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Abstract

We introduce Oxford Day-and-Night, a large-scale, egocentric dataset for novel
view synthesis (NVS) and visual relocalisation under challenging lighting con-
ditions. Existing datasets often lack crucial combinations of features such as
ground-truth 3D geometry, wide-ranging lighting variation, and full 6DoF motion.
Oxford Day-and-Night addresses these gaps by leveraging Meta ARIA glasses to
capture egocentric video and applying multi-session SLAM to estimate camera
poses, reconstruct 3D point clouds, and align sequences captured under varying
lighting conditions, including both day and night. The dataset spans over 30 km of
recorded trajectories and covers an area of 40,000 m2, offering a rich foundation
for egocentric 3D vision research. It supports two core benchmarks, NVS and
relocalisation, providing a unique platform for evaluating models in realistic and
diverse environments. Project page: https://oxdan.active.vision/

1 Introduction

Intelligent wearable devices like smart glasses are gaining traction in the research community.
Unlike bulky AR/VR headsets, their compact, lightweight design makes them more suitable for
everyday use. To become as essential as smartphones, smart glasses must perform reliably across
diverse environments, including challenging ones. A particularly tough scenario is outdoor low-light
conditions, which uniquely degrade 3D vision tasks such as reconstruction, novel view synthesis
(NVS), and visual localization due to poor signal-to-noise ratios. These tasks are key to interactive 3D
experiences, yet current methods struggle in such settings. This highlights the need for a large-scale,
egocentric 3D dataset tailored to low-light environments.

Existing 3D datasets, typically captured with handheld or vehicle-mounted cameras, provide diverse
imagery but lack the combination of natural head motion, color, and full-day lighting variation, which
are keys for all-day-long egocentric applications. Driving datasets like Oxford RoboCar [1] and
CMU [2] offer large-scale, varied scenes including night, but are mostly limited to planar motion,
unsuitable for agile head movements. Handheld datasets such as Cambridge Landmarks [3] and
InLoc [4] offer more pose variation but limited lighting diversity. Aachen Day-Night [5] targets
night-time localization but includes few night queries. LaMAR [6] provides egocentric day-night
data, but its grayscale headset imagery limits suitability for color-dependent consumer applications.

To overcome limitations in existing datasets, we present Oxford-Day-and-Night, a large-scale video
dataset captured across five locations in Oxford at various times of day. Spanning 30 kilometers
and 40,000 m2, it complements current datasets to provide a more comprehensive benchmark for
3D vision. This dataset is enabled by two key components: the Meta ARIA glasses and the Oxford
Spires dataset [7].

Meta ARIA glasses are compact, sensor-rich devices equipped with grayscale and RGB cameras,
IMUs, GPS, and more, enabling seamless and accurate data collection. Their built-in visual Simul-
taneous Localization and Mapping (SLAM) system ensures robust, multi-session camera tracking
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Figure 1: Overview of the Oxford-Day-and-Night Dataset at Example Scene Bodleian. Our
dataset captures egocentric sequences across five locations in Oxford under diverse lighting conditions
using Meta ARIA glasses. Top-left: Sample fisheye camera views across day and night recordings.
Bottom-left: multi-session SLAM points aligned with high-quality laser ground truth. Right: Multi-
session SLAM trajectories visualized on a satellite map, demonstrating consistent camera tracking
across varying times of day. The dataset enables testing of challenging benchmarks for novel view
synthesis and visual relocalization under extreme illumination changes.

and 3D reconstruction under dramatic lighting changes and city-scale settings. This multi-session
SLAM system is the key component in creating our dataset, automating camera pose annotation
for challenging night sequences at large scale. As a result, our video recordings cover 30 km and
40,000 m2 areas in day and night settings, all paired with accurate camera poses and point cloud
derived from the SLAM system.

Complementing this multi-session SLAM output, the Oxford Spires [7] dataset offers high-quality
3D laser scans of various Oxford locations. By aligning ARIA recordings with these scans, we
both validate the accuracy of the ARIA data and offer reliable 3D geometric ground truth to support
downstream tasks and benchmarking.

We benchmark two key 3D vision tasks using our dataset: novel view synthesis (NVS) and visual
relocalization. For NVS, Oxford-Day-and-Night presents a challenging, city-scale setting with
dramatic lighting variations, while the inclusion of ground-truth point clouds allows for quantitative
evaluation of reconstructed geometry. For visual relocalization, the dataset offers a large set of
nighttime query images (7197 in total), which is 37× larger than the Aachen night split (191 in
total), enabling rigorous testing of localization pipelines under extreme conditions. Our experiments
demonstrate that current state-of-the-art methods struggle on this dataset, exposing their limitations
and underscoring the value of our benchmark.

Our contributions are summarized as follows. First, We present Oxford-Day-and-Night, a large-scale
egocentric dataset featuring five urban scenes captured at multiple times of day with extreme illumi-
nation changes, along with their corresponding ground-truth point clouds. Second, We demonstrate
two primary use cases: (i) a NVS benchmark for city-scale scenes with photometric diversity and
geometry reference, and (ii) a visual relocalization benchmark featuring extensive night-time queries
for testing robustness under challenging conditions. Last, We evaluate state-of-the-art NVS and
relocalization methods on our dataset, revealing significant performance drops and underscoring the
value of our dataset in future research.
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Figure 2: Example Frames Captured at Different Lighting Conditions. The severe degradation in
visual quality from day to night highlights the difficulty of consistent scene understanding, posing
significant challenges for both novel view synthesis (NVS) and visual relocalization methods.

2 Related Work

3D Reconstruction Datasets. Evaluating 3D reconstruction algorithms relies on accurate ground
truth 3D models, which are typically obtained using methods such as SLAM, Structure-from-Motion
(SfM)[8, 9], Terrestrial Laser Scanners (TLS)[10, 11], or through synthetic data [12]. Early multi-
view stereo benchmarks like Middlebury [13] and DTU [11] used structured light scanners on
robotic arms to capture small objects, while TLS has been employed for large-scale indoor and
outdoor environments in datasets such as EuROC [10], ETH3D [14], Tanks and Temples [15], and
ScanNet++[16]. Recent SLAM datasets[17, 18, 19] have extended TLS-based ground truth capture
to outdoor settings, often integrating lidar for its robustness to lighting variation. These include
environments ranging from natural landscapes [20] to structured urban areas [19, 21, 7].

Despite their geometric precision, many existing datasets depend on heavy, bulky, or sensitive
equipment, which limits their ability to capture dynamic, agile camera motions, particularly from an
egocentric perspective. Our dataset addresses this gap by integrating TLS-derived ground truth from
Oxford Spires [7] with lightweight, wearable ARIA glasses. This combination enables high-fidelity
3D geometry alongside rich egocentric video sequences recorded under diverse motion patterns and
lighting conditions, offering a valuable resource for advancing reconstruction under realistic and
challenging scenarios.

Novel View Synthesis Datasets. NVS relies on datasets with multi-view images and accurate
camera poses to enable the synthesis of novel viewpoints. Early datasets such as ShapeNet [22] and
DTU [11] focused on object-centric settings, offering clean imagery and precise poses but limited
diversity, often through synthetic renderings or controlled captures. As the field progressed toward
more realistic scenarios, datasets like Tanks and Temples [15], ScanNet [9], and RealEstate10K [23]
introduced real-world indoor and outdoor scenes with greater complexity in geometry and lighting.
LLFF [24] and NeRF [25] established canonical benchmarks for neural rendering, with densely
sampled forward-facing views, later extended to unbounded 360° captures in Mip-NeRF 360 [26].

More recent efforts have emphasized scale and diversity: CO3D [27] and Objaverse-XL [28] con-
tribute large-scale object-centric data for real and synthetic domains, while scene-level datasets like
Phototourism [29], MegaScenes [30], and DL3DV-10K [31] provide broader appearance variation
across lighting, weather, and time. However, a consistent limitation remains, datasets with accurate
ground-truth geometry are typically synthetic or limited in scale, while those offering visual diversity
often lack high-quality geometry and precise camera calibration. Our dataset addresses this gap by
combining large-scale real-world scenes, accurate ground-truth geometry, precise camera poses, and
broad day-to-night visual variation, supporting the training and evaluation of generalizable NVS
models under realistic conditions.

Visual Relocalization Datasets. Visual relocalization estimates a 6-DoF camera pose within a
known environment using image data. Existing datasets for this task are typically categorized as
indoor or outdoor, but each comes with notable limitations. Early indoor benchmarks such as 7-
Scenes [32] and 12-Scenes [33] focus on small, static spaces with RGB-D input, but their constrained
geometry and limited spatial coverage have led to performance saturation. Later efforts like InLoc [4],
Indoor6 [34], and the Hyundai Department Store dataset [35] introduced more realistic conditions,
featuring textureless surfaces, dynamic elements, and moderate illumination changes, but still fall
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Figure 3: Data Collection and Processing Pipeline. At a collection site, our pipeline starts with
a) capturing 2–10 minute videos using ARIA glasses under varying lighting conditions. These
multi-session recordings are processed using b) the MPS SLAM system to generate point clouds and
camera trajectories in a unified coordinate frame. The colors of the points and trajectories represent
different recording sessions; c) Leveraging the ARIA data and MPS outputs, we construct two dataset
variants for NVS and visual relocalization tasks. Example scene: Observatory Quarter.

short in capturing the full variability needed for robust relocalization, particularly under extreme
lighting shifts due to their reliance on artificial indoor lighting.

Outdoor datasets offer greater environmental diversity but often compromise in other areas. Vehicle-
mounted datasets such as Oxford RoboCar [1], CMU [2], and KITTI [36] span large urban areas and
varied conditions across time, weather, and lighting, yet are constrained to road-following, forward-
facing viewpoints unsuitable for agile egocentric applications. Handheld datasets like Cambridge
Landmarks [3] and InLoc provide more pose variety but limited lighting diversity. Aachen Day-
Night [5] introduces night-time scenarios, though with relatively few queries. LaMAR [6] stands
out for its egocentric, full-day data collection, but its grayscale headset imagery reduces relevance
for color-dependent consumer applications. Overall, existing datasets lack the crucial combination
of natural head motion, full-color imagery, and continuous day-long lighting variation required to
rigorously evaluate robust, all-day, egocentric visual relocalization systems.

Egocentric Datasets. Popular egocentric datasets [37, 38, 39] have introduced collections of first-
person videos in kitchen environments, annotated with fine-grained actions and object interactions.
More recent efforts have expanded the scale, diversity, and realism of such data. Ego4D[40] represents
a major milestone, offering large-scale, multimodal egocentric video with rich annotations for episodic
memory, hand-object interaction, forecasting, and audio-visual understanding. EgoVid-5M[41]
supports generative modelling with fine-grained action labels, kinematic data, and textual descriptions
tailored for video generation tasks. Meta Project Aria has released several open datasets, including
Aria Digital Twin[42], which provides high-fidelity ground truth for objects, environments, and
human activities, and Aria Everyday Activities[43], which captures real-world tasks using RGB,
stereo IR, IMU, eye-tracking, and audio sensors. EgoExo [44] stands out for offering synchronized
egocentric and exocentric video recordings.

While existing datasets support action recognition, question answering, and general video under-
standing, they often lack 3D geometry, camera motion, and lighting variation, particularly day–night
transitions. In contrast, our large-scale dataset targets egocentric 3D vision under varying lighting
conditions and includes camera poses and 3D point clouds aligned with ground truth geometry.

3 Oxford Day-and-Night

Our dataset is designed to advance research in egocentric perception under challenging, real-world
conditions. It captures large-scale urban environments from a head-mounted, first-person perspective,
characterized by natural and agile head movements. A key emphasis is placed on diverse lighting
scenarios, with recordings conducted during the day, at dusk, and at night. For each site, the dataset
includes high-quality video streams paired with estimated camera poses, along with a semi-dense
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point cloud reconstructed via a SLAM system. From these fundamental elements, we derive two
dataset variants tailored for NVS and visual relocalization tasks, each optimized for different image
and point cloud density requirements.

3.1 Data Collection and Processing

We collect data using Meta ARIA glasses, which record raw sensor streams including IMU, RGB,
and grayscale video. To capture varied lighting conditions, day, dusk, and night, sessions are recorded
between 4-10pm, covering the natural transition from light to dark. Two individuals wear the glasses
casually at each site. Recordings are grouped by location and processed with multi-session Machine
Perception Service (MPS) provided by Meta, which estimates per-frame camera poses and semi-dense
point clouds unified to a common coordinate frame. Fig. 3 illustrate this data collection process.

Meta ARIA Glasses is a lightweight, sensor-rich device designed for research-grade egocentric
data capture. We use recording Profile 2, optimized for RGB video, capturing 20 FPS from both
RGB (1408×1408, 110◦ FOV) and global shutter grayscale SLAM cameras (640×480, 150◦×120◦

FOV), all with fisheye lenses for wide coverage. It also records high-frequency inertial data from dual
IMUs (1000Hz and 800Hz). With 2 hours of runtime per charge, ARIA enables efficient, city-scale
recording without bulky gear.

MPS is a cloud-based SLAM service that processes grayscale fisheye video and IMU data to generate
high-frequency 6-DoF camera trajectories and semi-dense point clouds. It also support multi-session
SLAM, which fuses recordings into a single global coordinate frame. This is the core component of
our data collection pipeline, ensuring consistent spatial alignment across varying lighting conditions.
The resulting globally aligned poses and 3D reconstructions form the backbone of our dataset.

3.2 NVS Dataset Creation

We preprocess video frames, camera poses, and semi-dense point clouds to support NVS tasks
through three key steps. First, we temporal subsample video frames by 5×. As we recorded video
at 20 fps, for large-scale scenes like Bodleian with 2.8 hours of footage, this results in more than
200,000 frames. While dense image input benefits NVS, such volume demands excessive storage
and memory. Second, image undistortion, since ARIA uses fisheye lenses and most NVS methods
assume a pinhole camera model, we provide both the original and undistorted images. Third, point
cloud filtering, to improve geometric quality, we filter the semi-dense SLAM point cloud by removing
points with high uncertainty, retaining only those with a depth standard deviation below 0.4 m and
inverse depth standard deviation below 0.005 m−1. This results in cleaner geometry suited for NVS
systems such as 3DGS [45, 46, 47].

3.3 Visual Relocalization Dataset Creation

We construct our visual relocalization benchmark on top of our NVS dataset. Following established
conventions [4, 5], the dataset comprises a set of daytime images with known camera poses (the
database) and a separate set of images with unknown poses (the queries). The database images are
used either to build a Structure-from-Motion (SfM) model for feature-matching-based relocalization
methods [48, 49, 50], or as training data for pose regression-based approaches [51, 52]. Since each
scene includes multiple video sequences recorded at different times, many frames depict the same
locations from similar viewpoints, leading to redundancy. To promote diversity and reduce overlap,
we apply spatial filtering based on the ground-truth camera poses.

We perform spatial filtering by first randomly shuffling all images in a scene and iterating through
them to ensure pose diversity. An image is selected if its camera pose lies beyond a spatial radius
of θpos from any previously selected pose; if nearby poses exist, the image is selected only if its
orientation differs by at least θori. This guarantees diversity in both position and viewpoint. For
outdoor scenes (Bodleian Library, H.B. Allen Centre, Keble College, Observatory Quarter), we use
thresholds of θpos = 1.5 meters and θori = 20◦; for the indoor Robotics Institute scene, we adopt
stricter thresholds of θpos = 0.5 meters and θori = 20◦ to reflect its smaller scale.

We apply spatial filtering independently to both daytime and nighttime images. From the filtered
daytime set, we construct the visual relocalization benchmark by splitting the images into a database
and a daytime query set using a 2:1 ratio. All filtered nighttime images are retained and used solely
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Table 1: Aria MPS Trajectory Quality. We evaluate the aligned Aria trajectory quality using the
point-to-point distance between the aligned MPS point cloud and the ground truth map.
Point Dist. ↓ Bodleian Library H.B. Allen Centre Keble College Observatory Quarter Robotics Institute
Mean (cm) 9.7 5.2 9.3 7.1 2.4
Median (cm) 8.0 3.6 7.6 4.6 1.4

a)

b) c)

Figure 4: ARIA MPS Quality Assessment. We leverage Frontier and AprilTag to align ARIA
recordings to TLS ground truth map. a) The Frontier handheld perception unit, equipped with three
wide FoV cameras and a 64-channel LiDAR; b) A snapshot of an AprilTag; c) ARIA trajectories
aligned within the ground truth TLS map in the HBAC scene. ARIA trajectories colors indicates from
different recording sessions.AprilTag poses are highlighted with small colored coordinate frames.

as the nighttime query set, without further splitting. In total, the dataset comprises 5,466 database
images, 2,819 daytime query images, and 7,179 nighttime query images. Full details of the filtering
procedure are provided in the supplementary material.

3.4 Integration with Ground Truth Map from Oxford Sprires

Oxford Spires [7] is a high-fidelity dataset featuring precisely captured 3D point cloud maps using
terrestrial laser scanning (TLS). We complement our Oxford day-and-night dataset with ground truth
3D point clouds from Oxford Spires to provide accurate point cloud reference models as the ground
truth maps for benchmarking localization and NVS tasks. These maps were captured with a Leica
RTC360 TLS, offering millimeter-level accuracy. We refer readers to [7] for more details.

3.5 ARIA MPS Accuracy Evaluation

To align the Aria world frame with a ground truth map, we developed an automated pipeline.
AprilTags [53] are placed along planned paths, and their poses are logged in the ground truth frame
using our handheld unit, Frontier, which captures images and LiDAR scans: images yield tag poses
via AprilTag detection [54], while LiDAR scans are aligned with the map to produce centimeter-
accurate trajectories [17]. Using calibrated camera-LiDAR extrinsics [55], all tag poses are expressed
in the ground truth frame. We illustrate this process in Fig. 4.

Given the known tag poses in the ground truth map frame, each time a tag appears in the field of
view of the Aria glasses, we compute the transformation between the ground truth map frame and
the Aria world frame Tmap,world = Tmap,tag(Taria,tag)

−1(Tworld,aria)
−1, where Tmap,tag is a tag pose in

the ground truth map frame, and Taria,tag is the individual tag detection in the local camera frame of
the Aria glasses and Tworld,aria is the corresponding Aria poses at the time of the tag detection in the
arbitrary world frame from MPS. We discard detections with poor viewing angles or distances, then
average valid transformations to align the closed-loop trajectory and point cloud with the map frame
while preserving MPS output consistency.

To further improve MPS-to-GT alignment, the trajectory is refined by registering its associated point
cloud to the ground truth map using Iterative Closest Point (ICP) [56]. The resulting trajectory is
accurately aligned to the ground truth, with an average point-to-point error of 6.7 cm. Quantitative
results are shown in Tab. 1.

6



3.6 Limitations

The accuracy of our ground-truth camera poses ultimately depends on the multi-session SLAM system
provided by Aria MPS, and precisely quantifying SLAM accuracy in a large-scale environment is
non-trivial. Traditional methods for obtaining ground-truth poses often rely on additional sensors,
such as LiDAR or VICON motion capture systems. However, LiDAR can be unreliable in constrained
areas like narrow tunnels, while VICON is impractical for city-scale deployments. Although we use
AprilTags localized within our TLS maps for additional reference, both their detection and registration
introduce further sources of error into the ground-truth estimation process.

4 Experiments

4.1 Benchmarking Visual Relocalization

Benchmarked Methods. We evaluate a broad range of visual relocalization methods on our dataset,
including both feature matching (FM) approaches and scene coordinate regression (SCR) methods.

Feature Matching Methods. We adopt the HLoc pipeline [48], a widely used benchmark framework
for structure-based localization. The pipeline begins by constructing a Structure-from-Motion (SfM)
model using the daytime database images, based on pairwise image matching. At test time, the top
50 most visually similar database images are retrieved for each query image using NetVLAD [57],
following standard practice. Feature matching is then performed between the query and retrieved
images to establish 2D-3D correspondences via triangulated 3D points from the SfM model. Finally,
the camera pose of the query image is estimated using PnP-RANSAC.

We evaluate four sparse matching methods within this pipeline: SIFT [58], SuperPoint [64] + Super-
Glue [49] (SP+SG), SuperPoint + LightGlue [59] (SP+LG), and DISK [60] + LightGlue (DISK+LG).
Additionally, we evaluate three recent dense matching methods: LoFTR [50], RoMA [61], and
MASt3R [62], which directly compute dense correspondences between images without requiring
keypoint detection.

Scene Coordinate Regression Methods. We also evaluate SCR-based methods, which directly regress
3D scene coordinates from 2D image pixels. Specifically, we test ACE [51], GLACE [52], and
R-SCoRe [63]. These methods are trained on our daytime database images to predict per-pixel scene

Table 2: Visual Relocalization Results on Day and Night Queries. We report the percentage of
query images correctly localized within three thresholds: (0.25m, 2°), (0.5m, 5°) and (1m, 10°).
Results are shown for both feature-matching (FM) and scene coordinate regression (SCR) approaches.
For FM approaches, the top 50 images retrieved using NetVLAD [57] are used for matching.

Visual Relocalization Results on Day Queries
Bodleian Library H.B. Allen Centre Keble College Observatory Quarter Robotics Institute

FM

SIFT [58] 91.91 / 96.34 / 97.02 75.95 / 81.65 / 82.91 84.98 / 88.78 / 91.06 89.86 / 92.69 / 92.92 70.07 / 73.07 / 74.56
SP+SG [49] 96.26 / 98.85 / 99.16 96.84 / 98.73 / 99.37 94.68 / 97.34 / 98.10 94.81 / 95.99 / 95.99 89.28 / 90.77 / 91.77
SP+LG [59] 95.73 / 98.32 / 98.85 96.84 / 98.10 / 98.10 92.78 / 96.20 / 97.15 94.34 / 95.75 / 95.99 88.28 / 89.53 / 90.02
DISK+LG [60] 94.73 / 97.71 / 98.78 93.67 / 97.47 / 97.47 85.74 / 89.54 / 91.25 92.45 / 95.05 / 95.28 79.80 / 84.79 / 85.79
LoFTR [50] 96.26 / 98.47 / 99.08 96.84 / 97.47 / 98.10 94.30 / 96.96 / 97.91 94.81 / 95.28 / 95.99 85.04 / 87.03 / 87.53
RoMA [61] 92.14 / 95.42 / 96.34 87.34 / 93.04 / 94.30 91.83 / 96.20 / 97.15 91.27 / 93.87 / 93.87 85.79 / 87.78 / 88.53
MASt3R [62] 90.61 / 93.82 / 96.18 94.30 / 98.73 / 99.37 94.68 / 97.91 / 98.86 89.39 / 92.92 / 94.58 84.54 / 90.52 / 94.02

SCR
ACE [51] 0.00 / 0.00 / 0.99 0.63 / 8.86 / 31.65 0.57 / 3.80 / 22.24 0.24 / 8.02 / 25.24 0.00 / 2.24 / 11.72
GLACE [52] 0.00 / 0.61 / 10.38 0.63 / 4.43 / 34.81 0.19 / 4.18 / 35.93 0.24 / 6.13 / 33.02 0.00 / 0.75 / 29.43
R-SCoRe [63] 47.71 / 68.32 / 79.62 50.00 / 64.56 / 73.42 60.46 / 75.10 / 85.74 45.52 / 58.02 / 71.23 5.99 / 12.47 / 18.20

Visual Relocalization Results on Night Queries
Bodleian Library H.B. Allen Centre Keble College Observatory Quarter Robotics Institute

FM

SIFT [58] 9.70 / 13.72 / 16.09 4.01 / 5.35 / 7.57 0.40 / 0.79 / 1.39 2.38 / 3.35 / 4.55 41.54 / 46.81 / 49.04
SP+SG [49] 21.63 / 26.55 / 30.78 44.32 / 57.46 / 64.14 10.66 / 13.57 / 17.27 48.14 / 54.40 / 58.05 71.12 / 73.56 / 74.47
SP+LG [59] 20.46 / 25.28 / 28.78 43.43 / 54.12 / 61.47 9.99 / 14.16 / 18.27 47.91 / 53.50 / 57.68 70.11 / 71.83 / 73.05
DISK+LG [60] 14.75 / 17.54 / 20.12 9.58 / 11.36 / 14.70 0.53 / 0.79 / 1.06 16.77 / 20.42 / 22.95 53.19 / 57.55 / 60.49
LoFTR [50] 22.42 / 26.55 / 29.20 41.20 / 52.78 / 58.80 10.39 / 13.63 / 17.01 50.00 / 57.00 / 60.13 66.87 / 70.52 / 72.44
RoMA [61] 25.24 / 30.98 / 35.18 57.91 / 74.39 / 79.06 14.96 / 22.63 / 30.91 58.94 / 66.92 / 70.79 72.34 / 75.38 / 76.60
MASt3R [62] 15.65 / 17.54 / 19.98 49.22 / 59.02 / 66.59 12.24 / 16.08 / 19.66 48.66 / 54.47 / 59.91 65.65 / 72.95 / 77.00

SCR
ACE [51] 0.00 / 0.00 / 0.00 0.00 / 0.00 / 0.00 0.00 / 0.00 / 0.00 0.00 / 0.00 / 0.00 0.10 / 0.10 / 0.91
GLACE [52] 0.00 / 0.00 / 0.03 0.00 / 0.00 / 0.00 0.00 / 0.00 / 0.99 0.00 / 0.00 / 0.00 0.00 / 0.00 / 8.21
R-SCoRe [63] 2.72 / 7.57 / 13.10 5.57 / 11.58 / 23.61 0.20 / 0.99 / 1.92 3.06 / 7.75 / 13.34 2.13 / 6.08 / 9.52
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Table 3: Accuracy of RoMA on the Visual Relocalization Dataset Using the HLoc Pipeline
with Various Image Retrieval Methods on Night Queries. We report the percentage of correctly
localized query images within thresholds of (0.25m, 2°), (0.5m, 5°), and (1m, 10°).

Bodleian Library H.B. Allen Centre Keble College Observatory Quarter Robotics Institute
RoMA + NetVLAD 50 [57] 25.24 / 30.98 / 35.18 57.91 / 74.39 / 79.06 14.96 / 22.63 / 30.91 58.94 / 66.92 / 70.79 72.34 / 75.38 / 76.60
RoMA + DIR 50 [65, 66] 33.46 / 39.10 / 42.30 55.46 / 72.16 / 81.51 16.48 / 23.36 / 28.33 56.33 / 65.28 / 69.90 74.27 / 78.52 / 79.84
RoMA + OpenIBL 50 [67] 43.95 / 51.24 / 54.50 60.36 / 73.50 / 78.62 18.66 / 27.47 / 35.67 59.09 / 66.32 / 70.19 71.73 / 75.18 / 76.19
RoMA + MegaLoc 50 [68] 70.25 / 79.09 / 82.22 66.37 / 81.51 / 87.31 31.50 / 42.22 / 51.82 72.06 / 80.92 / 84.50 78.22 / 82.27 / 83.69
RoMA + GT Pose 20 80.57 / 89.58 / 92.88 68.82 / 81.51 / 85.75 41.50 / 57.78 / 71.01 80.55 / 87.48 / 90.98 84.50 / 89.36 / 90.48

coordinates. At inference time, they provide dense 2D-3D correspondences for each query image,
from which the camera pose is estimated using PnP-RANSAC.

Results. We summarize the results of the evaluation on daytime and nighttime queries in Tab. 2, where
we report the percentage of query frames with pose errors of within three thresholds: (0.25m, 2°),
(0.5m, 5°) and (1m, 10°). Our experiments are conducted using 48GB NVIDIA RTX A6000 GPUs,
with mapping times ranging from a few minutes to several hours, depending on the relocalization
method and scene complexity.

Analysis. We observe that feature-matching (FM) methods significantly outperform scene coordinate
regression (SCR) approaches on both daytime and nighttime queries, with some SCR methods
failing entirely at night. This is consistent with the Aachen Day-Night benchmark [5], where SCR
methods generally struggle in large-scale environments and under severe illumination changes. The
performance gap between day and night is even more pronounced in our dataset, due to increased
lighting variability that makes regressing consistent 3D coordinates especially difficult. FM methods
perform well on daytime queries, likely because the query and database trajectories are similar,
reducing viewpoint variation, but their performance drops notably at night, highlighting the challenge
of low-light conditions. Among them, RoMA achieves the highest overall accuracy and is thus used
for a deeper analysis of image retrieval, a factor often overlooked in favor of default choices like
NetVLAD in the HLoc pipeline.

To evaluate retrieval quality, we pair RoMA with four retrieval methods: NetVLAD, DIR [65, 66],
OpenIBL [67], and MegaLoc [68], retrieving the top 50 database images. A quasi-upper bound is
also included using the 20 nearest images based on ground-truth poses. As shown in Tab. 3, more
advanced retrieval methods significantly boost performance, with RoMA exceeding 80% accuracy
under the strictest threshold (0.25m, 2°) when paired with ground-truth retrieval, indicating that
retrieval, not matching, is the main accuracy bottleneck. However, RoMA’s major limitation is its
runtime: approximately 1 second per image pair, about 30× slower than SuperPoint+LightGlue
(~0.03s). These findings point to two important research directions enabled by our dataset: (1)
enhancing image retrieval under challenging conditions and (2) accelerating high-accuracy matchers
like RoMA, where speed is the limiting factor.

4.2 Benchmarking NVS

Benchmarked Methods. We evaluate two state-of-the-art in-the-wild neural view synthesis (NVS)
methods: Splatfacto-W [46] and Gaussian-Wild [47]. To train these models on our NVS dataset, we
apply two preprocessing steps. First, we further subsample the image collections for each scene to
approximately 2,500 images to ensure manageable CPU memory usage. Second, we perform voxel
downsampling of the semi-dense point cloud using a voxel size of 0.1m (0.2m for the Bodleian
scene). Since GPU memory consumption is proportional to the number of initial 3D points, this step
helps keep GPU usage under 80GB for these NVS systems.

Result. We follow the standard convention of selecting every 8th image as a test image and report
image quality using PSNR and LPIPS metrics. For geometry evaluation, we utilize the ground truth
3D point clouds from Oxford-Spires [7] and measure the point-to-point distance between the centers
of the 3DGS Gaussian primitives and the ground truth 3D maps. We compute the point to point
distance using CloudCompare. The results are presented in Tab. 4 and Fig. 5.

In this experiment, Splatfacto-W outperforms Gaussian-Wild on the H.B. Allen Centre scene but
underperforms on the remaining four scenes. However, as indicated by the LPIPS scores, both
methods exhibit limited performance across these four scenes. This is primarily due to the large-scale
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Table 4: 3DGS In-the-Wild Results. We report image rendering and geometry quality using the
following metrics: PSNR (↑) / LPIPS (↓) / point-to-point distance (↓). The 3DGS geometry is
derived by extracting the centers of all Gaussian primitives, with point-to-point distance (meter)
computed against the ground truth laser-scanned point cloud. Symbol "-" denotes the system produces
a degenerated point cloud (less than 2000 gaussians after training).

Method Bodleian Library H.B. Allen Centre Keble College Observatory Quarter Robotics Institute
Splatfacto-W [46] 25.98 / 0.60 / - 25.65 / 0.59 / 0.75 27.96 / 0.59 / - 25.83 / 0.63 / 0.36 22.73 / 0.61 / 0.42
Gaussian-Wild [47] 28.38 / 0.56 / 1.44 24.94 / 0.59 / 1.48 30.92 / 0.56 / 0.69 28.57 / 0.60 / 0.69 25.05 / 0.57 / 0.76

GT Splatfacto-W Gaussian-Wild GT Splatfacto-W Gaussian-Wild

GT Splatfacto-W Gaussian-Wild GT Splatfacto-W Gaussian-Wild

Figure 5: NVS In-the-Wild Results in the H.B. Allen Centre (top) and Bodleian Library (bottom).
Compared to Gaussian-Wild, Splatfacto-W performs better at the H.B. Allen Centre but fails at the
Bodleian Library. Although Gaussian-Wild produces some renderings with recognizable content,
the overall quality is limited. These results highlight that current state-of-the-art NVS-in-the-wild
methods still face significant challenges in large-scale environments with dramatic lighting variations.

nature of the dataset and the extreme lighting variations, ranging from daylight to poorly illuminated
night conditions.

Discussion. First, further downsampling: as described in Sec. 3.2, we initially downsampled videos
and filtered noisy 3D points to create an NVS dataset suitable for future use. However, current
state-of-the-art in-the-wild 3DGS systems still struggle with this data scale. Therefore, we apply more
aggressive temporal subsampling and spatial downsampling of the point clouds to ensure feasibility.
Second, PSNR fails to reflect image quality. In Tab. 4, both methods achieve PSNR > 25 across
most scenes, yet high LPIPS values > 0.5 reveal poor visual quality. Similar issues are observed
with SSIM, as shown in the supplementary material. Third, point-to-point distance may offer a
rough indication of NVS performance, but only when basic shapes are preserved and points are not
aggressively culled during 3DGS optimization. More details can be found in supplementary.

5 Conclusion

Oxford Day-and-Night fills a crucial gap in egocentric 3D vision research by providing a large-scale,
lighting-diverse dataset explicitly designed for challenging outdoor conditions, including nighttime
scenarios. Through its combination of rich sensor data, robust multi-session SLAM annotations,
and alignment with high-fidelity ground-truth geometry, the dataset enables rigorous benchmarking
of novel view synthesis and visual relocalization methods at city scale. Our experiments reveal
substantial performance degradation of current state-of-the-art approaches, particularly under extreme
lighting changes, underscoring both the difficulty of the tasks and the value of our benchmarks. By
exposing these limitations, Oxford Day-and-Night offers a powerful platform to drive progress in
robust, all-day egocentric perception systems.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We propose a new day and night dataset and present two benchmarks for
Novel View Synthesis and Visual Relocalization. Both abstract and introduction reflect
these contributions and scope.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: See Sec. 3.6.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]

Justification: We don’t have theoretical result as we propose a dataset and benchmark.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We release our data before submission, following the guidelines of the dataset
and benchmark track.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We release our data before submission, following the guidelines of the dataset
and benchmark track.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We provide key details in the main submission. More details are included in
supplementary.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [NA]
Justification: Our work focuses on introducing a new dataset and two benchmarks. We
evaluate baseline methods using standard configurations to establish reference results, but
we do not perform statistical analysis or report error bars, as our primary contribution is not
in proposing new methods.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

16

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy


• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We include sufficient hardware details in Sec. 4.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We did our best in anonymising our dataset before releasing.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: We propose a dataset for 3D computer vision, focusing on outdoor buildings
and indoor rooms, rather than on people. We anonymize human faces that occasionally
appeared in the recordings.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: we did not train such models or scraping data from the Internet.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We properly cited all works and respected all relavent licenses.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We release our data before submission, along with proper data usage instruc-
tions, following the guidelines of the dataset and benchmark track.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: Our project do not have these experiments.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Our research do not have human study participants.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: Our project does not involve LLM components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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Seeing in the Dark: Benchmarking Egocentric 3D
Vision with the Oxford Day-and-Night Dataset

(Supplementary)

https://oxdan.active.vision/

A Full Dataset Statistics

We collected our dataset across five locations in Oxford by walking while wearing ARIA glasses.
The data collection took place over the course of one month. During this period, two collectors wore
ARIA glasses and walked randomly within each collection site. In total, the walking trajectory spans
30 kilometers, includes 7 hours of walking, and covers an area of 40,000 m2.

Detailed dataset statistics are provided in Tab. 5. Notably, our dataset offers a well-balanced distribu-
tion of day and night recordings, with an approximately 1:1 ratio. The covered areas and walking
trajectories are visualized in Figs. 6 and 7.

Table 5: Dataset Statistics. We present a summary of the number of frames in the recorded videos,
the NVS data variant (obtained by subsampling the video by 5×), and the visual relocalization
data variant (with additional spatial subsampling and splitting into database, daytime queries, and
nighttime queries). We also report the recording durations, trajectory lengths, and mapped area sizes.

Scene # Video Fr # NVS Img # Visual Reloc Img Duration (hh:mm) Trajectory Len (m) Area (m2)
D & N D & N DB Day Q Night Q Day Night D & N Day Night D & N D & N

Bodleian Lib. 205405 41081 2542 1310 2908 01:32 01:18 02:50 7170 5617 12787 25939
H.B. Allen Cen. 29340 5868 305 158 449 00:13 00:10 00:24 975 765 1740 1271
Keble College 112205 22441 1020 526 1511 00:46 00:46 01:33 3574 3400 6974 5709
Obs. Quarter 87210 17442 821 424 1342 00:34 00:38 01:12 2853 3050 5903 5950
Robotics Inst. 57590 11518 778 401 987 00:25 00:22 00:47 1249 1030 2279 600
Total 491750 98350 5466 2819 7197 03:32 03:16 06:48 15822 13862 29685 39469

Area: 1,271 m² 

Area: 5,950 m²Area: 25,939 m²

Area: 5,709 m² 

Area: 600 m² 

Figure 6: Our dataset covers 40,000 m2 area.
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Trajectory: 12.8 KM Trajectory: 5.9 KM

Trajectory: 2.3 KM

Trajectory: 7.0 KM

Trajectory: 1.7 KM

Figure 7: Our dataset spans 30 kilometers of walking trajectory.

B Image Variants

ARIA glasses are equipped with fisheye lenses, resulting in fisheye distortion in the original recordings.
To facilitate the use of our dataset, we undistort these images using two different pinhole camera
configurations. We provide both the original fisheye images and the undistorted versions. The three
image variants are visualized in Fig. 8.

Fisheye Undistorted (Max FOV) Undistorted (All Valid)

Figure 8: We provide three image types: the original fisheye, a Max FOV undistorted version with
wider coverage and black borders (with a valid pixel mask provided), and an All Valid version with
no black borders but a smaller field of view for easier use.

C Additional Details on Visual Relocalization Dataset

Spatial Filtering. We provide additional details about our visual relocalization dataset. In Algo-
rithm 1, we present the pseudo-code for the spatial filtering algorithm used to eliminate redundant
images when generating the database, daytime query, and nighttime query splits. For outdoor scenes
(Bodleian Library, H.B. Allen Centre, Keble College, Observatory Quarter), we use thresholds of
θpos = 1.5 meters and θori = 20◦; for the indoor Robotics Institute scene, we adopt stricter thresholds
of θpos = 0.5 meters and θori = 20◦ to reflect its smaller scale. Notably, even after applying strong
spatial filtering, our dataset includes 7,197 nighttime query images, 37 times more than the 191
nighttime queries in the Aachen Day-Night dataset [5]. Full statistics are summarized in Tab. 5.
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Algorithm 1: Spatial Filtering of Camera Poses
Require: Image list I with poses (pi, Ri), thresholds θpos, θori
Ensure: Filtered image list S
1: Shuffle I; initialize S ← [ ], cache C ← [ ]
2: for each image i in I do
3: N ← {(pj , Rj) ∈ C | ∥pi − pj∥ < θpos}
4: if N = ∅ or ∀(pj , Rj) ∈ N,∠(Ri, Rj) > θori then
5: Append i to S, append (pi, Ri) to C
6: end if
7: end for
8: return S

Coverage of Nighttime Queries Across Distance and Rotation Thresholds. To further illustrate
the challenge posed by our benchmark, Fig. 9 plots the percentage of nighttime queries that have
at least one daytime database image within a specified spatial and angular threshold. Our dataset
spans a wide spectrum of difficulty levels, including a particularly challenging subset: nighttime
queries that are more than 5 meters and 50° away from any corresponding database image. These
difficult cases account for approximately 10% of the nighttime queries. This diversity enables a more
fine-grained evaluation of relocalization methods, allowing the community to assess performance
across both easy and hard cases.

(1.0m, 10°) (2.0m, 20°) (3.0m, 30°) (4.0m, 40°) (5.0m, 50°) (6.0m, 60°) (7.0m, 70°) (8.0m, 80°) (9.0m, 90°)
Distance and Rotation Error Thresholds
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Percentage of Nighttime Queries having a DB image given a threshold
H.B. Allen Centre
Keble College
Bodleian Library
Observatory Quarter
Robotics Institute

Figure 9: The percentage of nighttime queries that have a database image given a spatial and
orientation threshold.

Database Creation, COLMAP, and HLoc. We structure our relocalization dataset using simple
image lists, where each split (database, daytime queries, and nighttime queries) corresponds to a text
file containing the image filenames relative to the image directory. To facilitate seamless integration
with the HLoc Toolbox [48], we also provide a COLMAP model for the database images, generated
using ARIA MPS output poses. Specifically, for each database image, we project the 3D point cloud
of the scene onto the image plane using the corresponding ground-truth camera pose. We then apply
a series of filtering steps to remove invalid projections: depth filtering, image boundary checks, and
z-buffer visibility checks. From the valid set of projections, we randomly sample 3,000 2D-3D
correspondences per image. Using this information, we construct the images.bin, cameras.bin,
and points3D.bin files following COLMAP standard format. Note that our COLMAP model does
not incorporate explicit occlusion reasoning. As a result, we do not recommend using it directly for
PnP-RANSAC without additional filtering or refinement. However, this limitation does not affect
integration with the HLoc Toolbox, as it does not rely on the database point cloud. We provide the
visualization of the distribution of database, daytime, and nighttime camera poses in each scene
in Fig. 10.
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(a) H.B. Allen Centre (b) Keble College

(c) Observatory Quarter (d) Robotics Institute

(e) Bodleian Library

Figure 10: Camera poses for visual relocalization in each scene. The cameras of database images
are in black; the cameras of day query images are in orange and the cameras of night query images
are in blue.
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D Additional Results on NVS Dataset

Image Quality. We provide additional NVS evaluation results in Tab. 6 and Fig. 11, which comple-
ment the findings presented in Tab. 4 and Fig. 5. Specifically, Table 6 highlights that both 3DGS
in-the-wild methods exhibit limited NVS performance on our dataset, as indicated by high LPIPS
values. Note that PSNR and SSIM values do not capture this performance degradation.

Table 6: 3DGS In-the-Wild Image Quality. We report image rendering quality in PSNR (↑) / LPIPS
(↓) / SSIM (↑). This table complements Tab. 4 and Fig. 5 by providing additional SSIM scores.

Method Bodleian Library H.B. Allen Centre Keble College Observatory Quarter Robotics Institute
Splatfacto-W [46] 25.98 / 0.60 / 0.79 25.65 / 0.59 / 0.81 27.96 / 0.59 / 0.78 25.83 / 0.63 / 0.78 22.73 / 0.61 / 0.81
Gaussian-Wild [47] 28.38 / 0.56 / 0.86 24.94 / 0.59 / 0.86 30.92 / 0.56 / 0.84 28.57 / 0.60 / 0.86 25.05 / 0.57 / 0.88

Geometry. Figure 11 visualizes the centers of Gaussian primitives after Splatfacto-W training.
During this process, the initialized point cloud is culled to a reasonable density in the H.B. Allen
Centre and Observatory Quarter. In contrast, the same culling procedure results in degenerate
representations in the Bodleian Library and Keble College scenes, possibly due to the larger spatial
extent of the Bodleian Library and the more extreme lighting variations present in Keble College.

a) H.B. Allen Centre b) Observatory c) Bodleian Lib d) Keble College

After Splatfacto-W

Before Splatfacto-W

Figure 11: Visualization of 3D Geometry. In c) and d), less than 2000 Gaussian primitives remain
after the culling process during training. This may be due to limited capability in handling large-scale
scenes and dramatic light variations, resulting in a degenerated case for 3DGS rendering.

Overall, our experiments demonstrate that current 3DGS in-the-wild methods continue to face
significant challenges in large-scale scenes with dramatic lighting variations.
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