
A geometric framework for momentum-based
optimizers for low-rank training

Steffen Schotthöfer∗ Timon Klein† and Jonas Kusch‡

Abstract

Low-rank pre-training and finetuning have recently emerged as promising tech-
niques for reducing the computational and storage costs of large neural networks.
Training low-rank parameterizations typically relies on conventional optimizers
such as heavy ball momentum methods or Adam. In this work, we identify and
analyze potential difficulties that these training methods encounter when used to
train low-rank parameterizations of weights. In particular, we show that classical
momentum methods can struggle to converge to a local optimum due to the ge-
ometry of the underlying optimization landscape. To address this, we introduce
novel training strategies that combine dynamical low-rank approximation with
momentum-based optimization, explicitly accounting for the intrinsic geometry
of the parameter space. We validate our methods through numerical experiments,
demonstrating stronger validation metrics at given parameter budgets.

1 Introduction

Deep learning models have achieved remarkable success across natural language processing and
computer vision tasks, but their deployment remains computationally expensive due to the large
number of trainable parameters. To address this, parameter-efficient strategies have been developed
to reduce memory and compute requirements during training. Common approaches include sparsifi-
cation [9, 22, 12], quantization [37, 6], and layer factorization. The latter has gained considerable
attention for pre-training [36, 16, 28, 29, 41] and especially finetuning [15, 34, 42, 10, 43, 20, 27].
Layer factorization represents weights (or adapters) as low-rank matrices, allowing only the low-rank
factors to be trained. This significantly reduces both memory usage and computational cost.

In the class of low-rank layer factorizations, one of the most popular methods is LoRA [15], which
applied typical optimizers such as stochastic gradient descent (SGD) or Adaptive Moment Estimation
(Adam) [17] directly to the low-rank factors. The combination of these optimizers with LoRA does
not guarantee an optimal optimization trajectory [27, 42]. To overcome the former challenge, various
improvements have been proposed: For example, LoRA+ [10] proposes the use of separate learning
rates for different components of the low-rank decomposition, Dora [21] normalizes the factor
matrices and introduces a magnitude parameter. Furthermore, to overcome the challenge of tuning the
rank of the LoRA ansatz, AdaLoRA [42] adaptively allocating the parameter budget during training,
by masking off rows and columns of the adapter matrices. Other low-rank methods focus entirely
on the optimizer states: GaLore [43] projects full-rank weight gradients into a low-rank subspace to
reduce the memory footprint of the optimizer state. Tensor-GaLore [7] generalizes this technique to
high-order tensor-parameterized models, further improving efficiency for large-scale architectures.
Adafactor [31] approximates the second-moment matrix using a low-rank decomposition of Adam
with low-rank factors.

∗Computer Science and Mathematics Division; Oak Ridge National Laboratory; Oak Ridge, TN 37831 USA;
Mail correspondence: schotthofers@ornl.gov

†Department of Mathematics; Otto von Guericke University Magdeburg; 39106 Magdeburg; Germany
‡Scientific Computing; Norwegian University of Life Sciences; Drøbakveien 31, 1433 Ås; Norway

39th Conference on Neural Information Processing Systems (NeurIPS 2025).



A particularly promising class of layer factorization strategies is dynamical low-rank training (DLRT)
which has been introduced in [28] and has since been used in various tasks [41, 29, 27, 5, 19].
DLRT projects the gradient flow dynamics onto the tangent space of the manifold of low-rank
parameters, thereby achieving convergence guarantees to low-rank optimal weights [27]. However,
these projections are inherently non-smooth, leading to ill-conditioned optimization landscapes
and requiring smaller learning rates for stable training [28]. To ensure robust integration of such
projections, DLRT constrains movement to flat subspaces within the low-rank manifold, enabling
stable convergence to low-rank optima. The method is rank adaptive - using a basis augmentation and
subsequent singular value-based truncation criterion to adapt the rank of the low-rank factorization.
It further enables extensions to increase adversarial robustness of the compressed neural networks by
enforcing orthonormality of the low-rank bases and projecting onto a well-conditioned manifold [26]
or regularizing the condition number of the factor matrix [30].

Despite its efficiency, current DLRT approaches primarily rely on SGD, and it remains unclear how
adaptive optimizers such as Adam [17] can be effectively applied. This is a significant limitation,
as many state-of-the-art models depend on momentum-based optimizers like Adam and its variants
for performance and stability. Therefore, the extension of DLRT to such optimization techniques is
crucial.

To bridge this gap, we introduce a novel momentum-based optimization framework for low-rank
pretraining and finetuning. The method integrates adaptive momentum techniques into the framework
of dynamical low-rank training (DLRT), preserving the low-rank structure of model weights while
enabling stable and efficient updates. This establishes a link between low-rank optimization and
adaptive gradient methods, yielding both theoretical insights and practical improvements. Beyond
the method derivation, we analyze why LoRA-style adapters—and low-rank parameterizations more
broadly require momentum-based optimizers that are aware of the geometry of the low-rank parameter
space, i.e., the underlying manifold structure. Naively applying standard optimizers such as heavy
ball to low-rank parameterizations can produce updates that do not correspond to a gradient flow
leading to a low-rank optimum. As a result, these methods may fail to converge to valid low-rank
solutions. We show how DLRT can be adapted to approximate geometry-respecting gradient flows
that consistently drive convergence toward low-rank optima. Together, these contributions lay a
foundation for more robust and efficient training of large-scale models under low-rank constraints.

Compared to low-rank methods that act on the optimizer states only [43, 7, 31] we provide a holistic
interpretation of a low-rank optimization algorithm that adaptively compresses the network weights,
gradients and optimizer states simultaneously, achieving superior compression performance at high
validation metrics. We remark that the method is directly extendable for tensor-valued neural networks
using, e.g., low-rank Tucker factorization.

The paper is structured as follows: We first discuss limitations of naive momentum methods and show
how to adapt the underlying gradient flow to achieve convergence to a low-rank optimum in Section 2.
While the adapted gradient flow facilitates convergence, constructing robust numerical optimizers
from it is challenging due to its inherent stiffness. We propose a low-rank heavy ball optimizer in
Section 3 which integrates the adapted gradient flow robustly. In Section 4, we construct a fully
low-rank Adam optimizer by leveraging insights gained in Section 3. In Section 5 we underline the
efficiency of the proposed method through numerical experiments. In particular, we demonstrate fast
convergence and superior validation accuracy at high compression levels for training from scratch,
transfer learning, and low-rank finetuning of different neural network architectures and benchmarks.

2 Momentum-based low-rank training

We consider a low-rank neural network of the form

N (x) = σL(ULSLV
⊤
L zL−1(x)) ,

where zL−1(x) is defined recursively by

z0(x) = x ∈ Rn0 , and zl(x) = σl(UlSlV
⊤
l zl−1(x)) ∈ Rnl , ∀l = 1, . . . , L . (1)

Here, the weight matrices are defined as Wl := UlSlV
⊤
l ∈ Rnl×nl−1 , where Ul ∈ Rnl×rl and

Vl ∈ Rnl−1×rl are orthonormal low-rank factors, and Sl ∈ Rrl×rl is the coefficient matrix. Thus,
Wl lies in the manifold of rank rl matrices which we denote byMrl . Additionally, σl represents

2



the activation function of layer l. For simplicity of notation, we do not consider biases, but a model
with biases can always be expressed as Eq. (1) by folding biases into weights and creating an input
dimension that is always one. Several methods have been proposed to train the low-rank weight
matrices Wl to minimize a given loss function L. Among these, the simplest training rule is the
steepest descent method, which, for a fixed4 layer l with weights W = USV ⊤ ≡Wl reads

Un+1 = Un − λ∇ULn , Sn+1 = Sn − λ∇SLn , V n+1 = V n − λ∇V Ln , (2)

where λ is the learning rate, the index n denotes the training iteration, and we have used the shorthand
notation Ln := L(UnSnV n,⊤). A more general framework that facilitates the numerical analysis
and construction of novel numerical methods interprets the steepest descent method as an explicit
Euler time discretization of the continuous gradient flow equations

U̇(t) = −∇UL , Ṡ(t) = −∇SL , V̇ (t) = −∇V L ,

where L := L(U(t)S(t)V (t)⊤). Then, the steepest descent update equation for the individual
factors can be obtained through a forward Euler discretization of the pseudo-time t. E.g., the update
equation for U can be retrieved through U̇(tn) ≈ 1

λ (U
n+1 − Un) and L ≈ Ln. While steepest

descent methods offer a simple strategy to drive the parameters to a locally optimal point, one of the
most widely adopted strategies for updating factorized parameters W , along with their factorized
momentum terms V = UVSVV

⊤
V , involves momentum-based optimization. For instance, in the

case of the heavy ball method applied to all low-rank factors individually, e.g., in LoRA [15], the
associated update equations take the form

Un+1 = Un + λUn
V , Un+1

V = (1− λγ)Un
V − λ∇ULn, ∇ULn = (∇WLn)V n(Sn)⊤, (3a)

V n+1 = V n + λV n
V , V n+1

V = (1− λγ)V n
V − λ∇V Ln, ∇V Ln = (∇WLn)⊤UnSn, (3b)

Sn+1 = Sn + λSn
V , Sn+1

V = (1− λγ)Sn
V − λ∇SLn, ∇SLn = (Un)⊤(∇WLn)V n. (3c)

The associated gradient flow equations are given by:

U̇ = UV , U̇V + γUV +∇UL =0 , ∇UL = (∇WL)V S⊤ , (4a)

V̇ = VV , V̇V + γVV +∇V L =0 , ∇V L = (∇WL)⊤US , (4b)

Ṡ = SV , ṠV + γSV +∇SL =0 , ∇SL = U⊤∇WLV , (4c)

where γ denotes the momentum decay parameter. While these equations are optimal when treating
all low-rank factors in isolation, they do not account for the fact that factors change simultaneously.
For example, Eq. (4a) is expected to drive the solution to an optimum, only if S(t) and V (t) remain
constant in time. When accounting for the dynamics of all three low-rank factors, the resulting
gradient flow for W (t) = U(t)S(t)V (t)⊤ takes the form

Ẇ = UVSV
⊤ + USVV

⊤ + USV ⊤
V , and (5a)

V̇ + 3γV = −∇ULSVV
⊤
V − UV∇SLV ⊤

V − UVSV∇V L⊤

= −(∇WL)V S⊤SVV
⊤
V − UVU

⊤∇WLV V ⊤
V − UVSVS

⊤U⊤∇WL
=: −P̂ (W,V)∇WL . (5b)

This can easily be shown with the product rule, e.g., Ẇ = U̇SV ⊤ + UṠV ⊤ + USV̇ ⊤ and plugging
in time derivatives from Eq. (4). These evolution equations for W and V are fundamentally different
from the momentum-based gradient flow equations of the full-rank problem

Ẇfull = Vfull , V̇full + γVfull = −∇WL(Wfull) . (6)

Indeed, a proper formulation of Eq. (6) that drives the weights of a heavy ball method to a local
optimum while preserving the low-rank representation of W , requires that

Ẇ = P (W )V , V̇ + γV = −P (W )∇WL , (7)

where for W = USV ⊤, the projector onto the tangent space is given by P (W )Z := UU⊤Z(I −
V V ⊤) + ZV V ⊤, see [18, Lemma 4.1] and Figure 1 for geometric interpretation. Note that in

4We restrict the discussion to a single layer without loss of generality, following the arguments of [27,
Appendix I].

3



abuse of notation, we have recycled W and V here to denote the weights and momentum terms
following Eq. (7) instead of the naive Eq. (4). Then, the time evolution will drive W into a
low-rank steady state (W ⋆,V⋆) such that P (W ⋆)∇WL(W ⋆) = 0, see Theorem 1. This steady
state thus fulfills the optimality condition of a local optimum, see, e.g. [25, Theorem 3.4]. Such a
condition is not ensured by the simultaneous descent equations of (4) since, in general, Ẇ ̸= P (W )V
and P̂ (W,V)∇WL ≠ P (W )∇WL, see Theorem 4. Therefore, training low-rank factors with
conventional momentum methods does not necessarily ensure convergence to a low-rank optimum.

Figure 1: Geometric interpretation of Al-
gorithm 1. We compute the parametriza-
tion of the tangent plane TMr

. Then, we
compute the projected gradient ∇S̄L to
construct the low-rank momentum up-
date. The momentum optimizer is then
applied to the low-rank weight coeffi-
cient Ŝ. Lastly, we retract the updated
coefficients back onto the manifoldMr.
The interpretation of Algorithm 2 is anal-
ogous. LoRA-like methods do not em-
ploy orthogonal projections onto TMr ,
but instead map the full gradient ∇WL
implicitly ontoMr. The linear map (dis-
played as the wavy orange line) may map
the gradient direction far away from the
properly projected gradient flow, leading
to suboptimal descent directions.

We aim to derive a numerical method that is consistent
with the optimal gradient-flow equations (7). A central
limitation of Eq. (7) is that it does not preserve the low-
rank structure of the momentum term V , thus leading to
prohibitive computational costs and memory requirements.
Instead, we aim to derive a method that fulfills

V̇ + γV = −P (V)∇WL (8)
which preserves the low-rank structure of the momentum
term. Indeed, the factorized solution of Eq. (8) fulfills (see
Theorem 2)

U̇V = − (I − UVU
⊤
V )∇WLVVS

−1
V , (9a)

V̇V = − (I − VVV
⊤
V )∇WL⊤UVS

−⊤
V , (9b)

ṠV = − γSV − U⊤
V ∇WLVV , (9c)

with initial condition U(0) = UV(0) and V (0) = VV(0).
While this formulation and in particular Eq. (7) provide a
good basis for constructing numerical methods, it also in-
troduces the inverse terms S−1

V and S−⊤
V on the right-hand

side, rendering the system highly stiff, especially when
these matrices are ill-conditioned. This stiffness can be
treated through robust time integrators [2, 3] developed in
the field of dynamical low-rank approximation [18] which
have also been used for stochastic-gradient descent meth-
ods in dynamical low-rank training [28, 41, 29, 27, 13, 30].
In the following section, we formulate an algorithm that
provably approximates the gradient flow of Eq. (9) by
following ideas of [2]. It turns out that this method is a
consistent approximation of the optimal gradient flow of
Eq. (7) under mild assumptions.

3 A low-rank heavy ball method

To approximate Eq. (7), we start with the first time step from t0 = 0 to t1 = λ and note that by
definition of the initial condition U0 := U(t0) = UV(t0) and V 0 := V (t0) = VV(t0). Let us first
construct an augmented basis to ensure that the range and co-range of V are fully spanned. To ensure
robustness to small singular values, we introduce a change of variables and evolve the basis along
KV(t) = UV(t)SV(t) and LV(t) = VV(t)SV(t)

⊤ for t ∈ [t0, t1] while keeping V 0 = VV(t0) and
U0 = UV(t0) fixed, respectively [2]. Then, using the product rule and derivatives from Eq. (9), we
get

K̇V(t) = U̇V(t)SV(t) + UV(t)ṠV(t)
(9)
= −∇WL(W (t))V 0 , KV(t0) = U0S0

v ,

L̇V(t) = V̇V(t)SV(t)
⊤ + VV(t)ṠV(t)

⊤ (9)
= −∇WL(W (t))⊤U0 , LV(t0) = V 0S0,⊤

v .

As no ill-conditioned S−1
V terms affect the dynamics, one can use a forward Euler step to update

KV and LV from t0 to the next time step t1. Thus, we get for Kn
V ≈ KV(tn), Ln

V ≈ LV(tn), and
Wn = W (tn)

K1
V =K0

V − λ∇WL(W 0)V 0 , with K0
V = U0S0

v ,

L1
V =L0

V − λ∇WL(W 0)⊤U0 , with L0
V = V 0S0,⊤

v .

4



Algorithm 1: Single iteration of the dynamical low-rank momentum method.
The functions basis_augmentation, and truncation are detailed in Algorithm 3 in the
appendix.
Input :Initial orthonormal bases U, V ∈ Rn×r and coefficients S, SV ∈ Rr×r;
τ : singular value threshold for rank truncation;
λ: learning rate.

1 Evaluate L(USV ⊤) /* Forward evaluate */
2 GU ← ∇UL(USV ⊤); GV ← ∇V L(USV ⊤) /* Backprop */

3

{
Û ← basis_augmentation(U,GU )

V̂ ← basis_augmentation(V,GV)
/* in parallel */

4 S̄ ← Û⊤USV ⊤V̂ ; S̄V ← Û⊤USVV
⊤V̂

5 Evaluate L(Û S̄V̂ ⊤) /* Forward evaluate */
6 GS ← ∇S̄L(Û S̄V̂ ⊤) /* Backprop */
7 ŜV ← (1− γ)S̄V − λGS ; Ŝ ← S̄ + λŜV /* coefficient update */
8 U, S, V, SV ←truncation(Ŝ, ŜV , Û , V̂ ; τ)

Denoting an orthonormalization algorithm like Gram-Schmidt as ortho, K1
V and L1

V are therefore
spanned by

Û = ortho(U0,∇WL(W 0)V 0) , V̂ = ortho(V 0, (∇WL(W 0))⊤U0) .

Following [40, Cor. 2.2], we note that∇UL = ∇WLV S⊤ and∇V L = (∇WL)⊤US, meaning that
Û and V̂ can be rewritten as

Û = ortho(U0,∇UL(W 0)) , V̂ = ortho(V 0,∇V L(W 0)) .

We note here that this choice of the updated bases for V also approximates the updated parameters
W (t1) of the equation Ẇ = V . With an implicit Euler time discretization, we have

W 1 = U0S0V 0,⊤ + λÛŜ1
V V̂

⊤ = Û(Û⊤U0S0V 0,⊤V̂ + λŜ1
V)V̂

⊤ =: Û Ŝ1V̂ ⊤ ,

where Ŝ1 := Û⊤U0S0V 0,⊤V̂ + λŜ1
V and Ŝ1

V is the time-updated coefficient matrix of V which we
will derive in the following: Solving Eq. (9c) with fixed bases Û and V̂ yields

ṠV(t) = −γSV(t)− Û⊤∇WL(W (t))V̂ SV(t0) = Û⊤U0S0
VV

0,⊤V̂ .

Here, we choose SV(t0) as the coefficient matrix S0
V projected to the updated bases Û and V̂ . This

choice is crucial as it ensures the momentum term to be spanned with the updated basis. Using a
forward Euler time discretization yields

Ŝ1
V =(1− γ)Û⊤U0S0

VV
0,⊤V̂ − λÛ⊤∇WL(U0S0V 0,⊤)V̂ .

Let us note that with S̄ := Û⊤U0S0V 0,⊤V̂ we have

Û⊤∇WL(U0S0V 0,⊤)V̂ = ∇S̄L(Û S̄V̂ ⊤) .

Thus, with S̄V := Û⊤U0S0
VV

0,⊤V̂ , the final coefficient updates (including the update for S) are

Ŝ1
V =(1− γ)S̄V − λ∇S̄L(Û S̄V̂ ⊤)

Ŝ1 = S̄ + λŜ1
V .

We note that the basis for W and V remain identical after one time update, thus the above derivation
holds for general time updates from tn to tn+1. Since, by construction, the updated bases Û and V̂
have doubled in rank compared to Un and V n, we perform a truncation step. The truncation can be
performed back to the original rank r, or formulated with a relative truncation threshold for a given
tolerance parameter ϑ = τ∥Ŝ∥ [2] or a rank budget [42], enabling a rank adaptive method.

5



Algorithm 2: Single iteration of the low-rank Adam method.
The functions basis_augmentation and truncation are detailed in 3 in the appendix.
Input :Initial orthonormal bases U, V ∈ Rn×r and coefficients S, SV , SK ∈ Rr×r;
τ : singular value threshold for rank truncation;
λ: learning rate;
β1, β2: Adam momentum parameters;
ϵ: Small stability constant.

1 Evaluate L(USV ⊤) /* Forward evaluate */
2 GU ← ∇UL(USV ⊤); GV ← ∇V L(USV ⊤) /* Backprop */

3

{
Û ← basis_augmentation(U,GU )

V̂ ← basis_augmentation(V,GV )
/* in parallel */

4 S̄ ← Û⊤USV ⊤V̂ , S̄V ← Û⊤USVV
⊤V̂ , S̄K ←

(
Û⊤U

√
SKV

⊤V̂
)2

5 Evaluate L(Û S̄V̂ ⊤) /* Forward evaluate */
6 GS ← ∇S̄L(Û S̄V̂ ⊤) /* Backprop */
7 ŜV ← β1S̄V + (1− β1)GS

8 ŜK ← β2S̄K + (1− β2) (GS)
2

▷ Modifications for adaptive update

9 ŠV ← Ŝn
V

1−βn
1
, ŠK ← Ŝn

K
1−βn

2
/* Bias correction */

10 Ŝ1 ← S̄ − λ ŠV√
ŠK+ϵ

/* Adaptive coefficient update */

11 U, S, V, SV , SK ←truncation(Ŝ, ŜV , ŜK, Û , V̂ ; τ)

One step of the resulting method using a relative truncation threshold is summarized in Algorithm 1.
A main distinction of this method from a naive application of a heavy ball method to DLRT [28] is
that 1) our method uses the same bases for parameters and momentum terms, 2) our method does
not use a momentum method to update the bases, but uses a classical basis augmentation instead,
and 3) the method projects momentum terms onto the new bases after the basis update. These three
choices ensure that the method approximates the optimal gradient flow of Eq. (7) independent of
the condition number of S−1 and S−1

V when the truncation tolerance is sufficiently small, which we
make rigorous in Theorem 3.

Theorem 3 shows that the low-rank momentum method produces solutions that are close to the
solutions of full-rank (baseline) trained neural networks. Thus, we expect the validation accuracy
of the trained low-rank networks to match the full-rank baseline. This is empirically confirmed in
Table 1.

4 A low-rank Adam method

While heavy ball methods are the cornerstone of momentum-based optimization, they are commonly
outperformed by momentum-based optimization methods that include stepsize control. Among these,
perhaps the most popular method is Adaptive Moment Estimation (Adam), which was introduced in
[17] and has significantly impacted the machine learning community; see Algorithm 4 for a reference
formulation of Adam. While Adam exhibits superior performance, the non-linearities it introduces
and a missing gradient flow formulation make a rigorous derivation of an extension to LoRA-type
training difficult. In the following, we use the insights gained from the heavy ball method to construct
a low-rank Adam optimizer. Adam’s main distinction from heavy ball methods is the adaptive stepsize
control, which is determined from the exponentially weighted moving average of the first and second
moment of the gradient, denoted by V and K.

A naive update of the exponentially weighted moving average of the first and second moment of the
gradients with respect to the coefficients S, which we denote as VS ,KS ∈ R2r×2r would read as

Vn+1
S = β1Vn

S + (1− β1)∇SL and Kn+1
S = β2Kn

S + (1− β2)(∇SL)2 .

6



The bases U, V of the weight factorization could be updated as in Algorithm 1. However, this
naive approach does not account for the fact that Kn

S and Kn+1
S , respectively Vn

S and Vn+1
S belong

to different bases, which are updated between optimization steps by the augmentation-truncation
mechanic.

Instead, we leverage the discussion in Section 3, and propose to project the previous weighted moving
average to the updated bases. We note that through the construction of the low-rank bases, no step-size
control is required to update U and V since the basis spans weights and moments at the old and
current time steps and linear combinations in between. To facilitate the discussion, we denote the first
low-rank moment as SV ∈ Rr×r, analogously to the momentum term in Algorithm 1 and note that
the update of SV can be performed using the strategy of Algorithm 1 with S̄V := Û⊤U0S0

VV
0,⊤V̂

and S̄ := Û⊤U0S0V 0,⊤V̂ , i.e.,

Ŝ1
V =β1S̄V + (1− β1)∇S̄L(Û S̄V̂ ⊤)

The dynamics of the second moment do not follow the gradient flow directly, but have non-linear
dynamics depending on the square of the gradient. We remark that, the (full-rank) second moment K̂
is element-wise positive, which is important for taking the square root in the (full-rank) Adam update
step Wn+1 = Wn − λ V̂√

K̂+ϵ
. Denoting the second moment of the coefficient matrix by SK ∈ Rr×r,

we propose a modified projection S̄K =
(
Û⊤U0

√
S0
KV

0,⊤V̂
)2

, which projects the element-wise
square root of the second moment of the low-rank coefficient S onto the new basis and subsequently
squares the elements. This ensures element-wise positivity of the second low-rank moment. The
augmented low-rank moment S̄K is subsequently updated with the standard Adam update scheme

Ŝ1
K =β2S̄K + (1− β2)

(
∇S̄L(Û S̄V̂ ⊤)

)2

.

We apply the Adam bias correction at iteration n to the low-rank moments, i.e.,

ŠV =
Ŝn
V

1− βn
1

, and ŠK =
Ŝn
K

1− βn
2

,

and update steps for the coefficient S, i.e., Ŝ1 = S̄ − λ ŠV√
ŠK+ϵ

.

The resulting method is summarized in Algorithm 2. We wish to remark that the extension to AdamW
is straightforward: The regularization term is added to Ŝ directly instead of being combined with the
gradient for the moment updates.

Computational and Memory Efficiency

We briefly analyze the computational and memory efficiency of 1) the low-rank Heavy Ball method
and 2) the low-rank Adam method. To update a matrix W ∈ Rn×n, the full-rank (baseline) Heavy
Ball method requires O(3n2) floats to store the weight W , its gradient ∇WL, and the momentum
V . The computational cost is of the same order. In contrast, the low-rank Heavy Ball method (see
Algorithm 1) requiresO(2nr+r2) floats to store the low-rank factorization USV ⊤, andO(2nr+r2)
for the gradients ∇UL,∇V L,∇SL. Since the bases U and V are shared between the weight and
momentum, the momentum term requires only O(r2) additional floats. The extra computational
costs are O(nr2) for orthonormalization during basis augmentation and O(r3) for truncation, both
negligible when r ≪ n. Similarly, the full-rank Adam/AdamW method requires O(4n2) floats to
store W ,∇WL, and the two momentum terms V,K, with comparable compute cost. The low-rank
Adam method uses O(2nr + r2) for USV ⊤ and the same for the gradients. The two momentum
terms add only O(2r2) due to shared bases. The computational cost is computed analogously to that
of the low-rank Heavy Ball method.

Extension to Tensor-valued layers

The proposed optimizer is directly extendable to tensor-valued neural network layers, e.g. convo-
lutional layers, following the extension of the SGD-based DLRT method from matrices in [28] to
tensors [41]. To that end, we remark that a, e.g. 2d, convolution can be formulated as an operation

7



on an order four tensor W ∈ Rdi×do×sw×sh , where di and do are the channels of the input and
output data, and sw, sh is the width and height of the sliding window of the convolution acting on the
spatial dimensions s, h of the input image x ∈ Rs×h×di . Consider a low-rank Tucker factorization
of the weight, i.e. W = C ×4

i=1 Ui, with core tensor C ∈ Rr1×r2×r3×r4 and Ui ∈ Rni×ri with
ni ∈ {di, do, sw, sh}. Using the extension of the DLRT method to Tucker tensors [40] and applying
Algorithm 1, respectively Algorithm 2 to the tensor update yields the desired method.

5 Numerical Results Table 1: UCM, Cifar10 and Cifar100 benchmark; Low-rank
pretraining. Accuracy means and std. devs. of 10 stochas-
tic trainings using AdamW. The LoRA ranks are set up to
match the compression rate of the results of Algorithm 2.
Algorithm 2 achieves higher accuracy at higher compression
rates across all benchmarks, compared to DLRT[28] w/o
momentum term projection and LoRA-based pretraining w/
momentum terms.

UCM Data Cifar10 Data Cifar100 Data
Acc [%] c.r. [%] Acc [%] c.r. [%] Acc [%] c.r. [%]

V
G

G
16

Baseline 94.40±0.72 0.0 89.82±0.45 0.0 65.21±0.37 0.0
Algorithm 2 94.61±0.35 95.84 89.49±0.58 95.30 64.58±0.46 95.54
DLRT w/o proj. 89.32±0.93 93.56 85.01±0.28 94.84 60.48±0.27 98.71
LoRA pretrain 90.64±2.27 93.57 88.43± 0.23 94.80 61.63±0.46 96.58

V
G

G
11

Baseline 94.23±0.71 0.0 88.34±0.49 0.0 63.13±0.41 0.0
Algorithm 2 93.70±0.71 94.89 88.13±0.56 95.13 60.84±0.40 95.08
DLRT w/o proj. 88.23±0.90 90.35 81.98±0.25 97.08 61.59±0.25 95.99
LoRA pretrain 90.14±2.56 94.72 86.63±0.29 94.57 59.54±0.40 94.78

V
iT

-B
.1

6 Baseline 96.72±0.36 0.0 95.42±0.35 0.0 90.34±0.44 0.0
Algorithm 2 96.38±0.60 86.7 95.39±0.41 83.42 88.48±0.53 75.38
DLRT w/o proj. 78.94±0.50 84.91 91.95±0.50 84.95 75.09±0.53 75.83
LoRA pretrain 86.54±2.91 84.94 94.10±0.56 80.78 76.76±0.53 74.86

In the following, we showcase numer-
ical experiments for low-rank trans-
fer learning (Section 5.1), finetuning
(Section 5.2), and pre-training tasks
(Section 5.3). Details on training, data
and additional experiments are listed
in Section 10.

Our primary baseline is full-rank
training, where all model parameters
are updated without any structural
constraints. We compare this against
1) the low-rank finetuning strategy in-
troduced in Algorithm 2 2) naive ap-
plication of DLRT without the projec-
tion of the momentum terms, and 3)
simultaneous direct application of the
Adam optimizer on the low-rank factors U, S, V , as typically done in LoRA [15], a low-rank adap-
tation technique originally designed for parameter-efficient finetuning of large transformers. For
LoRA-based experiments, we calibrate the per-layer rank hyperparameters to match the overall
compression ratio achieved by Algorithm 2, ensuring a fair comparison at fixed parameter budgets.
The compression ratio is defined as: c.r. =

(
1− #params low-rank model

#params baseline model

)
× 100.

5.1 Low-Rank Compressed Transfer Learning

VGG16, VGG11, and ViT-B.16 on UCM/CIFAR-10/CIFAR-100 We evaluate performance
across three network architectures, VGG16 and VGG11, and the ViT-B.16 Vision Transformer on
UCM/CIFAR-10/CIFAR-100. The convolutional VGG11 and VGG16 networks are selected to
validate the performance of Algorithm 2 on tensor-valued layers, here given by the convolutional
layers. We use the low-rank Tucker tensor format to compress and train the convolutions; for details,
we refer to [30, 40].

Table 2: DeBERTaV3-base finetuning on GLUE. We compare with full finetuning (Full FT), Houlsby
adapter [14] (HAdapter), Pfeiffer adapter [23] (PAdapter), LoRA [15], AdaLoRA [42], GeoLoRA[27],
DoRA [21], LoRA+[10], and Bitfit[39]. We report target metrics and computational performance
(higher is better) for the median of 5 runs using different random seeds. Best results per dataset are
shown in bold. Results for BitFit, HAdapter, and PAdapter were taken from [42]. "AdaLoRa matched"
has the rank budget adapted to approximately match the final parameter count of Algorithm 2.

Method (# Params) SST-2 CoLA QQP QNLI RTE MRPC STS-B Mean
(Acc) (Mcc) (F1) (Acc) (Acc) (Acc) (Corr)

Full FT (184M) 95.63 69.19 89.80 94.03 83.75 89.46 91.60 87.63

BitFit (0.1M) 94.84 66.96 84.95 92.24 78.70 87.75 91.35 85.25
HAdapter (1.22M) 95.53 68.64 89.27 94.11 84.48 89.95 91.48 87.63
PAdapter (1.18M) 95.61 68.77 89.40 94.29 85.20 89.46 91.54 87.75

LoRA r=8 (1.33M) 95.29 68.57 90.61 93.91 85.50 89.75 89.10 87.53
LoRA+ r=8 (1.33M) 95.37 69.22 90.82 93.96 85.50 89.55 88.07 87.49
DoRA r=8 (1.33M) 94.30 68.50 90.71 94.31 85.05 89.32 91.38 87.65
AdaLoRA rf = 8 (1.27M) 95.64 68.76 90.65 94.11 86.00 89.44 91.41 88.00
AdaLoRA, matched 95.64 (1.27M) 68.59 (1.07M) 90.48 (0.72M) 93.93 (0.72M) 85.92 (1.16M) 88.21 (0.74M) 90.91(0.74M) 87.66 (0.91M)
GeoLoRA 95.98 (1.17M) 69.03 (0.98M) 90.53 (0.69M) 94.23 (0.70M) 85.93 (1.19M) 90.10 (0.75M) 91.58 (0.71M) 88.19 (0.88M)

Algorithm 2 96.02 (1.11M) 69.58 (1.01M) 90.62 (0.76M) 94.02 (0.70M) 88.67 (1.19M) 90.84 (0.76M) 91.51 (0.73M) 88.75(0.89M)

8



We initialize all convolutional networks with PyTorch Imagenet1K weights and ViT-B.16 with
Huggingface Imagenet21K weights. Stochasticity during training stems from randomized mini-
batching. For each experiment, we report the mean performance across 10 independent training
runs with different random seeds. We observe in Table 1 that Algorithm 2 matches the validation
accuracy of the baseline network in most test-cases, and surpasses the baseline in e.g. UCM/VGG16
while achieving compression rates of up to 95%. We point out that a naive implementation of DLRT
without the proposed adaptation of the optimizer states causes performance drops of 5 to 13%. LoRA
also struggles to achieve high accuracy at the prescribed compression rates.

5.2 Low Rank Adaptation for Parameter Efficient Finetuning (PEFT)

DeBERTaV3-base on GLUE We fine-tune the 183M parameter DeBERTaV3-base transformer
model [11] on the GLUE benchmark suite [35]. The corresponding results are summarized in Table 2.
Overall, Algorithm 2 consistently outperforms competing methods, especially other rank adaptive
methods as GeoLoRA [27] and AdaLoRA [42], on most tasks, achieving stronger validation metrics.
The required number of trainable parameters is substantially lower than the compared fixed-rank
methods. The average score is higher than the reference methods, and the average parameter count
for the finetuning tasks is lower than the next best method, which is GeoLoRA.

Table 3: Llama2 7b-chat-hf [33] finetuning on rea-
soning datasets. We compare with LoRA [15] and
report the best accuracy and the wall-time. The
wall-time is reported for three epochs with batch
size 12 and maximal sequence length of 640 tokens
on a single NVIDIA H100.

Method BoolQ PIQA

c.r. [%] Acc [%] Wall-Time c.r. [%] Acc [%] Wall-Time
Algorithm 2 0.270% 84.09 % 186min 0.247% 76.77% 228min
LoRA (r=6) 0.179% 62.17 % 173min 0.179% 52.18% 225min
LoRA (r=10) 0.299% 62.17 % 184min 0.299% 50.43% 225min

Llama2 7b-chat-hf on BoolQ and PIQA We
compare Algorithm 2 with LoRA on Llama-2-
7b-chat-hf [33] across reasoning benchmarks,
including BoolQ [4] and PIQA [1], as reported
in Table 3. Inputs consist of either a pas-
sage–question pair or a standalone question with
multiple-choice answers, and evaluation is based
on answer accuracy. We also report wall-clock
time on a single NVIDIA H100 GPU, showing
negligible runtime overhead of Algorithm 2 over
LoRA. Algorithm 2 outperforms LoRA configurations with matching initial rank and with rank chosen
to approximately match the final parameter count.

5.3 Low Rank Pretraining Table 4: Pretraining GPT-2 [24] repro-
duction (124M) from scratch on Open-
WebText [8] for 15,000 iterations.

Method c.r. [%] validation loss [%]
Baseline 0 3.2313

Algorithm 2 39.39% 3.4642
LoRA Pretrain 39.21% 7.0242

GPT2 on OpenWebText We pretrain Karpathy’s re-
production5 of the 124M-parameter GPT-2 model [24]
from scratch on the OpenWebText dataset [8] using next-
word prediction. As seen in Table 4 and Figure 4 , our
method significantly outperforms LoRA pretraining (best
validation loss 3.4642 vs. 4.8141), while incurring only
a moderate increase relative to the full-rank baseline (3.4642 vs. 3.2313). Algorithm 2 achieves a
compression rate of 39.39%, compared to 39.21% for LoRA-Pretrain. Thus, our approach enables
substantial compression of GPT-2 (with the potential for reduced inference time), whereas LoRA
yields a significant degradation in validation loss.

6 Conclusion

We introduced a principled and provably robust framework for momentum-based low-rank optimiza-
tion that is both rank-adaptive and jointly compresses weights, gradients, and optimizer states. Our
analysis reveals that the proposed method is resilient to the conditioning of the training problem,
while maintaining fidelity to full-rank momentum trajectories. Through extensive experiments on
pretraining, transfer learning, and finetuning, we demonstrate that our approach consistently achieves
stronger generalization performance under tight parameter budgets, outperforming existing low-rank
techniques. These results position our method as a strong foundation for efficient deep learning,
offering a scalable and theoretically grounded alternative to full-rank training across diverse regimes.
The accomplished faster convergence and higher compression of the optimizer states during training
enable broader applications of machine learning on resource-constrained devices. Furthermore, the
method is computationally efficient and scalable. These achievements also enhance computational
and memory efficiency, positively impacting society.

5https://github.com/karpathy/nanoGPT

9

https://github.com/karpathy/nanoGPT


Funding Acknowledgements

This material is based upon work supported by the Laboratory Directed Research and Develop-
ment Program of Oak Ridge National Laboratory (ORNL), managed by UT-Battelle, LLC for the
U.S. Department of Energy under Contract No. De-AC05-00OR22725.

This manuscript has been authored by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725
with the U.S. Department of Energy. The United States Government retains and the publisher, by
accepting the article for publication, acknowledges that the United States Government retains a
non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of
this manuscript, or allow others to do so, for United States Government purposes. The Department of
Energy will provide public access to these results of federally sponsored research in accordance with
the DOE Public Access Plan(http://energy.gov/downloads/doe-public-access-plan).

This project has received funding from the European Regional Development Fund (grants timing-
Matters and IntelAlgen) under the European Union’s Horizon Europe Research and Innovation
Program, from the German Research Foundation DFG within GRK 2297 ‘Mathematical Complexity
Reduction’, and from the German Federal Joint Committee (Grant 01VSF23017), which we gratefully
acknowledge.

10

http://energy.gov/downloads/doe-public-access-plan


References
[1] Y. Bisk, R. Zellers, R. Le bras, J. Gao, and Y. Choi. PIQA: Reasoning about Physical Com-

monsense in Natural Language. Proceedings of the AAAI Conference on Artificial Intelligence,
34(05):7432–7439, Apr. 2020.

[2] G. Ceruti, J. Kusch, and C. Lubich. A rank-adaptive robust integrator for dynamical low-rank
approximation. BIT Numerical Mathematics, pages 1–26, 2022.

[3] G. Ceruti, J. Kusch, and C. Lubich. A parallel rank-adaptive integrator for dynamical low-rank
approximation. SIAM Journal on Scientific Computing, 46(3):B205–B228, 2024.

[4] C. Clark, K. Lee, M.-W. Chang, T. Kwiatkowski, M. Collins, and K. Toutanova. BoolQ:
Exploring the Surprising Difficulty of Natural Yes/No Questions, 2019.

[5] D. Coquelin, K. Flügel, M. Weiel, N. Kiefer, C. Debus, A. Streit, and M. Götz. Harnessing
orthogonality to train low-rank neural networks. In ECAI 2024, pages 2106–2113. IOS Press,
2024.

[6] M. Courbariaux, I. Hubara, D. Soudry, R. El-Yaniv, and Y. Bengio. Binarized Neural Net-
works: Training Deep Neural Networks with Weights and Activations constrained to +1 or -1.
arXiv:1602.02830, 2016.

[7] R. J. George, D. Pitt, J. Zhao, J. Kossaifi, C. Luo, Y. Tian, and A. Anandkumar. Tensor-GaLore:
Memory-Efficient Training via Gradient Tensor Decomposition, 2025.

[8] A. Gokaslan and V. Cohen. OpenWebText Corpus. http://Skylion007.github.io/
OpenWebTextCorpus, 2019.

[9] Y. Guo, A. Yao, and Y. Chen. Dynamic Network Surgery for Efficient DNNs. Advances in
neural information processing systems, 29, 2016.

[10] S. Hayou, N. Ghosh, and B. Yu. LoRA+: Efficient Low Rank Adaptation of Large Models,
2024.

[11] P. He, J. Gao, and W. Chen. Debertav3: Improving DeBERTa using ELECTRA-Style Pre-
Training with Gradient-Disentangled Embedding Sharing, 2023.

[12] Y. He, X. Zhang, and J. Sun. Channel Pruning for Accelerating Very Deep Neural Networks. In
Proceedings of the IEEE international conference on computer vision, pages 1389–1397, 2017.

[13] A. Hnatiuk, J. Kusch, L. Kusch, N. R. Gauger, and A. Walther. Stochastic Aspects of Dynamical
Low-Rank Approximation in the Context of Machine Learning. Optimization Online, 2024.

[14] N. Houlsby, A. Giurgiu, S. Jastrzebski, B. Morrone, Q. De Laroussilhe, A. Gesmundo, M. At-
tariyan, and S. Gelly. Parameter-Efficient Transfer Learning for NLP. In K. Chaudhuri and
R. Salakhutdinov, editors, Proceedings of the 36th International Conference on Machine Learn-
ing, volume 97 of Proceedings of Machine Learning Research, pages 2790–2799. PMLR, 09–15
Jun 2019.

[15] E. J. Hu, Y. Shen, P. Wallis, Z. Allen-Zhu, Y. Li, S. Wang, L. Wang, W. Chen, et al. Lora:
Low-rank adaptation of large language models. ICLR, 1(2):3, 2022.

[16] M. Khodak, N. Tenenholtz, L. Mackey, and N. Fusi. Initialization and Regularization of
Factorized Neural Layers. In International Conference on Learning Representations, 2021.

[17] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. In Y. Bengio and
Y. LeCun, editors, 3rd International Conference on Learning Representations, ICLR 2015, San
Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015.

[18] O. Koch and C. Lubich. Dynamical low-rank approximation. SIAM Journal on Matrix Analysis
and Applications, 29(2):434–454, 2007.

[19] J. Kusch, S. Schotthöfer, and A. Walter. An Augmented Backward-Corrected Projector Splitting
Integrator for Dynamical Low-Rank Training, 2025.

11

http://Skylion007.github.io/OpenWebTextCorpus
http://Skylion007.github.io/OpenWebTextCorpus


[20] V. Lialin, S. Muckatira, N. Shivagunde, and A. Rumshisky. ReloRA: High-rank training through
low-rank updates. In The Twelfth International Conference on Learning Representations, 2024.

[21] Y. Mao, K. Huang, C. Guan, G. Bao, F. Mo, and J. Xu. DoRA: Enhancing Parameter-Efficient
Fine-Tuning with Dynamic Rank Distribution. In L.-W. Ku, A. Martins, and V. Srikumar, editors,
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 11662–11675, Bangkok, Thailand, Aug. 2024. Association for
Computational Linguistics.

[22] P. Molchanov, S. Tyree, T. Karras, T. Aila, and J. Kautz. Pruning Convolutional Neural Networks
for Resource Efficient Inference. In International Conference on Learning Representations,
2017.

[23] J. Pfeiffer, A. Kamath, A. Rücklé, K. Cho, and I. Gurevych. Adapterfusion: Non-Destructive
Task Composition for Transfer Learning, 2021.

[24] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and I. Sutskever. Language Models are
Unsupervised Multitask Learners. 2019.

[25] H. Sato. Riemannian optimization and its applications, volume 670. Springer, 2021.

[26] D. Savostianova, E. Zangrando, G. Ceruti, and F. Tudisco. Robust low-rank training via
approximate orthonormal constraints. Advances in Neural Information Processing Systems,
36:66064–66083, 2023.

[27] S. Schotthöfer, E. Zangrando, G. Ceruti, F. Tudisco, and J. Kusch. GeoLoRA: Geometric
integration for parameter efficient fine-tuning. In The Thirteenth International Conference on
Learning Representations, 2025.

[28] S. Schotthöfer, E. Zangrando, J. Kusch, G. Ceruti, and F. Tudisco. Low-rank lottery tickets:
finding efficient low-rank neural networks via matrix differential equations. In S. Koyejo,
S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh, editors, Advances in Neural
Information Processing Systems, volume 35, pages 20051–20063. Curran Associates, Inc.,
2022.

[29] S. Schotthöfer and M. P. Laiu. Federated Dynamical Low-Rank Training with Global Loss
Convergence Guarantees, 2024.

[30] S. Schotthöfer, H. L. Yang, and S. Schnake. Dynamical low-rank compression of neural
networks with robustness under adversarial attacks, 2025.

[31] N. Shazeer and M. Stern. Adafactor: Adaptive Learning Rates with Sublinear Memory Cost. In
J. Dy and A. Krause, editors, Proceedings of the 35th International Conference on Machine
Learning, volume 80 of Proceedings of Machine Learning Research, pages 4596–4604. PMLR,
10–15 Jul 2018.

[32] S. P. Singh, G. Bachmann, and T. Hofmann. Analytic insights into structure and rank of neural
network Hessian maps. In Advances in Neural Information Processing Systems, volume 34,
2021.

[33] H. Touvron, L. Martin, K. Stone, P. Albert, A. Almahairi, Y. Babaei, N. Bashlykov, S. Batra,
P. Bhargava, S. Bhosale, D. Bikel, L. Blecher, C. C. Ferrer, M. Chen, G. Cucurull, D. Esiobu,
J. Fernandes, J. Fu, W. Fu, B. Fuller, C. Gao, V. Goswami, N. Goyal, A. Hartshorn, S. Hosseini,
R. Hou, H. Inan, M. Kardas, V. Kerkez, M. Khabsa, I. Kloumann, A. Korenev, P. S. Koura, M.-A.
Lachaux, T. Lavril, J. Lee, D. Liskovich, Y. Lu, Y. Mao, X. Martinet, T. Mihaylov, P. Mishra,
I. Molybog, Y. Nie, A. Poulton, J. Reizenstein, R. Rungta, K. Saladi, A. Schelten, R. Silva, E. M.
Smith, R. Subramanian, X. E. Tan, B. Tang, R. Taylor, A. Williams, J. X. Kuan, P. Xu, Z. Yan,
I. Zarov, Y. Zhang, A. Fan, M. Kambadur, S. Narang, A. Rodriguez, R. Stojnic, S. Edunov, and
T. Scialom. Llama 2: Open Foundation and Fine-Tuned Chat Models, 2023.

[34] M. Valipour, M. Rezagholizadeh, I. Kobyzev, and A. Ghodsi. Dylora: Parameter Efficient
Tuning of Pre-trained Models using Dynamic Search-Free Low-Rank Adaptation, 2023.

12



[35] A. Wang, A. Singh, J. Michael, F. Hill, O. Levy, and S. R. Bowman. Glue: A Multi-Task
Benchmark and Analysis Platform for Natural Language Understanding, 2019.

[36] H. Wang, S. Agarwal, and D. Papailiopoulos. Pufferfish: Communication-efficient models at no
extra cost. Proceedings of Machine Learning and Systems, 3:365–386, 2021.

[37] J. Wu, C. Leng, Y. Wang, Q. Hu, and J. Cheng. Quantized Convolutional Neural Networks
for Mobile Devices. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 4820–4828, 2016.

[38] Y. Yang and S. Newsam. Bag-of-visual-words and spatial extensions for land-use classification.
In Proceedings of the 18th SIGSPATIAL International Conference on Advances in Geographic
Information Systems, GIS ’10, page 270–279, New York, NY, USA, 2010. Association for
Computing Machinery.

[39] E. B. Zaken, S. Ravfogel, and Y. Goldberg. Bitfit: Simple Parameter-efficient Fine-tuning for
Transformer-based Masked Language-models, 2022.

[40] E. Zangrando, S. Schotthöfer, G. Ceruti, J. Kusch, and F. Tudisco. Geometry-aware training
of factorized layers in tensor tucker format. In A. Globerson, L. Mackey, D. Belgrave, A. Fan,
U. Paquet, J. Tomczak, and C. Zhang, editors, Advances in Neural Information Processing
Systems, volume 37, pages 129743–129773. Curran Associates, Inc., 2024.

[41] E. Zangrando, S. Schotthöfer, G. Ceruti, J. Kusch, and F. Tudisco. Rank-adaptive spectral
pruning of convolutional layers during training. In Advances in Neural Information Processing
Systems, 2024.

[42] Q. Zhang, M. Chen, A. Bukharin, P. He, Y. Cheng, W. Chen, and T. Zhao. AdaLoRA:
Adaptive Budget Allocation for Parameter-Efficient Fine-Tuning. In The Eleventh International
Conference on Learning Representations, 2023.

[43] J. Zhao, Z. Zhang, B. Chen, Z. Wang, A. Anandkumar, and Y. Tian. GaLore: Memory-Efficient
LLM Training by Gradient Low-Rank Projection, 2024.

13



7 Notation

Table 5: Summary of notation used throughout the paper.
Notation Definition
Model & Training
Wl ∈ Rnl×nl−1 The weight matrix for layer l.
L The loss function.
∇WL The gradient of the loss with respect to the full matrix W .
λ The learning rate of stochastic gradient descent.

Low-Rank Factorization
Mr The manifold of matrices of rank r.
P (W )Z Orthogonal projection of a matrix Z onto the tangent space ofMr at W .
W = USV ⊤ Low-rank decomposition of W , where U, V are orthonormal.
U ∈ Rnl×r, V ∈ Rnl−1×r Orthonormal basis matrices for the column and row spaces.
S ∈ Rr×r The core tensor or coefficient matrix.
∇UL,∇SL,∇V L Gradients with respect to the low-rank factors U, S, V .

Momentum Terms (Heavy Ball)
V The momentum term (a full-rank matrix).
UVSVV

⊤
V Low-rank decomposition of the momentum term.

SV ∈ Rr×r The coefficient matrix for the momentum term.
γ The momentum decay parameter.

Momentum Terms (Adam)
V The momentum term (a full-rank matrix).
UVSVV

⊤
V Low-rank decomposition of 1st moment term (moving average of gradients).

SV ∈ Rr×r Coefficient matrix for the 1st moment (moving average of gradients).
K The momentum term (a full-rank matrix).
UKSKV

⊤
K Low-rank decomposition of the 2nd moment.

SK ∈ Rr×r Coefficient matrix for the 2nd moment (moving average of squared gradients).
β1, β2 Exponential decay rates for the moment estimates.

Algorithm-Specific
Û, V̂ Augmented bases after incorporating gradient information.
S Coefficient matrix S projected onto the augmented bases Û, V̂ .
SV , SK Momentum coefficients projected onto the new augmented bases.
Ŝ The final updated coefficient matrix within a single optimization step.
τ, ϑ Relative and absolute truncation tolerance parameter for rank adaptation.

8 Algorithms

We list the helper functions of Algorithm 1 and Algorithm 1 in Algorithm 3. The baseline (full-
rank) Heavyball method is listed in algorithm 6 and the (full-rank) Adam method is listed in
Algorithm 4. The naive application of the DLRT method [40] for Adam is listed in Algorithm 5.
Note that the coefficient matrices of the momentum terms are not updated after augmentation and
truncation. Analogously, the naive implementation of DLRT with momentum omits updating the
momentum coefficient matrix. The implementation of LoRA with momentum or Adam simply applies
Algorithm 4 to each of the LoRA factors without regard for the underlying manifold representation.

9 Numerical Analysis

Theorem 1 (Convergence). Let W (t) be the solution of Eq. (7) and let L be bounded from below.
Then, W (t) converges to a W ⋆ which fulfills the low-rank optimality condition

P (W ⋆)∇WL(W ⋆) = 0 . (10)

14



Algorithm 3: The functions basis_augmentation, and truncation of the used algorithms.

1 def basis_augmentation(B: old basis, GB: basis dynamics):
2 B̂ ← ortho([GB | B]) /* orthonormalization, e.g. Gram-Schmidt */
3 return B̂

4 def truncation(Ŝ: augmented coefficient, ŜV : augmented momentum, Û : augmented basis,
V̂ : augmented co-basis ):

5 Pr1 ,Σr1 , Qr1 ← truncated svd(Ŝ) with threshold ϑ to new rank r1

6 U ← ÛPr1 ; V ← V̂ Qr1 /* Basis update */
7 S ← Σr1 ;SV ← U⊤Û ŜV V̂

⊤V /* Coefficient update */
8 return U, S, V, SV

9 def truncation(Ŝ: augmented coefficient, ŜV : augmented momentum, ŜK: augmented 2nd
momentum, Û : augmented basis, V̂ : augmented co-basis ):

10 Pr1 ,Σr1 , Qr1 ← truncated svd(Ŝ) with threshold ϑ to new rank r1

11 U ← ÛPr1 ; V ← V̂ Qr1 /* Basis update */

12 S ← Σr1 ;SV ← U⊤Û ŜV V̂
⊤V ; ŜK ←

(
U⊤Û

√
SKV̂

⊤V
)2

/* Coefficient update
*/

13 return U, S, V, SV , SK

14 def truncation_naive(Ŝ: augmented coefficient, Û : augmented basis, V̂ : augmented
co-basis ):

15 Pr1 ,Σr1 , Qr1 ← truncated svd(Ŝ) with threshold ϑ to new rank r1

16 U ← ÛPr1 ; V ← V̂ Qr1 /* Basis update */
17 S ← Σr1 ; /* Coefficient update */

Algorithm 4: Single iteration of the (full-rank version of) Adam.
Input :Initial parameter vector W ∈ Rn×n;
V: Initial 1st moment;
K: Initial 2nd moment;
Gradient g = ∇WL(W );
λ: learning rate;
β1, β2: Adam momentum parameters;
ϵ:Small stability constant.

1 Evaluate L(W )
2 g ← ∇WL(W ) /* Compute gradient */
3 V ← β1V + (1− β1)g /* 1st moment estimate */
4 K ← β2K + (1− β2)g

2 /* 2nd moment estimate (element-wise square) */
5 V̂ ← V

1−βt
1
, K̂ ← K

1−βt
2

/* Bias correction */

6 W ←W − λ V̂√
K̂+ϵ

/* Parameter update */

Proof. Let us define the energy as

E(t) := L(W (t)) +
1

2
∥V(t)∥2 .

The time derivative is given by

Ė(t) := ⟨∇WL(W (t)), Ẇ (t)⟩+ ⟨V(t), V̇(t)⟩
= ⟨∇WL(W (t)), P (W (t))V(t)⟩+ ⟨V(t),−γV(t)− P (W (t))∇WL(W (t))⟩ .

Since P is self-adjoint this directly gives

Ė(t) = ⟨P (W (t))∇WL(W (t)),V(t)⟩+ ⟨V(t),−γV(t)− P (W (t))∇WL(W (t))⟩
= − γ∥V(t)∥2 .

15



Algorithm 5: Single iteration of the naive low-rank Adam method.
The functions basis_augmentation, and truncation_naive are detailed in 3 in the appendix.
Input :Initial orthonormal bases U, V ∈ Rn×r and coefficients S, SV , SK ∈ Rr×r;
τ : singular value threshold for rank truncation;
λ: learning rate;
β1, β2: Adam momentum parameters;
ϵ: Small stability constant.

1 Evaluate L(USV ⊤) /* Forward evaluate */
2 GU ← ∇UL(USV ⊤); GV ← ∇V L(USV ⊤) /* Backprop */

3

{
Û ← basis_augmentation(U,GU )

V̂ ← basis_augmentation(V,GV )
/* in parallel */

4 S̄ ← Û⊤USV ⊤V̂

5 Evaluate L(Û S̄V̂ ⊤) /* Forward evaluate */
6 GS ← ∇S̄L(Û S̄V̂ ⊤) /* Backprop */
7 ŜV ← β1S̄V + (1− β1)GS

8 ŜK ← β2S̄K + (1− β2) (GS)
2

▷ Modifications for adaptive update

9 ŠV ← Ŝn
V

1−βn
1
, ŠK ← Ŝn

K
1−βn

2
/* Bias correction */

10 Ŝ1 ← S̄ − λ ŠV√
ŠK+ϵ

/* Adaptive coefficient update */

11 U, S, V, SV , SK ←truncation_naive(Ŝ, Û , V̂ ; τ)

Algorithm 6: Single iteration of the (full-rank version of) the Heavy-Ball SGD method.
Input :Initial parameter vector W ∈ Rn×n;
V: Initial velocity (momentum term);
Gradient g = ∇WL(W );
λ: learning rate;
γ: momentum coefficient.

1 Evaluate L(W )
2 g ← ∇WL(W ) /* Compute gradient */
3 V ← (1− γ)V − λg /* Update velocity */
4 W ←W + λV /* Parameter update */

Hence, if L is bounded from below, this means that limt→∞ E(t) = E∞ with E∞ finite and

E∞ = E(0)− γ

∫ ∞

0

∥V(t)∥2 dt .

This implies that limt→∞ V(t) = 0 and thus limt→∞ Ẇ (t) = limt→∞ P (W (t))V(t) = 0. Hence,
since V(t),W (t) converge to a steady state and limt→∞ V(t) = 0, the evolution equation for V gives
P (W (t))∇WL(W (t)) = 0 as t→∞.

We can obtain a similar, but not equivalent, result when solving a low-rank gradient flow of the form
(9) instead:
Theorem 2 (Convergence of low-rank factors). The low-rank gradient flow

U̇V = − (I − UVU
⊤
V )∇WLVVS

−1
V , (11a)

V̇V = − (I − VVV
⊤
V )∇WL⊤UVS

−⊤
V , (11b)

ṠV = − γSV − U⊤
V ∇WLVV , (11c)

fulfills

V̇ = −γV − P (V)∇WL .

16



Proof. By the product rule we have

V̇ = U̇VSVV
⊤
V + UV ṠVV

⊤
V + UVSV V̇

⊤
V

= − γV − (I − UVU
⊤
V )∇WLVVV

⊤
V − UVU

⊤
V ∇WLVVV

⊤
V − UVU

⊤
V ∇WL(I − VVV

⊤
V )

= − γV − P (V)∇WL . (12)

Theorem 3 (Error-bound). For an integer k, let t = kλ. Let W (t) be the solution of Eq. (7), and
let W r

t , Vt be the factorized low-rank solution after k steps with Algorithm 1. Assume that for any
Z ∈ Mr in a neighborhood of W r

t , we have ∥(I − P (Z))∇L(Z)∥ < ε and ∥ÛtÛ
⊤
t VtV̂tV̂

⊤
t −

UtU
⊤
t VtVtV

⊤
t ∥ ≤ ϑ̂, where ∥ · ∥ denotes the Frobenius norm. Moreover, assume that the gradient is

bounded and Lipschitz continuous. Then,

∥W (t)−W r
t ∥ ≤ c1ε+ c2λ+ c3ϑ/λ+ c4ϑ̂/λ , (13)

where the constants c1, c2, c3 are independent of singular values of S−1 and S−1
V .

Proof. We start by bounding the local error. That is, we assume that W (t0) = W r
0 and V(t0) = Vr

0 ,
where Vr

0 is the momentum of the low-rank method. By definition of Û we have (I−Û Û⊤)V(t0) = 0
and thus

∥(I − Û Û⊤)V(t)∥ ≤
∫ t

t0

∥(I − Û Û⊤)(γV(s) + P (W (s))∇WL(W (s)))∥ ds .

Using the boundedness of normal components and a Taylor expansion around t0 gives for s ∈ [t0, t1]

P (W (s))∇WL(W (s))) =∇WL(W (s))) +O(ε) = ∇WL(W (t0)) +O(λ+ ε)

=P (W (t0))∇WL(W (t0)) +O(λ+ ε) . (14)
Hence, with V(s) = V(t0) +O(λ+ ε),

∥(I − Û Û⊤)V(t)∥ ≤λ∥(I − Û Û⊤)(γV(t0) + P (W (t0))∇WL(W (t0)))∥+O(λ2 + λε)

=λ∥(I − Û Û⊤)∇WL(W (t0))V0V
⊤
0 ∥+O(λ2 + λε) .

By construction of Û we have 0 = (I − Û Û)∇UL(W (t0)) = (I − Û Û)∇WL(W (t0))V0, hence

∥(I − Û Û⊤)V(t)∥ ≤ O(λ2 + λε) .

From this, we directly conclude

∥(I − Û Û⊤)W (t1)∥ = ∥(I − Û Û⊤)(W (t0) +

∫ t1

t0

V(s) ds)∥ = O(λ3 + λ2ε) .

An analogous derivation for the co-range gives

∥W (t1)− Û Û⊤W (t1)V̂ V̂ ⊤∥ ≤∥(I − Û Û⊤)W (t1)∥+ ∥W (t1)(I − V̂ V̂ ⊤)∥
=O(λ3 + λ2ε) .

Next, we need to bound

∥Û Û⊤W (t1)V̂ V̂ ⊤ − Û Ŝ1V̂ ⊤∥ ≤∥Û⊤W (t1)V̂ − Ŝ1∥ . (15)
We note that from Eq. (14) we have with W0 := W (t0) and V0 := V(t0)

Û⊤W (t1)V̂ = Û⊤(W0 + λ(1− γ)V0 − λ2P (W0)∇WL(W0))V̂ +O(λ2 + λε)

= S̄ − λγS̄V − λÛ⊤∇WL(W0)V̂ +O(λ2 + λε) ,

where S̄ = Û⊤W0V̂ and S̄V = Û⊤V0V̂ . By definition of the S-update of Algorithm 2 we have

Ŝ1 = S̄ + λ(1− γ)S̄V − λ2∇S̄L(Û S̄V̂ ⊤) .

Thus, since ∇S̄L(Û S̄V̂ ⊤) = U⊤∇WL(W0)V̂ we have ∥Û⊤W (t1)V̂ − Ŝ1∥ = O(λ2 + λε) and
therefore the local error is bounded by

∥W (t1)−W r
1 ∥ ≤∥W (t1)− Û Û⊤W (t1)V̂ V̂ ⊤∥+ ∥Û Û⊤W (t1)V̂ V̂ ⊤ − Û Ŝ1V̂ ⊤∥

=O(λ2 + λε) .

From the truncation tolerance ϑ, the bound on the truncation of V , and the stability of the exact flow,
we can obtain the desired error bound for the global error using Lady Windermere’s fan.

17



We remark, that we can always ensure that condition ∥ÛtÛ
⊤
t VtV̂tV̂

⊤
t − UtU

⊤
t VtVtV

⊤
t ∥ ≤ ϑ̂, is

fulfilled for a user determined ϑ̂, e.g. ϑ̂ = ϑ, by increasing the new rank r1 in the truncation step of
Algorithm 3 if necessary. However, since V → 0 when the method reaches a steady state, the effect
of this error term is expected to be limited. We remark that the main motivation to present Theorem 3
is to rigorously demonstrate the robust treatment of stiff terms in the gradient flow (8). The main
component in our construction of the algorithm, which removes these stiff terms in our error bound,
is the construction of the augmented basis matrices Û and V̂ .

Theorem 4. The conventional low-rank gradient flow equations (4) can fail to converge to a point
fulfilling P (W )∇WL(W ) = 0.

Proof. The potential lack of convergence can be proven with a counter-example. Consider a state
where the momentum term is zero, i.e., V = 0, by choosing the momentum factors as UV = −U ,
SV = 0, and VV = V . Now, consider any weight matrix W that is not a low-rank optimum,
meaning P (W )∇WL(W ) ̸= 0, but for which the naive update term in Eq. (5b) happens to be
zero: P̂ (W,V)∇WL(W ) = 0. In this scenario, the naive gradient flow equations would identify
(W,V) as a stationary point, since Ẇ = 0 and V̇ = 0. However, this point is not a valid low-rank
optimum because the true projected gradient P (W )∇WL(W ) is non-zero. In contrast, (W,V) is
not a stationary point of (4) and the gradient flow (4) will provably drive the system to a state where
P (W )∇WL(W ) = 0.

We remark that a large class of matrices fulfills P (W )∇WL(W ) ̸= 0 and P̂ (W,V)∇WL(W ) = 0.
For instance, any W = USV ⊤ where the gradient is non-zero in the range of V but zero in the range
of U (i.e., U⊤∇WL(W ) = 0 but ∇WL(W )V ̸= 0) would satisfy this. This can be easily verified:
Since V = 0, we have

P̂ (W,V)∇WL(W ) = UU⊤∇WL(W )V V ⊤ = 0 ,

but

P (W )∇WL(W ) = ∇WL(W )V V ⊤ ̸= 0 .

10 Details to the numerical experiments of this work

It is important to note that the accuracy-vs-compression trade-off varies by application. While
low-rank methods excel in finetuning and transfer learning tasks (sometimes even improving upon
the baseline), pre-training a network from scratch on a complex dataset often involves balancing
memory savings against a potential drop in accuracy.

10.1 ImageNet-1k, UCM and Cifar Benchmarks

10.1.1 Network architecture and training details

In this paper, we use the pytorch implementation for neural network training. We take pretrained
weights from the imagenet1k dataset as initialization, except for the long-term training study using
ViT-small, which is randomly initialized. The data-loaded randomly samples a batch for each batch-
update which is the only source of randomness in our training setup. Below is an overview of the
used network architectures

• VGG16 is a deep convolutional neural network architecture that consists of 16 layers, including 13
convolutional layers and 3 fully connected layers.

• VGG11 is a convolutional neural network architecture similar to VGG16 but with fewer layers,
consisting of 11 layers: 8 convolutional layers and 3 fully connected layers. It follows the same
design principle as VGG16, using small 3×3 convolution filters and 2×2 max-pooling layers.

• ViT-B.16 is a Vision Transformer with 16×16 patch size, a deep learning architecture that leverages
transformer models for image classification tasks.

• ViT-small is a compact vision transformer with patch size 8 × 8, and an embedding dimension
of 512. The model comprises six attention layers, each equipped with two heads, followed by a
ResNet block and a dropout layer.

18



Table 6: Training hyperparameters for the UCM, Cifar10, Cifar100 and ImageNet1k Benchmark.
The first set hyperparameters apply to both DLRT and baseline training, and we train DLRT with
the same hyperparameters as the full-rank baseline models. The second set of hyper-parameters is
specific to DLRT. The DLRT hyperparameters are selected by an initial parameter sweep. We choose
the DLRT truncation tolerance relative to the Frobenius norm of Ŝ, i.e. ϑ = τ∥Ŝ∥F , as suggested in
[28].

Hyperparameter VGG16 VGG11 ViT-B.16 ViT-small ViT-L.32
Batch Size (UCM) 16 16 16 n/a n.a.
Batch Size (Cifar10) 128 128 128 256 n.a.
Batch Size (Cifar100) 30 30 20 n.a n.a.
Batch Size (ImageNet) n.a n.a n.a n.a 256
Learning Rate 0.001 0.001 0.001 0.0001 0.001
Number of Epochs (UCM, Cifar10) 20 20 5 450 n.a
Number of Epochs (Cifar100) 30 30 20 n.a n.a
Number of Epochs (ImageNet1k) n.a n.a n.a n.a 10
L2 Regularization 0 0 0.001 0.01 0.0001
Optimizer AdamW AdamW AdamW Adam AdamW

DLRT rel. truncation tolerance τ 0.1 0.05 0.08 0.05 0.013
Coefficient Steps s∗ 10 10 10 75 75
Initial Rank 150 150 150 200 200

Parameters 138M 132M 86M 50M 304M

• ViT-L.32 is a Vision Transformer with 32x32 patch size, a deep learning architecture that leverages
transformer models for image classification tasks. We use the Imagenet21k weights from the
huggingface endpoint google/vit-large-patch32-224-in21k as weight initialization.

The full training setup is described in Table 6. We train DLRT with the same hyperparameters
as the full-rank baseline models. It is known [27] that DLRT methods are robust w.r.t. common
hyperparameters as learning rate, and batch-size, and initial rank. The truncation tolerance τ is
chosen per an initial parameter study. These values are are similar to default values reported in recent
literature [29, 30, 32]. In general, there is a trade-off between target compression ratio and accuracy,
as illustrated e.g. in [28] for matrix-valued and [32] for tensor-valued (CNN) layers.

10.1.2 UCM Data

The UC Merced (UCM) Land Use Dataset [38] is a standard benchmark in remote sensing and
computer vision. It consists of 2,100 high-resolution aerial RGB images, each of size 256 × 256
pixels, organized into 21 land use classes with 100 images per class.

We normalize the training and validation data using channel-wise means [0.485, 0.456, 0.406] and
standard deviations [0.229, 0.224, 0.225]. Convolutional neural networks (CNNs) are applied directly
to the original 256× 256 image resolution. For the Vision Transformer (ViT), the input images are
resized to 224× 224 pixels within the data pipeline.

10.1.3 CIFAR-10 Data

The CIFAR-10 dataset comprises 60,000 RGB images of size 32× 32 pixels, uniformly distributed
across 10 object classes.

We apply standard data augmentation techniques to the training set, including random horizon-
tal flipping followed by normalization with mean [0.4914, 0.4822, 0.4465] and standard deviation
[0.2470, 0.2435, 0.2616]. The test set is only normalized. The same augmentation strategy is applied
to CIFAR-100, using mean [0.5071, 0.4867, 0.4408] and standard deviation [0.2673, 0.2564, 0.2762].

CNNs are trained on the original 32 × 32 resolution, while ViT models receive images resized to
224× 224 through the data pipeline.

19



0 500 1000 1500 2000 2500 3000 3500 4000
Optimizer Step

0.0

0.2

0.4

0.6

0.8

1.0
Training Accuracy [%]

Algorithm 2
LoRA pretraining
Full-rank Adam

0 500 1000 1500 2000 2500 3000 3500 4000
Optimizer Step

0

1

2

3

4

5

6

7
Training Loss

Figure 2: ViT-L.32 on ImageNet1k, pretrained from scratch in low-rank and full-rank baseline format
for 4000 iterations. Training loss and accuracy of Algorithm 2 is close to the full-rank baseline,
whereas LoRA pretraining struggles to converge within the training time budget.

10.1.4 ImageNet-1k Data

The ImageNet dataset consists of 1000 classes and over 1.2 million RGB training images, with a
standard resolution of 224 × 224 pixels. We follow the standard data augmentation pipeline for
ImageNet, which includes a random resized crop to 224 × 224, and normalization using mean
[0.5, 0.5, 0.5] and standard deviation [0.5, 0.5, 0.5]. The test set is only resized and center-cropped to
224× 224, followed by normalization.

10.1.5 Additional Results - Transfer Learning

Table 7: Results on ImageNet-1k with
ViT-L.32 (304M parameters). Compres-
sion rate (c.r.) is reported in percent.

Method c.r. [%] Top-1 Acc. [%] Top-5 Acc. [%]
Baseline 0 74.37 92.20

Algorithm 2 61.45 72.27 90.19
LoRA Pretrain 60.00 63.20 84.81

ViT-L.32 on ImageNet1k We repeat the experimental
setup on ViT-L.32 on the ImageNet-1k dataset, where ViT-
L.32 is initialized with a Huggingface Imagenet21K check-
point. We compare the baseline model, LoRA-based simul-
taneous descent pretraining, and Algorithm 2 in Table 7.
We observe that Algorithm 2 is able to recover the baseline
accuracy up to a small margin whereas LoRA-based train-
ing exhibits decreased Top-1 and Top-5 accuracy. Finally,
we remark that the slightly lower compression rate is ex-
pected since the hidden dimension of ViT-L.32 (1024) is
close to the number of ImageNet classes (1000), thus there is less redundancy in the model compared
to other reported benchmarks.

10.1.6 Additional Results - Transfer Learning: Low-Rank Heavyball Method

Table 8: Results on Cifar10 with VGG16
using low-rank Heavyball SGD. Com-
pression rate (c.r.) is reported in percent.

Method c.r. [%] Acc. [%]
Baseline 0 78.98

Algorithm 1 94.35 79.01
LoRA transfer learning 93.72 75.12

VGG16 on Cifar10 We consider VGG16 on Cifar10
with Heavyball SGD using the same hyperparameters as
described in Section 10.1.1. We choose γ=0.9 and train
a (full-rank) baseline, LoRA pretrain and Algorithm 1.
The compression rate of LoRA pretrain is fixed to match
the final compression rate of Algorithm 1. In Table 8,
we observe similar performance of Algorithm 1 to the
Baseline as we saw for Algorithm 2 to the Adam Baseline,
whereas LoRA pretrain exhibits a slight drop in accuracy.

10.1.7 Additional Results - Low-Rank Pretraining

ViT-small on Cifar10 We consider a compact Vision
Transformer architecture for the CIFAR-10 dataset, see Section 10.1 for details on training and
architecture. We compare baseline full-rank training with LoRA pretraining, Algorithm 2, and the
naive implementation of Adam with DLRT [28]. Instead of low-rank finetuning, we pretrain the
network from scratch and initialize the weights with a normal distribution. The low-rank methods
factorize the fully-connected layers, while keeping the attention layers, which are typically high-rank,
in baseline format. The LoRA rank is chosen to match the final compression rate of the rank adaptive

20



0 50 100 150 200 250 300 350 400 450
Epoch

40

50

60

70

80
Validation Accuracy [%]

Algorithm 2
LoRA pretraining
Full-rank Adam
DLRT Adam naive

0 50 100 150 200 250 300 350 400 450
Epoch

0.6

0.8

1.0

1.2

1.4

1.6

1.8

Validation Loss

0 50 100 150 200 250 300 350 400 450
Epoch

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Training Loss

Figure 3: ViT-small on Cifar10, pretrained from scratch in low-rank and full-rank baseline format for
450 epochs. Median trajectory over 5 runs. Algorithm 2 and LoRA pretraining initially converge
faster than the full-rank baseline. After the initial warm-up phase, Algorithm 2 exhibits a steeper
convergence slope than LoRA. Moreover, Algorithm 2 achieves lower loss and higher validation
accuracy than LoRA, even surpassing the baseline. A naive DLRT implementation with Adam leads
to slower convergence and over 10% drop in validation accuracy.

naive DLRT and Algorithm 2 method, which achieves a compression rate of 67%. Remark that the
compression rate is lower, since the attention matrices remain full-rank.

The goal of this test is to compare the long-term convergence behavior of all four methods, presented
in Figure 3. We observe that Algorithm 2 and standard LoRA pretraining first converge faster than the
baseline training. The non-orthogonal bases A,B of LoRA and the corresponding non-orthogonal
projection onto the low-rank manifold cause LoRA to plateau, whereas Algorithm 2 achieves lower
loss values and higher validation accuracies, even surpassing the full-rank baseline in this test case.
Naive implementation of DLRT with the Adam optimizer causes a more than 10% reduction in
validation accuracy and slower convergence.

10.2 GLUE Benchmark

10.2.1 Dataset description

We present the benchmark overview in Table 9. We evaluate ALG against several recent finetuning

Table 9: Summary of GLUE benchmark tasks
Corpus Task #Train #Dev #Test #Label Metrics

Single-Sentence Classification (GLUE)
CoLA Acceptability 8.5k 1k 1k 2 Matthews corr
SST2 Sentiment 67k 872 1.8k 2 Accuracy

Pairwise Text Classification (GLUE)
MNLI NLI 393k 20k 20k 3 Accuracy
RTE NLI 2.5k 276 3k 2 Accuracy
QQP Paraphrase 364k 40k 391k 2 F1
MRPC Paraphrase 3.7k 408 1.7k 2 Accuracy
QNLI QA/NLI 108k 5.7k 5.7k 2 Accuracy

Text Similarity (GLUE)
STS-B Similarity 7k 1.5k 1.4k 1 Pearson/Spearman cor

methods on the General Language Understanding Evaluation (GLUE) benchmark [35]. GLUE is
a standard benchmark comprising a diverse set of natural language understanding tasks that assess
a model’s ability to comprehend and process human language. It provides a broad evaluation by
including tasks covering various linguistic aspects such as entailment, sentiment, and semantic
similarity. The benchmark comprises the following nine tasks:

• CoLA (Corpus of Linguistic Acceptability): Determines if a sentence is grammatically accept-
able.

• SST-2 (Stanford Sentiment Treebank): A binary sentiment classification task distinguishing
between positive and negative sentiment.

• MRPC (Microsoft Research Paraphrase Corpus): Identifies whether two given sentences are
paraphrases.

21



• STS-B (Semantic Textual Similarity Benchmark): Measures the semantic similarity of two
sentences on a continuous scale from 1 to 5.

• QQP (Quora Question Pairs): Assesses whether two questions are semantically equivalent.
• QNLI (Question Natural Language Inference): Determines if a context sentence correctly

answers a question.
• RTE (Recognizing Textual Entailment): A binary entailment classification task.
• Specific Focus: MRPC (Microsoft Research Paraphrase Corpus)

The F1 score, used for evaluation, is computed from the precision P and recall R as follows. The
precision P is defined as

P :=
PT

PT + PF
, (16)

where PT denotes the number of true positives and PF the number of false positives. The recall R is
given by

R :=
PT

PT +NF
, (17)

where NF represents the number of false negatives. The F1 score is then the harmonic mean of P
and R:

F1 :=
2PR

P +R
. (18)

10.2.2 Reference implementations

Full Finetuning (FT): The standard approach in transfer learning, where the model is initialized with
pre-trained weights and all parameters are updated via gradient descent.

Bitfit [39]: Finetuning where only the bias terms are updated while all other parameters remain fixed.

Adapter Tuning [14, 23]: Involves inserting two-layer adapter modules within transformer blocks.
In [14], adapters are placed between the self-attention and feed-forward modules with a residual
connection (denoted HAdapter). In [23], adapters are inserted after the feed-forward and layer
normalization modules (denoted PAdapter), following the notation of [42].

LoRA [15]: Applies low-rank additive updates to selected weight matrices, modeled as

z = σ
(
Wptx+

α

r
AB⊤x

)
, (19)

where A,B ∈ Rn×r. We apply LoRA to the attention matrices Wq, Wk, Wv, and the feed-forward
matrices Wf1 and Wf2 . Learning rates and optimizers follow the setup in [42], Appendix D–F.

Results for FT, Bitfit, Adapter tuning, and LoRA in Table 2 are reproduced from [42]. The perfor-
mance of DoRA, LoRA, LoRA+, and AdaLoRA is computed using the HuggingFace implementations
of these adapters.

DoRA [21]: A low-rank adapter similar in structure to LoRA, but with normalized AB matrices and
an additional magnitude parameter. Unlike LoRA, DoRA initializes the adapter with the pre-trained
weights W0, rather than zero.

LoRA+ [10]: Differs from LoRA in the assignment of learning rates: separate learning rates are used
for A and B, with a fixed ratio λB/λA = 1.1.

AdaLoRA [42]: Introduces adaptive low-rank updates to selected weight matrices:

z = σ
(
Wptx+

α

r
USV ⊤x

)
, (20)

with frozen base weights Wpt ∈ Rn×n, rank-r adapters U, V ∈ Rn×r, and scaling matrix S ∈ Rr×r.
The rank is determined using either SVD-based truncation or sensitivity analysis of the singular
vectors. AdaLoRA is applied to Wq, Wk, Wv, Wf1 , and Wf2 with an orthogonality regularization
coefficient γ = 0.1.

When comparing to AdaLoRA, we align the total parameter budget with LoRA by setting the final
budget b(T ) to 576, and initialize with b(0) = 1.5× b(T ).

22



We also compare AdaLoRA using budget schedules obtained via Algorithm 2, ensuring that b(T )

approximately matches the parameter count of the final models trained using Algorithm 2.

GeoLoRA [27]: GeoLoRA integrates the projected gradient flow Equation (9) in a parallelizable
single-step scheme, including a rank adapative augmentation-truncation scheme as the proposed
method. However, the method is only applicable for stochastic gradient descent, and not yet extended
to momentum-based approaches. We use the hyperparameter choices reported in [27].

We use the implementation of [42, Appendix C] to compute the results for the presented reference
methods. We set the exponential moving average parameters β1 and β2 of AdamW as their pytorch
default value. We select the learning rates as denoted in Table 10, selected by an initial hyperparameter
sweep.

We implement ALG as similar as possible to the reference models to achieve a fair comparison. That
is, we add an adapter of the form z = σ(Wptx+ USV ⊤x) to the key Wk, query Wq and value Wv

matrices of all attention blocks, and to both feed-forward layers Wf1 and Wf2 . For each adapter, we
employ Algorithm 2 to update the layer weights and ranks.

Table 10: Hyper-parameter setup for the GLUE benchmark, determined by an initial hyperparameter
sweep.

Dataset Learning Rate Batch Size # Epochs τ init. rank Adapter dropout weight decay

RTE 1.2× 10−3 32 20 0.075 10 0.01 0.01
QNLI 5× 10−4 64 5 0.05 10 0.2 0.01
MRPC 1× 10−4 64 5 0.05 10 0.15 0.05
QQP 1× 10−4 64 5 0.05 10 0.15 0.05
SST-2 1× 10−4 64 10 0.05 10 0.05 0.01
CoLA 5× 10−4 32 25 0.05 10 0.1 0.01
STS-B 1× 10−3 128 30 0.05 10 0.05 0.1

10.3 Llama2 7b-chat-hf on BoolQ and PIQA

BoolQ is a reading comprehension dataset consisting of naturally occurring yes/no questions paired
with passages from Wikipedia. Questions are drawn from real Google search queries, and each is
annotated with an answer by human raters, making it a benchmark for natural, open-domain question
answering.

PIQA (Paragraph-level In-context QA) is a dataset designed for evaluating in-context learning in
long-form reading comprehension. It provides paragraph-length passages with associated questions
and answers, emphasizing models’ ability to extract relevant information from extended contexts
rather than isolated sentences.

Table 11: Hyper-parameter setup for Algorithm 2 for the reasoning benchmark Table 3, determined
by an initial hyperparameter sweep.

Dataset Learning Rate Batch Size # Epochs τ init. rank Adapter dropout weight decay

BoolQ 1.76× e−4 12 3 0.0696 6 0 0.1
PIQA 1.36× e−4 12 3 0.0838 6 0 0.1

Table 12: Hyper-parameter setup for LoRA for the reasoning benchmark Table 3, determined by an
initial hyperparameter sweep.

Dataset Learning Rate Batch Size # Epochs τ init. rank Adapter dropout weight decay

BoolQ 4.47× e−4 / 1.76× e−4 12 3 None 6/10 0 0.1
PIQA 2.04× e−4 / 1.36× e−4 12 3 None 6/10 0 0.1

10.4 GPT2 on OpenWebText

OpenWebText is an open-source dataset constructed as a replication of OpenAI’s WebText. It was
created by scraping URLs shared on Reddit. The dataset contains web pages spanning diverse topics,

23



0 50 100 150 200 250 300 350 400 450
Epoch

3

4

5

6

7

8

9

10

11

Tr
ai

ni
ng

 L
os

s

Algorithm 2
LoRA pretraining
Baseline

0 50 100 150 200 250 300 350 400 450
Epoch

3

4

5

6

7

8

9

10

11

Va
lid

at
io

n 
Lo

ss

Algorithm 2
LoRA pretraining
Baseline

Figure 4: GPT2 reproduction on OpenWebText, pretrained from scratch in low-rank, full-rank
baseline and Algorithm 2 for 15000 iterations. Algorithm 2 method significantly outperforms LoRA
pretraining (best validation loss 3.4642 vs. 4.8141), while incurring only a moderate increase relative
to the full-rank baseline (3.4642 vs. 3.2313).

filtered to remove duplicates and non-English text, and is commonly used as a large-scale corpus for
training and evaluating language models.

Table 13: Hyperparameter configuration for pretraining GPT-2 (124M) on OpenWebText (see Table 4).
Dataset Learning Rate Batch Size # iteration τ init. rank Adapter dropout weight decay

OpenWebText [6e−4, 6e−5] 64 15 000 0.05 135 0 0.1

10.5 Computational hardware

All experiments in this paper are computed using workstation GPUs. Each training run used a single
GPU, except for GPT-2 pretraining, which was performed on two NVIDIA H100 GPUs. Specifically,
we have used 5 NVIDIA RTX A6000, 3 NVIDIA RTX 4090, and 2 NVIDIA H100.

24



NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .
• [NA] means either that the question is Not Applicable for that particular paper or the

relevant information is Not Available.
• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS paper checklist",
• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We describe our contribution in the introduction section.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the underlying assumptions of the method in the analysis of the
corresponding theorems.

25



Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: We discuss the underlying assumptions of the method in the analysis of the
corresponding theorems.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: All experimental details are provided in the appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.

26



• If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [No]

Justification: We provide the open source code upon paper acceptance

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

27

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy


• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We provide the training details and hyperparameters in the appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We provide error bars and report the mean and median over different initializa-
tions.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: The used compute resources are reported in the appendix
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.

28



• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The paper conforms, in every respect, with the NeurIPS Code of Ethics
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: The impacts are discussed in the conclusion
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: This work is algorithmic and does not release special data or models.
Guidelines:

• The answer NA means that the paper poses no such risks.

29

https://neurips.cc/public/EthicsGuidelines


• Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: Not needed for this work

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: Not needed for this work

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: Not needed for this work

30

paperswithcode.com/datasets


Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Including this information in the supplemental material is fine, but if the main contribu-

tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Not needed for this work
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

31


	Introduction
	Momentum-based low-rank training
	A low-rank heavy ball method
	A low-rank Adam method
	Numerical Results
	Low-Rank Compressed Transfer Learning
	Low Rank Adaptation for Parameter Efficient Finetuning (PEFT)
	Low Rank Pretraining

	Conclusion
	Notation 
	Algorithms
	Numerical Analysis
	Details to the numerical experiments of this work
	ImageNet-1k, UCM and Cifar Benchmarks
	Network architecture and training details
	UCM Data
	CIFAR-10 Data
	ImageNet-1k Data
	Additional Results - Transfer Learning
	Additional Results - Transfer Learning: Low-Rank Heavyball Method 
	Additional Results - Low-Rank Pretraining

	GLUE Benchmark
	Dataset description
	Reference implementations

	Llama2 7b-chat-hf on BoolQ and PIQA
	GPT2 on OpenWebText
	Computational hardware


