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Abstract

Large language models (LLMs) such as ChatGPT have gained considerable interest across
diverse research communities. Their notable ability for text completion and generation
has inaugurated a novel paradigm for language-interfaced problem solving. However, the
potential and efficacy of these models in bioinformatics remain incompletely explored. In
this work, we study the performance LLMs on a wide spectrum of crucial bioinformatics
tasks. These tasks include the identification of potential coding regions, extraction of named
entities for genes and proteins, detection of antimicrobial and anti-cancer peptides, molecular
optimization, and resolution of educational bioinformatics problems. Our findings indicate
that, given appropriate prompts, LLMs like GPT variants can successfully handle most of
these tasks. In addition, we provide a thorough analysis of their limitations in the context
of complicated bioinformatics tasks. We envision this work to provide new perspectives and
motivate future research in the field of both LLMs applications and bioinformatics.

1 Introduction

Large language models (LLMs) (Birhane et al., 2023; Katz et al., 2022; Li et al., 2022) such as GPT vari-
ants, which are neural network models trained on large amounts of unlabeled data, have recently attracted
significant attention across a variety of research communities. Trained with a combination of unsupervised
pre-training, supervised fine-tuning, and human feedback, LLMs can generate fluid and reasonable contextual
conversations with text-based input queries, i.e. prompts. Such a natural language interface offers a versatile
problem-solving platform, addressing tasks from text drafting to mathematical problem solving (Ouyang
et al., 2022; Xu et al., 2023), which exceeds the capabilities of traditional single natural language processing
models (Pang et al., 2002; Marrero et al., 2013; Lee et al., 2011). It is particularly noted that LLMs have
demonstrated remarkable proficiency in human-like language generation and exhibited a discernible level of
reasoning ability (Liu et al., 2023a; Sun et al., 2022).

In an endeavor to comprehensively understand the capabilities of LLMs, numerous studies have assessed
their performance across a variety of language tasks (Zhang et al., 2023; Beltagy et al., 2022). These tasks
include reasoning (Bang et al., 2023; Xu et al., 2023), machine translation (Jiao et al., 2023), and question-
answering (Tan et al., 2023). Furthermore, the scope of research has been expanded to encompass broader
domains. For instance, the applicability of LLMs in AI-assisted medical education has been explored through
their ability to answer questions from medical licensing exams Kung et al. (2023); Patel & Lam (2023); Lu
et al. (2022). Collectively, these studies suggest that LLMs have the potential to achieve new state-of-the-art
performance in traditional tasks and can even establish a new paradigm of research based on interactions
with a language model.

So far, a wide range of language models have achieved a great success for bioinformatics tasks (Otmakhova
et al., 2022), such as evolutionary scale modeling (ESM) (Lin et al., 2023) and pre-trained models for
proteins (Elnaggar et al., 2021). These pre-trained models can be used to predict structure, functionality,
and other protein properties, or convert proteins into embedding for downstream tasks. For example, AMP-
BERT (Lee et al., 2023) is a fine-tuned model by leveraging protein language model (Elnaggar et al., 2021),
which achieves remarkable performance in antimicrobial peptide function prediction. However, these previous
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studies often utilize pre-trained language models specific to their domain, and hence they may not be powerful
as modern LLMs that are trained using a wide-ranging corpus of text. Moreover, their research typically
concentrates on a limited set of tasks, resulting in a lack of systematic and comprehensive investigations into
the potential of LLMs for broader bioinformatics research. Evaluating bioinformatics tasks using LLMs can
offer a new, effective approach to understanding and solving complex bioinformatics problems, and thus is a
research direction of great significance.

In this work, we investigate the potential applications of LLMs on several popular bioinformatics tasks. Our
investigation includes a diverse set of tasks that provide a comprehensive evaluation of LLMs within the
context of bioinformatics. These tasks comprise the identification of potential coding regions, extraction
of named entities for genes and proteins, detection of antimicrobial and anti-cancer peptides, molecular
optimization, and addressing educational problems within bioinformatics. To conduct our experiments, we
represent chemical compounds, DNA and protein sequences in text format and convert the problem in natural
language processing. Then, we feed them into LLMs to generate predictions. Our experiments indicate that,
given appropriate prompts, LLMs can partially solve these tasks, underscoring the potential utility of LLMs
in bioinformatics research. Further analysis of the extensive evaluation leads to three observations. Firstly,
with appropriate prompts, LLMs can achieve performance on par with competitive baselines for simple
bioinformatics tasks. Secondly, the model has difficulties when faced with more complex tasks; for instance,
it may generate non-existing gene name mentions for gene and protein named entity recognition. Lastly, some
prompts and model variants could lead to fluctuating the performance, which indicates their choices would
require further investigation. By shedding light on the strengths and limitations of LLMs in bioinformatics,
we hope this work can enhance the utility of LLMs in supporting data-driven research and problem solving
within bioinformatics and pave the way for future research directions.

2 Related Work

2.1 Large Language Models (LLMs)

With the development of ChatGPT, LLMs have become popular in the artificial intelligence community,
which involve billions of parameters. Among various LLMs, ChatGPT has made impressive impacts by
showing remarkable performance in zero-shot human-machine interaction (Jahan et al., 2023b). The GPT-
3.5 and GPT-5 are the two mainstream models that ChatGPT currently offers. Natural language and code
can be understood and produced by the GPT-3.5 models. There may not be much of a difference between
GPT-3.5 and GPT-4 in normal speech. When the task’s complexity reaches a certain level, though, GPT-4
distinguishes itself from GPT-3.5 by being more dependable, inventive, and capable of handling far more
complex instructions1,2. Some new models, such as Llama 2 (70B) (Touvron et al., 2023) and Google
bard (AYDIN, 2023), have been proposed, and their performance remains to be tested. To understand the
capacity and limitations of LLMs, the evaluation of these LLMs has received extensive interest, especially
on NLP tasks such as reasoning (Bang et al., 2023), machine translation (Jiao et al., 2023) and question
answering (Tan et al., 2023). For example, ChatGPT has shown extraordinary performance on zero-shot
dialogue understanding with the help of proper prompts (Wysocka et al., 2023; Liu et al., 2023b). Although
ChatGPT suffers from several limitations in several tasks, the evaluation can also help the enhancement of
ChatGPT as the version is updated. However, existing works on the evaluation of LLMs mostly focus on
NLP tasks (Biswas, 2023; Shyr et al., 2023; Li et al., 2023; Pu & Demberg, 2023) while the evaluation for
Bioinformatics is still underexplored. As a result, we aim to evaluate LLMs on a range of bioinformatics
tasks to give insights to the AI for science community.

2.2 Language Models for Bioinformatics

Bioinformatics has been an important field involving the collection and analysis of biological data such as
DNA sequences and protein structures. Language models have been applied to solve various bioinformatics
tasks, such as transforming amino acids into different embeddings using protein language models, which

1https://openai.com/research/gpt-4
2https://platform.openai.com/docs/guides/fine-tuning
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can be used for downstream protein understanding. Recently, one of the most impressive applications
is AlphaFold2 (Cramer, 2021), which employs a transformer architecture to predict protein structures from
amino acid sequences. It has demonstrated remarkable accuracy in predicting protein folding, outperforming
traditional methods and highlighting the potential of large-scale models in this domain. Language models
have inspired the development of drug discovery and design tasks as well (Deng et al., 2022). For instance,
inspired by the success of BERT (Devlin et al., 2018), MolBERT (Fabian et al., 2020) is developed for
predicting molecular properties and generating novel molecular structures. MolBERT demonstrates the
capacity of language models to generate de novo molecules and predict their physicochemical properties,
which can be invaluable in the drug discovery process. In this paper, we study the power of LLMs to directly
solve various bioinformatics problems, which can inspire the development of AI for science.

We also notice that there are several works on the evaluation of LLMs related to bioinformatics (Shue et al.,
2023; Piccolo et al., 2023). Piccolo et al. (2023) investigate the performance of ChatGPT on bioinformat-
ics programming tasks in educational settings. Shue et al. (2023) produce a tool based on ChatGPT for
bioinformatics education. However, these works are a preliminary exploration of ChatGPT for bioinformat-
ics beginners while our work goes deeper and explores more complicated and typical tasks. Jahan et al.
(2023a) primarily focuses on the evolution of biomedical text processing problems in large language models.
In contrast, our work involves a broad bioinformatics field, including identifying potential coding regions of
viruses, detecting antimicrobial and anticancer peptides, gene and protein-named entity extraction, molecu-
lar modification, and educational bioinformatics problem-solving sets. Taylor et al. (2022) introduce a large
language model for scientific knowledge mining while our work focuses on the evaluation of GPT models on
various bioinformatics problems. Luo et al. (2022) design a domain-specific language model for biomedical
problems while our work explores more areas in bioinformatics.

We believe our work can help gain a more profound understanding of LLMs’ potential in advancing the field
of bioinformatics, opening new avenues for data analysis, hypothesis generation, and further automation of
complex computational tasks in this area.

3 Evaluated Tasks

3.1 Identifying Potential Coding Regions from DNA Sequences

The coding sequence (CDS) (Lubahn et al., 1989; Zhu et al., 2010) are some regions of a DNA or RNA
sequence that contain essential information for protein encoding. Identifying these potential coding regions
within viral sequences could be a crucial task, as it can aid us in understanding the biological characteristics
of the corresponding virus as well as the expression of DNA sequences and genes (Badger & Olsen, 1999).
We formalize the task as follows:

Task 1. (Identifying Coding Regions) Our objective is to leverage a machine learning approach to
identify as many potential coding regions as possible in the given DNA sequence.

Prompts: Based on your knowledge, describe as many possible potential coding regions if they exist in frame
1.

3.2 Identifying Antimicrobial Peptide

Antimicrobial resistance poses a significant threat to public health (Wise et al., 1998). As a potential
solution, antimicrobial peptides (AMPs) (Bahar & Ren, 2013) have emerged as a promising solution, due
to their broad-spectrum mechanism of action. Typically, AMPs exterminate bacteria and other hazardous
organisms through interfering with vital biological components, such as the cell membrane as well as DNA
replication mechanisms (Zasloff, 2002). Therefore, the identification of candidate peptides with antimicrobial
functions is crucial for developing novel therapeutics. The task is formalized as follows:

Task 2. (Identifying Antimicrobial Peptide) Given the training set, we train a machin learning model
which can identify antimicrobial peptides in massive protein sequences.
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Prompts: You are a peptide design researcher. Please tell me if the given peptide sequence has antimicrobial
properties.

3.3 Identifying Anti-cancer Peptide

The majority of anti-cancer drugs have inadequate selectivity, killing both normal and cancer cells without
discrimination (Liu et al., 2015). However, anti-cancer peptides (ACPs) function as molecularly targeted
peptides that can directly bind to specific cancer cells or organelle membranes, or as binding peptides
associated with anti-cancer drugs(Li et al., 2011). As minuscule peptides contain sequences of amino acids,
ACPs are cancer-selective and toxic (Tyagi et al., 2015). Therefore, they have emerged as a novel therapeutic
strategy that targets some cancer cells specifically (Chiangjong et al., 2020). Considering the extensive time
and high costs associated with identifying ACPs through biochemical experimentation, the development of
deep learning algorithms for ACPs identification is vital. We formalize the task (Li et al., 2020) as follows:

Task 3. (Identifying Anti-cancer Peptide) Given a training set, we train a machine learning model
which can identify anti-cancer peptides in these massive protein sequences.

Prompts: You are a peptide design researcher. Please tell me whether a peptide with a sequence: N could
be an anti-cancer peptide.

3.4 Molecule Optimization

To evaluate the extent of knowledge that GPTs possess in the realms of chemistry and pharmacology, we
study their proficiency in optimizing molecular properties. The optimization of molecules represents a pivotal
phase in the process of drug discovery (Verdonk & Hartshorn, 2004), allowing for enhancing the desired
characteristics (e.g., octanol-water partition coefficients (Sangster, 1997), synthetic accessibility (Ouyang
et al., 2021) and drug-likeness (Bickerton et al., 2012)) of drug candidates via targeted chemical modifications.
The task is formalized as follows:

Task 4. (Molecule Optimization) Our objective is to modify a given molecule while preserving the
primary molecular scaffold, such that certain properties can be enhanced.

Prompts: Assume that you were a medicinal chemist, please make big modifications that go beyond just
changing the charge to the following molecule to optimize the octanol–water partition coefficient penalized by
synthetic accessibility and ring size. Here’s the SMILE string for the molecule, $SMILES$, and output the
optimized SMILE string, please.

3.5 Gene and Protein Named Entities Extraction

For genes and proteins, a wide variety of alternative names are used in abundant scientific literature or public
biological databases, which poses a significant challenge to the gene and protein named mentions finding
task. Meanwhile, as new biological entities are continuously discovered (Bruford et al., 2020; Fundel &
Zimmer, 2006; Rindflesch et al., 1999; Blaschke et al., 2002), the diversity of gene and protein nomenclatures
also brings some challenges to the gene and proteins named mention extraction task. For instance, the gene
names in Drosophila (Yeh et al., 2005), a.k.a., the fruit fly (Wangler et al., 2015), can be common English
words such as white, dumpy and forked. This nature could lead to a misleading algorithm or recognition
model, making it a challenge to accurately extract gene and protein names. Here, we formalize the task as
follows:

Task 5. (Gene and Protein Named Entities Extraction) Our objective is to identify potential gene
and protein named entities from the given sentences in life science literature.

Prompts: You are an expert in the Named Entity Recognition field. Given a token and a sentence that
contains gene mentions, you are to generate an ASCII list of identified gene names. Each gene mention will
be formatted as follows: sentence-identifier | start-offset end-offset | optional text. Each gene mention from
the same sentence will be listed on a separate line. If a sentence doesn’t have any gene mentions, it won’t be
included in the list. Counting numbers need to exclude spaces, sentence-identifiers, and start from 1.
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Figure 1: Our tasks aim to validate how LLMs can benefit bioinformatics research.

3.6 Evaluation on Educational Bioinformatics Problem-Solving Set

In addition to using various datasets and different case scenarios to demonstrate the performance of GPTs,
we also employ a set containing 105 bioinformatics questions for evaluation. These problems originate from
Rosalind3, an educational platform dedicated to learning bioinformatics and programming through problem
solving. The task is formalized as follows:

Task 6. (Educational Bioinformatics Problem Solving) Our objective is to generate corresponding
answers to a bioinformatics problem set. These problems primarily encompass seven topics, i.e., String Algo-
rithms, Combinatorics, Dynamic Programming, Alignment, Phylogeny, Probability, and Graph Algorithms.

Prompts: Each question will be provided as a prompt.

As shown in Figure 1, we analyze the significance of studying these tasks for bioinformatics research: Task
1 focuses on the analysis of genome sequences to identify potential coding regions, indicating that LLMs are
promising for functional genomic analysis. Task 2 and Task 3 are about AMP and ACP, which can validate
that LLMs can contribute to drug screening. Task 4 aims to introduce LLMs for molecular engineering,
indicating that understanding the complex interplay between sequence patterns and biological functions
allows LLMs to contribute to the design of optimized proteins and molecules. Furthermore, as showcased
in Task 5, LLMs can perform entity recognition via specific prompts, aiding in biomedical text mining.
Lastly, as illustrated by Task 6, LLMs can provide assistance to bioinformatics challenges, exemplifying their
practical value in the field.

We also show the task details and datasets in Table 6. For Task 1, we utilize GPT-3.5 and GPT-4 to validate
the basic biological knowledge of the language model. We additionally introduce Llama 2 and Google Bard
for validation. For Tasks 2 and 3, we use GPT-3.5 (Davinci-ft), ESM, and AMP-BERT to test how well they
can predict antimicrobial and anticancer peptides. GPT-4 does not support fine-tuning, which is skipped in
our experiments. For Task 4, we use GPT-4 to verify the model’s capability for molecular modification. A
baseline Modof is introduced for molecule optimization. GPT-3.5 is skipped because of its worse performance.
For Task 5, we employ GPT-4 and GPT-3.5 (gpt-3.5-turbo-0613) to assess the model’s recognition ability for
genes and protein names. BioBERT, MT-BERT, and MT-BioBERT are additionally used for named-entity

3https://rosalind.info/problems/list-view/
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[USER]: Based on your knowledge, describe as

many possible potential coding regions if they

exist in frame 1

‘ATGCATGTGCCTGCCAGTCTTCAGCAATCAT

CCTCATCCTCC…GTGCAACCGATGATACTTC

ACTCATCGATTCAACAAAACTCAAAGCGTGTG

TCTGA’

[GPT-4]:To identify potential coding regions in a

DNA sequence, we need to look for open reading

frames (ORFs)… AUG in RNA or ATG in DNA)

and ends at a stop codon (UAA…a longer ORF

doesn't necessarily mean that the region codes for

a protein; experimental validation would be

required to confirm this.

[GPT-4]:The sequence you've provided is a

DNA sequence, and it's read in frames. Since

you are interested in frame 1 (which starts from

the first nucleotide), I'll translate this DNA

sequence into amino acid sequences using the

standard genetic code…In this longest ORF,

there are 83 codons including the start and stop

codons, so there are 81 amino acids in the

protein it codes for.

[USER]: Based on your knowledge, describe the

longest coding regions if they exist in frame 1 ?

[USER]: Based on your knowledge, describe as

many possible potential coding regions if they exist

in frame 1

‘ATGCATGTGCCTGCCAGTCTTCAGCAATCATC

CTCATCCTCC…GTGCAACCGATGATACTTCACT

CATCGATTCAACAAAACTCAAAGCGTGTGTCTG

A’

[USER]: Begin with a sequential search from

the start, initially selecting a start codon, follo

wed by the identification of different stop codo

ns that delineate potential coding sequences. P

roceed in this manner before choosing the sub

sequent start codon.

[GPT-4]: To perform a sequential search for

potential coding regions starting from the

beginning of the sequence, we will look for

the first start codon (ATG) and then identify

the first in-frame stop codon (TAA, TAG, or

TGA)..

[GPT-4]: Going through the sequence

sequentially: The sequence starts with an ATG

(the start codon for Methionine), so this is our

first potential start of a coding region… The

process would continue until we reach the end of

the sequence.

Figure 2: Illustration of the identification of coding regions utilizing GPT-4. (The dialogue on the right
depicts a comparison using chain of thought.)

recognition. For Task 6, we verify the model’s ability of GPT-3.5 and GPT-4 to answer biological questions
involving probabilistics, logic, and character processing.

4 Results and Discussions

4.1 Performance on Identifying Potential Coding Regions

As for identifying potential coding regions (CDS) (Furuno et al., 2003) from DNA sequences, we utilize
the understanding abilities of GPT-4, GPT-3.5, Llama 2 (70B) (Touvron et al., 2023) and Google bard
(AYDIN, 2023) with a corresponding prompt. Since LLMs have been trained in a variety of internet texts,
the analyzing capability of LLMs allows them to generate meaningful and contextually appropriate responses.

Our test subject is the DNA sequence of the Vaccinia virus (Goebel et al., 1990) using partial sequence
(GeneID: 3707616, 3707624, and 3707625. ACCESSION Id: NC_006998.1), and we require LLMs to give
potential CDS in the first frame. The results are shown in Figure 2 and Figure 5. From the results, GPT-4
can successfully deliver the definitions of CDS and Open Reading Frames (ORFs), accurately pinpointing the
start codon (usually AUG in RNA or ATG in DNA) and stop codons (UAA, UAG, UGA for RNA or TAA,
TAG, TGA for DNA). It generates a list of potential coding regions, specifying their nucleotide lengths and
corresponding start and stop codons.

• The performance of GPT-4 can be enhanced by adopting a thought-chain approach. Despite its superior
advantage, GPT-4 still overlooks some potential coding regions. When tasked with identifying the longest
coding region in the first frame, it begins by translating the DNA sequence into an amino acid sequence
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Table 1: The compared cross-validation results of different models for identifying antimicrobial peptides on
the training set.

MODEL SN SP F1 ACC AUROC AUPR
XGB 0.702 0.566 0.630 0.641 0.734 0.783
MNB 0.815 0.739 0.780 0.800 0.870 0.912
SVM 0.872 0.717 0.790 0.796 0.843 0.897
KNN 0.709 0.622 0.670 0.703 0.674 0.722
LR 0.843 0.735 0.790 0.804 0.836 0.889

MLP 0.792 0.654 0.720 0.731 0.776 0.802
RF 0.867 0.691 0.770 0.772 0.834 0.870
GB 0.775 0.583 0.660 0.646 0.708 0.789

ESM 0.912 0.928 0.920 0.920 0.974 0.977
AMP-BERT 0.926 0.930 0.928 0.928 0.966 0.965

GPT-3.5(Davinci-ft) 0.979 0.962 0.970 0.968 0.968 0.978

Table 2: The compared results of different models for identifying antimicrobial peptides on the test set.

MODEL SN SP ACC Fl AUC AUPR
XGB 0.695 0.630 0.660 0.654 0.714 0.700
MNB 0.687 0.750 0.711 0.746 0.757 0.720
SVM 0.740 0.675 0.706 0.702 0.749 0.697
KNN 0.608 0.687 0.632 0.698 0.691 0.738
LR 0.724 0.676 0.699 0.702 0.746 0.711

MLP 0.701 0.715 0.707 0.730 0.749 0.715
RF 0.714 0.692 0.703 0.715 0.739 0.692
GB 0.708 0.606 0.646 0.616 0.699 0.691

ESM 0.865 0.496 0.742 0.688 0.779 0.758
AMP-BERT 0.876 0.635 0.792 0.760 0.818 0.787

GPT-3.5 (Davinci-ft) 0.844 0.745 0.718 0.759 0.782 0.810

using the standard genetic code, followed by a detailed explanation of the code. However, it incorrectly
identifies an open reading frame (ORF) with 83 codons as the longest CDS. Therefore, we attempt to
provide step-by-step prompts to GPT-4: "Begin with a sequential search from the start, initially selecting
a start codon, followed by the identification of different stop codons that delineate potential coding
sequences. Proceed in this manner before choosing the subsequent start codon." With this approach,
GPT-4 is able to present all potential CDS, including the longest sequence.

• GPT-4 is capable not only of directly providing potential coding sequences but also of delivering an effective
algorithm to algorithmically find all potential coding sequences., We observe that the GPT-4 program can
report all potential coding regions successfully in the given examples.

• The performance of Llama 2 (70B) is the least satisfactory, failing to yield any potential coding sequences
or explanations. In contrast, Google Bard only offers suggestions for identifying potential coding sequences
using other tools and points out the start and stop codons in the DNA sequence. When we request a
program from Google Bard to find coding sequences, it is able to provide an effective algorithm.

4.2 Performance on Identifying Antimicrobial Peptide

As for identifying antimicrobial peptides, in this subsection, we fine-tune the GPT-3.5 (Davinci) model4
to distinguish between AMPs and non-AMPs. We set the number of epochs, batch size and learning rate

4https://platform.openai.com/docs/models/gpt-3
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multiplier during training to 20, 3 and 0.3, respectively. Our selected prompt is as follows: Assuming the
role of a peptide design researcher, please evaluate if a peptide with this particular sequence could qualify as
an antimicrobial peptide.

To access the performance of our fine-tuned model GPT-3.5 (Davinci-ft), we conduct a comparison with the
advanced protein large language model, ESM (esm_msa1b_t12_100M_UR50S), several machine learning-
based methods, i.e., XGBoost (XGB) (Chen et al., 2015), Multinomial Naive Bayes (MNB) (Kibriya et al.,
2005), Support Vector Machines (SVM) (Jakkula, 2006), K-Nearest Neighbor (KNN) (Guo et al., 2003),
Logistic Regression (LR) (Maalouf, 2011), MultiLayer Perceptron (MLP) (Pinkus, 1999), Random Forest
(RF) (Biau & Scornet, 2016), GBoost (GB) (Saigo et al., 2009), and AMP-BERT (Lee et al., 2023) using
two datasets from (Lee et al., 2023). We utilize six widely accepted metrics to assess the performance,
namely, sensitivity (SN), specificity (SP), F1-score (F1), accuracy (ACC), area under the Receiver Operating
Characteristic curve (AUROC), and area under the Precision-Recall curve (AUPR).

The training set (Lee et al., 2023) is comprised of 1,778 AMPs paired with an equal number of non-AMPs.
The test set constitutes 2,065 AMPs and 1,908 non-AMPs. Importantly, these two data sets have low
overlap. In alignment with the comparison methodology outlined by (Lee et al., 2023), we initially perform
a 5-repeated 10-fold cross-validation during the fine-tuning stage on the training set. Subsequently, the
GPT-3.5 (Davinci-ft) model is tested to the test set. The results for different models on the training and test
sets are shown in Table 1 and Table 2, respectively. From the results, we have the following observations:

• GPT-3.5 (Davinci-ft) demonstrates the best performance on most metrics during the 5-repeated 10-fold
cross-validation process. Different from AMP-BERT which is based on ProtTrans (Elnaggar et al., 2021)
specifically trained on proteins, GPT-3.5 (Davinci-ft) is not a model targeting proteins. Nevertheless, after
the fine-tuning procedure, GPT-3.5 (Davinci-ft) outperforms the AMP-BERT model across a variety
of metrics. In terms of F1-score, GPT-3.5 (Davinci-ft) also significantly surpasses the other models.
Specifically, it outperforms XGB, MNB, SVM, KNN, LR, MLP, RF, GB, and AMP-BERT by margins of
0.340, 0.190, 0.180, 0.300, 0.180, 0.250, 0.200, 0.310, and 0.042, respectively, which validates the strong
capacity of LLMs.

• GPT-3.5 (Davinci-ft) has the potential to tackle the imbalanced test set. As shown in Table 2, for the
metrics of SN, ACC, F1, and AUC, AMP-BERT achieves the best performance with scores of 0.876, 0.792,
0.760, and 0.818, respectively. On the SP metric, MNB demonstrates the best performance with a score
of 0.750.

• ESM demonstrates strong performance on the antimicrobial peptide training sets. Specifically, it achieved
the best performance on the training set with an AUROC of 0.974, surpassing other models. Though,
GPT-3.5 (Davinci-ft) achieves the best performance on AUPR with a score of 0.810. This suggests that
it still has the potential in handling the imbalance between positive and negative instances in the test set.

4.3 Performance on Identifying Anti-cancer Peptide

As for identifying anti-cancer peptides (ACPs), we also fine-tune the Davinci model, named as Davinci-ft
to distinguish between ACPs and non-ACPs. We use the same setting during the training process. Our
selected prompt is as follows: Assuming the role of a peptide design researcher, please evaluate if a peptide
with this particular sequence could qualify as an anti-cancer peptide.

Our dataset originates from (Li et al., 2020) encompassing a total of 138 ACPs and 206 non-ACPs. To
evaluate the performance of the GPT-3.5 (Davinci-ft) model, we compare it with several machine learning-
based methods utilizing widely accepted metrics as detailed in Section 4.2. The compared results are shown
in Table 3. We observe that for the SN metric, MNB, SVM, LR, MLP, RF, GB and GPT-3.5 (Davinci-ft) all
achieved top performances. In terms of SP, KNN achieves the highest performance, indicating its superior
ability to identify non-ACPs. More importantly, GPT-3.5 (Davinci-ft) achieves the best performance in
terms of most matrices including MCC, AUC and AUPRC. In particular, GPT-3.5 (Davinci-ft) displays
exceptional performance on the crucial AUC metric, outperforming XGB, MNB, SVM, KNN, LR, MLP, RF,
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Table 3: The compared results of different methods for identifying anti-cancer peptides.

MODEL SN SP ACC MCC AUC AUPRC
XGB 0.846 0.864 0.857 0.700 0.806 0.845
MNB 1.000 0.913 0.943 0.885 0.973 0.973
SVM 1.000 0.875 0.914 0.829 0.966 0.964
KNN 0.929 0.952 0.943 0.881 0.930 0.943
LR 1.000 0.840 0.886 0.775 0.963 0.962

MLP 1.000 0.913 0.943 0.885 0.949 0.958
RF 1.000 0.875 0.914 0.829 0.990 0.984
GB 1.000 0.778 0.829 0.667 0.857 0.875

ESM 0.933 0.900 0.903 0.914 0.923 0.920
GPT-3.5 (Davinci-ft) 1.000 0.875 0.914 0.892 0.993 0.991

Table 4: The average property improvements of the whole molecules dataset by GPT-4 and Modof.

Method ∆logP ∆SA ∆QED
Modof 3.76 0.20 -0.19
GPT-4 1.87 0.84 0.03

and GB by respective margins of 0.187, 0.020, 0.027, 0.063, 0.030, 0.044, 0.003, and 0.136. These results
collectively indicate that LLMs can achieve superior performance in identifying anti-cancer peptides.

4.4 Performance on Molecule Optimization

As for molecule optimization, we target at the enhancement of partition coefficients, a.k.a., logP, which can
be quantified by Crippen’s logP methodology (Wildman & Crippen, 1999). Meanwhile, we also consider
penalties incurred by synthetic accessibility (SA) (Ertl & Schuffenhauer, 2009). Following Bickerton et al.
(2012), we also evaluate quantitative results in terms of drug-likeness (QED) scores, which can reflect whether
a molecular can be a drug candidate or not. To evaluate the performance of GPT-4, we present a comparative
analysis with Modof (Chen et al., 2021), a sophisticated deep generative model. Modof harnesses the
capabilities of the junction tree methodology for molecular representation, modifying discrete fragments
of the molecule through the employment of variational autoencoders (VAE) (Jin et al., 2018). Here, the
dataset, we used, is originates from the ZINC database (Sterling & Irwin, 2015).

We summarize the quantitative results in Table 4 and Figure 4, and some examples can be found in Table 7.
We observed a significant difference, as several molecules modified by GPT-4 and Modof exhibit on the
metrics. The p-values (T-test) for ∆logP , ∆QED, and ∆SA are 4.86×10−65, 1.89×10−72, and 1.34×10−38,
respectively. The mean value for Modof ∆ log P is 3.76, with a 95% confidence interval ranging from 3.58
to 3.93. For GPT-4, the mean of ∆SA is 0.198, with a confidence interval from 0.136 to 0.257. Lastly, the
mean for ∆QED is -0.194, with its confidence interval lying between -0.213 and -0.175. From the results,
we have the following observations:

• GPT-4 can successfully generate valid SMILES in most cases. It becomes evident that it has assimilated
fundamental principles of physical chemistry. GPT-4 can provide valid optimized molecules for 661 cases,
which achieves the comparable performance compared with the superior baseline Modof. In particular,
the validity rateof Modof and GPT-4 are 0.800 and 0.830, respectively.

• GPT-4 has an advantage in improving both SA and QED. GPT-4 can achieve higher scores in terms of both
SA and QED in most cases. Remarkably, owing to its advanced conversation diagram, GPT-4 is capable
of articulating the executed modifications, providing rudimentary rationales behind the alterations.

• GPT-4 still falls short in improving logP. The average ∆ logP achieved by GPT-4 is about 50.3% of
that achieved by Modof. We have computed the deviation of the heavy atom number before and after
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Table 5: The compared results of different models for extracting gene and protein name mention in GM test
set.

Model P R F
BiLSTM 87.98 88.25 88.11

MT-BiLSTM-CRF 82.10 79.42 80.74
BioBERT 84.32 85.12 84.72
MT-BERT 84.12 84.98 84.53

MT-BioBERT 84.53 85.27 84.82
GPT-3.5(gpt-3.5-turbo-0613) 24.07 7.26 11.17

GPT-4 51.72 77.7 62.10

molecular optimization. The average deviation of heavy atom number for Modof optimized molecules is
+10.26, while the average deviation of heavy atom number for GPT-4 optimized molecules is only +0.65,
which is much lower compared with Modof optimization. The potential reason is that GPT-4 would
tend to remove atomic charges in an attempt to improve the octanol-water partition coefficient instead of
modifying the hydrophobic fragments into hydrophilic ones. Such a practice could potentially obliterate
significant pharmacophores of a drug. Furthermore, GPT-4 often adopts a more conservative approach to
modifying the original molecule, primarily excising some fragments to facilitate synthesis, whereas Modof
typically opts to append larger new fragments to the molecule. As a consequence, the simple and direct
modification learned by GPT-4 could be insufficient for improving logP significantly as Modof does.

4.5 Performance on Gene and Protein Named Entity Recognition

As for gene and protein named entity recognition (NER), we evaluate the performance of GPT-3.5 on
BioCreative II gene mention (GM) corpus (Yeh et al., 2005). This dataset comprises extensive annotated
sentences from MEDLINE (Greenhalgh, 1997), with a primary goal to focus on the extraction of gene
and protein named entities. Here, the test set contains 5,000 sequences. We leverage a prompt to call a
GPT-3.5 API (gpt-3.5-turbo-0613) and GPT-4, which evaluates the performance on the test set without
utilizing the training set. We compare the API model with the baseline BiLSTM (Cho & Lee, 2019),MT-
BiLSTM-CRF (Zhao et al., 2018), BioBERT (Lee et al., 2020), MT-BERT (Cho & Lee, 2019), and MT-
BioBERT (Bansal et al., 2020) using three metrics. The compared results are shown in Table 5, and we
observe that the API model would achieve poor performance for extracting genes or proteins from sequences
in terms of both partial and strict matching criteria. The former requires the prediction should exactly
match the ground truth while the latter allows partially overlaps (Zhang et al., 2021). Here, we analyze two
limitations of the API model:

• The GPT-3.5 model could miss gene mention entities in sentences. As in Figure 6, in the cases begin-
ning by BC2GM001536665 and BC2GM002436660, the ground truth is "ERCC3Dm protein; ‘helicase’
domains" and "Htf9-a gene; RanBP1 protein; Ran GTPase", respectively. The GPT-3.5 model misses
"‘helicase’ domains" and reports "Htf9-a gene; RanBP1; Ran GTPase", which results from the confound-
ing gene names in the large corpus.

• The GPT-3.5 could misunderstand the gene name. In the case beginning by BC2GM062242948, the
ground truth is supposed to be "AD1 Ag" while the GPT-3.5 model reports "AD1; Ag; 2H3", which
validates that the API model cannot understand that "AD1 Ag" should be considered as a whole rather
than separately. GPT-3.5 has very low scores, with an F1-Score of 11.17%.

• GPT-4 achieves better performance than GPT-3.5. GPT-4 has better performance than GPT-3.5 but
still lower than the other models, with an F1-Score of 62.10%.

• The BiLSTM model outperforms the others with the highest F1-Score, while MT-BiLSTM-CRF scores
lower, and BioBERT variants show comparable results. The BiLSTM model has the highest scores in
all three categories, with the F1-Score at 88.11%. The MT-BiLSTM-CRF model has lower scores than
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Figure 3: Comparative performance of GPT-3.5 and GPT-4 in various bioinformatics problem-solving tasks.

BiLSTM, with an F1-Score of 80.74%. BioBERT, MT-BERT, and MT-BioBERT models have similar
results, with F1-Scores around 84-85%.

4.6 Performance on Educational Bioinformatics Problem Solving

As for the evaluation of educational bioinformatics problem solving, we check the performance of two GPT
models, GPT-3.5 and GPT-4, across a set of 105 varied problems within the Bioinformatics Stronghold.
This collection primarily encompasses seven basic topics as follows: (1) String Algorithms (Baeza-Yates,
1989): This topic focuses on the manipulation and exploration of properties inherent to symbol chains. (2)
Combinatorics (Lovász & Prömel, 2004): This scope of problems quantifies distinct objects mathematically.
(3) Dynamic Programming (Bellman & Dreyfus, 2015): This topic involves progressively building up solutions
to complex problems. (4) Alignment (Edgar & Batzoglou, 2006): This process superimposes symbols of one
string over another, inserting gap symbols into the strings as necessary to represent insertions, deletions, and
substitutions. (5) Graph Algorithms (Even, 2011): This field involves interpreting and manipulating network
structures or graphs. (6) Phylogeny (Field et al., 1988): This topic models the evolutionary trajectories of
taxa. (7) Probability (Grinstead & Snell, 1997): This branch of mathematics studies the likelihood of random
event occurrences.

We manually collect these 105 problems, individually take them as chat dialogue, and put them into GPT-
3.5 and GPT-4. We use the example data set for querying and assessing accuracy. The results related to
the seven distinct topics are presented in Figure 3. For a more intuitive illustration, we also select several
examples to demonstrate the incorrect and correct responses from GPT-3.5 and GPT-4, as well as their
differing performances on the same problems in Figure 7. From the results, we can make the following four
observations:

• GPT-4 demonstrates an overall improvement compared to GPT-3.5 across various types of problems. This
is especially evident in combinatorics and graph algorithms, where GPT-4 achieves success rates of 81.82%
and 72.73% respectively, substantially higher than those achieved by GPT-3.5. Even in Phylogeny and
Probability, where both models showed relatively lower performance, GPT-4 again leads with 52.63%
and 46.15% success rates, outperforming GPT-3.5’s 21.05% and 38.46%. These findings, collated from a
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total of 105 problems, highlight the superior capabilities of GPT-4 in a broad spectrum of bioinformatics
challenges, answering 71 questions correctly, compared to GPT-3.5 which correctly solves 53 questions.

• The performance of GPT-3.5 and GPT-4 is almost consistent across different topics. Simultaneously, we
notice that for probability-related problems, both GPT-3.5 and GPT-4 could only achieve accuracy rates
of 36.4% and 46.2% respectively. In contrast, both models are good at solving Combinatorics-related
problems, achieving higher accuracy rates of 63.3% for GPT-3.5 and 81.8% for GPT-4.

• GPT-3.5 exhibits excellent performance in handling relatively simple problems. As illustrated in Figure
7, when tasked with finding common segments between two DNA sequences, GPT-3.5 is able to respond
accurately, providing appropriate program solutions and methods. However, when faced with more com-
plex problems, such as determining the maximum local alignment score of two protein strings, GPT-3.5
could propose incorrect results which are seemingly correct.

• GPT-4 demonstrates a limited capacity in tackling complex problems. For instance, as illustrated in
Figure 7, when given the exons and introns of a DNA string, we test GPT-4 by deleting the introns,
concatenating the exons to form a new string, and then transcribing and translating this newly formed
string. GPT-4 successfully manages to remove the introns and translate the DNA into an amino acid
sequence. However, for complex logical problems, such as calculating the number of all basepair edges
in a bonding graph that can be exactly matched, GPT-4 manages to outline a correct approach but
ultimately provides an incorrect answer. Perhaps we need multi-turn interactions to thoroughly solve
these complicated problems.

5 Limitations

A limitation of our GPT evaluation is that we cannot get access to the training data for GPT, and thus
cannot guarantee these datasets are not included in pretraining. We will utilize more up-to-date test data in
future works to promise that the training material does not include this. Another limitation is that some of
the models could be depreciated in the future. However, we believe that the performance would be enhanced
with an updated model in the future, and our method focuses on bridging GPT and bioinformatics rather
than a specific LLM, which is meaningful to provide guidance for this field. We will also update the results
with more advanced LLMs in our future work.

Our work is committed to the executive order regarding the use of LLMs on biological sequences, and we will
always ensure the safety of AI work. LLMs have achieved significant process fields, and it is important to
explore whether bioinformatics can benefit from this as well, which can provide guidance for bioinformatics
researchers. Moreover, we can also provide insights for researchers using AI in science and encourage more
AI researchers to contribute to natural science. Although this work makes the evaluation on six basic
bioinformatics tasks, a wide range of sub-regions in bioinformatics have not been considered. In the future,
we will further test and develop the relevant applications of the GPT model through more enriched text
scenarios. This will specifically manifest in the generative functionalization of sequences of large biomolecules,
predicting the interactions between large biomolecules or between drugs and their corresponding receptors,
designing and functionalizing large biomolecules from scratch based on original wet-lab data, and establishing
a bioinformatics application ecosystem through the GPT model.

6 Conclusion

This paper explores the applications of GPTs in bioinformatics research and evaluates them in six basic
tasks, including gene and protein named entities extraction, solving educational bioinformatics problems
and identifying potential coding regions, antimicrobial and anti-cancer peptides. Extensive experiments
demonstrate that LLMs like GPTs can achieve remarkable performance on the majority of these tasks with
proper prompts and models. We hope this work can facilitate researchers in bioinformatics about using
advanced LLMs and thus promote the development of AI for science.
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A Task Summary

Table 6: Summary of bioinformatics tasks and corresponding datasets.

Task Task Description Dataset Source Dataset Description Evaluation Model

Task 1 Identifying Coding Regions (Goebel et al., 1990) Coding regions of the Vaccinia
virus GPT-3.5, GPT-4, Llama 2 (70B), Google Bard

Task 2 Identifying Antimicrobial Peptide (Lee et al., 2023)

The training set is composed
of 1,778 antimicrobial peptides
(AMPs) and 1,778 non-AMPs,
each with an average length of
34 amino acids. The test set
contains 2,065 AMPs and 1,908
non-AMPs (each with an average
amino acid length of 39), which
have a sequence similarity of less
than 90% compared to the train-
ing set as determined by CD-
HIT.

GPT-3.5 (Davinci-ft), ESM, AMP-BERT

Task 3 Identifying Anti-cancer Peptide (Li et al., 2020)

The dataset comprises 206 non-
anticancer peptides and 138 an-
ticancer peptides, and each with
an average amino acid length of
25. Peptides exhibiting more
than 90% similarity were re-
moved from the dataset using
CD-HIT.

GPT-3.5 (Davinci-ft), ESM

Task 4 Molecule Optimization (Chen et al., 2021)

The test set derived from
the Modof dataset contains
800 molecules, with an av-
erage molecular weight of
approximately 294.27 g/mol as
determined through computa-
tional analysis of their SMILES
representations.

GPT-4, Modof

Task 5 Gene and Protein Named Entities Extraction (Yeh et al., 2005) (Greenhalgh, 1997)

The whole dataset contains
20,000 sentences (a total of
24,583 gene and protein enti-
ties).The test set contains 5,000
sequences.

GPT-4, GPT-3.5 (gpt-3.5-turbo-0613), BioBERT, MT-BERT, MT-BioBERT

Task 6 Educational Bioinformatics Problem Solving https://rosalind.info/problems/list-view/
105 questions were collected from
ROSALIND bioinformatics web-
site.

GPT-4, GPT-3.5
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B More Results on Molecule Optimization

Table 7: The result of GPT-4 and Modof in the modification of some molecules.

Molecule GPT-4 Modof
Optimized Molecule ∆logP (↑) ∆SA(↑) ∆QED(↑) Optimized Molecule ∆logP ∆SA ∆QED

1

1.19 1.72 0.0 1.90 0.58 -0.38

2

3.1 1.24 0.15 3.65 0.79 0.07

3

1.68 0.28 0.05 7.81 -0.54 -0.57

4

1.61 1.20 0.06 - - - -

5

- - - - 3.79 0.35 -0.26

6

2.49 1.34 0.07 - - - -

7

1.56 1.14 0.05 1.58 2.30 -0.18

8

2.04 1.63 0.05 2.74 0.43 0.07

9

0.12 1.47 0.0 -0.04 1.29 -0.11

10

- - - - 4.70 1.38 -0.14

11

0.54 0.17 0.25 2.74 0.08 -0.03

12

-0.46 0.17 0.28 3.98 0.02 -0.04
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Figure 4: Comparison of distributions for different metrics.

C Details of Different Metrics

LogP is a measure of a compound’s lipophilicity, indicating its distribution between a hydrophilic (water)
and a lipophilic (fat) phase. This property is critical in predicting the absorption, distribution, metabolism,
and excretion (ADME) of potential drug candidates. A suitable logP value suggests a balance between
solubility (necessary for bioavailability) and permeability (for cellular access). SA assesses the ease with
which a compound can be synthesized. This is crucial for practical drug development, as compounds that
are difficult or expensive to synthesize may not be viable for large-scale production, regardless of their
therapeutic potential. QED measures how closely a compound resembles known drugs based on several
physicochemical properties like molecular weight, hydrogen bond donors and acceptors, and logP. This metric
helps in prioritizing compounds that have higher chances of success in clinical trials based on historical data.
These three metrics are all important for measuring drug properties.
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D More Results on Identifying Potential Coding Regions from DNA Sequences

Figure 5: Comparison of LLMs for identifying potential coding regions from DNA sequences.
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E More Results on Gene and Protein NER

[GPT-4]:P00029953T0045 | 22 27 | lipase
P00030183T0000 | 32 38 | HLA-B5
P00030937A0119 | 0 4 | SGPT
P00030937A0119 | 6 10 | SGOT
P00030937A0119 | 16 35 | alkaline phosphatase
P00033873T0001 | 0 25 | Gamma glutamyl 
transpeptidase
P00033873T0001 | 27 31 | GGTP

P00029953T0045 Characteristics of lipase 
activity.
P00030183T0000 Takayasu's disease: 
association with HLA-B5.
…
P00030937A0119 SGPT, SGOT, and alkaline 
phosphatase concentrations were essentially 
normal in all subjects.

[GPT-3.5 with API]:
BC2GM001536665: ['ERCC3Dm protein’]
BC2GM003020957: []
BC2GM001910152: []
…
BC2GM057451821: []
BC2GM058058644: ['LEIBNI']
BC2GM062242948: ['AD1', 'Ag', '2H3']

You are an expert in the Named Entity Recognition field. Given a token and a sentence that contains gene
mentions, you are to generate an ASCII list of identified gene names. Each gene mention will be formatted as
follows: sentence-identifier | start-offset end-offset | optional text. Each gene mention from the same sentence
will be listed on a separate line. If a sentence doesn't have any gene mentions, it won't be included in the list.
Counting numbers need to exclude spaces, sentence-identifiers, and start from 1.

BC2GM001536665 Comparison of the encoded 
ERCC3Dm protein…
BC2GM003020957 In this study, we report the 
cloning and sequencing..
…

BC2GM058058644 Rewarding properties of 
methylphenidate…
BC2GM062242948 In this study we cloned the 
cDNA of AD1 Ag from…

Figure 6: Illustration of gene and protein NER using GPT-3.5 (gpt-3.5-turbo-0613) and GPT-4.
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F More Results on Bioinformatics Problem Solving

[USER]: Two DNA strings s ‘AACCTTGG’
and t ‘ACACTGTGA’ in FASTA format.
What is the longest common subsequence of
s and t. (If more than one solution exists,
you may return any one.) ?

[GPT-3.5]: To find the longest common 
subsequence between two DNA strings, you 
can use dynamic programming. Here's an 
approach you can follow…In this case, 
"AACTGG" is one possible longest common 
subsequence of the given DNA strings 
"AACCTTGG" and "ACACTGTGA".

[USER]: Two protein strings s 
‘PLEASANTLY’ and t ‘MEANLY’ in 
FASTA. what is the maximum alignment 
score between s and t. (Use: The 
BLOSUM62 scoring matrix. Constant gap 
penalty equal to 5) ?

[GPT-3.5]: To calculate the maximum 
alignment score between two protein strings 
using the BLOSUM62 scoring matrix and a 
constant gap penalty, you can use dynamic 
programming. Here's the approach you can 
follow…In this case, the maximum 
alignment score between the protein strings 
"PLEASANTLY" and "MEANLY" is 8.

[USER]: A DNA string s (of length at most 1 
kbp) and a collection of substrings of s acting as 
introns. All strings are given in FASTA format. 
what is the protein string resulting from 
transcribing and translating the exons of s ?
(Note: Only one solution will exist for the dataset 
provided.)

[GPT-4]: To solve this problem, you need 
to understand several biological processes…for the 
given dataset, you need to…I can guide you 
through the steps in pseudo-code or plain English. 
Here's the step-by-step pseudocode… The 
BioPython library can handle the transcription and 
translation for you, but you'll still need to 
manually handle the splicing part in this case.

[USER]: An RNA string s AGCUAGUCAU of
length having the same number of occurrences of
'A' as 'U' and the same number of occurrences of
'C' as 'G’. What is the total possible number
of perfect matchings of basepair edges in the
bonding graph of s ?

[GPT-4]: The problem is essentially asking for the
number of perfect matchings in a graph. In this
graph, each node represents a base ('A', 'U', 'C', or
'G'), and a perfect matching is a set of edges that
connects each node with exactly one other node…
So, the total possible number of perfect matchings
of basepair edges in the bonding graph of the
provided RNA sequence is 17280.

Figure 7: Comparison of GPT-3.5 and GPT-4 in dealing with different tasks.
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