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Abstract—Schizophrenia (SZ) is characterized by disruptions
in functional coupling across brain regions, often linked to
neurotransmitter dysregulation and abnormal synaptic plastic-
ity. While traditional functional connectivity analyses focus on
pairwise, synchronous interactions, they often overlook complex,
temporally delayed coupling patterns that may underlie SZ
pathology. In this study, we applied PhaseICA, a complex-valued
independent component analysis method, to resting-state fMRI
data to investigate spatiotemporal brain dynamics in SZ. The
PhaseICA method captures both stationary and nonstationary
brain waveforms by decomposing whole-brain fMRI signals
into spatially independent analytic components, incorporating
phase delays via the Hilbert transform and entropy-bound min-
imization. This framework enables identification of temporally
offset wave patterns without relying on predefined regions or
templates. Our results revealed significantly altered amplitudes
of both stationary and travelling brain waves in individuals with
SZ, with some abnormalities correlating with cognitive scores.
These findings highlight spatiotemporally delayed functional
interactions as a core feature of SZ and underscore the utility
of PhaseICA in uncovering clinically relevant brain dynamics
beyond conventional connectivity models.

Index Terms—Schizophrenia, functional coupling, PhaseICA,
amplitude, phase delay

I. INTRODUCTION

Schizophrenia (SZ) is a severe psychiatric disorder char-
acterized by disturbances in cognitive, perceptual, and emo-
tional processing. A growing body of evidence suggests that
abnormal functional coupling—particularly atypical patterns
of connectivity—plays a central role in the pathophysiology
of schizophrenia [1, 2]. Many theories attribute dysfunctional
coupling to aberrant synaptic plasticity and neurotransmitter
dysregulation, especially involving dopaminergic and gluta-
matergic systems [3, 4, 5], as well as gamma-aminobutyric
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acid (GABA) interneuron dysfunction [6]. A deeper under-
standing of dysfunctional coupling may help elucidate the
underlying neural mechanisms and guide the development of
targeted interventions for schizophrenia.

Abnormal functional coupling in schizophrenia is typically
studied using static or dynamic functional connectivity be-
tween pairs of brain regions based on predefined templates
[7, 8]. These analyses primarily focus on interactions between
spatially fixed regions or networks. While most approaches
assess pairwise functional coupling, it is increasingly recog-
nized that multi-region or network interactions may provide a
more comprehensive view of brain dysfunction. Some studies
have expanded beyond pairwise analyses using multivariate
metrics, such as total correlation, to evaluate connectivity
among multiple regions [9]. However, these methods become
computationally expensive as the number of regions increases.
Moreover, most current techniques assume synchronous (i.e.,
non-delayed) co-activation across regions, thereby neglect-
ing temporal delays in interregional communication—a phe-
nomenon increasingly reported in recent studies [10].

Crucially, spatially distinct networks may exhibit similar
fluctuation profiles with temporal offsets. Abnormal functional
coupling driven by neurotransmitter dysregulation may involve
delayed interregional effects, which are often overlooked by
conventional analyses. This weakness is derived from the in-
abiilty of detection on travelling waves, because the space and
time in the travelling wave equation y = A(x)A(t)cos(¢(x)+
¢(t)) could not be linear separated in the real-domain.

In this study, we applied a phase-integrated approach,
PhaseICA [11], to investigate SZ brain dynamics in complex
domain. This method decomposes spatially independent brain



waves by first transforming spatiotemporal fMRI signals into
analytic waveforms using the Hilbert transform, followed by
complex entropy bound minimization to optimize the spatially
independence between components. The wave component not
only reflects stationary activities within brain networks, but
also reflect nonstationary brain activities. The wave pattern
represents a recurring activities of functional coupling across
all brain voxels, capturing spatial distributions of temporal
delays without being constrained by the number of regions
or reliance on pre-defined templates. Due to the simultaneous
analysis of delayed functional coupling across the entire
brain, this method thereby reduces the risk of false positives
associated with conventional high-dimensional connectivity
analyses. Our results reveal significantly abnormal amplitudes
in the stationary and nonstationary wave on SZ patients, and
some of them is significantly related with cognition scores.

II. DATASET DESCRIPTION

The Functional Imaging Biomedical Informatics Research
Network (FBIRN) Phase III release is a large, harmonized
multi-site neuroimaging cohort comprising 362 adults, includ-
ing 186 healthy controls (HCs) and 176 patients diagnosed
with schizophrenia or schizoaffective disorder. Participants
were recruited from seven U.S. academic medical centers,
utilizing six Siemens Tim-Trio scanners and one GE Dis-
covery MR750 scanner. All participants underwent structured
clinical interviews based on the SCID-DSM-IV-TR and were
confirmed to be clinically stable for at least two months prior
to scanning.

Imaging acquisition followed the standardized FBIRN
“traveling-phantom” protocol to reduce cross-scanner variabil-
ity. Resting-state functional MRI (rsfMRI) data were acquired
using a harmonized T2*-weighted gradient-echo echo-planar
imaging (EPI) protocol applied uniformly across all 3T scan-
ners without modification. Each rsfMRI scan consisted of 162
volumes, corresponding to a duration of 5 minutes and 24
seconds. Acquisition parameters were as follows: repetition
time (TR) = 2000 ms, echo time (TE) = 30 ms, voxel size =
3.4 x 3.4 x 4 mm, field of view (FOV) = 220 x 220 mm, and
flip angle = 77°. During scanning, participants were instructed
to keep their eyes closed but remain awake.

Following quality control procedures, 166 SZ patients and
161 HC participants were retained for analysis. The dataset
was subsequently divided into two subsets: a discovery cohort
(83 SZs and 81 HCs) and a validation cohort (83 SZs and
80 HCs). No significant differences were observed in age
or gender distributions between the discovery and validation
datasets, nor between SZ and HC groups within each dataset
(all p > 0.5).

III. METHOD

We identified shared reliable brain waves in the HC and
SZ groups using a group-based analysis pipeline similar to
our previous NeuroMark framework [17]. The main difference
is that we employed the PhaseICA method [11] to reflect
the phase delay information at the same time. The phaseICA

is a complex-valued independent component analysis (ICA)
approach. Unlike conventional ICA methods that identify only
spatially stationary brain waves (analogous to static intrinsic
networks), this method is designed to capture both spatially
stationary and nonstationary waves, which propagate across
brain regions with delayed phases. The identification of reli-
able brain waves across the population was performed in below
steps: 1) Hilbert transformation and complex whitening, 2)
complex entropy bound minimization (CEBM) optimization,
3)selection of reliable brain Waves and 4) Back-reconstruction
of wave time series.
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Fig. 1. The pipeline to generate the brain waves across population.

A. Hilbert Transformation and Complex Whitening

For each participant, let Y € R7*" be the rsfMRI signals of
this participant, which includes V oscillated variables (y,, v =
1,...,V) with continuous observations at 7" time points. First
of all, Brain signal of each subject is normalized by the general
mean g and standard deviation o of all voxels with ¥ =
(Y —p)/o. The mean value of each spatial unit y,, is removed
by §u(t) = yu(t) — ZL y»(t) to ensure that correlations
and covariances are computed correctly.



For each spatial location, the real-valued time series is
transformed into a complex analytic signal:

2o(t) = yo(t) +i- H{yo(t)}, Yo=1,2,....,V (1)

where H{y,(t)} denotes the Hilbert transform of y(¢), defined
as: -
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Here, P.V. stands for the Cauchy principal value of the integral,
which is a special type of integral used when a traditional
(definite) integral does not exist due to a singularity—a point
where the function becomes infinite or undefined. The analytic
signal z,(t) = Ae',, which combines the original signal
and its Hilbert transform, allows us to compute instantaneous
amplitude, phase, and frequency from complex time series.
Stacking across V' spatial units, we obtain the complex-
valued matrix Z € CV*T. Top K eigenvectors and eigenvalues
of the complex matrix Z are obtained from fast SVD decompo-
sition, which is approximately estimated using a probabilistic
singular value decomposition (SVD) method [12], expressed
as:
Z=UxVv, 3)

where U € CT*K s the matrix of left singular vectors,
3 € REXK js a diagonal matrix of singular values, and V# €
CK*V is the Hermitian transpose of the right singular vectors.
Here, K < V denotes the number of reduced components.
Finally, analytic signal 7 is whitened by whitening matrix
We = X7 YUH and the whitened matrix Z,, are expressed
as :

Zy=W,Z=x"1U"(UzVH) = Vv 4)

Thus, whitening actually maps the data to the space spanned
by the right singular vectors, and the result has unit variance.
The whitened signals from all subjects (P = 1,. .., p) are then
concatenated, Z,; = [Zwl,ng,... Zow »] The concatenated
matrix is reduced to K components using singular value
decomposition (SVD) as Zall = U 2 Va“ The reduced
whitened population signals Zw all = Va"are obtained from
the Hermitian transpose of the right singular vectors. Here,
VH € CK*5 represents the reduced complex-valued signal
matrix across the population.

B. Complex Entropy Bound Minimization (CEBM) Optimiza-
tion
The whitened data Z, includes K spatial components
Zw,, 1 =1,..., K. We seek independent components defined
as:
S = WaZu, )

where S € CE*T contains the estimated sources and W,
is the demixing matrix. The goal is to find an optimal W
such that the derived sources are as independent as possible.
A natural cost function is mutual information minimization,
which leads to the following objective:

ZH Si)

mm J(Wy) = —log | det(Wy)| (6)

where H(-) denotes the differential entropy, and its com-
putation requires estimation of the source density function.
Typical ICA methods make use of fixed nonlinearities, and
their extensions to the complex domain assume circularity
(e.g., Complex FastICA [14]), but this assumption is violated
by noncircular complex signals derived from Hilbert transfor-
mations. In this study, we adopt the Complex Entropy Bound
Minimization (CEBM) method [15] to optimize the indepen-
dence of complex-valued sources. CEBM minimizes mutual
information as in our objective ( 6) and makes use of the
maximum entropy principle to approximate the density using
measuring functions. The approach introduces two entropy
bounds: For a linear decomposition [s1, s2] = Blu, v], the first
entropy bound for each sources s; could be described as:

Hy(si) < log(|det(B)]) + H(u) + H(v).  (7)

For a polar decomposition [s1, s3] = Brsinf, cos 6], and u
and v are the complex magnitude and the principal value of
the argument of u+7v, respectively, the second entropy bound
could be described as:

Hy(s) < log|det(B)| + Ellog(r)] + H(r) + log(27). (8)
It computes both bounds and chooses the tighter one:
H(sy) = min{Hy (i), Ha(sk)}. )

The entropy bound H (sk) serves as a surrogate for the true
entropy H (s ). This framework minimizes a tight upper bound
of entropy, thus avoiding direct estimation of the probability
density function. At each iteration ¢, the algorithm updates
each row w; of the demixing matrix W, separately, using con-
jugate gradient descent to minimize H (sg) with the iterative
function 10, 11, 12:
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where p is the step size and w,, is the conjugate of w. The
%w("t)) is the conjugate gradiant of .J(wy,,). This optimization
also removes the need to constrain Wy to be orthogonal, al-
lowing for a more flexible search space. Detailed computation
could be referred to the [15] article.

Each complex component S; = ax + iby, where a =
Re(Sk), br = Im(Sy), represents a spatiotemporal brain
wave of the form: S = Ay cos(fy) The real and imaginary
parts correspond to spatial modes of the wave at phase § = 0
and 0 = 7, respectively. The magnitude Aj describes the
amplitude envelope, and its spatial distribution is calculated
as the norm of the complex value:

A, = ‘Sk| = \/ai—i—bi

13)



The spatial distribution of phase is given by:

0 = arg(Sk) = arctan <bk>
ay

(14)

C. Selection of Reliable Brain Waves

We selected reliable brain waves based on a metric, defined
as the maximum rotated similarity between corresponding
components extracted from two independent datasets. Specifi-
cally, the similarity between two complex-valued components
u and v was computed as the maximum Hermitian inner prod-
uct after rotating one component by a phase shift 6 € [—, 7]:

i0
r(u,v) = max [, ve™)]
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Here, || - || denotes the Euclidean norm of a complex vector,
and (-, -) represents the Hermitian inner product. Brain waves
were considered reliable if their reproducibility exceeded a
threshold of 0.6.

D. Back-Reconstruction of Wave Time Series

The spatial pattern of each brain wave component was first
normalized by dividing by its maximum absolute amplitude,
such that the maximum spatial amplitude of each wave equals
1. The corresponding time series for the waves, denoted by
the complex-valued mixing matrix M = [mq,ma,...,mg] €
CT*KE  was back-reconstructed using the Moore-Penrose
pseudoinverse of the spatial matrix S:

M = XSf (16)

Here, X € CT*V is the original spatiotemporal signal
matrix, and ST is the Moore-Penrose pseudoinverse of S €
CE*V | the spatial patterns of the K brain waves.

For each wave k, the mean amplitude across time points
was computed as:

T

- 1

Ap =5 Ime(t)l (17)
t=1

Group-level differences in the mean wave amplitude A were

statistically tested between the SZ and HC groups.

IV. RESULTS

We applied group-level brain wave decomposition with 100
components to both the discovery and validation datasets,
each comprising SZ and HC participants with no significant
differences in age or gender distributions. After excluding
components unrelated to gray matter, we identified 67 reli-
able brain waves based on reproducibility criteria. We then
examined the mean amplitude of each wave’s time series over
the entire duration. Among the 67 reliable brain waves, seven
exhibited statistically significant differences in mean amplitude
between the SZ and HC groups (FDR-corrected p < 0.001).
The spatial distributions of these six waves are presented in
Figure 2, and the corresponding results from two-sample ¢-
tests are shown in Figure 3.

These differences in wave amplitude suggest abnormal
functional coupling across multiple brain regions in SZ pa-
tients. The following waves demonstrated notable group-level
alterations:

o Wave C14: SZ patients show the decreased wave ampli-
tude in the medial part of the primary motor cortex (M1),
related motor functions.

o Wave C25: This wave shows the peak region in the
superior occipital gyrus, involved in the anti-phase cou-
pling between posterior medial cortex(PCC) and the tail
of the caudate nucleus. The SZ patients show significant
decreased wave amplitude.

e Wave C26: SZ patients showed increased coupling
among the ventricles, thalamus, and striatum, with ven-
tricular activity exhibiting anti-phase coupling relative to
thalamic and striatal activity.

o« Wave C35: SZ patients show the decreased anti-phase
coupling between superior occipital gyrus and ventral
occipital lobe.

o Wave C42: The decreased wave activities in the bilateral
insular regions in SZ patients.

o Wave C45: Elevated coupling was observed among the
insula, superior temporal gyrus (STG), and cerebellum
in SZ patients. Notably, insular activity was in anti-phase
with STG and cerebellar activity.

e« Wave C46: This wave primarily engaged the visual
cortex in the occipital lobe and revealed reduced coupling
or modularity between the primary and secondary visual
cortex in SZ patients.

o« Wave C48: The wave shows the anti-phase coupling
between medial region and lateral region in occipital lobe.
SZ patients show reduced coupling.

o« Wave C49: Increased coupling strength was observed
between the dorsomedial prefrontal cortex (dmPFC) and
ventromedial prefrontal cortex (vmPFC), with an anti-
phase relationship characterizing SZ patients.

o Wave C52: SZ patients show the decreased amplitude in
the lateral occipital lobe.

Generally, SZ patients show a decreased wave amplitude in
the region related with primary functions (e.g. related visual
and motor functions), including C14, C35, C46, C48 and C52.
On the contrary, SZ patients has a increased amplitude for
waves (C26, C45 and C49), which spatial regions associated
with many high-level functions. We do not see the association
of wave amplitudes with both PANSS positive and negative
scores. But We have found their significance association
(FDR corrected p;j0.01) with 5 congition scores (Speed Of
Processing, Attention Vigilance, Working Memory, Visual
Learning and CMINDS composite). Specifically, the ”Speed
Of Processing” score is related with C25 and C45 amplitudes.
The attention vigilance” score is significantly and positively
related (r=0.27) with C25 amplitude but negatively related
(r=-0.21 and -0.22) with C26 and C49 wave amplitudes.
The “"Working Memory” score is related (r=0.25) with C25
amplitude. “Visual Learning” ability is associated (r=-0.24)
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Fig. 2. The amplitude and phase delay distributions of significant brain waves. Left three columns: Amplitude distribution (Sagittal, coronal and Axial
views). Right three columns: Phase delay distribution (Sagittal, coronal and Axial views). Both maps are masked to include only regions with wave amplitude

greater than 0.1.



with C45 amplitude, while the "CMINDS composite” score is
related (r=0.24 and -0.25) with C25 and C45 amplitudes.

More importantly, the brain regions involved in Waves C45,
C46, C49 include many cortical areas known to be enriched
with neurotransmitter receptors vulnerable in schizophrenia,
as reported by Hansen et al. [16]. This convergence suggests
a strong association between altered brain wave dynamics and
underlying neurotransmitter dysregulation in SZ.
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Fig. 3. Amplitude comparison between healthy controls (HC) and schizophre-
nia (SZ) patients in significant brain waves, using two-sample t-tests across
the full dataset. Each box represents the mean amplitude of a wave time
series in each group. The significance of all above components is Benjamini-
Hochberg FDR-corrected, with the p value below 0.001.

V. CONCLUSION AND DISCUSSION

In this study, we applied PhaseICA, a complex-valued ICA
framework, to uncover abnormal spatiotemporal brain waves
in schizophrenia. Unlike conventional static connectivity or
pairwise dynamic methods, PhaseICA captures multi-region
interactions with inherent phase delays, offering a biologically
grounded characterization of functional coupling. Our analysis
revealed significant alterations in wave amplitudes among SZ
patients, particularly in circuits involving the thalamus, stria-
tum, insula, and visual and motor cortices. These abnormalities
co-localized with cortical distributions of neurotransmitter re-
ceptors known to be affected in schizophrenia, supporting the
hypothesis that altered wave dynamics may reflect underlying
neuromodulatory dysfunction. In the future, it would be better
to refinement of spatial components using subject-specific op-
timization process to get an accurate evaluation on amplitude.
The hypothesis on the reflection of neurotransmitters should
be validated by the medication effect, as well as symptom
changes. Furthermore, the phase information to reflect the
movement of brain activities should be further analyzed via
a dynamic framework with functional directionality. Overall,
PhaseICA opens a new direction for investigating large-scale
brain dynamics in mental disorders and may inform future
strategies for biomarker development and neuromodulation-
based interventions.
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Fig. 4. Three examples on the association between abnormal amplitudes and
SZ cognition scores with significance Benjamini-Hochberg FDR-corrected p
below 0.01.
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