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ABSTRACT

Many machine learning problems involve a challenging task of calibrating pa-
rameters in a computational model to fit the training data; this task is especially
challenging for non-convex problems. Many optimization algorithms have been
proposed to assist in calibrating these parameters, each with its respective advan-
tages in different scenarios, but it is often difficult to determine the scenarios for
which an algorithm is best suited. To contend with this challenge, much work has
been done on proving the rate at which these optimizers converge to their final
solution, however the wide variety of such convergence rate bounds, each with
their own different assumptions, convergence metrics, tightnesses, and parameters
(which may or may not be known to the practitioner) make comparing these con-
vergence rates difficult. To help with this problem, we present a minmax-optimal
algorithm and, by comparison to it, give a single descent bound which is applicable
to a very wide family of optimizers, tasks, and data (including all of the most
prevalent ones), which also puts special emphasis on being tight even in parameter
subspaces in which the cost function is concave.

1 INTRODUCTION

Many machine learning problems involve calibrating the parameters of a given model to match
the data distribution of a phenomenon one wishes to model, e.g. the structure of folded proteins,
processing images to automatically generate appropriate labels for them, or generating images and
text to interactively chat with a human engagingly. This process involves:

1. Collecting many samples ("data points") from the desired data distribution.

2. Measuring how well the model fits the collected data points (the "data set") with a given
performance analysis metrics (the "loss function", a.k.a. the "objective function"). By
convention, lower values of the loss function imply better performance on the model’s part.

3. Adjusting the model’s parameters to improve the performance, as measured by the loss
function ("model parameter optimization").

4. Repeat until desired performance achieved.

However, no single existing optimizer is best suited to all machine learning problems - each has
its unique strengths and weaknesses (see|Vaswani et al.| (2020); |Sivan et al.|(2024); Ruder (2016);
Mustapha et al.|(2021); Bera & Shrivastaval (2020); Zeiler| (2012)); |Duchi et al.| (2011b); [ Xu et al.
(2017); [Wadia et al.|(2021)); Mittal et al.|(2019)); Zhou et al.|(2020); |Schmidt et al.| (2021))), such as
generalization capability, convergence rate, saddle-point and flat region evasion capability, robustness
to hyperparameter choice, computational complexity per-iteration, memory complexity, etc., and
different areas in which it empirically seems to work best. As a result, one must compare among
various different optimization algorithms (henceforth, "optimizers") to select the one most suited to
the current scenario.

In an effort to help practitioners select the best optimizer for their setup and estimate the absolute
computational resources that will be required to obtain a given performance, many experiments have
been run comparing the performance of different optimizers on a variety of applications (Xu et al.,
2017;|Schmidt et al.| 2021)), and on the theoretical side - convergence rate bounds have been proven
for various different optimizers. However, due to the wide variety of assumptions, convergence rate
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metrics, bound parameters (which may be expensive - if not impossible - to compute ahead of time),
and tightness of the bounds in all of these works, comparing among them remains a challenging
task. Secondly, there is a lack of convergence rate bounds general enough to be easily applicable
to newly proposed optimizers. Thirdly, many of these bounds fail to demonstrate the empirically-
verified convergence rate superiority of the more sophisticated methods that make use of second-order
curvature information instead of exclusively the gradient. Lastly, although convergence rate bounds
exist for non-convex functions, many of them fail to properly address the opportunities that lay
in linear subspaces of the parameter space in which the loss function is concave (meaning that a
restriction f|s : S — R of the loss function f to a linear subspace S is locally concave). We believe
that more attention should be given to these subspaces of the function in the context of neural network
optimization;|Alain et al.| (2018)) and |Ghorbani et al.| (2019) demonstrate experimentally that there is
much to be gained by taking optimal steps in these subspaces, often even orders of magnitude greater
than the potential gains in convex subspaces.

Our contributions In an effort to help practitioners select the best optimizer for their use case,
we develop a tool for estimating the value of second-order optimization algorithms; this will help
decide if the additional computational burden of these algorithms is worthwhile. We develop a
minmax-optimal algorithm, rate algorithms by similarity to it, and demonstrate in theory and in
practice that in general, second-order algorithms work best on mechanistically simple problems. Our
algorithm-optimality bound satisfies the following good properties:

1. Concave tightness Our bound exploits the opportunity for greater descent in subspaces of
the parameter space in which the loss function is concave.

2. Universality We make only weak and commonly satisfied assumptions for our bound, to
allow for its application to a wide and prevalent family of optimizers and loss functions.

3. Tightness for any level of iteration step-quality instead of assuming a bound on the quality
of steps given in each iteration as some previous works have done, our theoretical bounds
are given as a continuous function of the quality of each iteration’s step.

4. Bound on loss function descent Our main result bounds the rate at which the model’s
performance increases (as measured by the loss function). This is in contrast to previous
works, which instead bound various indicators of local minimality, such as gradient norm,
local near-convexity, or proximity to a local minimum (in Euclidean distance). Although Xu
et al.[(2020) write that the latter convergence rate metrics is more relevant to the non-convex
optimization setting, we feel that the former is more practically useful, since generally
real-world applications with limited computational resources simply demand a minimal
performance guarantee of their model, without regard to the theoretical capabilities of a
given model or optimization algorithm.

5. Simplicity of cubic minimization problem We approach the multidimensional cubic
polynomial minimization problem posed by Nesterov & Polyak|(2006) by decomposing it
into n 1-dimensional problems via eigendecomposition of the Hessian, making our approach
to the solution of this minimization problem far simpler conceptually.

Our paper is organized as follows: In section [2] we review previous work and describe the notation
we will use throughout the paper. In section [3] we develop the minmax-optimal ELMO algorithm and
analyze its descent rate. In sectionfd] we make claims as to the benefits of optimizer similarity to ELMO
(proven in appendix [H). In section [5] we show the value of our novel Lipschitz parameter separation
scheme by showing how much lower the Lipschitz parameters of most relevant eigenspaces can be,
thus giving optimizers a more accurate minimizable model of the loss function in each neighborhood
it finds itself in. Finally, in section[6] we present experiments validating one particular use case of
our bound: we show that the advantage second-order optimizers hold over first-order optimizers is
inversely proportional to the convex Lipschitz parameters. In other words, second-order optimizers
present strong performance (thus may be worth their additional computational burden) in settings
with small convex Lipschitz parameters, and weak performance (thus not worthwhile) in settings
with large convex Lipschitz parameters.
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2 BACKGROUND

Assumption 1. For a given optimization problem with loss function f : R™ — R, we assume f is
twice differentiable.

We note that this assumption is satisfied for all prevalent deep learning optimization problems for all
but a zero-measure set of parameters.

2.1 NOTATIONS AND DEFINITIONS

Notation 1. Let 6;,1,0; € R" the parameter vectors of a pair of consecutive iterations of a given
optimization algorithm.

* For brevity of notation, we mark ;1 — 0, £ A6,.

* We mark V f (0;) the gradient of f and # (6;) the Hessian of f at 6,.

Notation 2. Let 6, € R™. We mark (v; (6;) , \; (61));_,, an orthogonal eigendecomposition of # ()
(which exists due to the Hessian symmetry property). For brevity of notation, we will sometimes
drop the (6;) and just write v;, A; when the meaning is clear.

Since v; and —wv; are both equally viable eigenvectors, we eliminate ambiguity by assuming

View) : VI (0:) v; <0 (1
Definition 1. We say an algorithm is a k-order algorithm if it requires oracle access to the first k
derivatives of f.
Notation 3. Let A, B € R™*™. We use the following notations (when applicable):

* We mark A’s transpose as A .

* We write A > 0 iff A is positive semi-definite, A > 0 if A is positive definite, A = B if
A — B+ 0 (and likewise for A = B).

o Mark Apin (A) , Amax (A) the minimal/maximal eigenvalue of A, respectively, and their

ratio k (A) = T’L((:)) the condition number of A.

Notation 4. For7 € Nwemark [7] = {t e N: ¢t < 7}.
Definition 2. Let U, D € R"*"™ s.t. D = diag (dy,ds, . ..,d,) is diagonal and U orthogonal, and
leté : R — R Wemarkf(U~D-UT) =U -diag (¢ (d1),€&(d),...,&(dy))-UT.
Definition 3. We say that an optimization algorithm is a Quasi-Newton optimization algorithm if its
characteristic update rule may be expressed as:

Orr1 =0 — @,V f (61)

for ®; € R™" &, = 0,0 = &;,; € RT. We call ®; in such algorithms the "preconditioner
matrix".

This approach is inspired by Newton’s method in convex optimization (see Nocedal & Wright| (2006,
Chapter 3)) where &; = (H (Ht))_l. See appendix @for a discussion of the challenges and proposed
solutions involved in these algorithms.

We note that the overwhelming majority of gradient-based optimizers may be expressed as quasi-
Newton optimizers (some popular examples may be seen in Martens|(2020)). As a result, this paper
will concern itself exclusively with this family of optimizers.

Notation 5. Throughout this paper, we will mark the point a convergent quasi-Newton algorithm
converges to by 6*.

2.2 RELATED WORK

As discussed in item [] of the contributions section, the value of the loss function after ¢ iterations is
of particular importance to practitioners, due to its implications on the quality of model. One measure
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of optimizer quality relating to this value is the objective function sub-optimality gap (OFSOG),
defined as f (67) — f (6*). The ARC algorithm is a second-order algorithm that uses a low-rank
SVD approximation of the Hessian and estimates a single Hessian-Lipschitz parameter adaptively;
Cartis et al.| (2012b) prove that OFSOG-optimality (bounding the OFSOG to below ¢) is achieved
by a variant of the ARC algorithm after O (¢~') iterations in the convex regime, or O (log (¢7!))
iterations in the strongly convex regime. Garmanjani| (2020) show similar bounds for the Nonlinear
Stepsize Control algorithm family, and |Toint/ (2013) demonstrate that this is a generalization of ARC
and trust-region methods. |Liu et al.| (2024) prove OFSOG-optimality for the Sophia optimizer (a
second-order algorithm that approximates the Hessian as a diagonal matrix, which is estimated with
Hutchinson’s estimator (Hutchinson, [1989)) after O (e_l) iterations in the convex regime.

Bottou| (2004) split the process of optimization with a general optimizer into the initial "search
phase", in which the optimizer searches for an approximately convex region in which the point it will
eventually converge to resides, and the later "final phase", in which the optimizer converges to its
final solution within this convex region.

In the machine learning literature, many common loss functions are "empirical risk functions" - that
is, loss functions which can be written as a sum of terms, each of which is a function of only a single
sample from the data distribution. When this sum ranges over a very large number of samples, a
common approach to estimating it is to perform a Monte Carlo approximation, summing over only a
small subset of the terms; this approach is known as the "minibatch approach". |Amari (1998) then
note that when using this approach, 6; may be seen as a statistical estimator for 8*. Working in the
"final phase" (and thus assuming convexity), and adopting the estimator approach to 6, taken by
Amari (1998); Bottou & Lecun|(2004) give a convergence rate bound for this estimator’s variance
parameterized by the first- and second-order derivatives at §*, assuming only that lim;_,,, ®; =
H 1 (0*). Martens| (2020) takes these convergence rates and plugs them into a Taylor approximation
of f (6;) to obtain the asymptotic OFSOG, given by f (07) — f (6*) = 5% + o (7).

Since the goal of optimization is to minimize a loss function, arguably the best metric for measuring
an optimization algorithm’s quality are the gains it makes as measured by the loss function values, i.e.
its rate of loss function descent. Nevertheless, most algorithms’ convergence rate bounds relate to
their gradient norms; we note, however, that a bound on an algorithm’s gradient norm may be a poor
proxy for its descent rate in the early, nonconvex "search" phase, since convergence rate bounds may
only imply proximity to a critical point of the gradient, which is neither guaranteed to be the point
the algorithm will ultimately converge to nor even to have a small loss function value by any measure.
To the best of our knowledge, our bound is the first to directly address the problem of bounding the
loss function value in the "search” phase without assuming convexity (which is rarely satisfied by the
loss functions in neural network optimization scenarios).

We refer the reader to appendix [B|for discussion on previous attempts at universal convergence rate
bounds, other convergence rate measures, and the effect of the preconditioner on convergence rate.

3 A MINMAX HESSIAN LIPSCHITZ-AWARE OPTIMIZATION ALGORITHM

Any deterministic optimization algorithm is comprised of two parts: first, we gather information
about the loss function to enable us to implicitly construct a local model of the loss function, and
secondly we step to the minimum of this model. Accordingly, gradient descent and Newton’s method
use first- and second-order Taylor approximations of f respectively, and while these models do give a
direction of descent in every subspace of the domain space, they do not indicate optimal step sizes in
concave subspaces of the domain space (that is, subspaces in which the loss function is concave),
since concave first- and second-order polynomials have no minima. To obtain a unique step in all
settings (so that our optimizer will be sufficiently general to apply to nonconvex and nonquadratic
regions of neural network loss functions), we must therefore model f with a third-order Taylor
polynomial.

3.1 GENERAL BOUNDS ON PER-ITERATION DESCENT

A recurring theme in the neural network optimization literature is that the greatest-magnitude
eigenvalues of the Hessian are slow to change, as well as their eigenvectors; see, for instance, |Sivan
et al. (2024); |Alain et al.| (2018)); [Sagun et al.|(2016); |Ghorbani et al.|(2019); |Gur-Ari et al.|(2018);
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Liu et al.[(2024). It is common to formalize this as an assumption (see, e.g.,|0’Leary-Roseberry et al.
(2019); INesterov & Polyak! (2006))) of Hessian-Lipschitz continuity with the matrix spectral norm:

FruerVo,pern © [[H(0) = H ()l < L - (10 = ¢, @

This assumption relies on a single scalar Ly € R to describe the the entire Hessian’s rate of change.

With %~ independent entries, however, the Hessian can shift in a far more subtle manner, leading this
assumptlon to be overly conservative, requiring a very large Lz for the assumption to be satisfied,
leading to looseness in convergence rate bounds and subpar performance of algorithms that rely on
this scalar. We instead make the following finer-grained assumption on the rate of change of the
Hessian’s eigendecomposition:

Assumption 2. Hessian Lipschitz-Continuity in each Eigenspace

For any 6, € R™, let (eigendecompositions) H(0) = V - A-VT H(p) =V -A-VT with

n

V,V € R™" orthogonal matrices and A = diag (\; iy A = diag (:\1) - € R™" diagonal

=1

matrices, sorted s.t. vie[n—l] A < Ay, )\7; < )‘i+1~ Then the following are satisfied:

AR ‘(Q—QQ)TW

VGER"H(Lﬁ')f 1E(R+)nvweﬂgn .

VQER"HLRGR+V¢ER" . HV — V

) < Lgp-[|f — ¢l
HLHGRVHER"Vie[n] : max {LR,EZ} < LygAN Li > L]_Jl

When 6 is the t¢-th iterate 6; of an optimization algorithm, we’ll mark the corresponding Lipschitz
parameters as Li. We will experimentally demonstrate the value of this finer assumption later,
by demonstrating that these parameters vary widely. In particular, and taking into account that
optimization primarily occurs in a very limited subspace of the domain space (Gur-Ari et al., 2018)),
we will demonstrate that the Lipschitz parameters relevant to these subspaces are often orders of
magnitude smaller than the others.

The above assumption allows us to bound the loss function in each eigenspace of the Hessian; these
bounds will then be applicable as tight (since the bounds satisfy assumptions [T]and [2)) pessimistic and
optimistic models of the loss function in the neighborhood of some iterate 6,:

Notation 6. Let 6, € R", v; € R™ an eigenvector of H (;).

M,f(x)éVf(Ht)Tvi-x—i—#%Q‘F%'mﬁ 3
mj (2) £V (6)" v x+% rat - % ol @)

Lemma 3.1. Eigenspace Descent Bounds

Let f : R® — R be a function satisfying assumptions |I| and |2| and let 0,11 € R™. Marking
Al = 0,11 — 0y, we have

H(L’) E(R+)n . f (9t+1) - f (et) < ZMtZ (Aeg—vl) (5)

=1

H(Li)lle(Rﬂ" Zf(et-&-l th AHT% (6)

3.2 EXPLOITING THESE BOUNDS FOR A MINMAX ALGORITHM

To gain perspective on the upcommg algorithm as a minmax algorithm, we restate a special case of
the above lemma as follows: M is the pointwise maximal function satisfying assumptions I andl

MtZ (r) = max f 0y +x - v; (0))
_ fR-R
f(9t):f(9t)
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Since each element of the sum is a 1-dimensional trinomial, the minmax step is now easily obtained
(due to orthogonality of the eigenspaces) by taking the positive root of each term’s derivative:

\/A§+2L;‘ V)" v — N\ -
A0 Tv; 2 argmin > M! (A0 v;) = .
: 20, ; ¢ (A8 v) L

Finally, we are ready to present algorithm Eigenspace-Lipschitz Minmax Optimizer (ELMO). We
mark EIGEN an eigendecomposition subroutine and LIPSCHITZ a Lipschitz parameter oracle.

An important observation to make about the al-
gorithm above is its equal applicability to con-
vex and concave regions of the domain space.
In fact, when \; < O (implying a concave sub-
space), the step size (and, correspondingly, the Require: ¢ € R*, 0y € R EIGEN, LIPSCHITZ

Algorithm 1 Algorithm ELMO

amount of descent on our model of the loss func- t<0
tion M) is actually greater than otherwise. This while f (6,) — f (6*) > edo
is due to ELMO’s ability to make use of concave (Xisv;);i, < EIGEN (H (6:))
regions of the loss function for greater descent. (Li)’_b | ¢ LIPSCHITZ (05, (vi)i_,)
1= =
an AZ42LE|V£(0:) Tvs| =X
3.3 ALGORITHM ELMO’S DESCENT RATE (Aat)izl = I
Opp1 < > AGE - vy
An important factor in deciding how much com- ttilt + %:’_1 b
putational power to put into optimizing a model end while

is the ratio between the cost of computational
resources and the improvement to the model’s
quality. To that end, we demonstrate that an
upper bound on algorithm [ELMO[s performance
has quickly diminishing rewards for additional iterations. Counter-intuitively, this is a good thing - it
means that as long as the algorithm converges to an acceptable minimum point, just a few iterations
are likely to be necessary in practice - since any more than that will not have much of an effect on the
model’s quality anyway.

Theorem 3.2. Worst case-optimal descent rate Let f be a function with Lipschitz-continuous Hessian.
After t iterations, algorithm satisfies

f(6o) = f (6:) = O (logt) ®)

Although the above theorem gives only an upper bound on the model’s performance, we demonstrate
that it is actually within a constant multiplicative factor of the algorithm’s lower bound.

Theorem 3.3. Let f : R"™ — R satisfying assumptions[l|and 2] Algorithm|[ELMJ satisfies
’mi (AGZ‘TUZ-)’ <5 ’Mf (AH;TM)‘

4 DESCENT RATE OF QUASI-NEWTON OPTIMIZATION ALGORITHMS

Although algorithm is optimal among first- and second-order methods in the sense that its
model of the loss function is a generalization of Quasi-Newton methods’ and Gradient Descent’s
models (since its leading coefficient is not assumed to be nonzero) and its model minimization step is
unique, its greater computational burden of computing the Lipschitz parameters may cause it to be an
ineffective optimization algorithm in practice. Since most prevalent practical optimizers today belong
to the Quasi-Newton family, we satisfy ourselves with a quantification of their quality based on their
similarity to this ideal algorithm.

THE MINMAX PRECONDITIONER

Since Quasi-Newton methods are characterized by their preconditioners, we must first develop
algorithm [ELMO['s characteristic preconditioner. We begin by defining a metric of distance between
optimization algorithms by the difference between their characteristic steps, and find the precondi-
tioner matrix whose corresponding quasi-Newton algorithm is equivalent to algorithm
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Notation 7. For a given algorithm with step A6, at iteration ¢, mark AA*G, = A, v; — A} Tv; the
step’s distance from ELMO’s step. Since AA*f; is a function of the algorithm chosen, it is a function
of that algorithm’s defining preconditioner: AA*0; = AA0, (D)

Lemma 4.1. Minmax preconditioner

Let f : R™ — R satisfying assumptionsqnd The preconditioner of the quasi-Newton algorithm
that is equivalent to (meaning |AA’9t| =0)is

—1

H0) [ (H(00) +2V -diag (Lt [V500

i=1

arg min ‘AAiGt (<I>t)| =
(bteR’nX’n 2

This preconditioner shows the mechanistic similarity of our algorithm to Newton’s method: while
Newton’s method’s preconditioner is simply the inverse Hessian (which may not be positive definite),
the matrix whose inverse is our algorithm’s preconditioner is an average between the Hessian and
a positive definite, regularized version of the Hessian, whose every eigenvalue is no less than the
corresponding Hessian eigenvalue’s magnitude. This ensures positive semi-definiteness of our
preconditioner, with regularization dependent on the loss function’s rate of curvature shift.

In fact, Newton’s algorithm may even lead to a worst-case decrease in model quality, even when
the associated loss function is convex, for sufficiently great curvature shift (measured by Lipschitz
parameter). Plugging Newton’s step into equation 3| and rearranging tells us that Vic[,s.¢.2,>0 :
WANZICORS
M} ( —_— :

2

Aq‘,
[V £(8:) T vi

) > 0 for any step ¢ and eigenspace i with L > —3

4.1 PER-ITERATION DESCENT OF ARBITRARY STEP

Due to the computational difficulty of computing [ELMO['s iteration step precisely, practitioners may
prefer computationally cheaper alternatives. To address this, we provide guarantees for the worst-case
rate of loss function descent of an arbitrary optimization algorithm relative to algorithm [ELMO[s
descent, as a function of the algorithm’s similarity to For simplicity, we restrict our discussion
to the descent of the loss function’s restriction to a given eigenspace span (v;).

Notation 8. Mark AA'), = ﬁ‘ﬁ%_ the step’s distance from ELMO’s step relative to ELMO’s step.
t i

Theorem 4.2. Worst-case descent rate for arbitrary optimizers

Let f : R" — R a twice-differentiable function satisfying assumptions[I|and[2] and let A0, satisfy
<0 Then

Mi AQT’UZ' i 2
s RO

_-mi’ -AQT’UZ' I .
A(L);Tvi -0 <1 " | 19£|p) ©
[V£(0:) T vi]

withp = 2 Ai>0AT:0.
1 else

4.2 GENERALIZATION OF PREVIOUS QUASI-NEWTON PRECONDITIONER QUALITY METRICS

Notation 9. Taking (\;);_, the eigenvalues of H (8) for some 6, note that since n is finite, there
exist LT £ max; {L*: \; > 0}, L™ £ max; {L*: \; <0}.

Since most prevalent quasi-Newton algorithms apply a principled approach only to the concave
subspaces of the loss function domain space and when the curvature shift is negligible, we examine
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the special case of our metric when A; > 0 (when the loss function is concave over the domain
subspace under examination) and show that our quality metric for quasi-Newton algorithm steps
generalizes previous metrics. When \; > 0, we have

i |VF0) T

it Vi0)" \/1+2Lt~xf +1

|AA 9t| =|1-— I (Oétq)tH (9,5)) s U; (]0)
V) v 2

Zupanski (1993) introduce the "Effective Hessian" (a.k.a. the "Preconditioned Hessian") as 7; =
o P H (0:), with its condition number used as a quality metric for preconditioners; ideally, x (Z;) <
r (H (6¢)). The Effective Hessian may be plainly seen in equation [10]

Mark r; 2 (I — H (6;) - ®¢) - %; this is the 1-dimensional version of the quality metric 7,

for @, used by Nocedal & Wright (2006 Chapter 7.1) and mentioned in appendix |B| (now redefined
by projecting V f (6;) onto the i-th eigenspace instead of taking its full norm). When Lt ~ 0 (i.e.
when the loss function curvature shift is negligible), equation |10|simplifies to

|AA'G;| =~ |r] v

5 LIPSCHITZ DISTRIBUTION

Previous works using the Hessian Lipschitz continuity assumption (e.g. ARC (Nesterov & Polyakl
2000) and its variants, |O’Leary-Roseberry et al.| (2019)) assume a single Lipschitz parameter for all
eigenspaces. Although a finite number n of eigenspaces ensures that such a Lipschitz parameter exists
(the maximal Lipschitz parameter), they fail to account for the distribution of these Lipschitz param-
eters over the eigenspaces. We claim that these parameters vary widely both over the eigenspaces
and over the course of training, so that a single constant value fails to capture this structure; in this
section we provide evidence for this claim.

One source of interest in this distribution is for optimization algorithms (e.g. ARC) that make
use of these parameters for the loss function modelling stage of each iteration. This may reduce
computational complexity by reducing the number of parameters one must compute at each iteration,
however appendix [D|shows that poorly estimating the Lipschitz parameters can have a detrimental
effect on an algorithm’s descent rate (thereby increasing the number of iterations the algorithm will
require to converge).

Another source of interest in these parameters’ distribution is in explaining the effectiveness of second-
order quasi-Newton algorithms that implicitly assume the Lipschitz parameters are insignificant (i.e.
very close to zero), since their model of the loss function is a quadratic Taylor polynomial (i.e. no
curvature shift); this may be seen from equation [I0] which shows optimality of Newton’s method only
when \; > 0 and L = 0. We will show that they are not generally small by any means, however we
will show that the Lipschitz parameters of the subspaces in which they work (the convex subspaces -
see the implementation of [Sivan et al.| (2024), for instance, which applies Newton’s method only on
subspaces with significantly convex subspaces) are in fact small in certain settings.

5.1 EXPERIMENTS

The first source of evidence for our claim is from existing literature on the subject; we defer a
discussion of this to appendix [E] To test our claim directly, we modify an ARC implementation
(Simpson & Wang,, 2023) to compute the steps called for by at each point reached by a quasi-
Newton algorithm, restricted to the subspace spanned by the eigenvectors corresponding to the single
most positive and single most negative eigenvalues of each Hessian, and to use distinct Lipschitz
parameters for each. Due to the computational difficulty of computing Lipschitz parameters precisely,
we use these Lipschitz parameter values as an estimate for L™, L ™. We note the crudeness of these

£00=FOr1) \within a given range with a restriction

adaptive measurements, merely adapting to keep S,
i=1 t

to powers of 2; nevertheless, the point is made.

A detailing of our experiment settings is given in appendix [F]as well as the full set of our experiment
results, however we present two experiments in figure|l|for completeness. Our experiments show
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Figure 1: Comparisons of convex-subspace Lipschitz parameters to concave-subspace Lipschitz
parameters. Logarithmic scale

that as expected, L™ < L, and the gap widens exponentially as training progresses in all cases
except the autoencoders. Since we will see that small convex Lipschitz parameters imply effective
second-order optimization, this justifies common practice as noted by, e.g. |O’Leary-Roseberry et al.
(2019), of requiring the preconditioner to be an increasingly better approximation of the inverse
Hessian (by increasing the strictness of the inverse Hessian approximation algorithm’s stopping
condition) as training progresses. Interestingly, the Lipschitz parameters seem to depend primarily on
the task, and are much less affected by network structure or model output-target loss function.

Several factors seem to impact the size (by orders of magnitude) of the convex Lipschitz parameters,
and they seem to be correlated with an intuitive sense of the difficulty of the setting being trained.

* The convex Lipschitz parameters are many orders of magnitude greater in the autoencoder
task than in the classification task. We ascribe this gap to the more difficult task of learning
a generative representation of the data instead of merely a discriminative representation of it
(see|Ng| (2012, Chapter 4) for a discussion on generative vs. discriminative models).

* The convex Lipschitz parameters are reduced approximately 100x in the image classification
task by adding residual connections. It is well known that residual connections reduce
training difficulty (L1 et al., 2018).

* The convex Lipschitz parameters are approximately 100x smaller when training ResNet
to perform classification of natural images instead of Gaussian noise with random labels.
We ascribe this to greater difficulty involved in discriminating noise, which requires partial
memorization of the training set.

6 A QUALITY PREDICTOR FOR NEWTON’S METHOD

Expanding on the latter application in section[5] an important challenge is finding the best balance
between per-iteration computational burden and expected loss function descent. We set out to provide
such a metric due to equation [T0|by showing that the expected descent in a given eigenspace is an
approximately monotonically decreasing function of the corresponding Lipschitz parameter.

Figure [2] shows an example of this phenomenon by plotting the quasi-Newton superiority
(how much better a quasi-Newton method will work than a first-order method, defined as
(f (6,) — f (ONGwtom)) — (f (6:) — f (75P))) against the convex Lipschitz parameter rank. Here
too we represent the full spectrum of convex Lipschitz parameters with the single Lipschitz parameter
representing the eigenspace with the greatest eigenvalue; nevertheless, a qualitative inverse correla-
tion is clear. Pearson correlation coefficient values (Pearsonl [1895)) are shown in table|I|, as well as
p-values of a test of the null hypothesis that the distributions underlying the samples are uncorrelated

and normally distributed. The Scipy manual writes:



Under review as a conference paper at ICLR 2025

Resnet-CELoss-FakeData

0.0008 A

0.0007 A

0.0006 A

(-"

0.0005 A

0.0004 H

0.0003 A

FOSI_descent - SGD_descent

0.0002 A

0.0001 A

T T T T T T
0 1000 2000 3000 4000 5000 6000
Lipschitz parameter rank

Figure 2: Inverse relation between a convex-subspace Lipschitz parameter and corresponding descent
superiority of Quasi-Newton method

The p-value roughly indicates the probability of an uncorrelated system producing
datasets that have a Pearson correlation at least as extreme as the one computed
from these datasets.

Here too, the detailing of our experiment settings is given in appendix [F} as well as further detailing
on figure 2}

Since the Lipschitz parameters are approxi-

mately locally constant throughout training as Dataset | Pearsonr | p-value
shown in the previous section, this reverse cor- CIFARIO | -0.245341 10-107
relation may be used to help practitioners de- FakeData | -0.026608 | 0.031120
cide how much computational burden is worth MNIST | -0.368788 10—300

putting into each iteration, given that even an
exact Newton step may not be significantly su- T,pie 1-
perior to first-order methods when the curvature
drift (as measured by Lipschitz parameters) is
significantly large; hyperparameter optimization
algorithm selection may then follow accordingly. We present experiments validating this selection
method in appendix [G] Alternatively, practitioners may choose to use ARC steps instead of first-order
methods, when the Lipschitz parameter is significantly large. These findings may instead be used to
construct a meta-optimizer, that periodically computes Lipschitz parameters and adaptively selects
optimizers and optimization hyperparameters throughout the optimization process accordingly. We
leave this direction to future research.

Pearson r inverse correlation between
quasi-Newton superiority and Lipschitz parameter

7 CONCLUSION

In this work we developed and analyzed a Hessian eigenspace Lipschitz-aware minmax optimization
algorithm by taking an eigendecomposition-centric approach to locally modelling a loss
function. We then proved a widely applicable worst-case relative descent rate bound for quasi-
Newton optimizers by comparison to We experimented with the Lipschitz distributions,
discovering that they are correlated with task difficulty and that they are helpful for optimizer and
optimization hyperparameters selection — specifically, integrating second-order information into
optimizers at the cost of additional computational complexity is worthwhile in settings where the
convex Lipschitz parameters are small, but not those where they are large.

10
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A  QUASI-NEWTON CHALLENGES AND PROPOSED SOLUTIONS

Some of the challenges involved in training neural networks include:

* Because the models and data often have very complex structures, obtaining precisely optimal
parameters is often computationally prohibitive. As a result, one must satisfy oneself with
a small degree of suboptimality in the model’s parameters, chosen to be small enough to
satisfy one’s needs while not exhausting the computational capacity at hand.

* Since many model architectures (e.g. artificial neural networks) have very complex struc-
tures, the loss function is generallhy non-convex as a function of the model’s parameters.
This makes finding the globally optimal choice of parameters an NP-hard problem (Pardalos
& Vavasis, [1991; Manders & Adleman, |1978)). As a result, one must satisfy oneself with
merely a local minimum of the loss function (that is, a point at which the norm of the gradient
w.r.t. the model parameters is zero, and the function is locally convex, or equivalently, the
Hessian is positive semi-definite). This is often considered sufficient (see [Soudry & Carmon
(2016); Kawaguchi & Bengio|(2019); |Kawaguchi| (2016); Nguyen et al.|(2019)), however
this does not apply to saddle points and local maxima (points at which the gradient norm is
zero but the Hessian is not positive definite). Although some work has been done on trying to
eliminate this problem by eliminating local- but not global- minima via overparameterization
(Yu & Chenl [1995)), further work (Ding et al.,|2019)) has shown that this does not scale to
deep neural networks.

* As mentioned previously, there is no single universally optimal optimizer, even among
existing optimizers.

As a result, sophisticated optimizers are necessary to contend with different neural network training
scenarios. Restricting ourselves to quasi-newton optimization algorithms, scenarios with n > 0
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(a common theme in machine learning, where n may be in the millions, billions, or even trillions,
as GPT4 (OpenAl et al., 2024)) is rumored to have. See [Patel & Wong| (2023)) are that computing
and inverting the Hessian (with respective complexities O (n?) , O (n?)) may be computationally
prohibitive. Also, one must ensure that

o, =0 (1)

to ensure that 6;,1 — 6; is a descent direction of f. This is because —V f (6;) is a descent direction

of f, which implies that for allv € R*, —a - V f (19,5)T v-v' is a descent direction for o > 0 and an
ascent direction for v < 0. However, if ()\;, v;) is an eigenvalue-eigenvector pair of ®; with \; < 0

then —v;' - &,V f (0;) - v; = —\;Vf (Ot)T - v; - v; which is an ascent direction, and then a better
preconditioner could immediately be obtained by taking ®, with eigenpairs ():j, v}) ,Uj = vy, ):j =
Aj jF . .
0 ./ to prevent an ascent in the subspace (a.k.a. eigenspace) span(v;).
J=1

Three common ways to contend with these challenges are:

* The Hessian-Free approach Making use of |Pearlmutter| (1994) to compute Hessian-vector
products without explicit computation of the Hessian, one uses conjugate-gradient (Olver &
Shakiban, 2006) iterations to compute progressively finer approximations to (H (0,&))71 .
V f (0:), stopping when one reaches a dimension with negative curvature. See, for instance,
Martens| (2010).

* The Lanczos eigendecomposition approach Making use of Lanczos iterations (Olver &
Shakiban, |2006), one decomposes the Hessian into its eigendecomposition, and explicitly
edits its eigenvalues. See, for instance, Dauphin et al.|(2014); |Sivan et al.|(2024)).

* The Gauss-Newton approach Using the generalized Gauss-Newton approximation to the
Hessian (Esposito & Floudas| 2001} |Schraudolph} 2002), one can obtain a matrix which has
the following good properties:

— Well approximated by a Kronecker product (sparse representation), which allows one
to represent it and multiply by it very cheaply

— Positive semi-definite
— Can be computed with only a first-order loss function gradient oracle

— Well approximates the true loss Hessian, when the second derivative of the model or
the residual loss (f (6;) — f (6*)) is insignificant next to the generalized Gauss Newton

Some examples of this approach include |Agarwal et al.|(2019); Botev et al.| (2017); Gupta
et al.| (2018); Martens & Grosse| (2015); |Goldfarb et al.[ (2020); |Anil et al.| (2020). Of
particular note are examples that make diagonal approximations to the Gauss-Newton, as
noted by [Martens|(2020), that are most often viewed as first-order methods, such as Adagrad
(Duchi et al., 2011a), RMSProp (Tieleman & Hinton, 2012}, and Adam (Kingma & Ba,
2014). As noted by Martens| (2020), due to the strong connection between the generalized
Gauss-Newton and the Fischer Information matrix (when the loss function is cross-entropy
loss (Good, |1952)), one can achieve certain theoretical benefits when using such methods,
such as Fischer efficiency; see|Amari (1998) for instance, which views 6, as an unbiased
estimator of 6* of f, and uses the Cramer-Rao inequality (Jansen & Claeskens)} [2011)) to
lower-bound the minimal number of iterations required to minimize the variance of said
estimator as a function of the Fischer Information due to the number of samples consumed
by each iteration.

See |Nocedal & Wright (2006, Chapters 3.3,3.4) for further discussion of these approaches.

In order for a minimization problem to be well-defined, one must assume that f is lower-bounded.
We can infer from this that any subset of the domain space in which f is concave must be a bounded
set (because nonconstant concave functions with unbounded domains are not lower-bounded); this
means that the second-order Taylor approximation of the function must have a bounded neighborhood
in which it approximates the function well. Additionally, even in subsets of the domain space in
which f is convex, the neighborhood in which the second-order Taylor approximation of the loss
function well-approximates the true loss function may be bounded. To address this, two common
approaches been proposed in the literature, namely:
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* The Trust Regions Approach, which explicitly maintains a radius of the neighborhood
in which the second-order Taylor polynomial is a good approximation of the function, and
bounds the step size to that radius. See|Conn et al.|(2000), Nocedal & Wright|(2006, Chapter
4).

* The Cubic Regularization Approach, which assumes that Hessian is Lipschitz continuous
(using the L2 vector-induced matrix norm to measure distances between Hessians), and as
such can upper bound the distance between two points of the function using a third-order
polynomial (discussed below, see Lemma 4.1.14 from [Dennis & Schnabel| (1983)). See
Nesterov & Polyak| (2006) for an algorithm based on this approach that adaptively estimates
the Hessian-Lipschitz parameter.

B OTHER CONVERGENCE RATE MEASURES

Convergence rates to first-order criticality Most works on convergence rates in the non-convex
regime bound the number of iterations necessary to achieve first-order criticality (||V f (6;)]|, = 0) by
means of finding an ¢,-stationary point (a point at which ||V f (6;)||, < €4). The seminal work Wang
et al.|(2016) provide a convergence rate bound for general optimizers (with very weak assumptions) in

5 1
the non-convex regime of O (Kalv (D) - g 1”) with learning rate o, = O (t7") and v € (0.5,1).

However, this bound is minimized by setting ®; to the minimizer of x (®;), which is a scalar matrix;
this is equivalent to gradient descent, a first-order method. Experiments (see |Sivan et al.| (2024), for
instance) and theory show that higher-order methods can achieve faster rates of convergence in our
setting, demonstrating looseness of this convergence rate bound. See also|D’efossez et al.|(2020) who

give such convergence rate bounds (requiring ¢ iterations, for ¢ s.t. % =Q (e;l)) for Adam and

Adagrad, and Ward et al.{(2019) who give such convergence rate bounds (at O (e;l)) for gradient
descent with Adagrad-grafted step-sizes (see|Agarwal et al.|(2022) for a discussion on learning rate
grafting).

Convergence rates to second-order criticality A few go further in bounding the number of steps
required to achieve second-order criticality (a point satisfying ||V f (6) |, < €, —Amin (H (6:)) <
err). For instance, Nesterov & Polyak] (20006); (Cartis et al.|(2011b); | Xu et al.|(2020) provide such
bounds (at O (max(e_q, €z7)~”)) on variants of the ARC algorithm, and Levy| (2016); Jin et al.| (2017);
Ge et al.|(2015)) provide such bounds for varieties of SGD. This is of great importance since as noted,
local minima are generally considered sufficiently optimal while local maxima/saddle points are not,
despite being impossible to distinguish with only first-order criticality information. To the best of our
knowledge, however, no such bounds exist in the general setting, nor do they even exist for the vast
majority of existing optimization algorithms.

Convergence rate dependence on preconditioner quality One possible quality metric for ®;
is given by n; 2 ||(1 — H (6;) - ;) - % H . In the convex regime, [Nocedal & Wright| (2006,
AN D]

Chapter 7.1) assume sup, (1;) < 1 and prove that first-order criticality may be reached within

@ (lllfs%‘rft(m iterations. Adding an assumption of Lipschitz-continuity of the Hessian, they
g 5

prove quadratic convergence to first-order criticality. (O’Leary-Roseberry et al.[(2019), in contrast,
do not assume convexity but provide a bound on the parameter gap ||6; — 6* ||, for 7, satisfying the
Eisenstat-Walker (Eisenstat & Walker, |1996; Dembo et al., |1982) condition 7, < ||V f (6:)||, on
a Tikhonov-regularized Hessian. Like Wang et al.| (2016), however, here too the constant in their
bound is inversely proportional to ¢ — Ayin (H (6;)) with ¢ the Tikhonov regularization constant,
thus is minimized by taking { — oo, eliminating all second-order information and reverting to simple
gradient descent. As before, this implies looseness due to the empirical success of making use of
second-order methods.
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C COMPARISON OF TO SELECT RELATED METHODS

ELMO0|is strikingly similar to Cauchy’s method (not to be confused with Cauchy’s Steepest Descent
method (Nocedal & Wright, |2006, Chapter 4.1)) and Newton’s method mentioned above. In this
section, we note the similarity between them, and the sources of the differences between them.

C.1 COMPARISON TO CAUCHY’S METHOD

Cauchy’s method (Traubj, [1982) is nearly identical to

T A 2 VI(0) v
(B - 9t)camhy e Li-vi0,) v DY (0:)
1+ \/1 — 9zt )\gée:)) Vi
_ 2 Vf (Ht)T Ui
; X (0
L+ oy '\/A? (00) —2Li -V f () v, (0
o -2V f (et)‘r U
N (6) + 28\ 22 (6,) — 2L - V£ (6) v,
! —2L1 -V f ()" v
= n .
CON (0 + 2o N2 0) — 2LV (8) v,
1 (M@ 2L vEe)T ) -2 6)
-5

X (60) + 2o /a2 (0) 215 - V1 (0) T v,

VA0 20 V5 00T v - VI 0 (00)

L Ai (0r)
200 2LV (0) v - R0 A 8) |, (6]
= L% by (Ht)
B D00 22 9500 v -0 0

The difference between our minimization step and their step is merely the sign on the squareroot. The
difference lies in removing the absolute value in equation [3s 3rd-order term and taking the negative
root of its derivative, due to the difference in goals: we attempt to minimize the function, leading us
to select the positive step. They attempt to find the function’s critical points, leading them to select
the negative step.

C.2 COMPARISON TO NEWTON’S METHOD

Unlike Cauchy’s method, Newton’s method (in optimization) makes a second-order approximation
to the function’s gradient. This is equivalent to the Hessian being constant, which is equivalent to
Ly = 0. Indeed, taking the limit of equation [7|when Ly — 07, we recover Newton’s method:

.
lim . AGTv; = lim - 2V (6) v
Lu—0 L0 02 (8,) — 2L - V£ (6)T s+ A (61) .
V(0 v
_ )~ X )\2 >0
o0 A <0
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D CONVERGENCE RATE DEPENDENCE ON HESSIAN-LIPSCHITZ PARAMETER

As noted by |Griewank] (1981)), the Hessian-Lipschitz parameter (in our case, the respective constants
of each eigenspace) may be computationally difficult to obtain precisely, leading some optimization
algorithms to estimate it approximately instead of computing it precisely (e.g. ARC). In order to
balance the computational burden of computing it to a high degree of exactitude with the degradation
of an algorithm’s convergence rate that comes with poor estimations, we study the effects of the
Hessian-Lipschitz parameter on

D.1 LIPSCHITZ ROBUSTNESS

To address the convergence rate’s robustness to overly conservative Li, we consider the case when
L; — oo.
Theorem D.1. Ler f : R™ — R satisfying assumptions[I|and 2] Then

A 1
M (A0 Tv;)|=© :
(%) (ﬁ)
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D.2 BENEFIT OF LIPSCHITZ TIGHTNESS
To see how minimizing Li as much as possible benefits the bound, we consider the case when
L — 0t

Theorem D.2. Benefit of Lipschitz tightness: concave subspaces
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Let f : R" — R satisfying assumptionsand IZ[ If \i (0¢) <0 then

M (A9 Tv;)|= © <— = )
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Proof.
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Theorem D.3. Benefit of Lipschitz tightness: convex subspaces
Let f : R™ — R satisfying assumptions|[l|and[2} If \; (6;) > O then

M (A0; T v;)|— M ( lim M;%i) =0 (L})

Li—0t

when Lt — 0F

T v
Proof. We begin by noting that by equation |12} lim; o+ A0 T = %. Plugging this into
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%)\1,(91,) )\%t(et) i) 2)72?(9”7/
T \3
(v .
= m — .
Lm0+ 22 (0,) S— 2
¢ L 7 F(0:) vi
(\/1‘2Lt'm+1)
T 3 2 (04)
+1 . (0 (Vf (et) vi) \/Af(et)*QLi'Vf(et)TUHr)\i(@t) +1
s AL (0r) 2
227 (0) 2
Ai (01) \/)\12 (61) — 2L - V£ (0,) " v; + A2 (6) 1+ \/1 —2L%- YFO) v
A’i (gt)
4
.
_Li (Vf (6%) 'Ui) 92 9
4 A7 (80) i, Vf(8) i i V0D v
L2005t 1 L=20 Sy + 1
1+ 2 + 4 §
3

E EVIDENCE FROM THE LITERATURE

Experiments by |Alain et al.|(2018)); Sagun et al.|(2016)); \Ghorbani et al.|(2019); \Gur-Ari et al.| (2018)
show that the positive eigenvalues of the Hessian remain relatively stable throughout training, while
the negative eigenvalues shrink rapidly. |Alain et al.|(2018) and Sagun et al.| (2016) also show that
the negative eigenvalues shift chaotically. |Gur-Ari et al.| (2018) show that when training a network
on a classification task with k classes, then at least the eigenspace spanned by the k eigenvectors
corresponding to the top k eigenvalues remains very stable. |Sivan et al.| (2024); [Liu et al.| (2024)
also show that when training a neural network on a variety of tasks, the top k eigenvalues and their
corresponding eigenvectors change very slowly. |Alain et al.| (2018) also show explicitly that the
second-order Taylor approximation is a poor approximation of the loss function in the eigenspace
corresponding to the negative eigenvalues (the concave eigenspace), but an excellent approximation
in the eigenspace corresponding to the positive eigenvalues (the convex eigenspace); indeed, they
show that the optimal step in the convex eigenspace is well estimated by the Newton step, while there
is no correlation between the Hessian and the optimal step in the concave eigenspace. Using the
Lipschitz parameter as a measure of the rate of change of the Hessian in a given subspace (hence a
measure of the quality of a second-order Taylor approximation to a function and its corresponding
Newton step), this supports the claim that L™ < L.

F LIPSCHITZ PARAMETER EXPERIMENTS

We tested our algorithm in 7 scenarios with the PyTorch 1.13.0 framework, each on a single NVIDIA
GeForce RTX 3090 GPU with the standard hyperparameters and settings for ARC:
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O'aL =0, =1

nm =0.1,17=09

Mm=7=2

Maximum sub-problem failures = 11

Maximum sub-problem iterations = 50,
Sub-problem tolerance = 10~

Lanczos eigendecomposition (Garber et al., 2016

BFGS trinomial sub-problem solver (Nocedal & Wright, 2006, Chapter 6.1), (Feinman,
2021)

trinomial sub-problem maximal failures=11

trinomial sub-problem maximal iterations=50

The test scenario include combinations of:

Training ResNet18 artificial neural networks (He et al., 2015) for image classification on
MNIST, CIFAR10, and FakeData (random noise in place of images) with Cross-Entropy
Loss (CELoss), to evaluate the effect of changing data on the Lipschitz parameters

Training a CNN for image classification on CIFAR10 with CELoss, to evaluate the effect of
changing neural network architecture on the Lipschitz parameters.

Training a CNN?| autoencoder| (LeCunl [1987) to compress MNIST

The classification CNN architecture:

1.

2.

A feature extractor consisting of 2 2D convolutional layers with 6 output channels for the
first and 16 output channels for the second. Both had kernel sizes of 5 pixels. Each of these
is followed by a ReLU nonlinearity and then 2x2 2D max pooling

A 3-layer MLP classification head with hidden sizes (120, 84) and ReLU nonlinearities

The autoencoder CNN architecture:

Encoder: 4 2D convolutional layers with respective output channel numbers (16,32,32,64)
and kernel sizes of 3 pixels for the first two and 5 pixels for the last two. The first two
have 1 pixel padding and the last two have 2 pixel paddings. After every layer we apply
LeakyReL U nonlinearity and after every 2 layers we apply 2x2 2D max pooling.

Decoder: 4 composite layers consisting of
1. a 2D transpose-convolutional layer
2. LeakyReLU nonlinearity (only for first and third composite layers)
3. a2d convolutional layer
4. LeakyReLU nonlinearity
Decoder hidden channel sizes: 32-32-16-16-16-16-3
Decoder kernel sizes: 2-5-5-5-2-3-5-3

All strides are of size 1, except for the first and third transpose-convolutional layers of the
decoder, with stride of size 2

Decoder paddings: 0-2-2-2-0-1-2-1

Each experiment took several hours to run. All experiments (including those from above) shown in

figure[3]

!Code available on Github at REDACTED

Zconvolutional neural network

3With hidden dimensions 128-64-36-18-9-18-36-64-128, ReLU nonlinearities, and sigmoid nonlinearity on
the output
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parameters. Logarithmic scale
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One caveat is that due to computational constraints, we use stochastic minibatch training for the
neural networks instead of using the full batch to compute the gradient and Hessian-vector products
at each iteration (see Bertsekas| (1996) for an introduction to minibatch Monte-Carlo estimation of
a sum). However, [Cartis et al.| (2011a)), notes that the adaptive Lipschitz parameter estimates may
account for this variance by being greater than the actual Lipschitz parameters. Thus, our claims of
LT < 1 are not affected (since our experiments effectively provide an upper bound on L™) while
our claims of L™ > 0 are weakened. Since there is no reason to expect the variance on L~ to be
significantly greater than the variance on LT, however, our experiments remain valid.

For visual clarity, the quasi-Newton superiority measurements in 2] are presented after:

1. Clipping extreme values to the 10% - 90% quantile range

2. Gaussian smoothing, consisting of a rolling window of size 300 and standard deviation of
100

F.1 COMPUTATION OF LIPSCHITZ PARAMETERS

We modified the standard ARC algorithm to compute distinct Lipschitz parameters for the eigenspaces
corresponding to the minimal and maximal eigenvalues. Pseudocode for this algorithm is given
below.

Algorithm 2 Algorithm EigenARC

Require: ¢ € RY 0 € R", 71 > 1>, > 0,70 > > 0, (L§)_, > 0,EIGEN, BASE_OPT

1: t+0
2: while |V f (0;)|, > edo > While BASE_OPT hasn’t converged yet
3: (Xisv;)i, < EIGEN (H (6:))
4 if ASSESS_LIPSCHITZ ((L});_,) > 2 then > Overly conservative L}
5 (La)izy ¢ 2 (L)1
6: else
7 if ASSESS_LIPSCHITZ ((L});_,) < 71 then > Overly liberal L¢
8: while ASSESS_LIPSCHITZ ((L}:)Ll) > 1, do > Raise all L} assessment is passed
9: (Li)iy e (L)
10: end while
11: for i=1,...,ndo > Reduce the Li that can be reduced without violating assessment
12: while ASSESS_LIPSCHITZ ((Li);_,) > n; do
13: Lie &
71
14: end while
15: Li — 1 L%
16: end for
17: end if
18: end if

19: 9t+1 — BASE_DPT (Ht)

20: t+—t+1

21: end while

return (L;) ?:’tl iy
n

procedure ASSESS_LIPSCHITZ((L}) )

=1
f(9t>ff(9t+z;;1 N (Lt)vl)
- M (Aogwi (L,))

return

end procedure

While lines 3-18 of EigenARC may technically be usable as the LIPSCHITZ subroutine of al-
gorithm ELMO above, each iteration requires €) (n) evaluations of the loss function, which will be
computationally expensive if 7 > 0 and if the loss function is computationally heavy. This may be
ameliorated by performing these calculations only for a small subset of the eigenspaces like Sivan
et al.|(2024), however we leave this to future work.
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Figure 4: Comparison of second-order optimizers against first-order optimizers in settings with
different sized convex Lipschitz parameters. Second-order optimizers only hold an advantage over
first-order optimizers (thus justifying their additional computational complexity) when the convex
Lipschitz parameters are small.

G LIPSCHITZ-AIDED OPTIMIZER SELECTION

In this section, we demonstrate the use of convex Lipschitz parameters to select the best optimizer
for our use case. Due to the relative constancy of Lipschitz parameters throughout the training
process (after an initial warmup phase) in different settings, we can select optimizers for each
setting based on the following rule: quasi-Newton optimizers hold an advantage over first-order
optimizers when the convex Lipschitz parameters are small. As discussed in section[5] the convex
Lipschitz parameters in the image autoencoder training setting are far larger than those in the image
classification setting, so we compare a quasi-Newton optimizer against first-order methods in these
settings to validate our rule.

FOSI Sivan et al.| (2024)) is a variant of Saddle-Free Newton Dauphin et al.| (2014)) which applies
Newton iterations in the domain space subspaces spanned by the dominant eigenvectors of the Hessian,
and a first-order "base optimizer" in the remaining subspaces. We use FOSI as our representative
second-order optimizer due to its computational effectiveness, capability to adjust the computational
complexity of each iteration by adjusting the number of "dominant" eigenvectors to compute (fewer
eigenvectors comes at the cost of a poorer Hessian approximation by approximating the Hessian
with a lower-rank matrix, although this is somewhat mitigated by applying the base optimizer in
these subspaces), and fairness of comparison (since its integration of first-order optimizers allows us
to compare the effect of second-order optimization in the dominant eigenspaces against first-order
optimization in these spaces, while all else is held equal - the remaining subspaces are both treated by
the same first-order optimizers).

Experiment results may be seen in figure [}

The experiments are run with the same settings as before, with FOSI augmenting SGD and Adam re-
spectively and Savitzky-Golay order-2 filtering with a window size of 5000 for clarity of visualization.
It may be clearly seen that FOSI second-order augmentation is beneficial only in the classification
setting, due to the small convex Lipschitz parameters.

H PROOFS

H.1 PRELIMINARY LEMMAS

Before we can get started, we prove a few basic lemmas.
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Lemma H.1.
sz_l Vit x < 1+g

Proof. Mark g : R — R, g (z) = 14 § — /1 + . We have
g/(x)=%<1— \/114?)

9@ =3 <(1+1w)%)

g is convex due to its second derivative being positive for all x > —1. Therefore, its sole critical

point z = 0 obtained from the derivative is a minimum, and V;>_1 : g () > g (0) =0 O
Corollary H.1.1.
VacwsVyz i VEFYS Vi 50
Proof.
VaFy=va 1+ 2 <va(1+ ) =\/3?+$
O

Lemma. Let f : R" — R satisfy assumptions[I|and[2] Then

mi (A0; Tv;) < M} (A0 Tv;) <0 (13)

Proof. The first inequality stems from the trivial fact that m} < M.

The second inequality follows from the fact that (by design), A} "v; is a minimizer of [M; (A6, v; )|
but

M} (0) =0

Lemma. [{£.1|Minmax preconditioner

4 H(0;) + \/('H (0.))° + 2V - diag (L% : ‘Vf 0" v ) e
arg min ‘AAzGt (@t)‘ = =l
P ERmXT 2
Proof.

. . 2
|AA G| = |V (6:) | D — I
i + \/Ag —2Li-Vf(0)" v,
H (0:) + \/<H (00))° +2L - [VF (0) T wi| 1
= Vf (Gt)T CI)t — 2 V;

and the result follows from developing the second parenthesized term for all n dimensions of the
domain space. O

28



Under review as a conference paper at ICLR 2025

H.2 LEMMA[B.Il EIGENSPACE DESCENT

Working with assumptions [I|and equation 2] Dennis & Schnabel (1983, Lemma 4.1.14) prove the
following:

Lemma H.2.

1 1
FOr1) = £ (0) S VF (00" - A+ SAOTH (00) A0y + 2 L [ A0 (14)

Much like algorithm ELMO, minimizing equation [I4 would maximize [a bound on] the descent given
by iteration t. However, previous works such as|Nesterov & Polyak]|(2006) note the difficulty of
minimizing this 3rd-order n-dimensional polynomial, even when L is known. Indeed, (Cartis et al.
(2011a) propose minimizing it iteratively over a growing subspace, with each iteration’s minimization
subspace a superset of the previous iterations’ (in practice, they use the Hessian’s Krylov subspaces,
initialized with the gradient). In our theoretical analysis however, we have the freedom to simply
take the most natural decomposition of the space into subspaces, the eigenspaces of the Hessian.
This does not limit the practicality of our approach, however, since Lanczos methods allow one
to obtain elements of this decomposition. In fact, Sivan et al.[|(2024) demonstrate experimentally
that decomposing the parameter space into multiple eigenspaces and optimizing each separately can
significantly speed up optimization wall time, despite the additional computational burden of the
Lanczos iterations, because of the regularizing effect this has on the function in each of the subspaces
(by reducing the variance of the Hessian eigenvalues). (Ghorbani et al.|(2019) also show the benefits
of reducing this variance.

Lemma. Eigenspace Descent Bounds

Let f : R®™ — R be a function satisfying assumptions |I| and |2| and let 0,1 € R™. Marking
Al = 6,11 — 04, we have

ey ey F Oren) = £ (00) < M (A6 v:) (13)
- i=1

H(Li)f'_le(Rﬂ" P f (Bera) = f(00) 2 Zmi (Aejvi) (16)
- i=1

We give 2 proofs of the above lemma. The first proof is far simpler and relies on the standard spectral
norm-Lipschitz continuous Hessian assumption given by equation [2]instead of assumption 2}

29



Under review as a conference paper at ICLR 2025

Proof. Beginning with Nesterov & Polyak| (2006, Lemma 1) for the first inequality,

£ Orr) = £0) = (VF O Ors = 00) + Brvr = 0) H(00) (01— 00)) |

< Ly 01 — 643

‘f (Or41) — (i: (Vf (0) " vi - (Brgr — 00) " vi + A ((9t+1 —0)" 'Ui)2>>

i=1

n 3

Z (9,54.1 — Gt)T U,‘UZT

i=1

< Ly (Z |G =07 v
i=1

<Ly

2

)
)
)

3

"1
= LH ~’I'L3 (Zn ‘(et_;’_l — ot)T'Ui
=1

n’ (i ; ‘(9t+1 - 9t)TUi

=Ly -n? Z ‘(9t+1 - Qt)T U4
i=1

3

= ZEH : ’(9t+1 - Qt)T U
i=1

with

1. the second inequality being a representation of 6,1 — 6, over the (orthogonal) Hessian
eigenbasis

2. the third inequality due to the triangle inequality

3. the fourth inequality due to Jensen’s inequality

Our first proof of lemma [3.1]is simple, but leaves something to be desired due to its lack of per-
eigenspace Lipschitz parameters and due to the presence of n? in the bound, which can be very
large, as noted in section [A] The first proof’s assumption of equation [2]is also easily seen to be
no weaker than assumption 2] (meaning that assuming equation [2 implies assumption [2)) by taking
Lr = Li & Ly forallt € [T],i € [n]. To address these concerns, we make use of assumption
and give a second (though more complicated) proof for lemma[3.1] We’ll prove only the upper bound,
as a proof for the lower bound is similar.
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Proof.
f(Ors1) — f(0r)
1
= /o VIO +y i1 —0:) Brir — ;) dy

1
— V100 (Brr — 0) + / (VF 60+ 5 Brer —00) — V1 (0)) (Brr — 61) dy

T

=V (0)" (41— ) +/0 </0 yH (0 + y2z (0141 — 01)) (Or1 — 01) dZ) (Or41 — 01) dy

1 1
— V(60 (Brsr — 00) + / / Y (et — 60)TH (60 + y= (Buss — 60)) (Bras — 1) dyd
=Vf(0) (9t+1 —0¢) + (01 — 9t) H (0¢) (Or1 — 01)

/ / (s — 0 (H (00 + 2 (Brs1 — 0)) — H (6) (Brs1 — 01) dydz

Z

with the first and third equalities due to the fundamental theorem of calculus.

Mark the Hessian eigendecompositions as follows:

H (et =+ Yyz (9t+1 — Gt)) = ‘N//N\VT
H () =VAVT

with diagonal A = diag (\;)}_, , A = diag ():Z> and orthogonal (due to the Hermitian nature of
- i=1
Hessian matrices) matrices V, V.

1 1
= / / y(Osr —0,)" (f/]\f/T - VAVT) (Brs1 — 0,) dydz
0 0
— [ [ 5= 00T (VAVT = VAVT) (6111 00 dy:
0 0

1
+/ / Yy (0t+1 — Gt)T (VAVT — VAVT) (9t+1 — 915) dde
0 Jo

Focusing on the first term,

1 1
= / / Y (01 — 91&)—r Vv (A - A) VT (041 — 0;) dydz

1,1 n
/ y Z (041 — Qt)—r v; -+ (Op41 — Ht)T vj -v;V (f\ — A) V Tudydz
0

j=11i=1

:/1/1y Zn:(em vi)2-():i—)\i)dydz
i=1
SZLi ‘(9t+1

/ / -yz - dydz
i=1

](ml 0" v;

c\

o
o

3

o

Il
G:LE‘

«
Il
-
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As for the second term,
1 1 o _
/ / y (01 —60,)" (VAVT - VAVT) (0141 — 0;) dydz
o Jo
1 1 T/ _ B T
- / / ¥ (Oir—00" (V-V)A(V V) (Brr — 6 dyd

-~ T -~
/ / (i1 — 01) ((VAVT) —VAVT) (i1 — 0,) dydz

/0 y(Oa—0) (V=V)A(V+ v)T (Opsr — 0,) dyd=

o\o\

= 1/ AW =, - JIAlL 7+ v - 16— 801 - dya
<5 LefA], 10 -0

=5 a3, s —o0 v

§£ Le[[A]], - @ 00 VI

\%

S

\%

R

@
Il
—

with

* the first 4 transfers similar to those in the proof of lemma[H.4]
* the third equality due to orthonormality
* the third inequality due to the L, norms inequality

* ¢; indicating the 1-hot vector with a 1 in the i-th entry

Putting it all together (and representing 6,1 — 6, by its coordinate vector over the eigenbasis of

H (6)):
F(Bern) = F(0) <DV (0) T vi- (Bura = 00) " vi+ Xi (6:) - ((9t+1 —0,)" Ui)Q

=1
+(Li+ﬁ

5 3 'LR'LH> N(Or1 — 00) vi]?

O

To understand the relationship between our assumption [2] and the more standard equation [2] we
further prove that the combination of assumption[2]and a bounded spectrum assumption will be no
weaker than equation [2}

Lemma H.3. Let A € R"*", v € R". Thenv' (AT — A)v =0.

Proof.

VT (AT = A)v= (T (AT —A)v) =0T (A=A v=—vT (AT — A)v
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Theorem H.4. Let f : R™ — R be a function satisfying assumptions |I| and [2| and assume
IneuperVoern Vicn)  Ai (0) < Asup. Then equation?]is satisfied.

[ () = H (@) p| = | (VAVT = VAVT) p|
< |pT (VAVT = VAVT) |+ |pTV (A= A) VT

=p" (V—V)A(V+V)Tp‘ + ]pr/ (a-4) VTp‘

IN

. . - 2 ~
L LR Laad L Ll e
2 2 2 2

IN

<2LR‘ sup Ai(9')>’ll9<P||2+maxLi~990||2
0'€R™ i€R i

< (2Lg - Asup + L) - 10 — ¢l

with

* the first inequality due to the triangle inequality
* the second equality due to lemma[H.3|
* the second inequality due to the Cauchy-Schwartz inequality

* the third inequality due to the triangle inequality, and the fact that all of an orthonormal
matrix’s eigenvalues equal one of {—1,1}

H.3 THEOREM[3.2 WORST CASE-OPTIMAL DESCENT RATE

Before we can prove theorem we need to upper bound equation

Lemma H.5. Minmax stepsize bound

If \; > 0 then

AG v, =0 < ‘Vf )" v;

)

If \; <0 then

Af; v = O (IA))
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Proof. Forist. 0 < )\ < \/Li . ‘Vf (Ot)T v;

we use corollary [H.1.1|with z = 2L¢ - ’Vf 0,)" v

to obtain
\/)‘1‘2 +2L£ ) ‘Vf (et)TWi -\
A * T R i
0; " v; 7
< B ‘Vf (0¢) v 2 2LV 00 v ¢
= Li + Li
Vr@)Tul 1 [|[VEE0T e
<V2. , + : ,
Ly 2v/2 Ly
5 ‘Vf (0:)" v,
T 2V2 Li

Foris.t. A; > \/Li : ‘Vf (6,) " vi| we use corollary [H.1.1|with 2 = A? to obtain

‘Vf (Ht)T Vi

- \/L§~‘Vf 0)7 v;

T ‘Vf (et)T (%
AH: (% S N

For i s.t. A\; < 0, we again use corollary with x = A7 to obtain
2Li ) ‘vf (at)T Ui

2|\
< =

- w) :

AQIT’Ui =

O (1Al

Li <\//\§+2L§'~‘Vf (00) " vi

We are now ready to prove theorem 3.2}

Theorem. Worst case-optimal descent rate Let | be a function with Lipschitz-continuous Hessian.
After t iterations, algorithm satisfies

f(0o) — f(0:) = O (logt) (17

Proof. (Cartis et al| (2012a) give ‘Vf ()7 vi‘ = 0 (%) and Vin,<o + I\i| = O () for the
3

ARC optimization algorithm, of which algorithm [ELMO| is a special case (the case where ARC

perfectly estimates the Hessian Lipschitz parameter).

Making use of lemma and noting that < 0 by equation
A O

Foris.t. A\; > 0:

—\i Li
20 o+ .(Aefvi)ﬁgf

. (AQ:Tvi)g

<|vr)Tu|-0

0 (‘Vf 00" v;

“)-o(())-e ()
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Foris.t. A\; <O0:

<[ V50" o] - O (A + M- © (AN + O (N = 0 ([VF 6]
o))

Finally, we have

il - ]+ |>\i|3)

T—1
f0o) = f(0r)= D>  f(6:) = f(Ors1)
-
< Z |m AOS ' v; |
t=0

with v /= 0.57721 as the Euler-Mascheroni constant and [Young| (1991) for the last inequality.

H.4 THEOREM[3.3|

Theorem.

|mi (AGZ‘TviH <5 |Mt’ (AH;Tviﬂ

itano) ‘mi(“f%i) . Now:

Proof. Due to equation | we have — M (80T |30 (80w
my (A6 Tv;)
M (A0; Tv;)
VS0 v A T 4 (80;Tv,)? = 2| A0; T

6
SN

7
T = 2
7 : i 2 i . .
—|Vf(6) T + A AZH2LL V f(0r)  vi| =i _Li A242Li vf(et) vil—=Xi
t ) D) L1 3 L%

VF0:) vi- A0 Tv; + ’\7 (AQ;‘TvZ—)Q + %

‘Vf 6" vi

5()\ \/)\2+2L’ Vi) v
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H.5 THEOREM 4.2} WORST-CASE DESCENT RATE FOR ARBITRARY OPTIMIZERS
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(M7 (A0, v;)| - M7 (A6F Tv;))|
M} (AG; T v,
Vi) v ((et+1 —00) v — Ae;%i)

AO;Tv; -V f (Qt)—rvz—I— I (AG*T O+ L (a0 T)?

)
F(00)" vi+ 3N (A9*Tvz)2+%(A9Z‘Tvi)3

RN
f(e A (A0 Tv,)” + B (A0 Tw,)?

_anig (AATG2 4+ 20N, +3) - (A0 ;)
A&fTvZ + 3 NA0; T — ‘Vf (6:) " s

A (AL +1) - A0 T,
(A0 Tv:) + INAG Ty —

(et)T Vi

‘Vf(é’t)T Vi
(A0 Tv,)" + INA0; T, — ‘Vf (0:) " vs

Li
6

(\/Af+2L}:-|Vf(0t)Tvi|fAi>2

L (AA02 + 2AA0; + 3) - %

t

= AA'0,

2
<¢A§+2Li~|w(9t)%|—%) AFH2L | VF(00) Toi| =N
% +%AN’ t|L;‘ 2 ~[vs 60T

=

t

i (BAAIG 1 1) <\/A?+2L§‘|VL’:(9")T”"’|_M)

Vi

2
<\/>\3+2Li‘|vf(9t)”i‘7>‘i> + \//\2+2L [v700 Tl )Vf(e )"
¢

L} 2 Lt

o=

’Vf )" v

2
(\/Af+2L§~|Vf(9,,)TU1:|—M> A2 420 |Vf(0t vL| i T
, / Y VAR2L LL ‘Vf(at) vi

AAG, + 2AN92 2
Ai\/)\f + 2L [Vf(6)" v V()" v
2 (AA92 + 2AA0;)

/\i\/)\?+2L§-‘Vf(0t)T v;

= AA'D, -

— 22 4L

(9t)T Ui

_|_

— A2 — ALV f(0) v

V(6" vi

inl 012
AN, + 200", -A,»\/A3+2L;'-
N3+ 28 |97 007 w] - 32— 4L V5 00T

37



Under review as a conference paper at ICLR 2025

= —AAg?. (1 + ;Aweg‘z)
If A\ > 0:

1

L -2
» —
\/1+2L% \Vf;gn v,,|+1
i

= ANig2.

1

(AA™0; +2) — (1 + 2AA"6;) - :
1+ \/1 + 27Li"vf;ft) vi

i

AN

= AN [ AATG, —1— |1+ - (AA6] +2)

N
1
i Ty,
1+ 2\/1 4 oLV ) i) |V’;<f‘)
. 1
— AN
i |V £(0,) T v;
14 2\/1 P S ihZCOMT
102 1 1 i/
—ANG2 142 |1 - AAiG
2 Li-|VF(6) T v
1424/ 142200 v
3 1 1

=13 —5 | -anie - anip
i, T,
1+ 2\/1 o 2 EAZCOMT]

7

Proving that

1 1
c <0, 3}
i |V £(0,) T v;
1+ 2\/1 RV vl

would conclude the proof for this case. This is easily proven, by noting that

Y1 RY 5 Ry (2) = (1+2V/I+22)

is monotonic and satisfies

, 1
zlingr wl (1') o g
A5, (@) =0

38



Under review as a conference paper at ICLR 2025

If, on the other hand, \; < O:
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For the second part of the lemma,
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Noting the common structure of each of the coefficients of AAin, AA"GQQ, AAiGQS, we prove the
following to bound all three via appropriate settings of a,b € {2,4,7,12}:
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the term in the parentheses is bounded, thus we may conclude our proof of the lemma.
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to 0 (since a = b for those cases), so that THED 2 )Hm;( v
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Remark. Note that when \; > 0,
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We are now ready to prove theorem 4.2
Theorem. Worst-case descent rate for arbitrary optimizers

Let [ : R™ — R a twice-differentiable function satisfying assumptions[I|and[2} and let A0, satisfy
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Ab, vi < 0. Then
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Proof. Proof is immediate from lemma[H.5] because we have
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I LIMITATIONS AND FUTURE WORK

One interesting direction for future research is in putting the estimated Lipschitz parameters to work
throughout the optimization process to increase the descent rate in hopes of matching and even
surpassing ARC’s strong performance (Xu et al.,2017)). Although the code attached to this paper is
capable of estimating these parameters, it does so too slowly to be practically useful in computing all
of an algorithm’s steps, under most settings. We suggest future work could improve this algorithm’s
computational complexity.

A limitation of our Newton’s method performance predictor is the additional computational burden
of computing the Lipschitz parameters. We provide code for doing so in the attached code on Github,
but we recommend performing these computations sparingly, since the Lipschitz parameters are
approximately locally stable anyway.

A second limitation of our work is its inability to provide any indication of the number of iterations
left to achieve convergence. We see this as an acceptable limitation however, since in practice a
model is only required to achieve a certain level of performance on the data decided ahead of time,
without regard to how much further it could be optimized. As noted in the introduction, performance
is measured by the loss function, so our descent rate bound satisfies this practical requirement.

A final limitation of our bound is its reliance on AA'6, as a measure of algorithm optimality which
is a function of Af; T v;, despite the fact that most optimizers do not compute that during training.
This bound is therefore primarily of theoretical interest, as illustrated by its motivation of the very
practical metric discussed in section [§]
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