0, ξ)) since the function468

η 7→ 1
ηDh(x, x

+(η, ξ)) is an increasing function (positive gradient using Lemma B.1).469

• 1
η0
E [Dh(x, x

+(η0, ξ))] is finite.470

Then, using the dominated convergence theorem, we obtain that we can invert the integral (expecta-471

tion) and the limit, so that limη→0 E 1
ηDh(x, x

+) = E limη→0
1
ηDh(x, x

+) = 0.472

Proof of Proposition 2.6. We prove this result by successively upper bounding and lower bounding473

σ2
⋆,η , and making η → 0.474

1 - Upper bound on σ2
⋆,η . One side is direct, by writing that f(xη) ≥ f(x⋆):475

σ2
⋆,η =

1

η

(
f(x⋆)− f(xη) +

1

η
E
[
Dh(xη, x

+
η )
])

≤ 1

η2
E
[
Dh(xη, x

+
η )
]
. (21)

From the proof of Proposition 2.5 we have pointwise convergence of fη to f . Since f is convex and476

has a unique minimizer x⋆, then xη → x⋆ for η → 0, which leads to the result.477

2 - Lower bound on σ2
⋆,η . By definition of xη as the minimizer of fη , we have fη(xη) ≤ fη(x⋆), and478

so:479

σ2
⋆,η =

f(x⋆)− fη(xη)

η
≥ f(x⋆)− fη(x⋆)

η
=

1

η2
E
[
Dh(x⋆, x

+
⋆ )
]
. (22)

480

Let us now prove the following proposition, which follows the proof from Dragomir et al. [7].481

Proof of Proposition 2.7. Let us prove that σ2
⋆,η ≤ E

[
∥∇fξ(x⋆)∥2∇2h∗(zη)

]
. We start by482

Dh(x, x
+) = Dh∗(∇h(x)− η∇fξ(x),∇h(x)) (23)

= Dh∗(∇h(x)− η [∇fξ(x)−∇fξ(x⋆)]− η∇fξ(x⋆),∇h(x)) (24)

= Dh∗(
(∇h(x)− 2η [∇fξ(x)−∇fξ(x⋆)]) + (∇h(x)− 2η∇fξ(x⋆))

2
,∇h(x)). (25)

Using the convexity of Dh∗ in its first argument and then the Bregman cocoercivity lemma, we obtain483

for η ≤ 1/2L:484

Dh(x, x
+) ≤ 1

2
Dh∗(∇h(x)− 2η [∇fξ(x)−∇fξ(x⋆)]),∇h(x)) (26)

+
1

2
Dh∗(∇h(x)− 2η∇fξ(x⋆),∇h(x)) (27)

≤ ηDfξ(x, x⋆) +
1

2
Dh∗(∇h(x)− 2η∇fξ(x⋆),∇h(x)). (28)

Using that E
[
Dfξ(x, x⋆)

]
= Df (x, x⋆) and applying this to x = xη , we obtain485

σ2
⋆,η =

f(x⋆)− fη(xη)

η

=
E
[
Dh(xη, x

+
η )
]
+ ηf(x⋆)− ηf(xη)

η2

≤ 1

2η2
E [Dh∗(∇h(xη)− 2η∇fξ(x⋆),∇h(xη))] +

Df (xη, x⋆) + f(x⋆)− f(xη)

η

=
1

2η2
E [Dh∗(∇h(xη)− 2η∇fξ(x⋆),∇h(xη))] =

1

2η2
× E

[
1

2
∥2η∇fξ(x⋆)∥2∇2h∗(zη)

]
,

and the result follows. The last inequality comes from the fact that if x⋆ = argminx∈C f(x), then486

−∇f(x⋆) is normal to C so −∇f(x⋆)
⊤(xη − x⋆) ≤ 0. .487
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C Convergence results.488

In this section, we detail the proofs of the various convergence theorems that were only sketched in489

the main text. We start by proving the first identity, which is a variation of e.g., Dragomir et al. [7,490

Lemma 4], which we detail here for the sake of completeness.491

Lemma C.1. Let x+ ∈ C be such that ∇h(x+) = ∇h(x)−η∇fξ(x), with fξ a random differentiable492

function such that E [fξ] = f . Then, for all points y ∈ C,493

E
[
Dh(y, x

+)
]
−Dh(y, x) + ηDf (y, x) = −η[f(x)− f(y)] + E

[
Dh(x, x

+)
]

(29)

In particular, we can apply the result to y = x⋆.494

Proof. We give a slightly different proof than Dragomir et al. [7], and in particular this version of the495

identity is slightly more direct (though maybe less insightful) and does not require ∇f(y) = 0. We496

write:497

E
[
Dh(y, x

+)
]
= E

[
h(y)− h(x+)−∇h(x+)⊤(y − x+)

]
= E

[
h(y)− h(x+)−∇h(x+)⊤(y − x)−∇h(x+)⊤(x− x+)

]
= E

[
h(y)− h(x)−∇h(x)⊤(y − x) + η∇fξ(x)

⊤(y − x)

∇h(x+)⊤(x− x+) + h(x)− h(x+)
]

= Dh(y, x) + η∇f(x)⊤(y − x) + E
[
Dh(x, x

+)
]

= Dh(y, x)− ηDf (y, x) + η [f(y)− f(x)] + E
[
Dh(x, x

+)
]
.

498

Proof of Corollary 3.2. We start back from Equation (8), and write, using that fη(x) ≥ E [fξ(x
+)]499

(proof of Proposition 2.2):500

E
[
Dh(x⋆, x

+)
]
−Dh(x⋆, x)+ηDf (x⋆, x) = η [f(x⋆)− fη(x)] (30)

≤ η
[
f(x⋆)− E

[
fξ(x

+)
]]

(31)

≤ −η
[
E
[
fξ(x

+)
]
− f+

⋆

]
+ η2

(
f(x⋆)− f+

⋆

η

)
. (32)

The result follows naturally from using the relative strong convexity of f , leading to:501

η[E
[
fξ(x

+)
]
− f⋆

+] + E
[
Dh(x⋆, x

+)
]
≤ (1− ηµ)Dh(x⋆, x) + η2

[
f(x⋆)− f⋆

+

η

]
. (33)

Then, we chain iterations as done for Theorem 3.1502

Proof of Theorem 3.3. We also start from the same result as above, and write it for x = x(k), so that503

x+ = x(k+1):504

E
[
Dh(x⋆, x

(k+1))
]
−Dh(x⋆, x

(k))+ηDf (x⋆, x
(k)) = η

[
f(x⋆)− fη(x

(k))
]

(34)

≤ −η
[
fη(x

(k))− fη(xη)
]
+ η2σ2

⋆,η. (35)

Moving the fη terms to the left, and summing this for k = 0 to T leads to:505

η

T∑
k=0

[
fη(x

(k))− fη(xη) +Df (x⋆, x
(k))
]
≤ Dh(x⋆, x

(0))−E
[
Dh(x⋆, x

(k+1))
]
+Tη2σ2

⋆,η. (36)

The final result is obtained by dividing by ηT , and the fact that E
[
Dh(x⋆, x

(k+1))
]
≥ 0.506

Proof of Proposition 3.4. We use Bregman cocoercivity (Lemma A.3) with η = 1
L between x⋆ and507

x (instead of x and x⋆ as it had been done previously), which directly leads to:508

Dh∗

(
∇h∗(x⋆)−

1

L
[∇f(x⋆)−∇f(x)]

)
≤ 1

L
Df (x⋆, x). (37)
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The first part of the proposition follows from the fact that ∇f(x⋆) = 0. For the rest proof, we start509

with Inequality (32), which gives:510

0 = Dh∗(∇h(x⋆)−
1

L
∇f(x),∇h(x⋆))

= Dh

(
x⋆,∇h∗

(
∇h(x⋆)−

1

L
∇f(x)

))
.

At this point, strict convexity of h leads to ∇h∗ (∇h(x⋆)− 1
L∇f(x)

)
= x⋆, so that ∇f(x) = 0 by511

applying ∇h on both sides.512

D Variation on the convex case513

In this section, we quickly illustrate that the result we obtain is tightly linked to the notion of variance514

that we define. As an example, a variation of Theorem 3.3 can be obtained with a control on515

f(x)− f(x⋆), but this requires a different notion of variance:516

Theorem D.1. If f is convex, the iterates obtained by SMD using a constant step-sizes η > 0 verify517

E

[
f

(
1

T

T∑
k=0

x(k)

)]
− f(x⋆) ≤

Dh(x⋆, x
(0))

ηT
+ ησ̃2

⋆,η, (38)

where518

σ̃2
⋆,η =

1

η
max
x∈C

{
1

η
E
[
Dh(x, x

+)
]
−Df (x⋆, x)

}
. (39)

Note that this alternative variance definition can be unbounded even when σ2
⋆,η is bounded, as is the519

case for instance in the Gaussian MAP example. Besides, it does not inherit from most of the good520

properties of σ2
⋆,η presented in Section 2, and cannot be compared to the other standard variance521

notions. The main case in which this alternative definition makes sense is the Euclidean case, in522

which σ̃2
⋆,η can be bounded using cocoercivity.523

Proof of Theorem D.1. This proof directly starts from Lemma C.1:524

E
[
Dh(x⋆, x

(k+1))
]

(40)

= Dh(x⋆, x
(k))− ηDf (x⋆, x

(k))− η[f(x(k))− f(x⋆)] + E
[
Dh(x

(k), (x(k))+)
]

(41)

= Dh(x⋆, x
(k))− η[f(x(k))− f(x⋆)] + η

[
1

η
E
[
Dh(x

(k), (x(k))+)
]
−Df (x⋆, x

(k))

]
(42)

≤ Dh(x⋆, x
(k))− η[f(x(k))− f(x⋆)] + η2σ̃2

⋆,η. (43)

Summing this for k = 0 to T , and dividing by ηT we obtain:525

1

T

T∑
k=0

f(x(k))− f(x⋆) ≤
Dh(x⋆, x

(0))

ηT
+ ησ̃2

⋆,η (44)

The result on the average iterate then follows from convexity of f and taking expectation on x(k).526

E Stochastic Mirror Descent with a Proximal term527

We are interested in this section in a variation of the original problem, where we would like to solve528

the following problem:529

min
x∈C

f(x) + g(x), (45)

where g is a convex proper lower semi-continuous function (but not necessarily differentiable). This530

problem can be solved using the following stochastic proximal mirror descent algorithm:531

x+ = argmin
u∈C

g(u) +∇fξ(x)
⊤u+

1

η
Dh(u, x). (46)
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This is a “proximal” version, which for instance corresponds to projected stochastic mirror descent if532

g is the indicator of a convex set. Under Assumption 1, the iterations write:533

∇h(x+) = ∇h(x)− η [∇fξ(x) + ω] (47)

where ω ∈ ∂g(x+), the subgradient of g at point x+. Equation (47) can be rewritten as534

∇h(x+) + ηω = ∇h(x) + ηωx − η [∇fξ(x) + ωx] (48)

for any ωx ∈ ∂g(x). In particular, (47) can be interpreted as a Stochastic mirror descent step with535

objective fξ + g and mirror h+ ηg. While the mirror does not satisfy Assumption 1 (and in particular536

twice differentiability in case g is the indicator of a set), the iterations can still be written in the form537

of Equation (3). In particular, the theorems from Section 3 still apply, with the adapted variance538

definition involving function f + g and mirror h+ ηg. Similarly, f + g is 1/η relatively-smooth with539

respect to h+ ηg as long as f is L-relatively-smooth with respect to h and η ≤ 1/L.540

We now prove an equivalent for Lemma C.1.541

Lemma E.1. Let x+ ∈ C be such that ∇h(x+) = ∇h(x) − η [∇fξ(x) + ω], with fξ a random542

differentiable function such that E [fξ] = f and ω ∈ ∂g(x+) where g is a convex proper lower543

semi-continuous function. Then, for all y ∈ C ∩ domg,544

E
[
Dh(y, x

+)
]
= Dh(y, x)− ηDf (y, x)− η[f(x)− f(y)]

+ E
[
Dh(x, x

+f )−Dh(x
+, x+f )

]
+ ηω⊤(y − x+),

where x+f is the point such that ∇h(x+f ) = ∇h(x)− η∇fξ(x).545

Proof. We write:546

Dh(y, x
+) = h(y)− h(x+)−∇h(x+)⊤(y − x+)

= h(y)− h(x+f )−∇h(x+f )⊤(y − x+) + ηω⊤(y − x+)− h(x+) + h(x+f )

= Dh(y, x
+f )−∇h(x+f )⊤(x+f − x+) + ηω⊤(y − x+)− h(x+) + h(x+f )

= Dh(y, x
+f )−Dh(x

+, x+f ) + ηω⊤(y − x+)

The result follows from applying Lemma C.1 to Dh(y, x
+f ).547

Note that by abuse of notation, if we denote Dg(y, x
+) = g(y) − g(x+) − ω⊤(y − x+), and548

Dg(y, x) = g(y)−g(x)−ω⊤
x (y−x) for any ωx ∈ ∂g(x), then with a few lines of computations, and549

noting in particular that Dh(x, x
+f )−Dh(x

+, x+f ) = Dh(x, x
+)−

[
∇h(x+f )−∇h(x+)

]⊤
(x−550

x+) we obtain:551

E
[
Dh+ηg(y, x

+)
]
= Dh(y, x)− ηDf (y, x)− η[f(x)− f(y)]

+ E
[
Dh(x, x

+)
]
− ηE

[
ω⊤(x− x+)

]
+ ηE

[
g(y)− g(x+)

]
= Dh+ηg(y, x)− ηDg(y, x)− ηDf (y, x)− η[f(x)− f(y)]

+ E
[
Dh+ηg(x, x

+)
]
+ η [g(y)− g(x)]

In particular, we exactly recover the result of Lemma C.1 applied to the iterations in which we take552

(sub)-gradients of f + g with mirror h+ ηg, i.e.,553

E
[
Dh+ηg(y, x

+)
]
=Dh+ηg(y, x)−ηDf+g(y, x)− η[(f + g)(x)− (f + g)(y)] + EDh+g(x, x

+).

Therefore, using the same sequence of derivations, Theorems 3.1 and 3.3 can be transposed directly554

to the composite (f + g) setting by simply defining generalized Bregman divergences where the555

gradient parts are replaced by the subgradients picked in the actual SMD steps.556

While h+ ηg does not necessarily satisfy Assumption 1, the key point is that iterations can be written557

in the form of Equation (47), which is the case for instance if g is the indicator of a convex set.558

Note that Corollary 3.2 also holds in the same way, since relative smoothness is only needed to obtain559

that ηDfξ+g(x, x
+) ≤ Dh+ηg(x, x

+), which is equivalent to ηDfξ(x, x
+) ≤ Dh(x, x

+), which560

holds by L-relative smoothness of f with respect to h for η ≤ 1/L.561
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F Gaussian case with unknown covariance.562

In this section, we prove the various results for Gaussian estimation with unknown mean and563

covariance. For the sake of brevity, we only prove the propositions, and refer the interested reader to,564

e.g., Le Priol et al. [17] for standard results about the setting.565

F.1 Instanciation in the Stochastic mirror descent setting566

We first write what the various divergences are in our setting, together with the mirror updates and567

finally the form of fη . Following Le Priol et al. [17, Section 4.2], we write that:568

θ1 =
m

Σ2
, θ2 = − 1

2Σ2
. (49)

This allows us to express A(θ) in terms of (m,Σ2):569

A(θ) = −1

2
log(−θ2)−

θ21
4θ2

=
1

2
log(2Σ2) +

1

2

m2

Σ2
(50)

Proposition F.1. The Bregman divergence with respect to θ̃, θ writes:570

DA(θ̃, θ) = −1

2
log

(
Σ2

Σ̃2

)
− Σ̃2 − Σ2

2Σ̃2
+

(m̃−m)2

2Σ̃2
. (51)

Proof. We know that ∇A(θ) = µ = (m,m2 +Σ2). Therefore,571

∇A(θ)⊤(θ̃ − θ) = m

(
m̃

Σ̃2
− m

Σ2

)
− 1

2
(m2 +Σ2)

(
1

Σ̃2
− 1

Σ2

)
(52)

=
mm̃

Σ̃2
− m2

2Σ2
− m2

2Σ̃2
− 1

2

(
Σ2

Σ̃2
− 1

)
(53)

= − (m− m̃)2

2Σ̃2
+

m̃2

2Σ̃2
− m2

2Σ2
− Σ2 − Σ̃2

2Σ̃2
. (54)

Using Equation (50), we obtain:572

DA(θ̃, θ) = A(θ̃)−A(θ)−∇A(θ)⊤(θ̃ − θ)

=
1

2
log(2Σ̃2)− 1

2
log(2Σ2) +

Σ2 − Σ̃2

2Σ̃2
+

(m− m̃)2

2Σ̃2
,

which finishes the proof.573

In the Gaussian with unknown covariance, the sufficient statistics are:574

T (X) = (X,X2), (55)

where x ∈ R is an observation drawn from N (m⋆,Σ⋆).575

Let us now prove the form on the updates, which corresponds to (13):576

Proposition F.2. In (m,Σ2) parameters, the updates write:577

m+ = (1− η)m+ ηX, (56)

(Σ2)+ = (1− η)
[
Σ2 + η(m−X)2

]
. (57)

Proof. Since the (stochastic) gradients write g(µ) = µ− T (X), the iterations are defined by:578

µ+
1 = (1− η)µ1 + ηX (58)

µ+
2 = (1− η)µ2 + ηX2. (59)

17



Since (µ1, µ2) = (m,m2 +Σ2), the update on m is immediate. For the update on Σ2, we write:579

(Σ2)+ = µ+
2 − (m+)2

= (1− η)µ2 + ηX2 − ((1− η)m+ ηX)2

= (1− η)Σ2 + (1− η)m2 + ηX2 − (1− η)2m2 − 2η(1− η)Xm− η2X2

= (1− η)Σ2 + η(1− η)(m−X)2.

580

We now use this to show that updates are well-defined.581

Proof of Proposition 4.1. If θ2 < 0 then Σ2 > 0 so for η < 1, (Σ2)+ > 0 almost surely so that582

θ+2 < 0 and |θ+1 | < ∞. In particular, θ+ ∈ R × R∗
− so the update is well-defined. The rest of the583

proposition comes from the fact that ∇2fξ = ∇2f = ∇2A.584

We can now proceed to proving the form of fη . We first start by writing that:585

f(θ) = A(θ)− θ⊤(m⋆,m
2
⋆ +Σ2

⋆) (60)

=
1

2
log(2Σ2) +

1

2

m2

Σ2
− mm⋆

Σ2
+

m2
⋆ +Σ2

⋆

2Σ2
. (61)

Therefore,586

f(θ) =
1

2
log(2Σ2) +

Σ2
⋆

2Σ2
+

(m−m⋆)
2

2Σ2
(62)

In particular,587

f(θ)− f(θ⋆) =
1

2
log

(
Σ2

Σ2
⋆

)
+

Σ2
⋆ − Σ2

2Σ2
+

(m−m⋆)
2

2Σ2
(63)

Note that, as expected, this corresponds to DA(θ, θ⋆), that we can also compute through Proposi-588

tion F.1. We now write:589

DA(θ, θ
+) = −1

2
log

(
(Σ2)+

Σ2

)
− Σ2 − (Σ2)+

2Σ2
+

(m−m+)2

2Σ2
(64)

= −1

2
log

(
(1− η)

[
1 + η

(m−X)2

Σ2

])
+

(1− η)(Σ2 + η(m−X)2)− Σ2

2Σ2
+

η2(m−X)2

2Σ2

(65)

= −1

2
log

(
(1− η)

[
1 + η

(m−X)2

Σ2

])
− η

2
+ η(1− η)

(m−X)2

2Σ2
+

η2(m−X)2

2Σ2

(66)

= −1

2
log

(
(1− η)

[
1 + η

(m−X)2

Σ2

])
− η

2
+ η

(m−X)2

2Σ2
. (67)

Therefore,590

f(θ)− DA(θ, θ
+)

η
− f(θ⋆) (68)

=
1

2
log

(
Σ2

Σ2
⋆

)
+

Σ2
⋆ − Σ2

2Σ2
+

(m−m⋆)
2

2Σ2
+

1

2η
log

(
(1− η)

[
1 + η

(m−X)2

Σ2

])
+

1

2
− (m−X)2

2Σ2

(69)

=
1

2
log

(
Σ2

Σ2
⋆

)
+

1

2η
log

(
(1− η)

[
1 + η

(m−X)2

Σ2

])
+

Σ2
⋆

2Σ2
+

(m−m⋆)
2

2Σ2
− (m−X)2

2Σ2
.

(70)

Finally, E
[
(m−X)2

]
= (m−m⋆)

2 +Σ2
⋆, and so:591

fη(θ)− f(θ⋆) =
1

2
log

(
Σ2

Σ2
⋆

)
+

1

2η
E
[
log

(
(1− η)

[
1 + η

(m−X)2

Σ2

])]
, (71)

which precisely corresponds to Equation (14). We now proceed to proving bounds on θη for η < 1.592
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F.2 Bounding the stochastic mirror descent variance σ2
⋆,η .593

Now that we have an explicit form for fη , we can characterize its minimizer θη , and use this to prove594

results on fη(θη), which will in turn lead to bounds on σ2
⋆,η . This is the core of Lemma 4.2.595

Proof. Proof of Lemma 4.2. The proof will proceed in three different stages:596

• Differentiating fη with respect to m and Σ2.597

• Using these expressions to obtain bounds on the (mη,Σ
2
η) for which ∇fη is 0.598

• Plugging these bounds into the expression of fη to bound Σ2
η .599

1 - Differentiating fη . Before differentiating, we rewrite:600

fη(θ)− f(θ⋆) =
1

2
log
(
Σ2
)
+

1

2η
E
[
log

(
1 + η

(m−X)2

Σ2

)]
− 1

2
log
(
Σ2

⋆

)
+

1

2η
log(1− η)

(72)

= −1− η

2η
log
(
Σ2
)
+

1

2η
E
[
log
(
Σ2 + η(m−X)2

)]
− 1

2
log
(
Σ2

⋆

)
+

1

2η
log(1− η).

(73)
Indeed, the two terms on the right are constant and so do not matter. If we differentiate in m, we601

obtain:602

∇mfη(θ) = E
[
1

2η
2η

m−X

Σ2

1

Σ2 + η(m−X)2

]
= E

[
m−X

Σ2 + η(m−X)2

]
. (74)

Now, differentiating in Σ2 yields:603

∇Σ2fη(θ) = −1− η

2ηΣ2
+

1

2η
E
[

1

Σ2 + η(m−X)2

]
=

1

2Σ2
− E

[
(m−X)2

2Σ2(Σ2 + η(m−X)2)

]
. (75)

2 - Obtaining bounds on (mη,Σ
2
η). The solution to ∇mfη(θ) = 0 is m = m⋆. Indeed, it is direct604

to verify that in this case, E
[

X̃
Σ2+ηX̃2

]
= 0 since X̃ = m⋆ −X is symmetric (with respect to 0). For605

m > m⋆, E
[

X̃
Σ2+ηX̃2

]
> 0 since we integrate the same values as the previous case, but now more606

mass is put on the positive values (and similarly for m < m⋆). Note that this is the case regardless of607

Σ2
η .608

We are now interested in Σ2
η. Note that we will not get such a clean expression as for mη, but only609

bounds. From its expression, we deduce that ∇Σ2fη(θη) = 0 can be reformulated as:610

E
[

(mη −X)2

Σ2
η + ηη(m−X)2

]
= 1 (76)

For the upper bound, we simply write that:611

1 = E
[

(mη −X)2

Σ2
η + ηη(m−X)2

]
≤ E

[
(mη −X)2

Σ2
η

]
=

Σ2
⋆

Σ2
η

, (77)

from which we deduce that Σ2
η ≤ Σ2

⋆. Let us now introduce some α > 0. We have that:612

E
[

(mη −X)2

Σ2
η + η(mη −X)2

]
= E

[
(mη −X)2

α− α+Σ2
η + η(mη −X)2

]
= E

[
(mη −X)2

α

1

1− 1 +
Σ2

η+η(mη−X)2

α

]
(78)

We now use that for u ≥ −1, 1
1+u ≥ 1− u, and so:613

E
[

(mη −X)2

Σ2
η + η(mη −X)2

]
≥ E

[
(mη −X)2

α

(
1−

[
−1 +

Σ2
η + η(mη −X)2

α

])]
(79)

= E

[
(mη −X)2

α

(
2−

Σ2
η

α

)
− η

(mη −X)4

α2

]
. (80)
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Now, recall that mη = m⋆, so X −mη ∼ N (0,Σ⋆), leading to614

1 = E
[

(mη −X)2

Σ2
η + η(mη −X)2

]
≥ Σ2

⋆

α

(
2−

Σ2
η

α

)
− η

3Σ4
⋆

α2
. (81)

Rearranging terms, we obtain:615

α2

Σ2
⋆

− 2α ≥ −Σ2
η − 3Σ2

⋆, so Σ2
η ≥ 2αΣ2

⋆ − α2

Σ2
⋆

− 3ηΣ2
⋆. (82)

We see that α = Σ2
⋆ maximizes the right term, and we obtain the desired result, i.e.:616

Σ2
η ≥ (1− 3η)Σ2

⋆. (83)

Unfortunately, we see that this bound is only informative for 3η < 1. For the rest of the cases, we617

will use the Markov inequality instead, which writes for all a > 0:618

P
(

(mη −X)2

Σ2
η + η(mη −X)2

≥ a

)
≤ 1

a
E
[

(mη −X)2

Σ2
η + η(mη −X)2

]
=

1

a
. (84)

Yet,619

P
(

(mη −X)2

Σ2
η + η(mη −X)2

≥ a

)
= P

(
(mη −X)2

Σ2
⋆

≥ a

1− ηa

Σ2
η

Σ2
⋆

)
= 2P

(
X −m⋆

Σ⋆
≥
√

a

1− ηa

Ση

Σ⋆

)
.

(85)
Therefore, denoting Φ the cumulative distribution function of the standard Gaussian, we have:620

2

(
1− Φ

(√
a

1− ηa

Ση

Σ⋆

))
≤ 1

a
, (86)

and since Φ−1 is an increasing function, this leads to:621 √
a

1− ηa

Ση

Σ⋆
≥ Φ−1

(
1− 1

2a

)
, (87)

so that:622

Ση ≥
√
1− ηa

Φ−1
(
1− 1

2a

)
√
a

Σ⋆ (88)

One can check that Φ−1
(
1− 1

2a

)
/
√
a < 1 for all a, which is consistent with the fact that Σ2

η ≤ Σ2
⋆.623

Also note that for η = 1, a non-trivial bound would require a < 1, but then Φ−1
(
1− 1

2a

)
≤ 0 so624

(as expected), we cannot get better than Σ2
η ≥ 0. However, the previous bounding (Equation (83)) is625

more precise for small η since Φ−1
(
1− 1

2a

)
/
√
a < 1− c with c > 0 a constant regardless of a. In626

particular, for any ε, by using any 1 < a < 1/(1− ε), we obtain that Σ2
η ≥ αεΣ

2
⋆ for some constant627

αε that only depends on the a that we choose. In particular, we can handle the cases η = 1/2 and628

η = 1/3 that gave trivial results Σ2
η ≥ 0 with the previous bounds.629

The last part consists in proving that fη(θη)− f(θ⋆) ≥ 1
2 log

(
Σ2

η

Σ2
⋆

)
. To do so, we start back from630

fη(θ)− f(θ⋆) =
1

2
log

(
Σ2

Σ2
⋆

)
+

1

2η
E
[
log

(
(1− η)

[
1 + η

(m−X)2

Σ2

])]
,

and show that E
[
log
(
(1− η)

[
1 + η

(mη−X)2

Σ2
η

])]
≥ 0. We start by the inequality log(1+x) ≥ x

1+x ,631

leading to:632

E
[
log

(
(1− η)

[
1 + η

(mη −X)2

Σ2
η

])]
≥ E

 (1− η)
[
1 + η

(mη−X)2

Σ2
η

]
− 1

(1− η)
[
1 + η

(mη−X)2

Σ2
η

]
 (89)

= E

 η(1− η)
(mη−X)2

Σ2
η

− η

(1− η)
[
1 + η

(mη−X)2

Σ2
η

]
 (90)

= ηE

[
(1− η)(mη −X)2 − Σ2

η

(1− η)
[
Σ2

η + η(mη −X)2
]] (91)

20



Recall that the optimality conditions for (mη,Σ
2
η) write:633

1 = E
[

(mη −X)2

Σ2
η + η(mη −X)2

]
=

1

η
E

[
1−

Σ2
η

Σ2
η + η(mη −X)2

]
, (92)

so that634

E

[
Σ2

η

Σ2
η + η(mη −X)2

]
= 1− η. (93)

Combining these, we obtain that635

E

[
log

(
(1− η)

[
1 + η

(mη −X)2

Σ2
η

])]
≥ ηE

[
(1− η)(mη −X)2 − Σ2

η

(1− η)
[
Σ2

η + η(mη −X)2
]]

= η

(
E
[

(mη −X)2

Σ2
η + η(mη −X)2

]
− 1

1− η
E

[
Σ2

η

Σ2
η + η(mη −X)2

])
= 0,

which is the desired result.636

The final result is obtained by plugging the lower bounds for Σ2
η into this bound, leading to either637

σ2
⋆,η ≤ − 1

2η log(1− 3η) for η < 1/3 or σ2
⋆,η ≤ − 1

2η logαε for η < 1− ε.638

639

F.3 Unrolling the recursions to derive actual convergence results.640

F.3.1 Proof of Theorem 4.3641

Now that we have bounded the stochastic mirror descent variance σ2
⋆,η in this setting, we can plug it642

into Theorem 3.1 to obtain finite-time convergence guarantees on the MAP and MLE estimators.643

Proof of Theorem 4.3. Starting from Theorem 3.1, we obtain:644

DA(θ⋆, θ
(k+1)) ≤ (1− η)DA(θ⋆, θ

(k))− η

2
log (1− 3η) ≤ (1− η)DA(θ⋆, θ

(k)) +
3η2

2
, (94)

where the right term is replaced by cε (where cϵ = − 1
2 logαε) for k ≤ 3. Taking η = 1/k for k > 1645

and multiplying by k leads for k > 3 to:646

kDA(θ⋆, θ
(k+1)) ≤ (k − 1)DA(θ⋆, θ

(k)) +
3

2k
. (95)

Therefore, a telescopic sum leads to, for n0 > 0:647

(n+ n0)DA(θ⋆, θ
(n)) ≤ n0DA(θ⋆, θ

(0)) +
3

2

n+n0∑
k=n0

1

k
+ 2c1/2, (96)

and so, since
∑n

k=n0

1
k ≤ log(n+ n0 + 1)− log(n0):648

DA(θ⋆, θ
(n)) ≤ n0DA(θ⋆, θ

(0)) + (3/2) log(1 + (n+ 1)/n0) + Γ

n+ n0
, (97)

where Γ = 2c1/2 and we actually have Γ = 0 for n0 > 3.649

F.3.2 O(1/n) convergence result.650

We now consider a different estimator (from the MAP and the MLE), which we construct in the651

following way:652

• Choose n0 ≥ 6 and initial parameter θ̃(n0).653

• Obtain θ̃(n) by performing n−n0 stochastic mirror descent steps from θ̃(n0) with step-sizes654

ηk = 2/(k + 1) for k ∈ {n0, ..., n}.655
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This estimator is a modified version of the MAP, where n0 controls how much weight we would like656

to put on the prior, and θ̃(n0) would typically be the same starting parameter as for the MAP estimator.657

This estimator is built so that we can use the convergence analysis from Lacoste-Julien et al. [16] and658

obtain a O(1/n) convergence rate. Note that we make the n0 ≥ 6 restriction for simplicity to ensure659

that σ2
⋆,η ≤ 3/2, but the result can be easily adapted to n0 ≥ 2.660

Proposition F.3. After n− n0 steps, this modified estimator θ̃(n) verifies:661

EDh(θ⋆, θ̃
(n)) ≤ 2n0(n0 − 1)

n(n− 1)
Dh(θ⋆, θ̃

(n0)) +
6

n
. (98)

Proof. Let us note Dk = E
[
Dh(θ⋆, θ̃

(k))
]
. In this case, using that σ2

⋆,η ≤ 3/2, Theorem 3.1 writes662

(since µ = 1):663

Dk+1 ≤ (1− ηk)Dk +
3η2k
2

. (99)

At this point, we can multiply by k(k + 1) on both sides, and take ηk = 2
k+1 for k ≥ n0. Remarking664

that 1− ηk = 1− 2
k+1 = k−1

k+1 , we obtain that:665

(k + 1)kDk+1 ≤ k(k − 1)Dk +
6k

k + 1
≤ k(k − 1)Dk + 6. (100)

Unrolling this recursion from k = n0 to k = n − 1 (since (k + 1)kDk+1 = Lk+1, where Lk =666

k(k − 1)Dk), we obtain:667

n(n− 1)Dn ≤ n0(n0 − 1)Dn0
+

n−1∑
k=n0

6, (101)

and the result follows by dividing by n(n− 1), and using that (n− n0)/(n− 1) ≤ 1.668

F.4 The case of the MLE669

For the MLE estimator, directly applying the mirror descent approach would require using η0 = 1,670

starting from an arbitrary θ(0) (that would not affect the results anyway). The problem in this case671

is that Dh(θ⋆, θ
(1)) is infinite since Σ(2) = 0. This also means that we cannot start the stochastic672

mirror descent algorithm from θ(1), since the recursion would still involve the infinite Dh(θ⋆, θ
(1)).673

Therefore, in the case of the MLE, considering that the first two samples are X(1) and X(2), then the674

first two points are:675

m(1) = X(1),Σ(1) = 0 and m(2) =
X(1) +X(2)

2
, (Σ(2))2 =

(X(1) −X(2))2

4
. (102)

More generally, a direct recursion for the MLE leads to:676

m(n) =
1

n

n∑
k=1

X(k), (Σ(n))2 =
1

n

n∑
k=1

(X(k) −m(n))2. (103)

From this, we derive that:677

E
[
(Σ(n))2

]
= E

[
(X(n) −m(n))2

]
(104)

= E
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1− 1

n

)
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n
m(n−1)

)2
]

(105)

=

(
n− 1

n

)2

E
[(

X(n) −m⋆ − (m(n−1) −m⋆)
)2]

(106)

=

(
n− 1

n

)2

E
[(

X(n) −m⋆

)2
+
(
m(n−1) −m⋆

)2]
(107)

=

(
n− 1

n

)2(
Σ2

⋆ +
1

n− 1
Σ2

⋆

)
=

(
1− 1

n

)
Σ2

⋆, (108)
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where (107) comes from the fact that X(n) and m(n−1) are independent with mean m⋆. Plugging678

this into the expression of Dh(θ⋆, θ) for the MLE after n steps, we obtain:679

Dh(θ⋆, θ
(n)) = −1

2
E
[
log

(Σ(n))2

Σ2
⋆

]
. (109)

Unfortunately, there is no closed-form for this expression for arbitrary n, hence the need for a more680

involved analysis, for instance through the mirror descent framework. For the case n = 2 however681

(which is the one we are interested in), we obtain that682

Dh(θ⋆, θ
(2)) = −1

2
E

[
log

(
X(1) −X(2)

2Σ⋆

)2
]
= −1

2
E
[
log

Y 2

2

]
, (110)

where Y = X(1)−X(2)
√
2Σ⋆

∼ N (0, 1). Therefore, this can simply be treated as a constant that we can683

precisely evaluate numerically (for instance remarking that Y 2 is gamma distributed and using results684

on logarithmic expectations of gamma distributions).685

For n > 2, it is tempting to use the convexity of − log to use a similar reasoning, but this only leads686

to a constant bound on Dh(θ⋆, θ
(n)).687
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• The name of the license (e.g., CC-BY 4.0) should be included for each asset.939

• For scraped data from a particular source (e.g., website), the copyright and terms of940

service of that source should be provided.941

• If assets are released, the license, copyright information, and terms of use in the942

package should be provided. For popular datasets, paperswithcode.com/datasets943

has curated licenses for some datasets. Their licensing guide can help determine the944

license of a dataset.945

• For existing datasets that are re-packaged, both the original license and the license of946

the derived asset (if it has changed) should be provided.947
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• If this information is not available online, the authors are encouraged to reach out to948

the asset’s creators.949

13. New Assets950

Question: Are new assets introduced in the paper well documented and is the documentation951

provided alongside the assets?952

Answer: [NA]953

Justification: No new assets.954

Guidelines:955

• The answer NA means that the paper does not release new assets.956

• Researchers should communicate the details of the dataset/code/model as part of their957

submissions via structured templates. This includes details about training, license,958

limitations, etc.959

• The paper should discuss whether and how consent was obtained from people whose960

asset is used.961

• At submission time, remember to anonymize your assets (if applicable). You can either962

create an anonymized URL or include an anonymized zip file.963

14. Crowdsourcing and Research with Human Subjects964

Question: For crowdsourcing experiments and research with human subjects, does the paper965

include the full text of instructions given to participants and screenshots, if applicable, as966

well as details about compensation (if any)?967

Answer: [NA]968

Justification: No human subjects or crowdsourcing.969

Guidelines:970

• The answer NA means that the paper does not involve crowdsourcing nor research with971

human subjects.972

• Including this information in the supplemental material is fine, but if the main contribu-973

tion of the paper involves human subjects, then as much detail as possible should be974

included in the main paper.975

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,976

or other labor should be paid at least the minimum wage in the country of the data977

collector.978

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human979

Subjects980

Question: Does the paper describe potential risks incurred by study participants, whether981

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)982

approvals (or an equivalent approval/review based on the requirements of your country or983

institution) were obtained?984

Answer: [NA]985

Justification:986

Guidelines:987

• The answer NA means that the paper does not involve crowdsourcing nor research with988

human subjects.989

• Depending on the country in which research is conducted, IRB approval (or equivalent)990

may be required for any human subjects research. If you obtained IRB approval, you991

should clearly state this in the paper.992

• We recognize that the procedures for this may vary significantly between institutions993

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the994

guidelines for their institution.995

• For initial submissions, do not include any information that would break anonymity (if996

applicable), such as the institution conducting the review.997
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