
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

UNIVERSAL CONCAVITY-AWARE DESCENT RATE FOR
OPTIMIZERS

Anonymous authors
Paper under double-blind review

ABSTRACT

Many machine learning problems involve a challenging task of calibrating pa-
rameters in a computational model to fit the training data; this task is especially
challenging for non-convex problems. Many optimization algorithms have been
proposed to assist in calibrating these parameters, each with its respective advan-
tages in different scenarios, but it is often difficult to determine the scenarios for
which an algorithm is best suited. To contend with this challenge, much work has
been done on proving the rate at which these optimizers converge to their final
solution, however the wide variety of such convergence rate bounds, each with
their own different assumptions, convergence metrics, tightnesses, and parameters
(which may or may not be known to the practitioner) make comparing these con-
vergence rates difficult. To help with this problem, we present a minmax-optimal
algorithm and, by comparison to it, give a single descent bound which is applicable
to a very wide family of optimizers, tasks, and data (including all of the most
prevalent ones), which also puts special emphasis on being tight even in parameter
subspaces in which the cost function is concave.

1 INTRODUCTION

Many machine learning problems involve calibrating the parameters of a given model to match
the data distribution of a phenomenon one wishes to model, e.g. the structure of folded proteins,
processing images to automatically generate appropriate labels for them, or generating images and
text to interactively chat with a human engagingly. This process involves:

1. Collecting many samples ("data points") from the desired data distribution.
2. Measuring how well the model fits the collected data points (the "data set") with a given

performance analysis metrics (the "loss function", a.k.a. the "objective function"). By
convention, lower values of the loss function imply better performance on the model’s part.

3. Adjusting the model’s parameters to improve the performance, as measured by the loss
function ("model parameter optimization").

4. Repeat until desired performance achieved.

However, no single existing optimizer is best suited to all machine learning problems - each has
its unique strengths and weaknesses (see Vaswani et al. (2020); Sivan et al. (2024); Ruder (2016);
Mustapha et al. (2021); Bera & Shrivastava (2020); Zeiler (2012); Duchi et al. (2011b); Xu et al.
(2017); Wadia et al. (2021); Mittal et al. (2019); Zhou et al. (2020); Schmidt et al. (2021)), such as
generalization capability, convergence rate, saddle-point and flat region evasion capability, robustness
to hyperparameter choice, computational complexity per-iteration, memory complexity, etc., and
different areas in which it empirically seems to work best. As a result, one must compare among
various different optimization algorithms (henceforth, "optimizers") to select the one most suited to
the current scenario.

In an effort to help practitioners select the best optimizer for their setup and estimate the absolute
computational resources that will be required to obtain a given performance, many experiments have
been run comparing the performance of different optimizers on a variety of applications (Xu et al.,
2017; Schmidt et al., 2021), and on the theoretical side - convergence rate bounds have been proven
for various different optimizers. However, due to the wide variety of assumptions, convergence rate

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

metrics, bound parameters (which may be expensive - if not impossible - to compute ahead of time),
and tightness of the bounds in all of these works, comparing among them remains a challenging
task. Secondly, there is a lack of convergence rate bounds general enough to be easily applicable
to newly proposed optimizers. Thirdly, many of these bounds fail to demonstrate the empirically-
verified convergence rate superiority of the more sophisticated methods that make use of second-order
curvature information instead of exclusively the gradient. Lastly, although convergence rate bounds
exist for non-convex functions, many of them fail to properly address the opportunities that lay
in linear subspaces of the parameter space in which the loss function is concave (meaning that a
restriction f |S : S→ R of the loss function f to a linear subspace S is locally concave). We believe
that more attention should be given to these subspaces of the function in the context of neural network
optimization; Alain et al. (2018) and Ghorbani et al. (2019) demonstrate experimentally that there is
much to be gained by taking optimal steps in these subspaces, often even orders of magnitude greater
than the potential gains in convex subspaces.

Our contributions In an effort to help practitioners select the best optimizer for their use case,
we develop a tool for estimating the value of second-order optimization algorithms; this will help
decide if the additional computational burden of these algorithms is worthwhile. We develop a
minmax-optimal algorithm, rate algorithms by similarity to it, and demonstrate in theory and in
practice that in general, second-order algorithms work best on mechanistically simple problems. Our
algorithm-optimality bound satisfies the following good properties:

1. Concave tightness Our bound exploits the opportunity for greater descent in subspaces of
the parameter space in which the loss function is concave.

2. Universality We make only weak and commonly satisfied assumptions for our bound, to
allow for its application to a wide and prevalent family of optimizers and loss functions.

3. Tightness for any level of iteration step-quality instead of assuming a bound on the quality
of steps given in each iteration as some previous works have done, our theoretical bounds
are given as a continuous function of the quality of each iteration’s step.

4. Bound on loss function descent Our main result bounds the rate at which the model’s
performance increases (as measured by the loss function). This is in contrast to previous
works, which instead bound various indicators of local minimality, such as gradient norm,
local near-convexity, or proximity to a local minimum (in Euclidean distance). Although Xu
et al. (2020) write that the latter convergence rate metrics is more relevant to the non-convex
optimization setting, we feel that the former is more practically useful, since generally
real-world applications with limited computational resources simply demand a minimal
performance guarantee of their model, without regard to the theoretical capabilities of a
given model or optimization algorithm.

5. Simplicity of cubic minimization problem We approach the multidimensional cubic
polynomial minimization problem posed by Nesterov & Polyak (2006) by decomposing it
into n 1-dimensional problems via eigendecomposition of the Hessian, making our approach
to the solution of this minimization problem far simpler conceptually.

Our paper is organized as follows: In section 2, we review previous work and describe the notation
we will use throughout the paper. In section 3, we develop the minmax-optimal ELMO algorithm and
analyze its descent rate. In section 4, we make claims as to the benefits of optimizer similarity to ELMO
(proven in appendix H). In section 5 we show the value of our novel Lipschitz parameter separation
scheme by showing how much lower the Lipschitz parameters of most relevant eigenspaces can be,
thus giving optimizers a more accurate minimizable model of the loss function in each neighborhood
it finds itself in. Finally, in section 6, we present experiments validating one particular use case of
our bound: we show that the advantage second-order optimizers hold over first-order optimizers is
inversely proportional to the convex Lipschitz parameters. In other words, second-order optimizers
present strong performance (thus may be worth their additional computational burden) in settings
with small convex Lipschitz parameters, and weak performance (thus not worthwhile) in settings
with large convex Lipschitz parameters.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

2 BACKGROUND

Assumption 1. For a given optimization problem with loss function f : Rn → R, we assume f is
twice differentiable.

We note that this assumption is satisfied for all prevalent deep learning optimization problems for all
but a zero-measure set of parameters.

2.1 NOTATIONS AND DEFINITIONS

Notation 1. Let θt+1, θt ∈ Rn the parameter vectors of a pair of consecutive iterations of a given
optimization algorithm.

• For brevity of notation, we mark θt+1 − θt ≜ ∆θt.

• We mark ∇f (θt) the gradient of f andH (θt) the Hessian of f at θt.
Notation 2. Let θt ∈ Rn. We mark (vi (θt) , λi (θt))

n
j=0 an orthogonal eigendecomposition ofH (θt)

(which exists due to the Hessian symmetry property). For brevity of notation, we will sometimes
drop the (θt) and just write vi, λi when the meaning is clear.

Since vi and −vi are both equally viable eigenvectors, we eliminate ambiguity by assuming

∀i∈[n] : ∇f (θt)
⊤
vi ≤ 0 (1)

Definition 1. We say an algorithm is a k-order algorithm if it requires oracle access to the first k
derivatives of f .
Notation 3. Let A,B ∈ Rn×n. We use the following notations (when applicable):

• We mark A’s transpose as A⊤.

• We write A ⪰ 0 iff A is positive semi-definite, A ≻ 0 if A is positive definite, A ⪰ B if
A−B ⪰ 0 (and likewise for A ≻ B).

• Mark λmin (A) , λmax (A) the minimal/maximal eigenvalue of A, respectively, and their
ratio κ (A) = λmax(A)

λmin(A) the condition number of A.

Notation 4. For τ ∈ N we mark [τ] = {t ∈ N : t ≤ τ}.
Definition 2. Let U,D ∈ Rn×n s.t. D = diag (d1, d2, . . . , dn) is diagonal and U orthogonal, and
let ξ : R→ R. We mark ξ

(
U ·D · U⊤) = U · diag (ξ (d1) , ξ (d2) , . . . , ξ (dn)) · U⊤.

Definition 3. We say that an optimization algorithm is a Quasi-Newton optimization algorithm if its
characteristic update rule may be expressed as:

θt+1 = θt − αtΦt∇f (θt)
for Φt ∈ Rn×n,Φt ⪰ 0,Φ⊤

t = Φt, αt ∈ R+. We call Φt in such algorithms the "preconditioner
matrix".

This approach is inspired by Newton’s method in convex optimization (see Nocedal & Wright (2006,
Chapter 3)) where Φt = (H (θt))

−1. See appendix A for a discussion of the challenges and proposed
solutions involved in these algorithms.

We note that the overwhelming majority of gradient-based optimizers may be expressed as quasi-
Newton optimizers (some popular examples may be seen in Martens (2020)). As a result, this paper
will concern itself exclusively with this family of optimizers.
Notation 5. Throughout this paper, we will mark the point a convergent quasi-Newton algorithm
converges to by θ∗.

2.2 RELATED WORK

As discussed in item 4 of the contributions section, the value of the loss function after t iterations is
of particular importance to practitioners, due to its implications on the quality of model. One measure

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

of optimizer quality relating to this value is the objective function sub-optimality gap (OFSOG),
defined as f (θT) − f (θ∗). The ARC algorithm is a second-order algorithm that uses a low-rank
SVD approximation of the Hessian and estimates a single Hessian-Lipschitz parameter adaptively;
Cartis et al. (2012b) prove that OFSOG-optimality (bounding the OFSOG to below ϵ) is achieved
by a variant of the ARC algorithm after O

(
ϵ−1
)

iterations in the convex regime, or O
(
log
(
ϵ−1
))

iterations in the strongly convex regime. Garmanjani (2020) show similar bounds for the Nonlinear
Stepsize Control algorithm family, and Toint (2013) demonstrate that this is a generalization of ARC
and trust-region methods. Liu et al. (2024) prove OFSOG-optimality for the Sophia optimizer (a
second-order algorithm that approximates the Hessian as a diagonal matrix, which is estimated with
Hutchinson’s estimator (Hutchinson, 1989)) after O

(
ϵ−1
)

iterations in the convex regime.

Bottou (2004) split the process of optimization with a general optimizer into the initial "search
phase", in which the optimizer searches for an approximately convex region in which the point it will
eventually converge to resides, and the later "final phase", in which the optimizer converges to its
final solution within this convex region.

In the machine learning literature, many common loss functions are "empirical risk functions" - that
is, loss functions which can be written as a sum of terms, each of which is a function of only a single
sample from the data distribution. When this sum ranges over a very large number of samples, a
common approach to estimating it is to perform a Monte Carlo approximation, summing over only a
small subset of the terms; this approach is known as the "minibatch approach". Amari (1998) then
note that when using this approach, θt may be seen as a statistical estimator for θ∗. Working in the
"final phase" (and thus assuming convexity), and adopting the estimator approach to θt taken by
Amari (1998); Bottou & Lecun (2004) give a convergence rate bound for this estimator’s variance
parameterized by the first- and second-order derivatives at θ∗, assuming only that limt→∞ Φt =
H−1 (θ∗). Martens (2020) takes these convergence rates and plugs them into a Taylor approximation
of f (θt) to obtain the asymptotic OFSOG, given by f (θT)− f (θ∗) = n

2T + o
(
1
T

)
.

Since the goal of optimization is to minimize a loss function, arguably the best metric for measuring
an optimization algorithm’s quality are the gains it makes as measured by the loss function values, i.e.
its rate of loss function descent. Nevertheless, most algorithms’ convergence rate bounds relate to
their gradient norms; we note, however, that a bound on an algorithm’s gradient norm may be a poor
proxy for its descent rate in the early, nonconvex "search" phase, since convergence rate bounds may
only imply proximity to a critical point of the gradient, which is neither guaranteed to be the point
the algorithm will ultimately converge to nor even to have a small loss function value by any measure.
To the best of our knowledge, our bound is the first to directly address the problem of bounding the
loss function value in the "search" phase without assuming convexity (which is rarely satisfied by the
loss functions in neural network optimization scenarios).

We refer the reader to appendix B for discussion on previous attempts at universal convergence rate
bounds, other convergence rate measures, and the effect of the preconditioner on convergence rate.

3 A MINMAX HESSIAN LIPSCHITZ-AWARE OPTIMIZATION ALGORITHM

Any deterministic optimization algorithm is comprised of two parts: first, we gather information
about the loss function to enable us to implicitly construct a local model of the loss function, and
secondly we step to the minimum of this model. Accordingly, gradient descent and Newton’s method
use first- and second-order Taylor approximations of f respectively, and while these models do give a
direction of descent in every subspace of the domain space, they do not indicate optimal step sizes in
concave subspaces of the domain space (that is, subspaces in which the loss function is concave),
since concave first- and second-order polynomials have no minima. To obtain a unique step in all
settings (so that our optimizer will be sufficiently general to apply to nonconvex and nonquadratic
regions of neural network loss functions), we must therefore model f with a third-order Taylor
polynomial.

3.1 GENERAL BOUNDS ON PER-ITERATION DESCENT

A recurring theme in the neural network optimization literature is that the greatest-magnitude
eigenvalues of the Hessian are slow to change, as well as their eigenvectors; see, for instance, Sivan
et al. (2024); Alain et al. (2018); Sagun et al. (2016); Ghorbani et al. (2019); Gur-Ari et al. (2018);

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Liu et al. (2024). It is common to formalize this as an assumption (see, e.g., O’Leary-Roseberry et al.
(2019); Nesterov & Polyak (2006)) of Hessian-Lipschitz continuity with the matrix spectral norm:

∃LH∈R∀θ,φ∈Rn : ∥H (θ)−H (φ)∥2 ≤ LH · ∥θ − φ∥2 (2)

This assumption relies on a single scalar LH ∈ R to describe the the entire Hessian’s rate of change.
With n2

2 independent entries, however, the Hessian can shift in a far more subtle manner, leading this
assumption to be overly conservative, requiring a very large LH for the assumption to be satisfied,
leading to looseness in convergence rate bounds and subpar performance of algorithms that rely on
this scalar. We instead make the following finer-grained assumption on the rate of change of the
Hessian’s eigendecomposition:
Assumption 2. Hessian Lipschitz-Continuity in each Eigenspace

For any θ, φ ∈ Rn, let (eigendecompositions) H (θ) = V · Λ · V ⊤,H (φ) = Ṽ · Λ̃ · Ṽ ⊤ with

V, Ṽ ∈ Rn×n orthogonal matrices and Λ = diag (λi)
n
i=1 , Λ̃ = diag

(
λ̃i

)n
i=1
∈ Rn×n diagonal

matrices, sorted s.t. ∀i∈[n−1] : λi ≤ λi+1, λ̃i ≤ λ̃i+1. Then the following are satisfied:

∀θ∈Rn∃(L̄i)
n

i=1
∈(R+)n∀φ∈Rn :

∣∣∣λi − λ̃i∣∣∣ ≤ L̄i ·
∣∣∣(θ − φ)⊤ vi∣∣∣

∀θ∈Rn∃LR∈R+∀φ∈Rn :
∥∥∥V − Ṽ ∥∥∥

2
≤ LR · ∥θ − φ∥2

∃LH∈R∀θ∈Rn∀i∈[n] : max
{
LR, L̄i

}
≤ LH ∧ L̄i ≥ L−1

H

When θ is the t-th iterate θt of an optimization algorithm, we’ll mark the corresponding Lipschitz
parameters as Li

t. We will experimentally demonstrate the value of this finer assumption later,
by demonstrating that these parameters vary widely. In particular, and taking into account that
optimization primarily occurs in a very limited subspace of the domain space (Gur-Ari et al., 2018),
we will demonstrate that the Lipschitz parameters relevant to these subspaces are often orders of
magnitude smaller than the others.

The above assumption allows us to bound the loss function in each eigenspace of the Hessian; these
bounds will then be applicable as tight (since the bounds satisfy assumptions 1 and 2) pessimistic and
optimistic models of the loss function in the neighborhood of some iterate θt:
Notation 6. Let θt ∈ Rn, vi ∈ Rn an eigenvector ofH (θt).

M i
t (x) ≜ ∇f (θt)

⊤
vi · x+

v⊤i H (θt) vi
2

· x2 + Li
t

6
· |x|3 (3)

mi
t (x) ≜ ∇f (θt)

⊤
vi · x+

v⊤i H (θt) vi
2

· x2 − Li
t

6
· |x|3 (4)

Lemma 3.1. Eigenspace Descent Bounds

Let f : Rn → R be a function satisfying assumptions 1 and 2, and let θt+1 ∈ Rn. Marking
∆θt = θt+1 − θt, we have

∃(Li
t)

n

i=1
∈(R+)n : f (θt+1)− f (θt) ≤

n∑
i=1

M i
t

(
∆θ⊤t vi

)
(5)

∃(Li
t)

n

i=1
∈(R+)n : f (θt+1)− f (θt) ≥

n∑
i=1

mi
t

(
∆θ⊤t vi

)
(6)

3.2 EXPLOITING THESE BOUNDS FOR A MINMAX ALGORITHM

To gain perspective on the upcoming algorithm as a minmax algorithm, we restate a special case of
the above lemma as follows: M i

t is the pointwise maximal function satisfying assumptions 1 and 2:

M i
t (x) = max

f̃ :R→R
f̃(θt)=f(θt)

f̃ (θt + x · vi (θt))

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Since each element of the sum is a 1-dimensional trinomial, the minmax step is now easily obtained
(due to orthogonality of the eigenspaces) by taking the positive root of each term’s derivative:

∆θ∗⊤t vi ≜ argmin
∆θt

n∑
i=1

M i
t

(
∆θ⊤t vi

)
=

√
λ2i + 2Li

t

∣∣∣∇f (θt)⊤ vi∣∣∣− λi
Li
t

(7)

Finally, we are ready to present algorithm Eigenspace-Lipschitz Minmax Optimizer (ELMO). We
mark EIGEN an eigendecomposition subroutine and LIPSCHITZ a Lipschitz parameter oracle.

Algorithm 1 Algorithm ELMO

Require: ϵ ∈ R+, θ0 ∈ Rn, EIGEN, LIPSCHITZ
t← 0
while f (θt)− f (θ∗) > ϵ do

(λi, vi)
n
i=1 ← EIGEN (H (θt))(

Li
t

)n
i=1
← LIPSCHITZ (θt, (vi)

n
i=1)(

∆θit
)n
i=1
←

√
λ2
i+2Li

t|∇f(θt)
⊤vi|−λi

Li
t

θt+1 ←
∑n

i=1 ∆θ
i
t · vi

t← t+ 1
end while

An important observation to make about the al-
gorithm above is its equal applicability to con-
vex and concave regions of the domain space.
In fact, when λi < 0 (implying a concave sub-
space), the step size (and, correspondingly, the
amount of descent on our model of the loss func-
tion M i

t) is actually greater than otherwise. This
is due to ELMO’s ability to make use of concave
regions of the loss function for greater descent.

3.3 ALGORITHM ELMO’S DESCENT RATE

An important factor in deciding how much com-
putational power to put into optimizing a model
is the ratio between the cost of computational
resources and the improvement to the model’s
quality. To that end, we demonstrate that an
upper bound on algorithm ELMO’s performance
has quickly diminishing rewards for additional iterations. Counter-intuitively, this is a good thing - it
means that as long as the algorithm converges to an acceptable minimum point, just a few iterations
are likely to be necessary in practice - since any more than that will not have much of an effect on the
model’s quality anyway.
Theorem 3.2. Worst case-optimal descent rate Let f be a function with Lipschitz-continuous Hessian.
After t iterations, algorithm ELMO satisfies

f (θ0)− f (θt) = O (log t) (8)

Although the above theorem gives only an upper bound on the model’s performance, we demonstrate
that it is actually within a constant multiplicative factor of the algorithm’s lower bound.
Theorem 3.3. Let f : Rn → R satisfying assumptions 1 and 2. Algorithm ELMO satisfies∣∣mi

t

(
∆θ∗⊤t vi

)∣∣ ≤ 5
∣∣M i

t

(
∆θ∗⊤t vi

)∣∣
4 DESCENT RATE OF QUASI-NEWTON OPTIMIZATION ALGORITHMS

Although algorithm ELMO is optimal among first- and second-order methods in the sense that its
model of the loss function is a generalization of Quasi-Newton methods’ and Gradient Descent’s
models (since its leading coefficient is not assumed to be nonzero) and its model minimization step is
unique, its greater computational burden of computing the Lipschitz parameters may cause it to be an
ineffective optimization algorithm in practice. Since most prevalent practical optimizers today belong
to the Quasi-Newton family, we satisfy ourselves with a quantification of their quality based on their
similarity to this ideal algorithm.

THE MINMAX PRECONDITIONER

Since Quasi-Newton methods are characterized by their preconditioners, we must first develop
algorithm ELMO’s characteristic preconditioner. We begin by defining a metric of distance between
optimization algorithms by the difference between their characteristic steps, and find the precondi-
tioner matrix whose corresponding quasi-Newton algorithm is equivalent to algorithm ELMO.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Notation 7. For a given algorithm with step ∆θt at iteration t, mark ∆∆iθt = ∆θ⊤t vi−∆θ∗⊤t vi the
step’s distance from ELMO’s step. Since ∆∆iθt is a function of the algorithm chosen, it is a function
of that algorithm’s defining preconditioner: ∆∆iθt = ∆∆iθt(Φt)

Lemma 4.1. Minmax preconditioner

Let f : Rn → R satisfying assumptions 1 and 2. The preconditioner of the quasi-Newton algorithm
that is equivalent to ELMO (meaning

∣∣∆∆iθt
∣∣ = 0) is

argmin
Φt∈Rn×n

∣∣∆∆iθt (Φt)
∣∣ =

H (θt) +

√
(H (θt))

2
+ 2V · diag

(
Li
t ·
∣∣∣∇f (θt)⊤ vi∣∣∣)n

i=1
· V ⊤

2

−1

This preconditioner shows the mechanistic similarity of our algorithm to Newton’s method: while
Newton’s method’s preconditioner is simply the inverse Hessian (which may not be positive definite),
the matrix whose inverse is our algorithm’s preconditioner is an average between the Hessian and
a positive definite, regularized version of the Hessian, whose every eigenvalue is no less than the
corresponding Hessian eigenvalue’s magnitude. This ensures positive semi-definiteness of our
preconditioner, with regularization dependent on the loss function’s rate of curvature shift.

In fact, Newton’s algorithm may even lead to a worst-case decrease in model quality, even when
the associated loss function is convex, for sufficiently great curvature shift (measured by Lipschitz
parameter). Plugging Newton’s step into equation 3 and rearranging tells us that ∀i∈[n]s.t.λi≥0 :

M i
t

(
|∇f(θt)tvi|

λi

)
≥ 0 for any step t and eigenspace i with Li

t ≥ −3
λ2
i

|∇f(θt)
⊤vi|

4.1 PER-ITERATION DESCENT OF ARBITRARY STEP

Due to the computational difficulty of computing ELMO’s iteration step precisely, practitioners may
prefer computationally cheaper alternatives. To address this, we provide guarantees for the worst-case
rate of loss function descent of an arbitrary optimization algorithm relative to algorithm ELMO’s
descent, as a function of the algorithm’s similarity to ELMO. For simplicity, we restrict our discussion
to the descent of the loss function’s restriction to a given eigenspace span (vi).

Notation 8. Mark ∆∆iθ′t =
∆∆iθt
∆θ∗⊤

t vi
the step’s distance from ELMO’s step relative to ELMO’s step.

Theorem 4.2. Worst-case descent rate for arbitrary optimizers

Let f : Rn → R a twice-differentiable function satisfying assumptions 1 and 2, and let ∆θt satisfy
M i

t

(
∆θ⊤t vi

)
≤ 0. Then

∣∣∣∣∣ M i
t

(
∆θ⊤t vi

)
M i

t

(
∆θ∗⊤t vi

) ∣∣∣∣∣ = Θ
(
1 +

∣∣∆∆iθ′t
∣∣2)

∣∣∣∣∣ mi
t

(
∆θ⊤t vi

)
mi

t

(
∆θ∗⊤t vi

) ∣∣∣∣∣ = Θ
(
1 +

∣∣∆∆iθ′t
∣∣p) (9)

with p =

{
2 λi > 0 ∧ |∇f(θt)

⊤vi|
λ2
i

= 0

1 else
.

4.2 GENERALIZATION OF PREVIOUS QUASI-NEWTON PRECONDITIONER QUALITY METRICS

Notation 9. Taking (λi)
n
i=1 the eigenvalues of H (θ) for some θ, note that since n is finite, there

exist L+ ≜ maxi{Li : λi > 0}, L− ≜ maxi{Li : λi ≤ 0}.

Since most prevalent quasi-Newton algorithms apply a principled approach only to the concave
subspaces of the loss function domain space and when the curvature shift is negligible, we examine

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

the special case of our metric when λi > 0 (when the loss function is concave over the domain
subspace under examination) and show that our quality metric for quasi-Newton algorithm steps
generalizes previous metrics. When λi > 0, we have

∣∣∆∆iθ′t
∣∣ =

∣∣∣∣∣∣∣∣1−
∇f (θt)⊤

∇f (θt)⊤ vi
· (αtΦtH (θt)) · vi ·

√
1 + 2Li

t ·
|∇f(θt)

⊤vi|
λ2
i

+ 1

2

∣∣∣∣∣∣∣∣ (10)

Županski (1993) introduce the "Effective Hessian" (a.k.a. the "Preconditioned Hessian") as It =
αtΦtH (θt), with its condition number used as a quality metric for preconditioners; ideally, κ (It) <
κ (H (θt)). The Effective Hessian may be plainly seen in equation 10.

Mark rt ≜ (I −H (θt) · Φt) · ∇f(θt)

∇f(θt)
⊤vi

; this is the 1-dimensional version of the quality metric ηt
for Φt used by Nocedal & Wright (2006, Chapter 7.1) and mentioned in appendix B (now redefined
by projecting ∇f (θt) onto the i-th eigenspace instead of taking its full norm). When L+ ≈ 0 (i.e.
when the loss function curvature shift is negligible), equation 10 simplifies to∣∣∆∆iθ′t

∣∣ ≈ ∣∣r⊤t · vi∣∣
5 LIPSCHITZ DISTRIBUTION

Previous works using the Hessian Lipschitz continuity assumption (e.g. ARC (Nesterov & Polyak,
2006) and its variants, O’Leary-Roseberry et al. (2019)) assume a single Lipschitz parameter for all
eigenspaces. Although a finite number n of eigenspaces ensures that such a Lipschitz parameter exists
(the maximal Lipschitz parameter), they fail to account for the distribution of these Lipschitz param-
eters over the eigenspaces. We claim that these parameters vary widely both over the eigenspaces
and over the course of training, so that a single constant value fails to capture this structure; in this
section we provide evidence for this claim.

One source of interest in this distribution is for optimization algorithms (e.g. ARC) that make
use of these parameters for the loss function modelling stage of each iteration. This may reduce
computational complexity by reducing the number of parameters one must compute at each iteration,
however appendix D shows that poorly estimating the Lipschitz parameters can have a detrimental
effect on an algorithm’s descent rate (thereby increasing the number of iterations the algorithm will
require to converge).

Another source of interest in these parameters’ distribution is in explaining the effectiveness of second-
order quasi-Newton algorithms that implicitly assume the Lipschitz parameters are insignificant (i.e.
very close to zero), since their model of the loss function is a quadratic Taylor polynomial (i.e. no
curvature shift); this may be seen from equation 10 which shows optimality of Newton’s method only
when λi > 0 and L+ = 0. We will show that they are not generally small by any means, however we
will show that the Lipschitz parameters of the subspaces in which they work (the convex subspaces -
see the implementation of Sivan et al. (2024), for instance, which applies Newton’s method only on
subspaces with significantly convex subspaces) are in fact small in certain settings.

5.1 EXPERIMENTS

The first source of evidence for our claim is from existing literature on the subject; we defer a
discussion of this to appendix E. To test our claim directly, we modify an ARC implementation
(Simpson & Wang, 2023) to compute the steps called for by ELMO at each point reached by a quasi-
Newton algorithm, restricted to the subspace spanned by the eigenvectors corresponding to the single
most positive and single most negative eigenvalues of each Hessian, and to use distinct Lipschitz
parameters for each. Due to the computational difficulty of computing Lipschitz parameters precisely,
we use these Lipschitz parameter values as an estimate for L+, L−. We note the crudeness of these
adaptive measurements, merely adapting to keep f(θt)−f(θt+1)

|∑n
i=1 Mi

t |
within a given range with a restriction

to powers of 2; nevertheless, the point is made.

A detailing of our experiment settings is given in appendix F as well as the full set of our experiment
results, however we present two experiments in figure 1 for completeness. Our experiments show

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Figure 1: Comparisons of convex-subspace Lipschitz parameters to concave-subspace Lipschitz
parameters. Logarithmic scale

that as expected, L+ ≪ L−, and the gap widens exponentially as training progresses in all cases
except the autoencoders. Since we will see that small convex Lipschitz parameters imply effective
second-order optimization, this justifies common practice as noted by, e.g. O’Leary-Roseberry et al.
(2019), of requiring the preconditioner to be an increasingly better approximation of the inverse
Hessian (by increasing the strictness of the inverse Hessian approximation algorithm’s stopping
condition) as training progresses. Interestingly, the Lipschitz parameters seem to depend primarily on
the task, and are much less affected by network structure or model output-target loss function.

Several factors seem to impact the size (by orders of magnitude) of the convex Lipschitz parameters,
and they seem to be correlated with an intuitive sense of the difficulty of the setting being trained.

• The convex Lipschitz parameters are many orders of magnitude greater in the autoencoder
task than in the classification task. We ascribe this gap to the more difficult task of learning
a generative representation of the data instead of merely a discriminative representation of it
(see Ng (2012, Chapter 4) for a discussion on generative vs. discriminative models).

• The convex Lipschitz parameters are reduced approximately 100x in the image classification
task by adding residual connections. It is well known that residual connections reduce
training difficulty (Li et al., 2018).

• The convex Lipschitz parameters are approximately 100x smaller when training ResNet
to perform classification of natural images instead of Gaussian noise with random labels.
We ascribe this to greater difficulty involved in discriminating noise, which requires partial
memorization of the training set.

6 A QUALITY PREDICTOR FOR NEWTON’S METHOD

Expanding on the latter application in section 5, an important challenge is finding the best balance
between per-iteration computational burden and expected loss function descent. We set out to provide
such a metric due to equation 10 by showing that the expected descent in a given eigenspace is an
approximately monotonically decreasing function of the corresponding Lipschitz parameter.

Figure 2 shows an example of this phenomenon by plotting the quasi-Newton superiority
(how much better a quasi-Newton method will work than a first-order method, defined as(
f (θt)− f

(
θNewton
t+1

))
−
(
f (θt)− f

(
θSGD
t+1

))
) against the convex Lipschitz parameter rank. Here

too we represent the full spectrum of convex Lipschitz parameters with the single Lipschitz parameter
representing the eigenspace with the greatest eigenvalue; nevertheless, a qualitative inverse correla-
tion is clear. Pearson correlation coefficient values (Pearson, 1895) are shown in table 1, as well as
p-values of a test of the null hypothesis that the distributions underlying the samples are uncorrelated
and normally distributed. The Scipy manual writes:

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Figure 2: Inverse relation between a convex-subspace Lipschitz parameter and corresponding descent
superiority of Quasi-Newton method

The p-value roughly indicates the probability of an uncorrelated system producing
datasets that have a Pearson correlation at least as extreme as the one computed
from these datasets.

Here too, the detailing of our experiment settings is given in appendix F, as well as further detailing
on figure 2.

Dataset Pearson r p-value
CIFAR10 -0.245341 10−107

FakeData -0.026608 0.031120
MNIST -0.368788 10−300

Table 1: Pearson r inverse correlation between
quasi-Newton superiority and Lipschitz parameter

Since the Lipschitz parameters are approxi-
mately locally constant throughout training as
shown in the previous section, this reverse cor-
relation may be used to help practitioners de-
cide how much computational burden is worth
putting into each iteration, given that even an
exact Newton step may not be significantly su-
perior to first-order methods when the curvature
drift (as measured by Lipschitz parameters) is
significantly large; hyperparameter optimization
algorithm selection may then follow accordingly. We present experiments validating this selection
method in appendix G. Alternatively, practitioners may choose to use ARC steps instead of first-order
methods, when the Lipschitz parameter is significantly large. These findings may instead be used to
construct a meta-optimizer, that periodically computes Lipschitz parameters and adaptively selects
optimizers and optimization hyperparameters throughout the optimization process accordingly. We
leave this direction to future research.

7 CONCLUSION

In this work we developed and analyzed a Hessian eigenspace Lipschitz-aware minmax optimization
algorithm ELMO by taking an eigendecomposition-centric approach to locally modelling a loss
function. We then proved a widely applicable worst-case relative descent rate bound for quasi-
Newton optimizers by comparison to ELMO. We experimented with the Lipschitz distributions,
discovering that they are correlated with task difficulty and that they are helpful for optimizer and
optimization hyperparameters selection — specifically, integrating second-order information into
optimizers at the cost of additional computational complexity is worthwhile in settings where the
convex Lipschitz parameters are small, but not those where they are large.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Naman Agarwal, Brian Bullins, Xinyi Chen, Elad Hazan, Karan Singh, Cyril Zhang, and Yi Zhang.
Efficient full-matrix adaptive regularization. In Kamalika Chaudhuri and Ruslan Salakhutdinov
(eds.), Proceedings of the 36th International Conference on Machine Learning, volume 97 of
Proceedings of Machine Learning Research, pp. 102–110. PMLR, 09–15 Jun 2019. URL https:
//proceedings.mlr.press/v97/agarwal19b.html.

Naman Agarwal, Rohan Anil, Elad Hazan, Tomer Koren, and Cyril Zhang. Learning rate grafting:
Transferability of optimizer tuning, 2022. URL https://openreview.net/forum?id=
FpKgG31Z_i9.

Guillaume Alain, Nicolas Le Roux, and Pierre-Antoine Manzagol. Negative eigenvalues of the
hessian in deep neural networks. In 6th International Conference on Learning Representations,
ICLR 2018, Vancouver, BC, Canada, April 30 - May 3, 2018, Workshop Track Proceedings.
OpenReview.net, 2018. URL https://openreview.net/forum?id=S1iiddyDG.

Shun-ichi Amari. Natural Gradient Works Efficiently in Learning. Neural Computation, 10(2):
251–276, 02 1998. ISSN 0899-7667. doi: 10.1162/089976698300017746. URL https:
//doi.org/10.1162/089976698300017746.

Rohan Anil, Vineet Gupta, Tomer Koren, Kevin Regan, and Yoram Singer. Second order optimization
made practical. CoRR, abs/2002.09018, 2020. URL https://arxiv.org/abs/2002.
09018.

Somenath Bera and Vimal Shrivastava. Analysis of various optimizers on deep convolutional
neural network model in the application of hyperspectral remote sensing image classification.
International Journal of Remote Sensing, 41:2664–2683, 04 2020. doi: 10.1080/01431161.2019.
1694725.

Dimitri P. Bertsekas. Incremental least squares methods and the extended kalman filter. SIAM J.
Optim., 6(3):807–822, 1996. doi: 10.1137/S1052623494268522. URL https://doi.org/
10.1137/S1052623494268522.

Aleksandar Botev, Hippolyt Ritter, and David Barber. Practical Gauss-Newton optimisation for
deep learning. In Doina Precup and Yee Whye Teh (eds.), Proceedings of the 34th International
Conference on Machine Learning, volume 70 of Proceedings of Machine Learning Research,
pp. 557–565. PMLR, 06–11 Aug 2017. URL https://proceedings.mlr.press/v70/
botev17a.html.

Léon Bottou. Stochastic learning. In Olivier Bousquet, Ulrike von Luxburg, and Gunnar Rätsch
(eds.), Advanced Lectures on Machine Learning: ML Summer Schools 2003, Canberra, Australia,
February 2 - 14, 2003, Tübingen, Germany, August 4 - 16, 2003, Revised Lectures, pp. 146–168.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2004. ISBN 978-3-540-28650-9. doi: 10.1007/
978-3-540-28650-9_7. URL https://doi.org/10.1007/978-3-540-28650-9_7.

Léon Bottou and Yann Lecun. On-line learning for very large datasets. J. Applied Stochastic Models
in Business and Industry, 01 2004.

C. Cartis, N.I.M. Gould, and Ph.L. Toint. Complexity bounds for second-order optimality in
unconstrained optimization. Journal of Complexity, 28(1):93–108, 2012a. ISSN 0885-064X.
doi: https://doi.org/10.1016/j.jco.2011.06.001. URL https://www.sciencedirect.com/
science/article/pii/S0885064X11000537.

Coralia Cartis, Nicholas I. M. Gould, and Philippe L. Toint. Adaptive cubic regularisation methods for
unconstrained optimization. part i: motivation, convergence and numerical results. Mathematical
Programming, 127(2):245–295, 2011a. doi: 10.1007/s10107-009-0286-5. URL https://doi.
org/10.1007/s10107-009-0286-5.

Coralia Cartis, Nicholas I. M. Gould, and Philippe L. Toint. Adaptive cubic regularisation methods
for unconstrained optimization. part ii: worst-case function- and derivative-evaluation complexity.
Mathematical Programming, 130(2):295–319, 2011b. doi: 10.1007/s10107-009-0337-y. URL
https://doi.org/10.1007/s10107-009-0337-y.

11

https://proceedings.mlr.press/v97/agarwal19b.html
https://proceedings.mlr.press/v97/agarwal19b.html
https://openreview.net/forum?id=FpKgG31Z_i9
https://openreview.net/forum?id=FpKgG31Z_i9
https://openreview.net/forum?id=S1iiddyDG
https://doi.org/10.1162/089976698300017746
https://doi.org/10.1162/089976698300017746
https://arxiv.org/abs/2002.09018
https://arxiv.org/abs/2002.09018
https://doi.org/10.1137/S1052623494268522
https://doi.org/10.1137/S1052623494268522
https://proceedings.mlr.press/v70/botev17a.html
https://proceedings.mlr.press/v70/botev17a.html
https://doi.org/10.1007/978-3-540-28650-9_7
https://www.sciencedirect.com/science/article/pii/S0885064X11000537
https://www.sciencedirect.com/science/article/pii/S0885064X11000537
https://doi.org/10.1007/s10107-009-0286-5
https://doi.org/10.1007/s10107-009-0286-5
https://doi.org/10.1007/s10107-009-0337-y

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Coralia Cartis, Nicholas I. M. Gould, and Philippe L. Toint. Evaluation complexity of adaptive cubic
regularization methods for convex unconstrained optimization. Optimization Methods and Soft-
ware, 27:197 – 219, 2012b. URL https://api.semanticscholar.org/CorpusID:
16647191.

Andrew R. Conn, Nicholas I. M. Gould, and Philippe L. Toint. Trust-Region Methods. SIAM,
Philadelphia, PA, USA, 2000.

Yann N. Dauphin, Razvan Pascanu, Caglar Gulcehre, Kyunghyun Cho, Surya Ganguli, and Yoshua
Bengio. Identifying and attacking the saddle point problem in high-dimensional non-convex opti-
mization. In Proceedings of the 27th International Conference on Neural Information Processing
Systems - Volume 2, NIPS’14, pp. 2933–2941, Cambridge, MA, USA, 2014. MIT Press.

Alexandre D’efossez, Léon Bottou, Francis R. Bach, and Nicolas Usunier. A simple convergence
proof of adam and adagrad. Trans. Mach. Learn. Res., 2022, 2020. URL https://api.
semanticscholar.org/CorpusID:225213299.

Ron S. Dembo, Stanley C. Eisenstat, and Trond Steihaug. Inexact newton methods. SIAM Journal on
Numerical Analysis, 19(2):400–408, 1982. doi: 10.1137/0719025. URL https://doi.org/
10.1137/0719025.

J.E. Dennis and R.B. Schnabel. Numerical Methods for Unconstrained Optimization and Non-
linear Equations. Prentice-Hall Civil Engineering and Engineering Mechanics Se. Prentice-
Hall, 1983. ISBN 9780136272168. URL https://books.google.co.il/books?id=
4fFQAAAAMAAJ.

Tian Ding, Dawei Li, and Ruoyu Sun. Sub-optimal local minima exist for almost all over-
parameterized neural networks. ArXiv, abs/1911.01413, 2019. URL https://api.
semanticscholar.org/CorpusID:207870322.

John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning and
stochastic optimization. Journal of Machine Learning Research, 12(61):2121–2159, 2011a. URL
http://jmlr.org/papers/v12/duchi11a.html.

John C. Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning
and stochastic optimization. J. Mach. Learn. Res., 12:2121–2159, 2011b. URL https://api.
semanticscholar.org/CorpusID:538820.

S C Eisenstat and H F Walker. Choosing the forcing terms in an inexact newton method. SIAM
Journal on Scientific Computing, 17(1), 1 1996. doi: 10.1137/0917003. URL https://www.
osti.gov/biblio/218521.

William R. Esposito and Christodoulos A. Floudas. Gauss–newton method: Least squares, relation to
newton’s methodgauss–newton method: Least squares, relation to newton’s method. In Christodou-
los A. Floudas and Panos M. Pardalos (eds.), Encyclopedia of Optimization, pp. 733–738. Springer
US, Boston, MA, 2001. ISBN 978-0-306-48332-5. doi: 10.1007/0-306-48332-7_151. URL
https://doi.org/10.1007/0-306-48332-7_151.

Reuben Feinman. Pytorch-minimize: a library for numerical optimization with autograd, 2021. URL
https://github.com/rfeinman/pytorch-minimize.

Dan Garber, Elad Hazan, Chi Jin, Kakade Sham, Cameron Musco, Praneeth Netrapalli, and Aaron
Sidford. Faster eigenvector computation via shift-and-invert preconditioning. In Maria Florina
Balcan and Kilian Q. Weinberger (eds.), Proceedings of The 33rd International Conference on
Machine Learning, volume 48 of Proceedings of Machine Learning Research, pp. 2626–2634,
New York, New York, USA, 20–22 Jun 2016. PMLR. URL https://proceedings.mlr.
press/v48/garber16.html.

R. Garmanjani. A note on the worst-case complexity of nonlinear stepsize control methods for convex
smooth unconstrained optimization. Optimization, 71:1–11, 10 2020. doi: 10.1080/02331934.
2020.1830088.

12

https://api.semanticscholar.org/CorpusID:16647191
https://api.semanticscholar.org/CorpusID:16647191
https://api.semanticscholar.org/CorpusID:225213299
https://api.semanticscholar.org/CorpusID:225213299
https://doi.org/10.1137/0719025
https://doi.org/10.1137/0719025
https://books.google.co.il/books?id=4fFQAAAAMAAJ
https://books.google.co.il/books?id=4fFQAAAAMAAJ
https://api.semanticscholar.org/CorpusID:207870322
https://api.semanticscholar.org/CorpusID:207870322
http://jmlr.org/papers/v12/duchi11a.html
https://api.semanticscholar.org/CorpusID:538820
https://api.semanticscholar.org/CorpusID:538820
https://www.osti.gov/biblio/218521
https://www.osti.gov/biblio/218521
https://doi.org/10.1007/0-306-48332-7_151
https://github.com/rfeinman/pytorch-minimize
https://proceedings.mlr.press/v48/garber16.html
https://proceedings.mlr.press/v48/garber16.html

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Rong Ge, Furong Huang, Chi Jin, and Yang Yuan. Escaping from saddle points — online stochastic
gradient for tensor decomposition. In Peter Grünwald, Elad Hazan, and Satyen Kale (eds.),
Proceedings of The 28th Conference on Learning Theory, volume 40 of Proceedings of Machine
Learning Research, pp. 797–842, Paris, France, 03–06 Jul 2015. PMLR. URL https://
proceedings.mlr.press/v40/Ge15.html.

Behrooz Ghorbani, Shankar Krishnan, and Ying Xiao. An investigation into neural net opti-
mization via hessian eigenvalue density. In Kamalika Chaudhuri and Ruslan Salakhutdinov
(eds.), Proceedings of the 36th International Conference on Machine Learning, volume 97 of
Proceedings of Machine Learning Research, pp. 2232–2241. PMLR, 09–15 Jun 2019. URL
https://proceedings.mlr.press/v97/ghorbani19b.html.

Donald Goldfarb, Yi Ren, and Achraf Bahamou. Practical quasi-newton methods for training deep
neural networks. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.),
Advances in Neural Information Processing Systems, volume 33, pp. 2386–2396. Curran Asso-
ciates, Inc., 2020. URL https://proceedings.neurips.cc/paper_files/paper/
2020/file/192fc044e74dffea144f9ac5dc9f3395-Paper.pdf.

I. J. Good. Rational decisions. Journal of the Royal Statistical Society. Series B (Methodological), 14
(1):107–114, 1952. ISSN 00359246. URL http://www.jstor.org/stable/2984087.

Andreas Griewank. The modification of newton’s method for unconstrained optimization by bounding
cubic terms. Technical report, Department of Applied Mathematics and Theoretical Physics,
University of Cambridge, United Kingdom, 1981.

Vineet Gupta, Tomer Koren, and Yoram Singer. Shampoo: Preconditioned stochastic tensor op-
timization. In Jennifer Dy and Andreas Krause (eds.), Proceedings of the 35th International
Conference on Machine Learning, volume 80 of Proceedings of Machine Learning Research,
pp. 1842–1850. PMLR, 10–15 Jul 2018. URL https://proceedings.mlr.press/v80/
gupta18a.html.

Guy Gur-Ari, Daniel A. Roberts, and Ethan Dyer. Gradient descent happens in a tiny subspace.
ArXiv, abs/1812.04754, 2018. URL https://api.semanticscholar.org/CorpusID:
54480858.

Kaiming He, X. Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition.
2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778, 2015.
URL https://api.semanticscholar.org/CorpusID:206594692.

M.F. Hutchinson. A stochastic estimator of the trace of the influence matrix for laplacian smoothing
splines. Communication in Statistics- Simulation and Computation, 18:1059–1076, 01 1989. doi:
10.1080/03610919008812866.

Maarten Jansen and Gerda Claeskens. Cramér–rao inequality. In Miodrag Lovric (ed.), International
Encyclopedia of Statistical Science, pp. 322–323. Springer Berlin Heidelberg, Berlin, Heidelberg,
2011. ISBN 978-3-642-04898-2. doi: 10.1007/978-3-642-04898-2_197. URL https://doi.
org/10.1007/978-3-642-04898-2_197.

Chi Jin, Rong Ge, Praneeth Netrapalli, Sham M. Kakade, and Michael I. Jordan. How to escape
saddle points efficiently. In Doina Precup and Yee Whye Teh (eds.), Proceedings of the 34th
International Conference on Machine Learning, volume 70 of Proceedings of Machine Learning
Research, pp. 1724–1732. PMLR, 06–11 Aug 2017. URL https://proceedings.mlr.
press/v70/jin17a.html.

Kenji Kawaguchi. Deep learning without poor local minima. In D. Lee, M. Sugiyama, U. Luxburg,
I. Guyon, and R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 29.
Curran Associates, Inc., 2016. URL https://proceedings.neurips.cc/paper_
files/paper/2016/file/f2fc990265c712c49d51a18a32b39f0c-Paper.pdf.

Kenji Kawaguchi and Yoshua Bengio. Depth with nonlinearity creates no bad local minima in
resnets. Neural Networks, 118:167–174, 2019. ISSN 0893-6080. doi: https://doi.org/10.1016/
j.neunet.2019.06.009. URL https://www.sciencedirect.com/science/article/
pii/S0893608019301820.

13

https://proceedings.mlr.press/v40/Ge15.html
https://proceedings.mlr.press/v40/Ge15.html
https://proceedings.mlr.press/v97/ghorbani19b.html
https://proceedings.neurips.cc/paper_files/paper/2020/file/192fc044e74dffea144f9ac5dc9f3395-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/192fc044e74dffea144f9ac5dc9f3395-Paper.pdf
http://www.jstor.org/stable/2984087
https://proceedings.mlr.press/v80/gupta18a.html
https://proceedings.mlr.press/v80/gupta18a.html
https://api.semanticscholar.org/CorpusID:54480858
https://api.semanticscholar.org/CorpusID:54480858
https://api.semanticscholar.org/CorpusID:206594692
https://doi.org/10.1007/978-3-642-04898-2_197
https://doi.org/10.1007/978-3-642-04898-2_197
https://proceedings.mlr.press/v70/jin17a.html
https://proceedings.mlr.press/v70/jin17a.html
https://proceedings.neurips.cc/paper_files/paper/2016/file/f2fc990265c712c49d51a18a32b39f0c-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2016/file/f2fc990265c712c49d51a18a32b39f0c-Paper.pdf
https://www.sciencedirect.com/science/article/pii/S0893608019301820
https://www.sciencedirect.com/science/article/pii/S0893608019301820

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Yann LeCun. PhD thesis: Modeles connexionnistes de l’apprentissage (connectionist learning
models). PhD thesis, Université Pierre et Marie Curie, Paris, France, 1987. URL https:
//api.semanticscholar.org/CorpusID:151887454.

Kfir Yehuda Levy. The power of normalization: Faster evasion of saddle points. ArXiv,
abs/1611.04831, 2016. URL https://api.semanticscholar.org/CorpusID:
16706102.

Hao Li, Zheng Xu, Gavin Taylor, Christoph Studer, and Tom Goldstein. Visualizing the loss land-
scape of neural nets. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and
R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 31. Curran Asso-
ciates, Inc., 2018. URL https://proceedings.neurips.cc/paper_files/paper/
2018/file/a41b3bb3e6b050b6c9067c67f663b915-Paper.pdf.

Hong Liu, Zhiyuan Li, David Leo Wright Hall, Percy Liang, and Tengyu Ma. Sophia: A scalable
stochastic second-order optimizer for language model pre-training. In The Twelfth International
Conference on Learning Representations, 2024. URL https://openreview.net/forum?
id=3xHDeA8Noi.

Kenneth L. Manders and Leonard Adleman. Np-complete decision problems for binary quadrat-
ics. Journal of Computer and System Sciences, 16(2):168–184, 1978. ISSN 0022-0000.
doi: https://doi.org/10.1016/0022-0000(78)90044-2. URL https://www.sciencedirect.
com/science/article/pii/0022000078900442.

James Martens. Deep learning via hessian-free optimization. In Johannes Fürnkranz and Thorsten
Joachims (eds.), ICML, pp. 735–742. Omnipress, 2010. URL http://dblp.uni-trier.
de/db/conf/icml/icml2010.html#Martens10.

James Martens. New insights and perspectives on the natural gradient method. J. Mach. Learn. Res.,
21(1), jan 2020. ISSN 1532-4435.

James Martens and Roger Grosse. Optimizing neural networks with kronecker-factored approximate
curvature. In Francis Bach and David Blei (eds.), Proceedings of the 32nd International Conference
on Machine Learning, volume 37 of Proceedings of Machine Learning Research, pp. 2408–2417,
Lille, France, 07–09 Jul 2015. PMLR. URL https://proceedings.mlr.press/v37/
martens15.html.

Harshal Mittal, Kartikey Pandey, and Yash Kant. Iclr reproducibility challenge report (padam :
Closing the generalization gap of adaptive gradient methods in training deep neural networks).
ArXiv, abs/1901.09517, 2019. URL https://api.semanticscholar.org/CorpusID:
249647677.

Aatila Mustapha, Lachgar Mohamed, and Kartit Ali. Comparative study of optimization techniques
in deep learning: Application in the ophthalmology field. Journal of Physics: Conference Series,
1743, 2021. URL https://api.semanticscholar.org/CorpusID:234179873.

Yurii Nesterov and B. T. Polyak. Cubic regularization of newton method and its global performance.
Mathematical Programming, 108(1):177–205, 2006. doi: 10.1007/s10107-006-0706-8. URL
https://doi.org/10.1007/s10107-006-0706-8.

Andrew Ng. Cs229 lecture notes - supervised learning. Available at
https://cs229.stanford.edu/lectures-spring2022/main_notes.pdf, 2012.

Quynh Nguyen, Mahesh Chandra Mukkamala, and Matthias Hein. On the loss landscape of a class
of deep neural networks with no bad local valleys. In International Conference on Learning
Representations, 2019. URL https://openreview.net/forum?id=HJgXsjA5tQ.

Jorge Nocedal and Stephen J. Wright. Numerical Optimization. Springer, New York, NY, USA, 2e
edition, 2006.

14

https://api.semanticscholar.org/CorpusID:151887454
https://api.semanticscholar.org/CorpusID:151887454
https://api.semanticscholar.org/CorpusID:16706102
https://api.semanticscholar.org/CorpusID:16706102
https://proceedings.neurips.cc/paper_files/paper/2018/file/a41b3bb3e6b050b6c9067c67f663b915-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/a41b3bb3e6b050b6c9067c67f663b915-Paper.pdf
https://openreview.net/forum?id=3xHDeA8Noi
https://openreview.net/forum?id=3xHDeA8Noi
https://www.sciencedirect.com/science/article/pii/0022000078900442
https://www.sciencedirect.com/science/article/pii/0022000078900442
http://dblp.uni-trier.de/db/conf/icml/icml2010.html#Martens10
http://dblp.uni-trier.de/db/conf/icml/icml2010.html#Martens10
https://proceedings.mlr.press/v37/martens15.html
https://proceedings.mlr.press/v37/martens15.html
https://api.semanticscholar.org/CorpusID:249647677
https://api.semanticscholar.org/CorpusID:249647677
https://api.semanticscholar.org/CorpusID:234179873
https://doi.org/10.1007/s10107-006-0706-8
https://openreview.net/forum?id=HJgXsjA5tQ

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Thomas O’Leary-Roseberry, Nick Alger, and Omar Ghattas. Inexact newton methods for stochastic
non-convex optimization with applications to neural network training. arXiv: Optimization and
Control, 2019. URL https://api.semanticscholar.org/CorpusID:155100112.

P.J. Olver and C. Shakiban. Applied Linear Algebra. Prentice Hall, 2006. ISBN 9780131473829.
URL https://books.google.co.il/books?id=D2tyQgAACAAJ.

OpenAI, Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni
Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, Red Avila, Igor
Babuschkin, Suchir Balaji, Valerie Balcom, Paul Baltescu, Haiming Bao, Mohammad Bavarian,
Jeff Belgum, Irwan Bello, Jake Berdine, Gabriel Bernadett-Shapiro, Christopher Berner, Lenny
Bogdonoff, Oleg Boiko, Madelaine Boyd, Anna-Luisa Brakman, Greg Brockman, Tim Brooks,
Miles Brundage, Kevin Button, Trevor Cai, Rosie Campbell, Andrew Cann, Brittany Carey, Chelsea
Carlson, Rory Carmichael, Brooke Chan, Che Chang, Fotis Chantzis, Derek Chen, Sully Chen,
Ruby Chen, Jason Chen, Mark Chen, Ben Chess, Chester Cho, Casey Chu, Hyung Won Chung,
Dave Cummings, Jeremiah Currier, Yunxing Dai, Cory Decareaux, Thomas Degry, Noah Deutsch,
Damien Deville, Arka Dhar, David Dohan, Steve Dowling, Sheila Dunning, Adrien Ecoffet, Atty
Eleti, Tyna Eloundou, David Farhi, Liam Fedus, Niko Felix, Simón Posada Fishman, Juston Forte,
Isabella Fulford, Leo Gao, Elie Georges, Christian Gibson, Vik Goel, Tarun Gogineni, Gabriel
Goh, Rapha Gontijo-Lopes, Jonathan Gordon, Morgan Grafstein, Scott Gray, Ryan Greene, Joshua
Gross, Shixiang Shane Gu, Yufei Guo, Chris Hallacy, Jesse Han, Jeff Harris, Yuchen He, Mike
Heaton, Johannes Heidecke, Chris Hesse, Alan Hickey, Wade Hickey, Peter Hoeschele, Brandon
Houghton, Kenny Hsu, Shengli Hu, Xin Hu, Joost Huizinga, Shantanu Jain, Shawn Jain, Joanne
Jang, Angela Jiang, Roger Jiang, Haozhun Jin, Denny Jin, Shino Jomoto, Billie Jonn, Heewoo
Jun, Tomer Kaftan, Łukasz Kaiser, Ali Kamali, Ingmar Kanitscheider, Nitish Shirish Keskar,
Tabarak Khan, Logan Kilpatrick, Jong Wook Kim, Christina Kim, Yongjik Kim, Jan Hendrik
Kirchner, Jamie Kiros, Matt Knight, Daniel Kokotajlo, Łukasz Kondraciuk, Andrew Kondrich,
Aris Konstantinidis, Kyle Kosic, Gretchen Krueger, Vishal Kuo, Michael Lampe, Ikai Lan, Teddy
Lee, Jan Leike, Jade Leung, Daniel Levy, Chak Ming Li, Rachel Lim, Molly Lin, Stephanie
Lin, Mateusz Litwin, Theresa Lopez, Ryan Lowe, Patricia Lue, Anna Makanju, Kim Malfacini,
Sam Manning, Todor Markov, Yaniv Markovski, Bianca Martin, Katie Mayer, Andrew Mayne,
Bob McGrew, Scott Mayer McKinney, Christine McLeavey, Paul McMillan, Jake McNeil, David
Medina, Aalok Mehta, Jacob Menick, Luke Metz, Andrey Mishchenko, Pamela Mishkin, Vinnie
Monaco, Evan Morikawa, Daniel Mossing, Tong Mu, Mira Murati, Oleg Murk, David Mély,
Ashvin Nair, Reiichiro Nakano, Rajeev Nayak, Arvind Neelakantan, Richard Ngo, Hyeonwoo
Noh, Long Ouyang, Cullen O’Keefe, Jakub Pachocki, Alex Paino, Joe Palermo, Ashley Pantuliano,
Giambattista Parascandolo, Joel Parish, Emy Parparita, Alex Passos, Mikhail Pavlov, Andrew Peng,
Adam Perelman, Filipe de Avila Belbute Peres, Michael Petrov, Henrique Ponde de Oliveira Pinto,
Michael, Pokorny, Michelle Pokrass, Vitchyr H. Pong, Tolly Powell, Alethea Power, Boris Power,
Elizabeth Proehl, Raul Puri, Alec Radford, Jack Rae, Aditya Ramesh, Cameron Raymond, Francis
Real, Kendra Rimbach, Carl Ross, Bob Rotsted, Henri Roussez, Nick Ryder, Mario Saltarelli, Ted
Sanders, Shibani Santurkar, Girish Sastry, Heather Schmidt, David Schnurr, John Schulman, Daniel
Selsam, Kyla Sheppard, Toki Sherbakov, Jessica Shieh, Sarah Shoker, Pranav Shyam, Szymon
Sidor, Eric Sigler, Maddie Simens, Jordan Sitkin, Katarina Slama, Ian Sohl, Benjamin Sokolowsky,
Yang Song, Natalie Staudacher, Felipe Petroski Such, Natalie Summers, Ilya Sutskever, Jie Tang,
Nikolas Tezak, Madeleine B. Thompson, Phil Tillet, Amin Tootoonchian, Elizabeth Tseng, Preston
Tuggle, Nick Turley, Jerry Tworek, Juan Felipe Cerón Uribe, Andrea Vallone, Arun Vijayvergiya,
Chelsea Voss, Carroll Wainwright, Justin Jay Wang, Alvin Wang, Ben Wang, Jonathan Ward, Jason
Wei, CJ Weinmann, Akila Welihinda, Peter Welinder, Jiayi Weng, Lilian Weng, Matt Wiethoff,
Dave Willner, Clemens Winter, Samuel Wolrich, Hannah Wong, Lauren Workman, Sherwin Wu,
Jeff Wu, Michael Wu, Kai Xiao, Tao Xu, Sarah Yoo, Kevin Yu, Qiming Yuan, Wojciech Zaremba,
Rowan Zellers, Chong Zhang, Marvin Zhang, Shengjia Zhao, Tianhao Zheng, Juntang Zhuang,
William Zhuk, and Barret Zoph. Gpt-4 technical report, 2024.

Panos M. Pardalos and Stephen A. Vavasis. Quadratic programming with one negative eigenvalue
is np-hard. Journal of Global Optimization, 1(1):15–22, 1991. doi: 10.1007/BF00120662. URL
https://doi.org/10.1007/BF00120662.

Dylan Patel and Gerald Wong. Gpt-4 architecture, infrastructure, training dataset, costs, vision, moe.
https://www.semianalysis.com/p/gpt-4-architecture-infrastructure,
2023. Accessed: 2024-05-01.

15

https://api.semanticscholar.org/CorpusID:155100112
https://books.google.co.il/books?id=D2tyQgAACAAJ
https://doi.org/10.1007/BF00120662
https://www.semianalysis.com/p/gpt-4-architecture-infrastructure

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Barak A. Pearlmutter. Fast Exact Multiplication by the Hessian. Neural Computation, 6(1):147–160,
01 1994. ISSN 0899-7667. doi: 10.1162/neco.1994.6.1.147. URL https://doi.org/10.
1162/neco.1994.6.1.147.

Karl Pearson. Note on Regression and Inheritance in the Case of Two Parents. Proceedings of the
Royal Society of London Series I, 58:240–242, January 1895.

Sebastian Ruder. An overview of gradient descent optimization algorithms. ArXiv, abs/1609.04747,
2016. URL https://api.semanticscholar.org/CorpusID:17485266.

Levent Sagun, Léon Bottou, and Yann LeCun. Eigenvalues of the hessian in deep learning: Singu-
larity and beyond. arXiv: Learning, 2016. URL https://api.semanticscholar.org/
CorpusID:35723845.

Robin M Schmidt, Frank Schneider, and Philipp Hennig. Descending through a crowded valley -
benchmarking deep learning optimizers. In Marina Meila and Tong Zhang (eds.), Proceedings of
the 38th International Conference on Machine Learning, volume 139 of Proceedings of Machine
Learning Research, pp. 9367–9376. PMLR, 18–24 Jul 2021. URL https://proceedings.
mlr.press/v139/schmidt21a.html.

Nicol Schraudolph. Fast curvature matrix-vector products for second-order gradient descent. Neural
computation, 14:1723–38, 08 2002. doi: 10.1162/08997660260028683.

Cooper Simpson and Jaden Wang. PyTorch-ARC. github.com/RS-Coop/PyTorch-ARC,
2023. Adaptive Regularization with Cubics (ARC) optimizer for PyTorch.

Hadar Sivan, Moshe Gabel, and Assaf Schuster. FOSI: Hybrid first and second order optimization.
In The Twelfth International Conference on Learning Representations, 2024. URL https:
//openreview.net/forum?id=NvbeD9Ttkx.

Daniel Soudry and Yair Carmon. No bad local minima: Data independent training error guar-
antees for multilayer neural networks. ArXiv, abs/1605.08361, 2016. URL https://api.
semanticscholar.org/CorpusID:3029264.

Tijmen Tieleman and Geoffrey Hinton. Lecture 6.5-rmsprop: Divide the gradient by a running
average of its recent magnitude. COURSERA: Neural networks for machine learning, 4(2):26–31,
2012.

Philippe L. Toint. Nonlinear stepsize control, trust regions and regularizations for unconstrained
optimization. Optimization Methods and Software, 28(1):82–95, 2013. doi: 10.1080/10556788.
2011.610458. URL https://doi.org/10.1080/10556788.2011.610458.

J.F. Traub. Iterative Methods for the Solution of Equations. AMS Chelsea Publishing Series.
Chelsea, 1982. ISBN 9780828403122. URL https://books.google.co.il/books?
id=se3YdgFgz4YC.

Sharan Vaswani, Reza Babanezhad, Jose Gallego, Aaron Mishkin, Simon Lacoste-Julien, and
Nicolas Le Roux. To each optimizer a norm, to each norm its generalization. ArXiv, abs/2006.06821,
2020. URL https://api.semanticscholar.org/CorpusID:219636073.

Neha Wadia, Daniel Duckworth, Samuel S Schoenholz, Ethan Dyer, and Jascha Sohl-Dickstein.
Whitening and second order optimization both make information in the dataset unusable during
training, and can reduce or prevent generalization. In Marina Meila and Tong Zhang (eds.),
Proceedings of the 38th International Conference on Machine Learning, volume 139 of Pro-
ceedings of Machine Learning Research, pp. 10617–10629. PMLR, 18–24 Jul 2021. URL
https://proceedings.mlr.press/v139/wadia21a.html.

Xiao Wang, Shiqian Ma, Donald Goldfarb, and Wei Liu. Stochastic quasi-newton methods for
nonconvex stochastic optimization. SIAM Journal on Optimization, 27, 07 2016. doi: 10.1137/
15M1053141.

16

https://doi.org/10.1162/neco.1994.6.1.147
https://doi.org/10.1162/neco.1994.6.1.147
https://api.semanticscholar.org/CorpusID:17485266
https://api.semanticscholar.org/CorpusID:35723845
https://api.semanticscholar.org/CorpusID:35723845
https://proceedings.mlr.press/v139/schmidt21a.html
https://proceedings.mlr.press/v139/schmidt21a.html
github.com/RS-Coop/PyTorch-ARC
https://openreview.net/forum?id=NvbeD9Ttkx
https://openreview.net/forum?id=NvbeD9Ttkx
https://api.semanticscholar.org/CorpusID:3029264
https://api.semanticscholar.org/CorpusID:3029264
https://doi.org/10.1080/10556788.2011.610458
https://books.google.co.il/books?id=se3YdgFgz4YC
https://books.google.co.il/books?id=se3YdgFgz4YC
https://api.semanticscholar.org/CorpusID:219636073
https://proceedings.mlr.press/v139/wadia21a.html

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Rachel Ward, Xiaoxia Wu, and Leon Bottou. AdaGrad stepsizes: Sharp convergence over nonconvex
landscapes. In Kamalika Chaudhuri and Ruslan Salakhutdinov (eds.), Proceedings of the 36th
International Conference on Machine Learning, volume 97 of Proceedings of Machine Learning
Research, pp. 6677–6686. PMLR, 09–15 Jun 2019. URL https://proceedings.mlr.
press/v97/ward19a.html.

Peng Xu, Farbod Roosta-Khorasan, and Michael Mahoney. Second-order optimization for non-convex
machine learning: An empirical study. In Proceedings of the 2020 SIAM International Conference
on Data Mining, 08 2017.

Peng Xu, Fred Roosta, and Michael W. Mahoney. Newton-type methods for non-convex optimization
under inexact hessian information. Mathematical Programming, 184(1):35–70, 2020. doi: 10.1007/
s10107-019-01405-z. URL https://doi.org/10.1007/s10107-019-01405-z.

Robert M. Young. 75.9 euler’s constant. The Mathematical Gazette, 75(472):187–190, 1991. ISSN
00255572. URL http://www.jstor.org/stable/3620251.

Xiao-Hu Yu and Guo-An Chen. On the local minima free condition of backpropagation learning.
IEEE Transactions on Neural Networks, 6(5):1300–1303, 1995. doi: 10.1109/72.410380.

Matthew D. Zeiler. Adadelta: An adaptive learning rate method. ArXiv, abs/1212.5701, 2012. URL
https://api.semanticscholar.org/CorpusID:7365802.

Pan Zhou, Jiashi Feng, Chao Ma, Caiming Xiong, Steven Chu Hong Hoi, and Weinan E.
Towards theoretically understanding why sgd generalizes better than adam in deep learn-
ing. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), Ad-
vances in Neural Information Processing Systems, volume 33, pp. 21285–21296. Curran Asso-
ciates, Inc., 2020. URL https://proceedings.neurips.cc/paper_files/paper/
2020/file/f3f27a324736617f20abbf2ffd806f6d-Paper.pdf.

Milija Županski. A preconditioning algorithm for large-scale minimization problems. Tellus A:
Dynamic Meteorology and Oceanography, Jan 1993. doi: 10.3402/tellusa.v45i5.15048.

A QUASI-NEWTON CHALLENGES AND PROPOSED SOLUTIONS

Some of the challenges involved in training neural networks include:

• Because the models and data often have very complex structures, obtaining precisely optimal
parameters is often computationally prohibitive. As a result, one must satisfy oneself with
a small degree of suboptimality in the model’s parameters, chosen to be small enough to
satisfy one’s needs while not exhausting the computational capacity at hand.

• Since many model architectures (e.g. artificial neural networks) have very complex struc-
tures, the loss function is generallhy non-convex as a function of the model’s parameters.
This makes finding the globally optimal choice of parameters an NP-hard problem (Pardalos
& Vavasis, 1991; Manders & Adleman, 1978). As a result, one must satisfy oneself with
merely a local minimum of the loss function (that is, a point at which the norm of the gradient
w.r.t. the model parameters is zero, and the function is locally convex, or equivalently, the
Hessian is positive semi-definite). This is often considered sufficient (see Soudry & Carmon
(2016); Kawaguchi & Bengio (2019); Kawaguchi (2016); Nguyen et al. (2019)), however
this does not apply to saddle points and local maxima (points at which the gradient norm is
zero but the Hessian is not positive definite). Although some work has been done on trying to
eliminate this problem by eliminating local- but not global- minima via overparameterization
(Yu & Chen, 1995), further work (Ding et al., 2019) has shown that this does not scale to
deep neural networks.

• As mentioned previously, there is no single universally optimal optimizer, even among
existing optimizers.

As a result, sophisticated optimizers are necessary to contend with different neural network training
scenarios. Restricting ourselves to quasi-newton optimization algorithms, scenarios with n ≫ 0

17

https://proceedings.mlr.press/v97/ward19a.html
https://proceedings.mlr.press/v97/ward19a.html
https://doi.org/10.1007/s10107-019-01405-z
http://www.jstor.org/stable/3620251
https://api.semanticscholar.org/CorpusID:7365802
https://proceedings.neurips.cc/paper_files/paper/2020/file/f3f27a324736617f20abbf2ffd806f6d-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/f3f27a324736617f20abbf2ffd806f6d-Paper.pdf

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

(a common theme in machine learning, where n may be in the millions, billions, or even trillions,
as GPT4 (OpenAI et al., 2024) is rumored to have. See Patel & Wong (2023)) are that computing
and inverting the Hessian (with respective complexities O

(
n2
)
,O
(
n3
)
) may be computationally

prohibitive. Also, one must ensure that
Φt ⪰ 0 (11)

to ensure that θt+1 − θt is a descent direction of f . This is because −∇f (θt) is a descent direction
of f , which implies that for all v ∈ Rn, −α · ∇f (θt)⊤ v · v⊤ is a descent direction for α > 0 and an
ascent direction for α < 0. However, if (λi, vi) is an eigenvalue-eigenvector pair of Φt with λi < 0

then −v⊤i · Φt∇f (θt) · vi = −λi∇f (θt)⊤ · vi · vi which is an ascent direction, and then a better

preconditioner could immediately be obtained by taking Φ̃t with eigenpairs
(
λ̃j , ṽj

)
, ṽj = vj , λ̃j ={

λj j ̸= i

0 j = i
to prevent an ascent in the subspace (a.k.a. eigenspace) span(vi).

Three common ways to contend with these challenges are:

• The Hessian-Free approach Making use of Pearlmutter (1994) to compute Hessian-vector
products without explicit computation of the Hessian, one uses conjugate-gradient (Olver &
Shakiban, 2006) iterations to compute progressively finer approximations to (H (θt))

−1 ·
∇f (θt), stopping when one reaches a dimension with negative curvature. See, for instance,
Martens (2010).

• The Lanczos eigendecomposition approach Making use of Lanczos iterations (Olver &
Shakiban, 2006), one decomposes the Hessian into its eigendecomposition, and explicitly
edits its eigenvalues. See, for instance, Dauphin et al. (2014); Sivan et al. (2024).

• The Gauss-Newton approach Using the generalized Gauss-Newton approximation to the
Hessian (Esposito & Floudas, 2001; Schraudolph, 2002), one can obtain a matrix which has
the following good properties:

– Well approximated by a Kronecker product (sparse representation), which allows one
to represent it and multiply by it very cheaply

– Positive semi-definite
– Can be computed with only a first-order loss function gradient oracle
– Well approximates the true loss Hessian, when the second derivative of the model or

the residual loss (f (θt)− f (θ∗)) is insignificant next to the generalized Gauss Newton

Some examples of this approach include Agarwal et al. (2019); Botev et al. (2017); Gupta
et al. (2018); Martens & Grosse (2015); Goldfarb et al. (2020); Anil et al. (2020). Of
particular note are examples that make diagonal approximations to the Gauss-Newton, as
noted by Martens (2020), that are most often viewed as first-order methods, such as Adagrad
(Duchi et al., 2011a), RMSProp (Tieleman & Hinton, 2012), and Adam (Kingma & Ba,
2014). As noted by Martens (2020), due to the strong connection between the generalized
Gauss-Newton and the Fischer Information matrix (when the loss function is cross-entropy
loss (Good, 1952)), one can achieve certain theoretical benefits when using such methods,
such as Fischer efficiency; see Amari (1998) for instance, which views θt as an unbiased
estimator of θ∗ of f , and uses the Cramer-Rao inequality (Jansen & Claeskens, 2011) to
lower-bound the minimal number of iterations required to minimize the variance of said
estimator as a function of the Fischer Information due to the number of samples consumed
by each iteration.

See Nocedal & Wright (2006, Chapters 3.3,3.4) for further discussion of these approaches.

In order for a minimization problem to be well-defined, one must assume that f is lower-bounded.
We can infer from this that any subset of the domain space in which f is concave must be a bounded
set (because nonconstant concave functions with unbounded domains are not lower-bounded); this
means that the second-order Taylor approximation of the function must have a bounded neighborhood
in which it approximates the function well. Additionally, even in subsets of the domain space in
which f is convex, the neighborhood in which the second-order Taylor approximation of the loss
function well-approximates the true loss function may be bounded. To address this, two common
approaches been proposed in the literature, namely:

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

• The Trust Regions Approach, which explicitly maintains a radius of the neighborhood
in which the second-order Taylor polynomial is a good approximation of the function, and
bounds the step size to that radius. See Conn et al. (2000), Nocedal & Wright (2006, Chapter
4).

• The Cubic Regularization Approach, which assumes that Hessian is Lipschitz continuous
(using the L2 vector-induced matrix norm to measure distances between Hessians), and as
such can upper bound the distance between two points of the function using a third-order
polynomial (discussed below, see Lemma 4.1.14 from Dennis & Schnabel (1983)). See
Nesterov & Polyak (2006) for an algorithm based on this approach that adaptively estimates
the Hessian-Lipschitz parameter.

B OTHER CONVERGENCE RATE MEASURES

Convergence rates to first-order criticality Most works on convergence rates in the non-convex
regime bound the number of iterations necessary to achieve first-order criticality (∥∇f (θt)∥2 = 0) by
means of finding an ϵg-stationary point (a point at which ∥∇f (θt)∥2 ≤ ϵg). The seminal work Wang
et al. (2016) provide a convergence rate bound for general optimizers (with very weak assumptions) in

the non-convex regime ofO
(
κ

2
1−ν (Φt) · ϵ

− 1
1−ν

g

)
with learning rate αt = O (t−ν) and ν ∈ (0.5, 1).

However, this bound is minimized by setting Φt to the minimizer of κ (Φt), which is a scalar matrix;
this is equivalent to gradient descent, a first-order method. Experiments (see Sivan et al. (2024), for
instance) and theory show that higher-order methods can achieve faster rates of convergence in our
setting, demonstrating looseness of this convergence rate bound. See also D’efossez et al. (2020) who
give such convergence rate bounds (requiring t iterations, for t s.t.

√
t

log(t) = Ω
(
ϵ−1
g

)
) for Adam and

Adagrad, and Ward et al. (2019) who give such convergence rate bounds (at O
(
ϵ−1
g

)
) for gradient

descent with Adagrad-grafted step-sizes (see Agarwal et al. (2022) for a discussion on learning rate
grafting).

Convergence rates to second-order criticality A few go further in bounding the number of steps
required to achieve second-order criticality (a point satisfying ∥∇f (θt)∥2 < ϵg,−λmin (H (θt)) <
ϵH). For instance, Nesterov & Polyak (2006); Cartis et al. (2011b); Xu et al. (2020) provide such
bounds (atO

(
max(ϵg, ϵH)−3

)
) on variants of the ARC algorithm, and Levy (2016); Jin et al. (2017);

Ge et al. (2015) provide such bounds for varieties of SGD. This is of great importance since as noted,
local minima are generally considered sufficiently optimal while local maxima/saddle points are not,
despite being impossible to distinguish with only first-order criticality information. To the best of our
knowledge, however, no such bounds exist in the general setting, nor do they even exist for the vast
majority of existing optimization algorithms.

Convergence rate dependence on preconditioner quality One possible quality metric for Φt

is given by ηt ≜
∥∥∥(I −H (θt) · Φt) · ∇f(θt)

∥∇f(θt)∥

∥∥∥
2
. In the convex regime, Nocedal & Wright (2006,

Chapter 7.1) assume supt (ηt) < 1 and prove that first-order criticality may be reached within

O
(

log ϵ

log
1+supt(ηt)

2

)
iterations. Adding an assumption of Lipschitz-continuity of the Hessian, they

prove quadratic convergence to first-order criticality. O’Leary-Roseberry et al. (2019), in contrast,
do not assume convexity but provide a bound on the parameter gap ∥θt − θ∗∥2 for ηt satisfying the
Eisenstat-Walker (Eisenstat & Walker, 1996; Dembo et al., 1982) condition ηt ≤ ∥∇f (θt)∥2 on
a Tikhonov-regularized Hessian. Like Wang et al. (2016), however, here too the constant in their
bound is inversely proportional to ζ − λmin (H (θt)) with ζ the Tikhonov regularization constant,
thus is minimized by taking ζ →∞, eliminating all second-order information and reverting to simple
gradient descent. As before, this implies looseness due to the empirical success of making use of
second-order methods.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

C COMPARISON OF ELMO TO SELECT RELATED METHODS

ELMO is strikingly similar to Cauchy’s method (not to be confused with Cauchy’s Steepest Descent
method (Nocedal & Wright, 2006, Chapter 4.1)) and Newton’s method mentioned above. In this
section, we note the similarity between them, and the sources of the differences between them.

C.1 COMPARISON TO CAUCHY’S METHOD

Cauchy’s method (Traub, 1982) is nearly identical to ELMO:

(θt+1 − θt)⊤cauchy · vi ≜ −
2

1 +

√
1− 2

Li
t·∇f(θt)

⊤vi
λ2
i (θt)

· ∇f (θt)
⊤
vi

λi (θt)

= − 2

1 + 1
|λi(θt)| ·

√
λ2i (θt)− 2Li

t · ∇f (θt)
⊤
vi

∇f (θt)⊤ vi
λi (θt)

=
−2∇f (θt)⊤ vi

λi (θt) +
λi(θt)
|λi(θt)| ·

√
λ2i (θt)− 2Li

t · ∇f (θt)
⊤
vi

=
1

Li
t

· −2Li
t · ∇f (θt)

⊤
vi

λi (θt) +
λi(θt)
|λi(θt)| ·

√
λ2i (θt)− 2Li

t · ∇f (θt)
⊤
vi

=
1

Li
t

·

(
λ2i (θt)− 2Li

t · ∇f (θt)
⊤
vi

)
− λ2i (θt)

λi (θt) +
λi(θt)
|λi(θt)| ·

√
λ2i (θt)− 2Li

t · ∇f (θt)
⊤
vi

=

√
λ2i (θt)− 2Li

t · ∇f (θt)
⊤
vi −

√
λ2i (θt)

Li
t

· |λi (θt)|
λi (θt)

=

√
λ2i (θt)− 2Li

t · ∇f (θt)
⊤
vi − |λi(θt)|

λi(θt)
· λi (θt)

Li
t

· |λi (θt)|
λi (θt)

=

|λi(θt)|
λi(θt)

·
√
λ2i (θt)− 2Li

t · ∇f (θt)
⊤
vi − λi (θt)

Li
t

The difference between our minimization step and their step is merely the sign on the squareroot. The
difference lies in removing the absolute value in equation 3’s 3rd-order term and taking the negative
root of its derivative, due to the difference in goals: we attempt to minimize the function, leading us
to select the positive step. They attempt to find the function’s critical points, leading them to select
the negative step.

C.2 COMPARISON TO NEWTON’S METHOD

Unlike Cauchy’s method, Newton’s method (in optimization) makes a second-order approximation
to the function’s gradient. This is equivalent to the Hessian being constant, which is equivalent to
LH = 0. Indeed, taking the limit of equation 7 when LH → 0+, we recover Newton’s method:

lim
LH→0+

∆θ∗⊤t vi = lim
LH→0+

− 2∇f (θt)⊤ vi√
λ2i (θt)− 2Li

t · ∇f (θt)
⊤
vi + λi (θt)

=

{
−∇f(θt)

⊤vi
λi

λi > 0

∞ λi < 0

(12)

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

D CONVERGENCE RATE DEPENDENCE ON HESSIAN-LIPSCHITZ PARAMETER

As noted by Griewank (1981), the Hessian-Lipschitz parameter (in our case, the respective constants
of each eigenspace) may be computationally difficult to obtain precisely, leading some optimization
algorithms to estimate it approximately instead of computing it precisely (e.g. ARC). In order to
balance the computational burden of computing it to a high degree of exactitude with the degradation
of an algorithm’s convergence rate that comes with poor estimations, we study the effects of the
Hessian-Lipschitz parameter on M i

t

(
∆θ⊤t vi

)
.

D.1 LIPSCHITZ ROBUSTNESS

To address the convergence rate’s robustness to overly conservative Li
t, we consider the case when

Li
t →∞.

Theorem D.1. Let f : Rn → R satisfying assumptions 1 and 2. Then

M i
t

(
∆θ∗⊤t vi

)
= Θ

(
1√
Li
t

)

when Li
t →∞

Proof.

lim
Li

t→∞

M i
t

(
∆θ∗⊤t vi

)
−12(−∇f(θt)

⊤vi)
1.5−36(−∇f(θt)

⊤vi)+
√
2
√

−∇f(θt)
⊤vi+3

√
2

3

−∇f(θt)
⊤vi

−18
√
2

· 1√
Li

t

= lim
Li

t→∞
− 1√

λ2
i (θt)

Li
t(−2·∇f(θt)

⊤vi)
+ 1 + λi(θt)√

Li
t

√
−2·∇f(θt)

⊤vi

·
6

√
−∇f (θt)⊤ vi

6

√
−∇f (θt)⊤ vi − 2 · ∇f (θt)⊤ vi

− 2 · ∇f (θt)⊤ vi

6

√
−∇f (θt)⊤ vi − 2 · ∇f (θt)⊤ vi

·

√√√√ λ2i (θt)

Li
t

(
−2 · ∇f (θt)⊤ vi

) + 1− λi (θt)√
Li
t

√
−2 · ∇f (θt)⊤ vi

3

+
1√
Li
t

· 1 + 6
√
2∇f (θt)⊤ vi

2

(
6

√
−∇f (θt)⊤ vi − 2 · ∇f (θt)⊤ vi

)
λi (θt)

 −2·∇f(θt)
⊤vi√

λ2
i
(θt)

Li
t

−2·∇f(θt)
⊤vi+

λi(θt)√
Li
t

2

(
1
6 +
√
2∇f (θt)⊤ vi

)√
−2 · ∇f (θt)⊤ vi

= 1

D.2 BENEFIT OF LIPSCHITZ TIGHTNESS

To see how minimizing Li
t as much as possible benefits the bound, we consider the case when

Li
t → 0+.

Theorem D.2. Benefit of Lipschitz tightness: concave subspaces

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Let f : Rn → R satisfying assumptions 1 and 2. If λi (θt) ≤ 0 then

M i
t

(
∆θ∗⊤t vi

)
= Θ

(
− 1

Li,2
t

)

when Li
t → 0+

Proof.

lim
Li

t→0+

M i
t

(
∆θ∗⊤t vi

)
2
3λ

3
i (θt)

Li,2
t

= lim
Li

t→0+

3

√
1− 2Li

t ·
∇f(θt)

⊤vi
(−λi(θt))

2 + 1

2

2

− 2

√
1− 2Li

t ·
∇f(θt)

⊤vi
(−λi(θt))

2 + 1

2

3
+Li

t ·
3

2λ3i (θt)
·
(√

λ2i (θt)− 2Li
t · ∇f (θt)

⊤
vi − λi (θt)

)
· ∇f (θt)⊤ vi

= 1

Theorem D.3. Benefit of Lipschitz tightness: convex subspaces

Let f : Rn → R satisfying assumptions 1 and 2. If λi (θt) > 0 then

M i
t

(
∆θ∗⊤t vi

)
−M i

t

(
lim

Li
t→0+

∆θ∗⊤t vi

)
= Θ

(
Li
t

)

when Li
t → 0+

Proof. We begin by noting that by equation 12, limLi
t→0+ ∆θ∗⊤t vi =

|∇f(θt)
⊤vi|

λi(θt)
. Plugging this into

M i
t :

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

lim
Li

t→0+

M i
t

(
∆θ∗⊤t vi

)
−M i

t

(
limLi

t→0+ ∆θ∗⊤t vi

)
Li

t

1
2λi(θt)·

(∇f(θt)
⊤vi)

3

λ4
i
(θt)

− (∇f(θt)
⊤vi)

3

2λ2
i
(θt)

= lim
Li

t→0+
−

(
∇f (θt)⊤ vi

)3
2λ2i (θt)

·

 4(√
1− 2Li

t ·
∇f(θt)

⊤vi
λi(θt)

+ 1

)2

+
1

2
λi (θt) ·

(
∇f (θt)⊤ vi

)3
λ4i (θt)

·

 2λi(θt)√
λ2
i (θt)−2Li

t·∇f(θt)
⊤vi+λi(θt)

+ 1

2

·

 2λ2i (θt)

λi (θt)

√
λ2i (θt)− 2Li

t · ∇f (θt)
⊤
vi + λ2i (θt)

 2

1 +

√
1− 2Li

t ·
∇f(θt)

⊤vi
λ2
i (θt)

−L
i
t

4
·

(
∇f (θt)⊤ vi

)4
λ5i (θt)

 2√
1− 2Li

t ·
∇f(θt)

⊤vi
λ2
i (θt)

+ 1

 2√

1− 2Li
t ·

∇f(θt)
⊤vi

λ2
i (θt)

+ 1

·

1 + 2√

1−2Li
t·

∇f(θt)
⊤vi

λ2
i
(θt)

+1
+ 4(√

1−2Li
t·

∇f(θt)
⊤vi

λ2
i
(θt)

+1

)2

3

= 1

E EVIDENCE FROM THE LITERATURE

Experiments by Alain et al. (2018); Sagun et al. (2016); Ghorbani et al. (2019); Gur-Ari et al. (2018)
show that the positive eigenvalues of the Hessian remain relatively stable throughout training, while
the negative eigenvalues shrink rapidly. Alain et al. (2018) and Sagun et al. (2016) also show that
the negative eigenvalues shift chaotically. Gur-Ari et al. (2018) show that when training a network
on a classification task with k classes, then at least the eigenspace spanned by the k eigenvectors
corresponding to the top k eigenvalues remains very stable. Sivan et al. (2024); Liu et al. (2024)
also show that when training a neural network on a variety of tasks, the top k eigenvalues and their
corresponding eigenvectors change very slowly. Alain et al. (2018) also show explicitly that the
second-order Taylor approximation is a poor approximation of the loss function in the eigenspace
corresponding to the negative eigenvalues (the concave eigenspace), but an excellent approximation
in the eigenspace corresponding to the positive eigenvalues (the convex eigenspace); indeed, they
show that the optimal step in the convex eigenspace is well estimated by the Newton step, while there
is no correlation between the Hessian and the optimal step in the concave eigenspace. Using the
Lipschitz parameter as a measure of the rate of change of the Hessian in a given subspace (hence a
measure of the quality of a second-order Taylor approximation to a function and its corresponding
Newton step), this supports the claim that L+ ≪ L−.

F LIPSCHITZ PARAMETER EXPERIMENTS

We tested our algorithm in 7 scenarios with the PyTorch 1.13.0 framework, each on a single NVIDIA
GeForce RTX 3090 GPU with the standard hyperparameters and settings for ARC:

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

• σ+
0 = σ−

0 = 1

• η1 = 0.1, η2 = 0.9

• γ1 = γ2 = 2

• Maximum sub-problem failures = 11

• Maximum sub-problem iterations = 50,

• Sub-problem tolerance = 10−6

• Lanczos eigendecomposition (Garber et al., 2016)

• BFGS trinomial sub-problem solver (Nocedal & Wright, 2006, Chapter 6.1), (Feinman,
2021)

• trinomial sub-problem maximal failures=11

• trinomial sub-problem maximal iterations=50

The test scenarios1 include combinations of:

• Training ResNet18 artificial neural networks (He et al., 2015) for image classification on
MNIST, CIFAR10, and FakeData (random noise in place of images) with Cross-Entropy
Loss (CELoss), to evaluate the effect of changing data on the Lipschitz parameters

• Training a CNN for image classification on CIFAR10 with CELoss, to evaluate the effect of
changing neural network architecture on the Lipschitz parameters.

• Training a CNN2 autoencoder3 (LeCun, 1987) to compress MNIST

The classification CNN architecture:

1. A feature extractor consisting of 2 2D convolutional layers with 6 output channels for the
first and 16 output channels for the second. Both had kernel sizes of 5 pixels. Each of these
is followed by a ReLU nonlinearity and then 2x2 2D max pooling

2. A 3-layer MLP classification head with hidden sizes (120, 84) and ReLU nonlinearities

The autoencoder CNN architecture:

• Encoder: 4 2D convolutional layers with respective output channel numbers (16,32,32,64)
and kernel sizes of 3 pixels for the first two and 5 pixels for the last two. The first two
have 1 pixel padding and the last two have 2 pixel paddings. After every layer we apply
LeakyReLU nonlinearity and after every 2 layers we apply 2x2 2D max pooling.

• Decoder: 4 composite layers consisting of

1. a 2D transpose-convolutional layer
2. LeakyReLU nonlinearity (only for first and third composite layers)
3. a 2d convolutional layer
4. LeakyReLU nonlinearity

• Decoder hidden channel sizes: 32-32-16-16-16-16-3

• Decoder kernel sizes: 2-5-5-5-2-3-5-3

• All strides are of size 1, except for the first and third transpose-convolutional layers of the
decoder, with stride of size 2

• Decoder paddings: 0-2-2-2-0-1-2-1

Each experiment took several hours to run. All experiments (including those from above) shown in
figure 3.

1Code available on Github at REDACTED
2convolutional neural network
3With hidden dimensions 128-64-36-18-9-18-36-64-128, ReLU nonlinearities, and sigmoid nonlinearity on

the output

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Figure 3: Comparisons of convex-subspace Lipschitz parameters to concave-subspace Lipschitz
parameters. Logarithmic scale

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

One caveat is that due to computational constraints, we use stochastic minibatch training for the
neural networks instead of using the full batch to compute the gradient and Hessian-vector products
at each iteration (see Bertsekas (1996) for an introduction to minibatch Monte-Carlo estimation of
a sum). However, Cartis et al. (2011a), notes that the adaptive Lipschitz parameter estimates may
account for this variance by being greater than the actual Lipschitz parameters. Thus, our claims of
L+ ≪ 1 are not affected (since our experiments effectively provide an upper bound on L+) while
our claims of L− ≫ 0 are weakened. Since there is no reason to expect the variance on L− to be
significantly greater than the variance on L+, however, our experiments remain valid.

For visual clarity, the quasi-Newton superiority measurements in 2 are presented after:

1. Clipping extreme values to the 10% - 90% quantile range
2. Gaussian smoothing, consisting of a rolling window of size 300 and standard deviation of

100

F.1 COMPUTATION OF LIPSCHITZ PARAMETERS

We modified the standard ARC algorithm to compute distinct Lipschitz parameters for the eigenspaces
corresponding to the minimal and maximal eigenvalues. Pseudocode for this algorithm is given
below.

Algorithm 2 Algorithm EigenARC

Require: ϵ ∈ R+, θ0 ∈ Rn, γ1 > 1 > γ2 > 0, η2 ≥ η1 > 0,
(
Li
0

)n
i=1

> 0, EIGEN, BASE_OPT
1: t← 0
2: while ∥∇f (θt)∥2 > ϵ do ▷ While BASE_OPT hasn’t converged yet
3: (λi, vi)

n
i=1 ← EIGEN (H (θt))

4: if ASSESS_LIPSCHITZ
(
(Lit)

n

i=1

)
> η2 then ▷ Overly conservative Li

t

5:
(
Li
t

)n
i=1
← γ2 ·

(
Li
t

)n
i=1

6: else
7: if ASSESS_LIPSCHITZ

(
(Lit)

n

i=1

)
< η1 then ▷ Overly liberal Li

t

8: while ASSESS_LIPSCHITZ
(
(Lit)

n

i=1

)
> η1 do ▷ Raise all Li

t assessment is passed
9:

(
Li
t

)n
i=1
← γ1 ·

(
Li
t

)n
i=1

10: end while
11: for i=1,. . . ,n do ▷ Reduce the Li

t that can be reduced without violating assessment
12: while ASSESS_LIPSCHITZ

(
(Lit)

n

i=1

)
> η1 do

13: Li
t ←

Li
t

γ1

14: end while
15: Li

t ← γ1 · Li
t

16: end for
17: end if
18: end if
19: θt+1 ← BASE_OPT (θt)
20: t← t+ 1
21: end while
return

(
Li
t̂

)n,t
i=1,t̂=1

procedure ASSESS_LIPSCHITZ(
(
L̂i
t

)n
i=1

)

return
f(θt)−f

(
θt+

∑n
i=1 ∆θ∗⊤

t vi
(
L̂i

t

)
·vi

)
−

∑n
i=1 Mi

t

(
∆θ∗⊤

t vi
(
L̂i

t

))
end procedure

While lines 3-18 of EigenARC may technically be usable as the LIPSCHITZ subroutine of al-
gorithm ELMO above, each iteration requires Ω (n) evaluations of the loss function, which will be
computationally expensive if n≫ 0 and if the loss function is computationally heavy. This may be
ameliorated by performing these calculations only for a small subset of the eigenspaces like Sivan
et al. (2024), however we leave this to future work.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

(a) The setting in which we train a CNN on an au-
toencoder task has large convex Lipschitz parameters
throughout training

(b) The setting in which we train ResNet18 on a clas-
sification task has small convex Lipschitz parameters
throughout training

Figure 4: Comparison of second-order optimizers against first-order optimizers in settings with
different sized convex Lipschitz parameters. Second-order optimizers only hold an advantage over
first-order optimizers (thus justifying their additional computational complexity) when the convex
Lipschitz parameters are small.

G LIPSCHITZ-AIDED OPTIMIZER SELECTION

In this section, we demonstrate the use of convex Lipschitz parameters to select the best optimizer
for our use case. Due to the relative constancy of Lipschitz parameters throughout the training
process (after an initial warmup phase) in different settings, we can select optimizers for each
setting based on the following rule: quasi-Newton optimizers hold an advantage over first-order
optimizers when the convex Lipschitz parameters are small. As discussed in section 5, the convex
Lipschitz parameters in the image autoencoder training setting are far larger than those in the image
classification setting, so we compare a quasi-Newton optimizer against first-order methods in these
settings to validate our rule.

FOSI Sivan et al. (2024) is a variant of Saddle-Free Newton Dauphin et al. (2014) which applies
Newton iterations in the domain space subspaces spanned by the dominant eigenvectors of the Hessian,
and a first-order "base optimizer" in the remaining subspaces. We use FOSI as our representative
second-order optimizer due to its computational effectiveness, capability to adjust the computational
complexity of each iteration by adjusting the number of "dominant" eigenvectors to compute (fewer
eigenvectors comes at the cost of a poorer Hessian approximation by approximating the Hessian
with a lower-rank matrix, although this is somewhat mitigated by applying the base optimizer in
these subspaces), and fairness of comparison (since its integration of first-order optimizers allows us
to compare the effect of second-order optimization in the dominant eigenspaces against first-order
optimization in these spaces, while all else is held equal - the remaining subspaces are both treated by
the same first-order optimizers).

Experiment results may be seen in figure 4.

The experiments are run with the same settings as before, with FOSI augmenting SGD and Adam re-
spectively and Savitzky-Golay order-2 filtering with a window size of 5000 for clarity of visualization.
It may be clearly seen that FOSI second-order augmentation is beneficial only in the classification
setting, due to the small convex Lipschitz parameters.

H PROOFS

H.1 PRELIMINARY LEMMAS

Before we can get started, we prove a few basic lemmas.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

Lemma H.1.
∀x≥−1 :

√
1 + x ≤ 1 +

x

2

Proof. Mark g : R→ R, g (x) = 1 + x
2 −
√
1 + x. We have

g′ (x) = 1
2

(
1− 1√

1+x

)
g′′ (x) = 1

4

(
1

(1+x)
3
2

)
g is convex due to its second derivative being positive for all x > −1. Therefore, its sole critical
point x = 0 obtained from the derivative is a minimum, and ∀x≥−1 : g (x) ≥ g (0) = 0

Corollary H.1.1.

∀x∈R+∀y≥−x :
√
x+ y ≤

√
x+

y

2
√
x

Proof.
√
x+ y =

√
x

√
1 +

y

x
≤
√
x
(
1 +

y

2x

)
=
√
x+

y

2
√
x

Lemma. Let f : Rn → R satisfy assumptions 1 and 2. Then

mi
t

(
∆θ∗⊤t vi

)
≤M i

t

(
∆θ∗⊤t vi

)
≤ 0 (13)

Proof. The first inequality stems from the trivial fact that mi
t ≤M i

t .

The second inequality follows from the fact that (by design), ∆θ∗⊤t vi is a minimizer of M i
t

(
∆θ⊤t vi

)
,

but
M i

t (0) = 0

Lemma. 4.1 Minmax preconditioner

argmin
Φt∈Rn×n

∣∣∆∆iθt (Φt)
∣∣ =

H (θt) +

√
(H (θt))

2
+ 2V · diag

(
Li
t ·
∣∣∣∇f (θt)⊤ vi∣∣∣)n

i=1
· V ⊤

2

−1

Proof.

∣∣∆∆iθt
∣∣ =

∣∣∣∣∣∣∇f (θt)⊤
Φt −

2

λi +

√
λ2i − 2Li

t · ∇f (θt)
⊤
vi

I

 vi

∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∇f (θt)
⊤

Φt −

H (θt) +

√
(H (θt))

2
+ 2Li

t ·
∣∣∣∇f (θt)⊤ vi∣∣∣ I

2

−1 vi

∣∣∣∣∣∣∣∣∣
and the result follows from developing the second parenthesized term for all n dimensions of the
domain space.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

H.2 LEMMA 3.1: EIGENSPACE DESCENT

Working with assumptions 1 and equation 2, Dennis & Schnabel (1983, Lemma 4.1.14) prove the
following:

Lemma H.2.

f (θt+1)− f (θt) ≤ ∇f (θt)T ·∆θt +
1

2
∆θTt H (θt)∆θt +

1

6
LH ∥∆θt∥32 (14)

Much like algorithm ELMO, minimizing equation 14 would maximize [a bound on] the descent given
by iteration t. However, previous works such as Nesterov & Polyak (2006) note the difficulty of
minimizing this 3rd-order n-dimensional polynomial, even when LH is known. Indeed, Cartis et al.
(2011a) propose minimizing it iteratively over a growing subspace, with each iteration’s minimization
subspace a superset of the previous iterations’ (in practice, they use the Hessian’s Krylov subspaces,
initialized with the gradient). In our theoretical analysis however, we have the freedom to simply
take the most natural decomposition of the space into subspaces, the eigenspaces of the Hessian.
This does not limit the practicality of our approach, however, since Lanczos methods allow one
to obtain elements of this decomposition. In fact, Sivan et al. (2024) demonstrate experimentally
that decomposing the parameter space into multiple eigenspaces and optimizing each separately can
significantly speed up optimization wall time, despite the additional computational burden of the
Lanczos iterations, because of the regularizing effect this has on the function in each of the subspaces
(by reducing the variance of the Hessian eigenvalues). Ghorbani et al. (2019) also show the benefits
of reducing this variance.

Lemma. 3.1 Eigenspace Descent Bounds

Let f : Rn → R be a function satisfying assumptions 1 and 2, and let θt+1 ∈ Rn. Marking
∆θt = θt+1 − θt, we have

∃(Li
t)

n

i=1
∈(R+)n : f (θt+1)− f (θt) ≤

n∑
i=1

M i
t

(
∆θ⊤t vi

)
(15)

∃(Li
t)

n

i=1
∈(R+)n : f (θt+1)− f (θt) ≥

n∑
i=1

mi
t

(
∆θ⊤t vi

)
(16)

We give 2 proofs of the above lemma. The first proof is far simpler and relies on the standard spectral
norm-Lipschitz continuous Hessian assumption given by equation 2 instead of assumption 2:

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

Proof. Beginning with Nesterov & Polyak (2006, Lemma 1) for the first inequality,

∣∣∣f (θt+1)− f (θt)−
(
∇f (θt)⊤ (θt+1 − θt) + (θt+1 − θt)⊤H (θt) (θt+1 − θt)

)∣∣∣
≤ LH ∥θt+1 − θt∥32∣∣∣∣∣f (θt+1)− f (θt)−

(
n∑

i=1

(
∇f (θt)⊤ vi · (θt+1 − θt)⊤ vi + λi

(
(θt+1 − θt)⊤ vi

)2))∣∣∣∣∣
≤ LH

∥∥∥∥∥
n∑

i=1

(θt+1 − θt)⊤ viv⊤i

∥∥∥∥∥
3

2

≤ LH

(
n∑

i=1

∥∥∥(θt+1 − θt)⊤ viv⊤i
∥∥∥
2

)3

= LH · n3
(

n∑
i=1

1

n

∣∣∣(θt+1 − θt)⊤ vi
∣∣∣)3

≤ LH · n3
(
1

n

n∑
i=1

∣∣∣(θt+1 − θt)⊤ vi
∣∣∣3)

= LH · n2
n∑

i=1

∣∣∣(θt+1 − θt)⊤ vi
∣∣∣3

=

n∑
i=1

L̃H ·
∣∣∣(θt+1 − θt)⊤ vi

∣∣∣3

with

1. the second inequality being a representation of θt+1 − θt over the (orthogonal) Hessian
eigenbasis

2. the third inequality due to the triangle inequality

3. the fourth inequality due to Jensen’s inequality

Our first proof of lemma 3.1 is simple, but leaves something to be desired due to its lack of per-
eigenspace Lipschitz parameters and due to the presence of n2 in the bound, which can be very
large, as noted in section A. The first proof’s assumption of equation 2 is also easily seen to be
no weaker than assumption 2 (meaning that assuming equation 2 implies assumption 2) by taking
LR ≜ Li

t ≜ LH for all t ∈ [T], i ∈ [n]. To address these concerns, we make use of assumption 2,
and give a second (though more complicated) proof for lemma 3.1. We’ll prove only the upper bound,
as a proof for the lower bound is similar.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

Proof.

f (θt+1)− f (θt)

=

∫ 1

0

∇f (θt + y (θt+1 − θt))⊤ (θt+1 − θt) dy

= ∇f (θt)⊤ (θt+1 − θt) +
∫ 1

0

(∇f (θt + y (θt+1 − θt))−∇f (θt))⊤ (θt+1 − θt) dy

= ∇f (θt)⊤ (θt+1 − θt) +
∫ 1

0

(∫ 1

0

yH (θt + yz (θt+1 − θt)) (θt+1 − θt) dz
)⊤

(θt+1 − θt) dy

= ∇f (θt)⊤ (θt+1 − θt) +
∫ 1

0

∫ 1

0

y (θt+1 − θt)⊤H (θt + yz (θt+1 − θt)) (θt+1 − θt) dydz

= ∇f (θt)⊤ (θt+1 − θt) + (θt+1 − θt)⊤H (θt) (θt+1 − θt)

+

∫ 1

0

∫ 1

0

y (θt+1 − θt)⊤ (H (θt + yz (θt+1 − θt))−H (θt)) (θt+1 − θt) dydz︸ ︷︷ ︸
Z

with the first and third equalities due to the fundamental theorem of calculus.

Mark the Hessian eigendecompositions as follows:

H (θt + yz (θt+1 − θt)) = Ṽ Λ̃Ṽ ⊤

H (θt) = V ΛV ⊤

with diagonal Λ = diag (λi)
n
i=1 , Λ̃ = diag

(
λ̃i

)n
i=1

and orthogonal (due to the Hermitian nature of

Hessian matrices) matrices V, Ṽ .

Z =

∫ 1

0

∫ 1

0

y (θt+1 − θt)⊤
(
Ṽ Λ̃Ṽ ⊤ − V ΛV ⊤

)
(θt+1 − θt) dydz

=

∫ 1

0

∫ 1

0

y (θt+1 − θt)⊤
(
V Λ̃V ⊤ − V ΛV ⊤

)
(θt+1 − θt) dydz

+

∫ 1

0

∫ 1

0

y (θt+1 − θt)⊤
(
Ṽ Λ̃Ṽ ⊤ − V Λ̃V ⊤

)
(θt+1 − θt) dydz

Focusing on the first term,

=

∫ 1

0

∫ 1

0

y (θt+1 − θt)⊤ V
(
Λ̃− Λ

)
V ⊤ (θt+1 − θt) dydz

=

∫ 1

0

∫ 1

0

y

n∑
j=1

n∑
i=1

(θt+1 − θt)⊤ vi · (θt+1 − θt)⊤ vj · v⊤j V
(
Λ̃− Λ

)
V ⊤vidydz

=

∫ 1

0

∫ 1

0

y ·
n∑

i=1

(
(θt+1 − θt)⊤ vi

)2
·
(
λ̃i − λi

)
dydz

≤
n∑

i=1

Li
t ·
∣∣∣(θt+1 − θt)⊤ vi

∣∣∣3 · ∫ 1

0

∫ 1

0

y · yz · dydz

=

n∑
i=1

Li
t

6
·
∣∣∣(θt+1 − θt)⊤ vi

∣∣∣3

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

As for the second term,∫ 1

0

∫ 1

0

y (θt+1 − θt)⊤
(
Ṽ Λ̃Ṽ ⊤ − V Λ̃V ⊤

)
(θt+1 − θt) dydz

=

∫ 1

0

∫ 1

0

y (θt+1 − θt)⊤
(
Ṽ − V

)
Λ̃
(
Ṽ + V

)⊤
(θt+1 − θt) dydz

+

∫ 1

0

∫ 1

0

y (θt+1 − θt)⊤
((

Ṽ Λ̃V ⊤
)⊤
− Ṽ Λ̃V ⊤

)
(θt+1 − θt) dydz

=

∫ 1

0

∫ 1

0

y (θt+1 − θt)⊤
(
Ṽ − V

)
Λ̃
(
Ṽ + V

)⊤
(θt+1 − θt) dydz

≤
∫ 1

0

∫ 1

0

y ·
∥∥∥Ṽ − V ∥∥∥

2
·
∥∥∥Λ̃∥∥∥

2
·
∥∥∥Ṽ + V

∥∥∥
2
· ∥θt+1 − θt∥22 · dydz

≤ 1

3
· LR

∥∥∥Λ̃∥∥∥
2
· ∥θt+1 − θt∥32

=
1

3
· LR

∥∥∥Λ̃∥∥∥
2
·
∥∥(θt+1 − θt)V ⊤∥∥3

2

≤
√
n

3
· LR

∥∥∥Λ̃∥∥∥
2
·
∥∥(θt+1 − θt)V ⊤∥∥3

3

=

√
n

3
· LR

∥∥∥Λ̃∥∥∥
2
·

n∑
i=1

∣∣(θt+1 − θt)V ⊤ · ei
∣∣3

=

n∑
i=1

√
n

3
· LR

∥∥∥Λ̃∥∥∥
2
· |(θt+1 − θt) vi|3

with

• the first 4 transfers similar to those in the proof of lemma H.4

• the third equality due to orthonormality

• the third inequality due to the Lp norms inequality

• ei indicating the 1-hot vector with a 1 in the i-th entry

Putting it all together (and representing θt+1 − θt by its coordinate vector over the eigenbasis of
H (θt)):

f (θt+1)− f (θt) ≤
n∑

i=1

∇f (θt)⊤ vi · (θt+1 − θt)⊤ vi + λi (θt) ·
(
(θt+1 − θt)⊤ vi

)2
+

(
Li
t

6
+

√
n

3
· LR · LH

)
· |(θt+1 − θt) vi|3

To understand the relationship between our assumption 2 and the more standard equation 2, we
further prove that the combination of assumption 2 and a bounded spectrum assumption will be no
weaker than equation 2:

Lemma H.3. Let A ∈ Rn×n, v ∈ Rn. Then v⊤
(
A⊤ −A

)
v = 0.

Proof.

v⊤
(
A⊤ −A

)
v =

(
v⊤
(
A⊤ −A

)
v
)⊤

= v⊤
(
A−A⊤) v = −v⊤

(
A⊤ −A

)
v

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

Theorem H.4. Let f : Rn → R be a function satisfying assumptions 1 and 2, and assume
∃λsup∈R∀θ∈Rn∀i∈[n] : λi (θ) ≤ λsup. Then equation 2 is satisfied.

Proof.

∣∣p⊤ (H (θ)−H (φ)) p
∣∣ = ∣∣∣p⊤ (V ΛV ⊤ − Ṽ Λ̃Ṽ ⊤

)
p
∣∣∣

≤
∣∣∣p⊤ (V ΛV ⊤ − Ṽ ΛṼ ⊤

)
p
∣∣∣+ ∣∣∣p⊤Ṽ (Λ− Λ̃

)
Ṽ ⊤p

∣∣∣
=

∣∣∣∣p⊤ (V − Ṽ)Λ(V + Ṽ
)⊤

p

∣∣∣∣+ ∣∣∣p⊤Ṽ (Λ− Λ̃
)
Ṽ ⊤p

∣∣∣
≤
∥∥∥V − Ṽ ∥∥∥

2
· ∥Λ∥2 ·

∥∥∥V + Ṽ
∥∥∥
2
· ∥p∥22 +

∥∥∥Ṽ ⊤p
∥∥∥2
2
·
∥∥∥Λ− Λ̃

∥∥∥
2

≤

(
2LR · sup

θ′∈Rn,i∈R
λi (θ

′)

)
· ∥θ − φ∥2 +max

i
Li · ∥θ − φ∥2

≤ (2LH · λsup + LH) · ∥θ − φ∥2

with

• the first inequality due to the triangle inequality

• the second equality due to lemma H.3

• the second inequality due to the Cauchy-Schwartz inequality

• the third inequality due to the triangle inequality, and the fact that all of an orthonormal
matrix’s eigenvalues equal one of {−1, 1}

H.3 THEOREM 3.2: WORST CASE-OPTIMAL DESCENT RATE

Before we can prove theorem 3.2, we need to upper bound equation 7.

Lemma H.5. Minmax stepsize bound

If λi ≥ 0 then

∆θ∗⊤t vi = O

(√∣∣∣∇f (θt)⊤ vi∣∣∣)

If λi < 0 then

∆θ∗⊤t vi = O (|λi|)

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2025

Proof. For i s.t. 0 ≤ λi ≤
√
Li
t ·
∣∣∣∇f (θt)⊤ vi∣∣∣ we use corollary H.1.1 with x = 2Li

t ·
∣∣∣∇f (θt)⊤ vi∣∣∣

to obtain

∆θ∗⊤t vi =

√
λ2i + 2Li

t ·
∣∣∣∇f (θt)⊤ vi∣∣∣− λi
Li
t

≤
√
2 ·

√√√√∣∣∣∇f (θt)⊤ vi∣∣∣
Li
t

+

λ2
i

2 ·
1√

2Li
t·|∇f(θt)

⊤vi|
− λi

Li
t

≤
√
2 ·

√√√√∣∣∣∇f (θt)⊤ vi∣∣∣
Li
t

+
1

2
√
2
·

√√√√∣∣∣∇f (θt)⊤ vi∣∣∣
Li
t

=
5

2
√
2
·

√√√√∣∣∣∇f (θt)⊤ vi∣∣∣
Li
t

For i s.t. λi >
√
Li
t ·
∣∣∣∇f (θt)⊤ vi∣∣∣ we use corollary H.1.1 with x = λ2i to obtain

∆θ∗⊤t vi ≤

∣∣∣∇f (θt)⊤ vi∣∣∣
λi

≤

∣∣∣∇f (θt)⊤ vi∣∣∣√
Li
t ·
∣∣∣∇f (θt)⊤ vi∣∣∣ =

√√√√∣∣∣∇f (θt)⊤ vi∣∣∣
Li
t

For i s.t. λi < 0, we again use corollary H.1.1 with x = λ2i to obtain

∆θ∗⊤t vi =
2Li

t ·
∣∣∣∇f (θt)⊤ vi∣∣∣

Li
t

(√
λ2i + 2Li

t ·
∣∣∣∇f (θt)⊤ vi∣∣∣− |λi|) ≤

2 |λi|
Li
t

= O (|λi|)

We are now ready to prove theorem 3.2.
Theorem. Worst case-optimal descent rate Let f be a function with Lipschitz-continuous Hessian.
After t iterations, algorithm ELMO satisfies

f (θ0)− f (θt) = O (log t) (17)

Proof. Cartis et al. (2012a) give
∣∣∣∇f (θt)⊤ vi∣∣∣ = O (1

t
2
3

)
and ∀i:λi<0 : |λi| = O

(
1
3√t

)
for the

ARC optimization algorithm, of which algorithm ELMO is a special case (the case where ARC
perfectly estimates the Hessian Lipschitz parameter).

Making use of lemma H.5 and noting that mi
t

(
∆θ∗⊤t vi

)
≤ 0 by equation 13:∣∣mi

t

(
∆θ∗⊤t vi

)∣∣ = ∣∣∣∇f (θt)⊤ vi∣∣∣ ·∆θ∗⊤t vi +
−λi
2
·
(
∆θ∗⊤t vi

)2
+
Li
t

6
·
(
∆θ∗⊤t vi

)3
For i s.t. λi ≥ 0:

≤
∣∣∣∇f (θt)⊤ vi∣∣∣ · O

√√√√∣∣∣∇f (θt)⊤ vi∣∣∣

Li
t

+O

√√√√∣∣∣∇f (θt)⊤ vi∣∣∣

Li
t

3

= O
(∣∣∣∇f (θt)⊤ vi∣∣∣1.5) = O

((
1

t
2
3

)1.5
)

= O
(
1

t

)

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2025

For i s.t. λi < 0:

≤
∣∣∣∇f (θt)⊤ vi∣∣∣ · O (|λi|) + |λi| · (O (|λi|))2 +O (|λi|)3 = O

(∣∣∣∇f (θt)⊤ vi∣∣∣ · |λi|+ |λi|3)
= O

(
1

t
2
3

· 1
3
√
t
+

1

t

)
= O

(
1

t

)

Finally, we have

f (θ0)− f (θT) =
T−1∑
t=0

f (θt)− f (θt+1)

≤
T−1∑
t=0

∣∣mi
t

(
∆θ∗⊤t vi

)∣∣
≤

T−1∑
t=1

O
(
1

t

)
≤ O

(
log t+ γ +

1

2t

)
= O (log t)

with γ ≈ 0.57721 as the Euler-Mascheroni constant and Young (1991) for the last inequality.

H.4 THEOREM 3.3

Theorem. ∣∣mi
t

(
∆θ∗⊤t vi

)∣∣ ≤ 5
∣∣M i

t

(
∆θ∗⊤t vi

)∣∣

Proof. Due to equation 13, we have
mi

t(∆θ∗⊤
t vi)

Mi
t(∆θ∗⊤

t vi)
=

∣∣∣∣mi
t(∆θ∗⊤

t vi)
Mi

t(∆θ∗⊤
t vi)

∣∣∣∣. Now:

mi
t

(
∆θ∗⊤t vi

)
M i

t

(
∆θ∗⊤t vi

)
=
∇f (θt)⊤ vi ·∆θ∗⊤t vi +

λi

2

(
∆θ∗⊤t vi

)2 − Li
t

6 ·
∣∣∆θ∗⊤t vi

∣∣3
∇f (θt)⊤ vi ·∆θ∗⊤t vi +

λi

2

(
∆θ∗⊤t vi

)2
+

Li
t

6 ·
∣∣∆θ∗⊤t vi

∣∣3

=

−
∣∣∣∇f (θt)⊤ vi∣∣∣+ λi

2

√
λ2
i+2Li

t|∇f(θt)
⊤vi|−λi

Li
t

− Li
t

6 ·

(√
λ2
i+2Li

t|∇f(θt)
⊤vi|−λi

Li
t

)2

−
∣∣∣∇f (θt)⊤ vi∣∣∣+ λi

2

√
λ2
i+2Li

t|∇f(θt)
⊤vi|−λi

Li
t

+
Li

t

6 ·

(√
λ2
i+2Li

t|∇f(θt)
⊤vi|−λi

Li
t

)2

=

5

(
λi

√
λ2i + 2Li

t

∣∣∣∇f (θt)⊤ vi∣∣∣− λ2i)− 8Li
t

∣∣∣∇f (θt)⊤ vi∣∣∣(
λi

√
λ2i + 2Li

t

∣∣∣∇f (θt)⊤ vi∣∣∣− λ2i)− 4Li
t

∣∣∣∇f (θt)⊤ vi∣∣∣
If λi = 0, then

mi
t

(
∆θ∗⊤t vi

)
M i

t

(
∆θ∗⊤t vi

) = 2

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2025

If λi > 0, then

mi
t

(
∆θ∗⊤t vi

)
M i

t

(
∆θ∗⊤t vi

) =

5

√
1+2

Li
t|∇f(θt)

⊤vi|
λ2
i

−1

Li
t|∇f(θt)

⊤vi|
λ2
i

− 8

√
1+2

Li
t|∇f(θt)

⊤vi|
λ2
i

−1

Li
t|∇f(θt)

⊤vi|
λ2
i

− 4

≤ lim
x→∞

5
√
1+2x−1

x − 8
√
1+2x−1

x − 4
= 2

due to the monotonic increasing nature of ψ5 : R+ → R, ψ5 (x) =
5

√
1+2x−1

x −8
√

1+2x−1
x −4

.

If λi < 0, then

mi
t

(
∆θ∗⊤t vi

)
M i

t

(
∆θ∗⊤t vi

) =

5

√
1+2

Li
t|∇f(θt)

⊤vi|
|λi|2

+1

Li
t|∇f(θt)

⊤vi|
|λi|2

+ 8

√
1+2

Li
t|∇f(θt)

⊤vi|
|λi|2

+1

Li
t|∇f(θt)

⊤vi|
|λi|2

+ 4

≤ lim
x→0+

5
√
1+2x+1

x + 8
√
1+2x+1

x + 4
= 5

due to the monotonic decreasing nature of ψ6 : R+ → R, ψ6 (x) =
5

√
1+2x+1

x +8
√

1+2x+1
x +4

.

H.5 THEOREM 4.2: WORST-CASE DESCENT RATE FOR ARBITRARY OPTIMIZERS

Theorem. Relative Descent

•

∣∣∣∣∣M i
t

(
∆θ⊤t vi

)
−M i

t

(
∆θ∗⊤t vi

)
M i

t

(
∆θ∗⊤t vi

) ∣∣∣∣∣ = Θ
(∣∣∆∆iθ′t

∣∣2)

•

∣∣∣∣∣mi
t

(
∆θ⊤t vi

)
−mi

t

(
∆θ∗⊤t vi

)
mi

t

(
∆θ∗⊤t vi

) ∣∣∣∣∣ = Θ
(∣∣∆∆iθ′t

∣∣) (18)

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2025

Proof. For the first part of the lemma,∣∣∣∣∣M i
t

(
∆θ⊤t vi

)
−M i

t

(
∆θ∗⊤t vi

)
M i

t

(
∆θ∗⊤t vi

) ∣∣∣∣∣
=

∇f (θt)⊤ · vi ·
(
(θt+1 − θt)⊤ vi −∆θ∗⊤t vi

)
∆θ∗⊤t vi · ∇f (θt)⊤ vi + 1

2λi
(
∆θ∗⊤t vi

)2
+

Li
t

6

(
∆θ∗⊤t vi

)3
+

1
2λi ·

((
(θt+1 − θt)⊤ vi

)2
−
(
∆θ∗⊤t vi

)2)
∆θ∗⊤t vi · ∇f (θt)⊤ vi + 1

2λi
(
∆θ∗⊤t vi

)2
+

Li
t

6

(
∆θ∗⊤t vi

)3
+

Li
t

6 ·
((

(θt+1 − θt)⊤ · vi
)3
−
(
∆θ∗⊤t vi

)3)
∆θ∗⊤t vi · ∇f (θt)⊤ vi + 1

2λi
(
∆θ∗⊤t vi

)2
+

Li
t

6

(
∆θ∗⊤t vi

)3
= ∆∆iθ′t

 Li
t

6 ·
(
∆∆iθ′2t + 2∆∆iθ′t + 3

)
·
(
∆θ∗⊤t vi

)2
Li

t

6

(
∆θ∗⊤t vi

)2
+ 1

2λi∆θ
∗⊤
t vi −

∣∣∣∇f (θt)⊤ vi∣∣∣
+

λi ·
(
1
2∆∆iθ′t + 1

)
·∆θ∗⊤t vi

Li
t

6

(
∆θ∗⊤t vi

)2
+ 1

2λi∆θ
∗⊤
t vi −

∣∣∣∇f (θt)⊤ vi∣∣∣
−

∣∣∣∇f (θt)⊤ · vi∣∣∣
Li

t

6

(
∆θ∗⊤t vi

)2
+ 1

2λi∆θ
∗⊤
t vi −

∣∣∣∇f (θt)⊤ vi∣∣∣

= ∆∆iθ′t

1
6 ·
(
∆∆iθ′2t + 2∆∆iθ′t + 3

)
·

(√
λ2
i+2Li

t·|∇f(θt)
⊤vi|−λi

)2

Li
t

1
6

(√
λ2
i+2Li

t·|∇f(θt)
⊤vi|−λi

)2

Li
t

+ 1
2λi

√
λ2
i+2Li

t·|∇f(θt)
⊤vi|−λi

Li
t

−
∣∣∣∇f (θt)⊤ vi∣∣∣

+

λi ·
(
1
2∆∆iθ′t + 1

)
·

(√
λ2
i+2Li

t·|∇f(θt)
⊤vi|−λi

Li
t

)

1
6

(√
λ2
i+2Li

t·|∇f(θt)
⊤vi|−λi

)2

Li
t

+ 1
2λi

√
λ2
i+2Li

t·|∇f(θt)
⊤vi|−λi

Li
t

−
∣∣∣∇f (θt)⊤ vi∣∣∣

−

∣∣∣∇f (θt)⊤ · vi∣∣∣
1
6

(√
λ2
i+2Li

t·|∇f(θt)
⊤vi|−λi

)2

Li
t

+ 1
2λi

√
λ2
i+2Li

t·|∇f(θt)
⊤vi|−λi

Li
t

−
∣∣∣∇f (θt)⊤ vi∣∣∣

= ∆∆iθ′t ·

 ∆∆iθ′t + 2∆∆iθ′2t

λi

√
λ2i + 2Li

t ·
∣∣∣∇f (θt)⊤ vi∣∣∣− λ2i − 4Li

t

∣∣∣∇f (θt)⊤ vi∣∣∣ · λ
2
i

+
2
(
∆∆iθ′2t + 2∆∆iθ′t

)
λi

√
λ2i + 2Li

t ·
∣∣∣∇f (θt)⊤ vi∣∣∣− λ2i − 4Li

t

∣∣∣∇f (θt)⊤ vi∣∣∣ · L
i
t ·
∣∣∣∇f (θt)⊤ vi∣∣∣

− ∆∆iθ′t + 2∆∆iθ′2t

λi

√
λ2i + 2Li

t ·
∣∣∣∇f (θt)⊤ vi∣∣∣− λ2i − 4Li

t

∣∣∣∇f (θt)⊤ vi∣∣∣ · λi
√
λ2i + 2Li

t ·
∣∣∣∇f (θt)⊤ vi∣∣∣

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2025

If λi = 0:

= −∆∆iθ′t
2 ·
(
1 +

1

2
∆∆iθ′2t

)

If λi > 0:

= ∆∆iθ′2t ·
1

1√
1+2

Li
t·|∇f(θt)

⊤vi|
λ2
i

+1

− 2

·

(∆∆iθ′t + 2
)
−
(
1 + 2∆∆iθ′t

)
· 1

1 +

√
1 + 2

Li
t·|∇f(θt)

⊤vi|
λ2
i

= ∆∆iθ′2t ·

∆∆iθ′t − 1−

√√√√
1 + 2

Li
t ·
∣∣∣∇f (θt)⊤ vi∣∣∣

λ2i
·
(
∆∆iθ′t + 2

)
· 1

1 + 2

√
1 + 2

Li
t·|∇f(θt)

⊤vi|
λ2
i

= ∆∆iθ′3t ·
1

1 + 2

√
1 + 2

Li
t·|∇f(θt)

⊤vi|
λ2
i

−∆∆iθ′2t ·

1 +
1

2

1− 1

1 + 2

√
1 + 2

Li
t·|∇f(θt)

⊤vi|
λ2
i

 ·∆∆iθ′t

=

3

2

1

1 + 2

√
1 + 2

Li
t·|∇f(θt)

⊤vi|
λ2
i

− 1

2

 ·∆∆iθ′3t −∆∆iθ′2t

Proving that

1

1 + 2

√
1 + 2

Li
t·|∇f(θt)

⊤vi|
λ2
i

∈
(
0,

1

3

]

would conclude the proof for this case. This is easily proven, by noting that

ψ1 : R+ → R, ψ1 (x) =
(
1 + 2

√
1 + 2x

)−1

is monotonic and satisfies

lim
x→0+

ψ1 (x) =
1

3

lim
x→∞

ψ1 (x) = 0

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2025

If, on the other hand, λi < 0:

= −∆∆iθ′2t ·

(1 + 2∆∆iθ′t
)
− 3

2
∆∆iθ′t ·

Li
t|∇f(θt)

⊤vi|
|λi|2

Li
t|∇f(θt)

⊤vi|
|λi|2

+ 1
4

√
1 + 2

Li
t·|∇f(θt)

⊤vi|
|λi|2

+ 1
4

=

3

2
·

Li
t|∇f(θt)

⊤vi|
|λi|2

Li
t|∇f(θt)

⊤vi|
|λi|2

+ 1
4

√
1 + 2

Li
t·|∇f(θt)

⊤vi|
|λi|2

+ 1
4

− 2

∆∆iθ′3t −∆∆iθ′2t

Proving that

Li
t|∇f(θt)

⊤vi|
|λi|2

Li
t|∇f(θt)

⊤vi|
|λi|2

+ 1
4

√
1 + 2

Li
t·|∇f(θt)

⊤vi|
|λi|2

+ 1
4

∈ [0, 1)

would conclude the proof for this case as well. This is easily proven, by noting that

ψ2 : R+ → R, ψ2 (x) =
x

x+ 1
4

√
1 + 2x+ 1

4

is monotonic and satisfies

lim
x→0+

ψ2 (x) = 0

lim
x→∞

ψ2 (x) = 1

39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2025

For the second part of the lemma,

∣∣∣∣∣mi
t

(
∆θ⊤t vi

)
−mi

t

(
∆θ∗⊤t vi

)
mi

t

(
∆θ∗⊤t vi

) ∣∣∣∣∣
=

∇f (θt)⊤ · vi ·
(
(θt+1 − θt)⊤ vi −∆θ∗⊤t vi

)
∆θ∗⊤t vi · ∇f (θt)⊤ vi + 1

2λi
(
∆θ∗⊤t vi

)2 − Li
t

6

(
∆θ∗⊤t vi

)3
+

1
2λi ·

((
(θt+1 − θt)⊤ vi

)2
−
(
∆θ∗⊤t vi

)2)
∆θ∗⊤t vi · ∇f (θt)⊤ vi + 1

2λi
(
∆θ∗⊤t vi

)2 − Li
t

6

(
∆θ∗⊤t vi

)3
−

Li
t

6 ·
((

(θt+1 − θt)⊤ · vi
)3
−
(
∆θ∗⊤t vi

)3)
∆θ∗⊤t vi · ∇f (θt)⊤ vi + 1

2λi
(
∆θ∗⊤t vi

)2 − Li
t

6

(
∆θ∗⊤t vi

)3
= ∆∆iθ′t

 −Li
t

6 ·
(
∆∆iθ′2t + 2∆∆iθ′t + 3

)
−Li

t

6

(
∆θ∗⊤t vi

)2
+ 1

2λi∆θ
∗⊤
t vi −

∣∣∣∇f (θt)⊤ vi∣∣∣ ·
(
∆θ∗⊤t vi

)2
+

λi ·
(
1
2∆∆iθ′t + 1

)
−Li

t

6

(
∆θ∗⊤t vi

)2
+ 1

2λi∆θ
∗⊤
t vi −

∣∣∣∇f (θt)⊤ vi∣∣∣ ·∆θ∗⊤t vi

−

∣∣∣∇f (θt)⊤ · vi∣∣∣
−Li

t

6

(
∆θ∗⊤t vi

)2
+ 1

2λi∆θ
∗⊤
t vi −

∣∣∣∇f (θt)⊤ vi∣∣∣

= ∆∆iθ′t

 − 1
6 ·
(
∆∆iθ′2t + 2∆∆iθ′t + 3

)
·

(√
λ2
i+2Li

t·|∇f(θt)
⊤vi|−λi

)2

Li
t

− 1
6

(√
λ2
i+2Li

t·|∇f(θt)
⊤vi|−λi

)2

Li
t

+ 1
2λi

√
λ2
i+2Li

t·|∇f(θt)
⊤vi|−λi

Li
t

−
∣∣∣∇f (θt)⊤ vi∣∣∣

+

λi ·
(
1
2∆∆iθ′t + 1

)
·

(√
λ2
i+2Li

t·|∇f(θt)
⊤vi|−λi

Li
t

)

− 1
6

(√
λ2
i+2Li

t·|∇f(θt)
⊤vi|−λi

)2

Li
t

+ 1
2λi

√
λ2
i+2Li

t·|∇f(θt)
⊤vi|−λi

Li
t

−
∣∣∣∇f (θt)⊤ vi∣∣∣

−

∣∣∣∇f (θt)⊤ · vi∣∣∣
− 1

6

(√
λ2
i+2Li

t·|∇f(θt)
⊤vi|−λi

)2

Li
t

+ 1
2λi

√
λ2
i+2Li

t·|∇f(θt)
⊤vi|−λi

Li
t

−
∣∣∣∇f (θt)⊤ vi∣∣∣

40

2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2025

= ∆∆iθ′t

12λi ·
√
λ2i + 2Li

t ·
∣∣∣∇f (θt)⊤ vi∣∣∣− 12λ2i − 12Li

t

∣∣∣∇f (θt)⊤ · vi∣∣∣
5λi

√
λ2i + 2Li

t ·
∣∣∣∇f (θt)⊤ vi∣∣∣− 5λ2i − 8Li

t ·
∣∣∣∇f (θt)⊤ vi∣∣∣

+

7λi ·
(√

λ2i + 2Li
t ·
∣∣∣∇f (θt)⊤ vi∣∣∣− λi)− 4Li

t ·
∣∣∣∇f (θt)⊤ vi∣∣∣

5λi

√
λ2i + 2Li

t ·
∣∣∣∇f (θt)⊤ vi∣∣∣− 5λ2i − 8Li

t ·
∣∣∣∇f (θt)⊤ vi∣∣∣ ·∆∆iθ′t

+

2λi

√
λ2i + 2Li

t ·
∣∣∣∇f (θt)⊤ vi∣∣∣− 2λ2i − 2Li

t ·
∣∣∣∇f (θt)⊤ vi∣∣∣

5λi

√
λ2i + 2Li

t ·
∣∣∣∇f (θt)⊤ vi∣∣∣− 5λ2i − 8Li

t ·
∣∣∣∇f (θt)⊤ vi∣∣∣ ·∆∆iθ′2t

Noting the common structure of each of the coefficients of ∆∆iθ′t

1
,∆∆iθ′t

2
,∆∆iθ′t

3, we prove the
following to bound all three via appropriate settings of a, b ∈ {2, 4, 7, 12}:
If λi > 0:

lim
Li
t·|∇f(θt)

⊤vi|
λ2
i

→L

aλi ·
(√

λ2i + 2Li
t ·
∣∣∣∇f (θt)⊤ vi∣∣∣− λi)− bLi

t ·
∣∣∣∇f (θt)⊤ vi∣∣∣

5λi

√
λ2i + 2Li

t ·
∣∣∣∇f (θt)⊤ vi∣∣∣− 5λ2i − 8Li

t ·
∣∣∣∇f (θt)⊤ vi∣∣∣

= lim
Li
t·|∇f(θt)

⊤vi|
λ2
i

→L

a 2√
1+2

Li
t·|∇f(θt)

⊤vi|
λ2
i

+1

− b

5 2√
1+2

Li
t·|∇f(θt)

⊤vi|
λ2
i

+1

− 8

=

{
b−a
3 L = 0+

b
8 L =∞

If λi ≤ 0:

lim
Li
t·|∇f(θt)

⊤vi|
λ2
i

→L

a |λi| ·
(√
|λi|2 + 2Li

t ·
∣∣∣∇f (θt)⊤ vi∣∣∣+ |λi|)+ bLi

t ·
∣∣∣∇f (θt)⊤ vi∣∣∣

5 |λi|
(√
|λi|2 + 2Li

t ·
∣∣∣∇f (θt)⊤ vi∣∣∣+ |λi|)+ 8Li

t ·
∣∣∣∇f (θt)⊤ vi∣∣∣

= lim
Li
t·|∇f(θt)

⊤vi|
λ2
i

→L

a

(√
1 + 2

Li
t·|∇f(θt)

⊤vi|
|λi|2

+ 1

)
+ b

Li
t·|∇f(θt)

⊤vi|
|λi|2

5

(√
1 + 2

Li
t·|∇f(θt)

⊤vi|
|λi|2

+ 1

)
+ 8

Li
t·|∇f(θt)

⊤vi|
|λi|2

=

{
a
5 L = 0+

b
8 L =∞

Analogously to the first case, and due to the monotonic natures (for all a, b ∈ R) of

ψ3 : R+ → R, ψ3 (x) =
a 2√

1+2x+1
− b

5 2√
1+2x+1

− 8

and

ψ4 : R+ → R, ψ4 (x) =
a
(√

1 + 2x+ 1
)
+ bx

5
(√

1 + 2x+ 1
)
+ 8x

the term in the parentheses is bounded, thus we may conclude our proof of the lemma.

41

2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Under review as a conference paper at ICLR 2025

Remark. Note that when λi > 0,
Li

t·|∇f(θt)
⊤vi|

λ2
i

→ 0+, the coefficients of ∆∆iθ′t
3
,∆∆iθ′t

1 shrink

to 0 (since a = b for those cases), so that
∣∣∣∣mi

t(∆θ⊤
t vi)−mi

t(∆θ∗⊤
t vi)

mi
t(∆θ∗⊤

t vi)

∣∣∣∣ = Θ
(
∆∆iθ′t

2
)

We are now ready to prove theorem 4.2.
Theorem. Worst-case descent rate for arbitrary optimizers

Let f : Rn → R a twice-differentiable function satisfying assumptions 1 and 2, and let ∆θt satisfy
M i

t

(
∆θ⊤t vi

)
≤ 0. Then

• ∣∣∣∣∣ M i
t

(
∆θ⊤t vi

)
M i

t

(
∆θ∗⊤t vi

) ∣∣∣∣∣ = Θ
(
1 +

∣∣∆∆iθ′t
∣∣2)

• ∣∣∣∣∣ mi
t

(
∆θ⊤t vi

)
mi

t

(
∆θ∗⊤t vi

) ∣∣∣∣∣ = Θ
(
1 +

∣∣∆∆iθ′t
∣∣p) (19)

with p =

{
2 λi > 0 ∧ |∇f(θt)

⊤vi|
λ2
i

= 0

1 else
.

Proof. Proof is immediate from lemma H.5, because we have

M i
t

(
∆θ⊤t vi

)
M i

t

(
∆θ∗⊤t vi

) = 1 +
M i

t

(
∆θ⊤t vi

)
−M i

t

(
∆θ∗⊤t vi

)
M i

t

(
∆θ∗⊤t vi

)
and similarly for mi

t

(
∆θ⊤t vi

)
.

I LIMITATIONS AND FUTURE WORK

One interesting direction for future research is in putting the estimated Lipschitz parameters to work
throughout the optimization process to increase the descent rate in hopes of matching and even
surpassing ARC’s strong performance (Xu et al., 2017). Although the code attached to this paper is
capable of estimating these parameters, it does so too slowly to be practically useful in computing all
of an algorithm’s steps, under most settings. We suggest future work could improve this algorithm’s
computational complexity.

A limitation of our Newton’s method performance predictor is the additional computational burden
of computing the Lipschitz parameters. We provide code for doing so in the attached code on Github,
but we recommend performing these computations sparingly, since the Lipschitz parameters are
approximately locally stable anyway.

A second limitation of our work is its inability to provide any indication of the number of iterations
left to achieve convergence. We see this as an acceptable limitation however, since in practice a
model is only required to achieve a certain level of performance on the data decided ahead of time,
without regard to how much further it could be optimized. As noted in the introduction, performance
is measured by the loss function, so our descent rate bound satisfies this practical requirement.

A final limitation of our bound is its reliance on ∆∆iθt as a measure of algorithm optimality which
is a function of ∆θ∗⊤t vi, despite the fact that most optimizers do not compute that during training.
This bound is therefore primarily of theoretical interest, as illustrated by its motivation of the very
practical metric discussed in section 6

42

	Introduction
	Background
	Notations and definitions
	Related work

	A minmax Hessian Lipschitz-aware optimization algorithm
	General bounds on per-iteration descent
	Exploiting these bounds for a minmax algorithm
	Algorithm ELMO's descent rate

	Descent rate of quasi-Newton optimization algorithms
	Per-iteration descent of arbitrary step
	Generalization of previous quasi-Newton preconditioner quality metrics

	Lipschitz distribution
	Experiments

	A quality predictor for Newton's method
	Conclusion
	Quasi-Newton Challenges and Proposed Solutions
	Other convergence rate measures
	Comparison of algorithm ELMO to select related methods
	Comparison to Cauchy's method
	Comparison to Newton's method

	Convergence rate dependence on Hessian-Lipschitz parameter
	Lipschitz Robustness
	Benefit of Lipschitz tightness

	Evidence from the literature
	Lipschitz parameter experiments
	Computation of Lipschitz parameters

	Lipschitz-aided optimizer selection
	Proofs
	Preliminary lemmas
	Lemma 3.1: Eigenspace Descent
	Theorem 3.2: Worst case-optimal descent rate
	Theorem 3.3
	Theorem 4.2: Worst-case descent rate for arbitrary optimizers

	Limitations and future work

