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ABSTRACT

In recent years, vocoders powered by deep neural networks (DNNs) have found
much success in the task of generating raw waveforms from acoustic features, as
the audio generated becomes increasingly realistic. This development however
raises a few challenges, especially in the field of forensics, where the attribution
of audio to real or generated sources is vital. To our knowledge, our investiga-
tion constitutes the first efforts to answer this question on the existence of vocoder
fingerprints and to analyze them. In this paper, we present our discoveries in iden-
tifying the sources of generated audio waveforms. Our experiments conducted
on the multi-speaker LibriTTS dataset show that (1) vocoder models do leave
model-specific fingerprints on the audio they generate, and (2) minor differences
in vocoder training can result in sufficiently different fingerprints in generated
audio as to allow for distinguishing between the two. We believe that these differ-
ences are strong evidence that there exist vocoder-specific fingerprints that can be
exploited for source identification purposes.

1 INTRODUCTION

Over the past decades, advancements in text-to-speech (TTS) and voice conversion (VC) technolo-
gies permit the artificial generation of speech audio. As the last step in TTS or VC pipelines, gen-
erating raw waveforms from acoustic features, vocoders are important components in these tasks.
With the development of deep learning, deep neural networks (DNNs) have seen increasing usage
in both TTS and VC. Recent advancements in these areas (Wang et al., 2017; Shen et al., 2018;
Kalchbrenner et al., 2018; Li et al., 2019; Ren et al., 2022) have led to the capacity of generating
increasingly realistic and natural audio. While such technological progress is certainly welcomed, it
does also admittedly come with challenges, especially when one considers the potential misuse and
abuse of TTS and VC technologies, either inadvertently or maliciously. The risks and challenges
associated with these technologies mostly arise in the following areas:

Audio forensics. As TTS technologies generate increasingly realistic audio, they also become in-
creasingly prone to being misused, by their very nature, to mislead or even defraud victims who
cannot judge the authenticity of audio. The possibility of misuse and abuse evidently gives rise to
concerns about security, and public order. Therefore, it is consistent with the public interest to find
methods to combat such risk of malicious usage by coming up with effective forensic strategies.
While modern audio forensic techniques used in challenges such as ASVspoof (Wu et al., 2015;
Wang et al., 2020; Yamagishi et al., 2021) and ADD (Yi et al., 2022) have achieved effective results
in separating fake audios from real ones, they focus more on performing binary classification be-
tween real and fake sets. There is nonetheless also an interest in surpassing the constraints of binary
real/fake classification and actually pinpoint the source responsible for generating any fake audio.

Intellectual property protection. Mainstream TTS and VC systems such as Shen et al. (2018),
Arik et al. (2018), and Ren et al. (2022) are built with much effort, as they require careful design
and fine-tuning of models and algorithms, as well as extensive training with more data than can
reasonably be collected by any one person. As such, it is in the interest of researchers and commer-
cial software developers alike to ensure that they are properly recognized to hold the ownership and
copyright of their intellectual properties, the enforcement of which would not be feasible without the
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Figure 1: A t-SNE projection of vocoder fingerprints belonging to models of different architectures,
initialization seeds, and hyperparameters, obtained in our experiments. (“PWG” refers to the Parallel
WaveGAN architecture (Yamamoto et al., 2020); “Full” refers to the clean subset of LibriTTS (see
section 4.1); SS1 consists of 50,000 randomly selected samples from the “Full” set)

ability to detect unauthorized usage of a system. While there have been efforts in watermarking a
given DNN model (Zhang et al., 2018), these efforts require crafted inputs on models that have been
specifically tweaked for watermarking during training, instead of relying on properties intrinsic to
the vocoder model in performing waveform generation.

Owing to the reasons above, it is important to be able to identify the source of fake audio. Given
the advancement of TTS and VC technologies, and judging by the results obtained in work by other
scholars, where generated audios are often judged to be quite natural and realistic, we consider it
infeasible to manually perform such scrutiny and source identification. Consequently, this calls for a
way to automatically extract relevant information from audio samples and classify fake audio based
on its source of generation, with minimal human intervention.

While the idea of source-dependent fingerprints have been explored on GAN-generated images (Yu
et al., 2019; Marra et al., 2019), those efforts rely on image properties and are not directly applicable
to waveforms generated by vocoders. While there has been some preliminary investigation on the
concept of vocoder fingerprints (Yan et al., 2022), the effort of the study rests on an architecture-
specific level. We seek to find the existence of fingerprints that allow for distinguishing models
sharing the same architecture, separating audios generated by different vocoder models, and identi-
fying their respective sources of generation.

In this paper, we put forth and seek to explain the following questions:

1. Do vocoder models leave model-specific fingerprints on the audio they generate?
2. What is the condition for their existence? In other words, how similar can two vocoder

model instances be before it becomes infeasible to distinguish between the two?
3. How do we present these fingerprints for the purposes of fake audio source identification?

To answer these questions, we perform experiments to evaluate our hypothesis that vocoder models
used to generate audio leave a fingerprint on the audio they generate that is specific to the model,
as well as to explore how these fingerprints may be visualized and exploited for the aforementioned
purposes of audio forensics and intellectual property protection. Our experiments confirm the exis-
tence of these fingerprints and show that vocoder fingerprints depend on architecture, training data,
initialization seeds, and training hyperparameters, as shown in Figure 1.

2 RELATED WORK

As our work deals with finding vocoder-specific features to aid in fake audio source identification, a
task that falls in the purview of forensics, it behooves us to reiterate some of the work done by other
scholars in the areas of vocoders and audio forensics.
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Vocoders refer to signal processing devices that synthesize speech audio waveform from some more
compressed form of data, usually acoustic features, although certain vocoders take linguistic features
as inputs (Tan et al., 2021). Apart from some modern end-to-end systems that directly generate
waveform from text, vocoders form the last step in TTS and VC. Notable traditional (i.e., non-
neural) vocoder implementations include: Griffin-Lim (Griffin & Lim, 1984), STRAIGHT (Kawa-
hara, 2006), and WORLD (Morise et al., 2016).

With the development of deep learning and neural networks came a variety of neural vocoders, of
which the notable ones include: WaveNet (van den Oord et al., 2016; 2018), WaveRNN (Kalchbren-
ner et al., 2018), LPCNet (Valin & Skoglund, 2019a;b). Given the length of waveforms, autoregres-
sive waveform generation takes much inference time; therefore modern neural vocoders have taken
a non-autoregressive approach with generative models, among which are FloWaveNet (Kim et al.,
2019), Parallel WaveGAN (Yamamoto et al., 2020), HiFiGAN (Kong et al., 2020), Multi-band Mel-
GAN (Yang et al., 2020), Style-MelGAN (Mustafa et al., 2021). These non-autoregressive models
are able to achieve faster-than-real-time inference speeds.

One of the primary aspects of audio forensics, known as “integrity verification”, deals with the
determination of authenticity of a given audio clip, i.e., if the given audio represents real speech
and if it has been tempered with (Maher, 2009; Zakariah et al., 2018). Various techniques have
been used to analyze details and features contained in the audio, such as the Electronic Network
Frequency (Nicolalde-Rodriguez et al., 2010), background noise (Malik, 2013), recording device
(Qamhan et al., 2021), or energy (Luo et al., 2018).

In recent years, there has been significant progress in integrity verification of fake audio. Many chal-
lenges have accelerated the progress and research in this area, including the ASVspoof challenges
(Wu et al., 2015; Kinnunen et al., 2017; Wang et al., 2020; Yamagishi et al., 2021). In addition
to these, ADD 2022 (Yi et al., 2022) initiated the first audio deep synthesis detection challenge
for more challenging realistic scenarios. In summary, the research on fake audio detection can be
broadly divided into two parts: front-end features and back-end classifiers. In the first category,
many features (Todisco et al., 2017; Davis & Mermelstein, 1980; Sahidullah et al., 2015) have been
widely used for detection. As for the back-end classifier, many effective classifier designs (He et al.,
2016; Bagherinezhad et al., 2017; Hu et al., 2018; Tak et al., 2021)have contributed to the detection
research.

3 METHODOLOGY

3.1 VOCODER FINGERPRINT

To answer the questions we put forth, we study the impact of each of the following aspects of
vocoder models:

1. Vocoder architecture: We procure 7 models, each with a different architecture, ranging
from traditional signal processing vocoders to more modern GAN-based vocoders, and
study the separability of the fingerprints left by these models on the audio they generate.
The architectures are chosen to represent both traditional and neural vocoders. Specifically,
WORLD is a traditional signal processing vocoder that achieves promising results; LPCNet
utilizes linear prediction, and achieves considerable performance despite the limitations of
autoregressive vocoders; the GAN-based vocoders are chosen for their performance re-
ported in their respective papers, achieving faster-than-real-time inference speeds given
their nonautoregressive nature.

2. Training data: In the training process, each training sample may differently influence the
direction to optimize the objective function, hence result in slightly different weights when
the model converges. To study the impact of training data, we train 4 models of the same
architecture with the same initialization seed, but each model is trained with a slightly
different training set that differ from each other in different magnitudes (see Table 4), and
analyze the fingerprints left by the models.

3. Initialization seeds: Initialization seeds determine the initial weight values before train-
ing begins, and thus can potentially subtly influence the resulting weights as the model
converges. To examine the impact of initialization seeds, we train 4 models of the same
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Figure 2: The overall fingerprint extraction and classification pipeline.

architecture, with the exact same training set, but each model is initialized with a different
seed. We then analyze the fingerprints left by the models on the generated audio.

4. Training hyperparameters: We train 5 models of the same architecture, with the same
training set and initialization seed, but adjust the dropout rate and batch size used in the
training of each model. We then analyze the fingerprints left by the models on the audio.
The choice of dropout rate and batch size are justified because dropout rate, by “freezing”
certain weights, can make the vocoder models less “reactive” to incoming training samples,
while batch sizes influence the order in which the samples contribute to the tweaking of
model parameters.

5. Architecture and parameter differences, combined: We train 3 models of 4 GAN
vocoder architectures each, varying in seed and training hyperparameters. We then copy-
synthesize audio using the vocoders such that the testing audio is generated by vocoders
whose parameters are unknown to the classification network even though the architecture
is known. We examine the performance of the classification network in this scenario.

3.2 VOCODER MODEL

Investigating the existence of vocoder fingerprint requires focus on vocoder-specific information
and features, and as such, all other variables need to be fixed, with the vocoder model used to
generate audio waveforms being the only independent variable in our experiments. To accomplish
this, we generate fake audio by performing copy synthesis on real audio samples from the LibriTTS
dataset. This is done by extracting acoustic features from these real audio samples and passing the
extracted features through trained vocoder models to generate new waveforms, which will then be
used for fingerprint extraction classification. The purpose behind this design is to eliminate any risk
of potential interference that could be induced by acoustic models. Furthermore, since mainstream
TTS and VC pipelines like Tacotron 1/2 (Wang et al., 2017; Shen et al., 2018) and FastSpeech 2
(Ren et al., 2022) still rely on vocoder models as the final step to generate audio waveforms, we
think that vocoder differences are the most likely to cause fingerprint differences.

In addition, samples in the real audio corpus exhibit some variation in terms of speech content
and speaker characteristics, the effect of which should not be relied on for the purpose of source
identification; evidently, the text or even phonemic content of sentences being spoken as little to
do with vocoders. To account for and preclude the impact of this naturally-occurring variance, the
generated audio waveforms from each model mirror and correspond to each other as well as real
audio waveforms. More specifically, for every real audio sample x, we generate fake audio samples
{x̂m | m = 1, . . . ,M} using each of the M models studied in the experiment, so that groups of
real-and-fake audio waveforms from the same acoustic features maximally balance out the effect of
the naturally occurring variations intrinsic in the real audio corpus.

3.3 FINGERPRINT EXTRACTION PIPELINE

As the motivation behind fingerprint extraction and analysis is essentially to facilitate generation
source identification of fake audio, the fingerprints themselves should be such that audio samples
from a single source — either real recordings or generated by a single vocoder model — form dis-
tinct, preferably linearly-separable, clusters in the feature space that can then be easily distinguished
even with a single fully-connected layer (FC layer). As such, we train our fingerprint extraction
network essentially as part of a classification model.
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Table 1: Datasets used in our experiments.

(a) Dataset used in our experiments to train vocoder models: all audio
comes from LibriTTS. This table is excerpted from Zen et al. (2019).

Speakers
Subset Hours Female Male Total Utterances
train-clean-100 53.78 123 124 247 33,236
train-clean-360 191.29 430 474 904 116,500
dev-clean 8.97 20 20 40 5,736
test-clean 8.56 19 20 39 4,837
Total 262.60 592 638 1,230 160,369

(b) Real audios used for copy synthesis
to generate training data for fingerprint
extraction–classification.

Subset Speakers Utterances
train 1129 50,000
dev 40 5,000
test 39 4,500
Total 1208 59,500

As shown in Figure 2, Each audio sample is first passed through a feature extractor to extract its
LFCC features, and the features are then fed into the fingerprint extractor, which is a Res2Net
network. The network produces a vector for every input, and the vector is then passed into a FC
classification layer to be classified into a finite number of labels, representing the source of the
audio (either real or the model that generated it).

4 EXPERIMENTS AND RESULTS

In this section, we present our experiments as well as the results and observations obtained. We
perform four experiments, each of which focuses on one independent variable, while the rest are
controlled and kept the same across models. The vocoder models are trained following the setup in
their original paper as closely as possible.

For each audio waveform sample, we first extract its linear frequency cepstral coefficient (LFCC)
representation, with 20 LFCC per frame, using a Hamming window with the window length of
M = 480 and hop length of H = 240. The LFCC matrix is then truncated or 0-filled to contain 500
frames. The LFCC representation of the audio sample is then passed to a Res2Net network (Gao
et al., 2021) and projected onto a feature space with a dimensionality of 256, then passed through
a single FC layer classifier to decide between the finite number of sources. The entire network
(extraction + classification) is trained using cross-entropy loss.

4.1 DATASET

In our experiments, we use the LibriTTS dataset (Zen et al., 2019) to train the neural vocoder models
as well as to generate the audio corpus for vocoder fingerprint extraction network through copy
synthesis. We employ only the clean speech subset of the dataset, as shown in Table 1a. With the
exception of the second experiment described below in section 4.4, the clean training set of LibriTTS
is used in its entirety to train the neural vocoder models.

To train our extraction–classification network in each experiment, we randomly sample 50,000 sam-
ples from the aforementioned LibriTTS training set, 5,000 samples from the validation set, and
4,500 samples from the testing set, as shown in Table 1b, to serve as the real audio portion of the
classifier training set the basis to perform copy synthesis. The fake audio part thus mirrors the real
audio portion, with each class essentially mirroring the real audio set.

4.2 EVALUATION METRIC

As discussed in section 3.3, the performance of fingerprint extraction and analysis should be directly
related to the ability to classify the audio samples and identify their source of generation, as such,
we evaluate our fingerprint extraction model in a way similar to classifier evaluations: by using
precision, recall, and F1 scores.

4.3 IMPACT OF VOCODER ARCHITECTURES

In our first experiment, we test for the existence of architecture-specific fingerprints in the generated
waveforms. We acquire models of the following 6 architectures:
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Table 2: Results (%) on the impact of vocoder ar-
chitectures (4.3)

Precision Recall F1 score
REAL 98.30 97.49 97.89
PWG 99.42 99.87 99.65

HIFIGAN 97.73 98.36 98.04
MB MELGAN 99.62 99.56 99.59

S MELGAN 99.73 99.82 99.78
WORLD 99.80 99.58 99.69
LPCNET 100.00 99.93 99.97
Average 99.23 99.23 99.23

Table 3: Results (%) on the impact of train-
ing data (4.4)

Precision Recall F1 score
REAL 99.78 99.58 99.68

SS0 93.14 92.56 92.84
SS1 92.79 95.58 94.17
SS2 97.76 94.09 95.89
SS3 93.94 95.42 94.68

Average 95.48 95.44 95.45

• WORLD (Morise et al., 2016): estimates the fundamental frequency (F0), spectral enve-
lope, and aperiodic parameters, as well as generates speech similar to some input speech
based on the estimated features.

• LPCNet (Valin & Skoglund, 2019a): a neural vocoder combining linear prediction and
recurrent neural networks (RNNs) and generates audio waveforms.

• Parallel WaveGAN (PWG; Yamamoto et al., 2020): a neural vocoder that generates audio
from Mel spectrum using a generational adversarial network (GAN).

• HiFiGAN (Kong et al., 2020): a GAN-based neural vocoder that employs two discrimina-
tors to perform multi-scale and multi-period discriminators.

• Multi-band MelGAN (Yang et al., 2020): a GAN-based neural vocoder with a generator
that produces sub-band signals from which the full-band signals are constructed.

• Style-MelGAN (Mustafa et al., 2021): a GAN-based neural vocoder that allows for the
synthesis of high-fidelity speech with relatively low computational complexity.

We follow the setup instructions in ParallelWaveGAN and attempt to unify the spectrum input to the
different GAN vocoder models, as to remove the influence of the input features in the vocoders. The
GAN models all take 80-band mel-spectra as inputs, with a frame length of 50 ms and a hop length
of 12.5 ms; as a result, these features are pre-extracted and remain the same for all GAN models.
The LPCNet vocoderis trained directly on the raw waveforms, since it has built-in feature extractors.

We then tag the models as WORLD, LPCNET, PWG, HIFIGAN, MB MELGAN and S MELGAN, respec-
tively. Other than WORLD, which does not require training, each model is trained with the entirety
of the LibriTTS clean speech subset described in section 4.1. The models are each trained on a sin-
gle Tesla K80 GPU, with their default hyperparameters according to their respective papers, except
the training batch size of Style-MelGAN was lowered to 16 for the sake of memory usage.

We then train the extraction–classification network described in section 3.3 to distinguish be-
tween audio waveforms from 7 classes: {REAL, WORLD, LPCNET, PWG, HIFIGAN, MB MELGAN,
S MELGAN}. To this end, we sample 50,000 waveform files from each source for training and 5,000
files for validation.

In this experiment, we obtained results reported in Table 2 and Figure 4, showing that models with
different architectures produce clearly distinguishable audios. The only relative confusion in this
experiment is between the original (real) audio and the audio generated with HiFiGAN, as all other
misclassifications constitute less than 1% of the evaluation set. Furthermore, if we were to evaluate
the separability between generated audios from different models, no misclassification amounts to
more than 0.5% of all audio samples of its real class. As different vocoder architectures take different
approaches to construct audio waveforms from spectrograms or other feature representations, this
separability is to be expected.

4.4 IMPACT OF TRAINING DATA

In our second experiment, we explore the relationship between the training dataset used to train
the vocoder model and its fingerprint on generated waveforms. We fix the models to a single GAN
architecture: Parallel WaveGAN (Yamamoto et al., 2020), and use slightly different training datasets
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Table 4: Difference (in utterances) of training
data used in the second experiment

SS0 SS1 SS2 SS3
SS0 - 1 100 10,000
SS1 1 - 101 10,001
SS2 100 101 - 10,100
SS3 10,000 10,001 10,100 -

Table 5: Vocoder models with different hyper-
parameters

Batch # Steps
Dropout size trained

BASE 0 6 500,000
1DROPOUT 0.1 6 500,000
2DROPOUT 0.2 6 500,000

4BATCH 0 4 750,000
8BATCH 0 8 375,000

Table 6: Results (%) of on the impact of initial-
ization seeds (4.5)

Precision Recall F1 score
REAL 99.82 99.84 99.83

SEED-1000 94.51 94.91 94.71
SEED-1001 94.49 94.42 94.45
SEED-1002 94.37 97.16 95.74
SEED-1003 95.52 92.33 93.90

Average 95.74 95.73 95.73

Table 7: Results (%) of on the impact of hyperpa-
rameters (4.6)

Precision Recall F1 score
REAL 99.76 99.84 99.80
BASE 97.38 94.93 96.14

1DROPOUT 97.70 97.07 97.38
2DROPOUT 99.12 98.09 98.60

4BATCH 95.66 97.96 96.79
8BATCH 95.08 96.71 95.89
Average 97.45 97.43 97.43

to train them. This variance is controlled by sampling 50,000 waveform files from the LibriTTS
clean speech set for training and 5,000 waveforms for testing. We tag this base set as SUBSET-0.
Three more training subsets of the same sizes are then constructed, each differing from the base set
by replacing 1, 100, and 10000 samples, respectively. We use tags {SUBSET-i | 1 ≤ i ≤ 3} to
denote them. The four subsets are used as training sets train 4 Parallel WaveGAN models {SSi |
0 ≤ i ≤ 3}. The training processes of the four models do however share the same validation set,
since validation data has no bearing on model parameters. We then train the extraction–classification
network described in section 3.3 to distinguish between audio waveforms from 5 classes: {REAL,
SSi | 0 ≤ i ≤ 3}. To this end, we sample 50,000 waveform files from each source for training and
5,000 files for validation.

Table 3 and Figure 5 (see appendix) display the classification results and confusion matrix, respec-
tively. The results obtained from the experiment corroborate our hypothesis that fingerprints are
vocoder-specific on a finer granularity than architecture difference. Furthermore, it is shown that
even a minor difference in vocoder model training (as is the case in SS0 vs. SS1, where the training
sets differ by only one sample) can result models that produce sufficiently different fingerprints as
to allow for distinguishing between audio generated by the two models.

Interestingly, if one were to use classification accuracy as the sole metric to judge the separability
between the fingerprints, then it would seem that the magnitude of difference in training data has no
meaningful impact on separability. Two models with training sets differing by 1 sample (accounting
for 0.002% of the training set) still produced easily distinguishable fingerprints.

4.5 IMPACT OF INITIALIZATION SEEDS

In our third experiment, we investigate an even smaller variance factor: that of the initialization
seeds. To accomplish this, we limit the models to the Parallel WaveGAN architecture, just as in
the second experiment discussed above; we also use the same training data to train all models, and
instead manually vary the seeds used in the initialization of model parameters. Specifically, we
use seeds s ∈ {1000, 1001, 1002, 1003} to initialize 4 models that we tag as {SEED-s}, which are
then trained with the entirety of the LibriTTS clean speech subset. We then train the classifier to
distinguish between 5 classes: {REAL, SEED-s | s ∈ {1000, 1001, 1002, 1003}}. We again sample
50,000 waveform files from each source for training and 5,000 files for validation.

Table 6 and Figure 6 (see appendix) display the classification results and confusion matrix, respec-
tively. These results show that, even when models share the same architecture and are trained with
the same data, the variation of initialization seeds can still result in sufficiently different fingerprints
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for distinguishing between audio generated by the models. Given that the weight parameters of
the vocoder models are supposed to converge towards a configuration that minimizes the objective
function, our observation from this experiment entails that differences in vocoder weights can result
in different fingerprints being produced by the models.

4.6 IMPACT OF TRAINING HYPERPARAMETERS

Our fourth experiment reported in this paper seeks to explore the impact of training hyperparameters
that govern the training procedure, while fixing the architecture, training data, and initialization
seeds of the vocoder models. We again limit the models to the Parallel WaveGAN architecture, with
initialization seed as 1000 for all models, and use the entire clean training set of LibriTTS to train
the vocoder models.

For the purposes of this experiment, we are interested specifically in the impact of adjusting the
dropout rate and the batch size in training. We copy the PARALLEL-WAVEGAN-SEED-1000 model
from the previous experiment and retag it as the baseline. This baseline does not use dropout, and
each batch contains 6 samples. We then train four more models with the following parameters:

The last two models are trained for 150% and 75% of the number of steps as the baseline model,
respectively, to compensate for the batch size influencing the total amount of data. Any unmentioned
hyperparameter is kept the same as in the baseline model.

We then train the classifier to distinguish between 6 classes: {REAL, BASE, 1DROPOUT, 2DROPOUT,
4BATCH, 8BATCH}. As with all other experiments, we again sample 50,000 waveform files from
each source for training and 5,000 files for validation.

Table 7 and Figure 7 (see appendix) display the classification results and confusion matrix, respec-
tively. These results show that, even when models share the same architecture and are trained with
the same data and initialization seeds, the precise manner of training can result in different models
producing fingerprints that are different enough for distinguishing between audio generated by the
models. It would therefore seem that the vocoder fingerprint is volatile to training.

4.7 COMPARISON OF ARCHITECTURAL AND PARAMETER DIFFERENCES

We conduct our last experiment to investigate the hypothesis that, even though differences in vocoder
model parameters are sufficient to produce distinguishable fingerprints, differences in architec-
tures predominate differences in parameters. In other words, if we have a fingerprint extraction–
classification model that can detect fingerprints produced by vocoders of different architectures (such
as the one presented in Experiment 1), it should still be able to reliably classify between these same
architectures even when the vocoders have different parameters.

We train vocoders of 4 architectures: Parallel WaveGAN, HiFiGAN, Style MelGAN and Multiband
MelGAN, denoted as P, H, S, and M, respectively. We train 3 vocoders for each architecture: The
first with an initialization seed of 1000, the second with an initialization seed of 1001 and the third
trained with a batch size of 8. The vocoders are trained with the LibriTTS dataset. The training
setups of the models are summarized in Table 9.

We apply copy synthesis on the WSJ0 dataset (Garofolo et al., 2007). As the dataset comes in .sph
files, these files are transformed into .wav through sph2pipe1, resampled to 24 kHz, and randomly
split into training–validation–evaluation sets with a 64%/16%/20% ratio. The training set is fed into
models P0, H0, S0, and M0, and the results are labelled based on the vocoder architecture and used
as the training set to train the Res2Net classifier. The validation set is fed into all models listed in
Table 9, labelled with the architecture of the vocoder, and used as the validation set for the Res2Net
classifier. The evaluation set is fed into the vocoders that were not involved in the training set. The
copy-synthesis setup is summarized in Table 8.

Table 10 and Figure 8 (see appendix) display the classification results and confusion matrix. The
results obtained from the experiment corroborate our hypothesis that, while fingerprints are vocoder-
specific on a finer granularity than architecture difference (see Experiments 2–4), these differences
are also less pronounced than architectural differences. As our experiments reported here deals

1https://github.com/robd003/sph2pipe
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Table 8: Vocoder models used for copy synthesis in our final experiment.

Subset Parallel WaveGAN HiFiGAN Style MelGAN Multiband MelGAN
training P0 H0 S0 M0
validation P0, P1, P2 H0, H1, H2 S0, S1, S2 M0, M1, M2
evaluation P1, P2 H1, H2 S1, S2 M1, M2

Table 9: Vocoder model setups in our final experiment.

Model Architecture Seed Batch Steps
P0 Parallel WaveGAN 1000 6 500,000
P1 Parallel WaveGAN 1001 6 500,000
P2 Parallel WaveGAN 1000 8 375,000
H0 HiFiGAN 1000 16 1,000,000
H1 HiFiGAN 1001 16 1,000,000
H2 HiFiGAN 1000 8 2,000,000
S0 Style MelGAN 1000 16 1,000,000
S1 Style MelGAN 1001 16 1,000,000
S2 Style MelGAN 1000 8 2,000,000
M0 Multiband MelGAN 1000 16 500,000
M1 Multiband MelGAN 1001 16 500,000
M2 Multiband MelGAN 1000 8 1,000,000

Table 10: Results (%) on the com-
bined effects of vocoder architectures
and training setups

Precision Recall F1 score
Real 99.15 100.00 99.57

P 83.80 96.16 89.56
H 89.53 90.74 90.13
M 90.25 81.64 85.73
S 99.27 92.35 95.68

Average 91.65 91.31 91.31

solely with the acoustic features that depend on the specific vocoders being used to generate a given
audio sample, we believe that these results offer much insight; namely that any fine-grained differ-
ence resulting from different training setups may be overshadowed by the differences in vocoder
architecture, in the process of vocoder fingerprint analysis. The precise relationship between archi-
tecture and parameters, however, remains an objective to be investigated in our future efforts.

5 VISUALIZATION

While we observe the effectiveness of fingerprints in distinguishing between audio generated by
different vocoder models through evaluating the classification performances, it is also possible to
directly see the separability of these fingerprints through the t-SNE method (van der Maaten & Hin-
ton, 2008) that maps from a space with higher dimensionality (in our case, 256) to a 2D surface
while making similar points closer and dissimilar points farther on the new surface. Figure 3 (see
Appendix) shows the results of t-SNE mapping of the fingerprints extracted in our four experiments.
While minor overlaps exist, corresponding to the confusions in classification, the mapped represen-
tations still clearly show that fingerprints belonging to different vocoder models are distinguishable.
Furthermore, the fact that the t-SNE algorithm naturally clusters fingerprints of the same model to-
gether indirectly confirms that vocoder fingerprints are model-specific, in that fingerprints of each
model forms a concentrated distribution around different mean values.

6 CONCLUSION

We have presented our study of extracting vocoder fingerprints as an effort to identify fake audio
generation source. Our five experiments verify the existence of model-specific vocoder fingerprints
and demonstrate that even small differences in the training process of vocoder models can result in
their fingerprints being distinct, allowing for fine-grained source identification of fake audio. Fur-
thermore, we show that it is possible to determine the architecture of a vocoder used to generate an
audio sample, even if the precise parameters of the said vocoder model has been changed because of
a different training setup. We find this result encouraging because it suggests that our proposed us-
age of vocoder fingerprint extraction for forensics and copyright protection may be viable. Despite
our results, we have yet to study the impact of different languages (and therefore different phono-
logical feature distributions) and acoustic models can have on the fingerprints of generated audios,
and exploring these questions will form the focus of our future studies.
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Figure 3: t-SNE representation of fingerprints extracted in our experiments.
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