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ABSTRACT

Learning disentangled representations of concepts and re-composing them in
unseen ways is crucial for generalizing to out-of-domain situations. However, the
underlying properties of concepts that enable such disentanglement and composi-
tional generalization remain poorly understood. In this work, we propose the prin-
ciple of interaction asymmetry which states: “Parts of the same concept have more
complex interactions than parts of different concepts”. We formalize this via block
diagonality conditions on the (n+1)th order derivatives of the generator mapping
concepts to observed data, where different orders of “complexity” correspond to
different n. Using this formalism, we prove that interaction asymmetry enables
both disentanglement and compositional generalization. Our results unify recent
theoretical results for learning concepts of objects, which we show are recovered
as special cases with n = 0 or 1. We provide results for up to n = 2, thus extend-
ing these prior works to more flexible generator functions, and conjecture that the
same proof strategies generalize to larger n. Practically, our theory suggests that,
to disentangle concepts, an autoencoder should penalize its latent capacity and the
interactions between concepts during decoding. We propose an implementation
of these criteria using a flexible Transformer-based VAE, with a novel regularizer
on the attention weights of the decoder. On synthetic image datasets consisting
of objects, we provide evidence that this model can achieve comparable object
disentanglement to existing models that use more explicit object-centric priors.

1 INTRODUCTION

A core feature of human cognition is the ability to use abstract conceptual knowledge to generalize
far beyond direct experience (Behrens et al., 2018; Mitchell, 2021; Murphy, 2004; Tenenbaum et al.,
2011). For example, by applying abstract knowledge of the concept “chair”, we can easily infer how
to use a “chair on a beach”, even if we have not yet observed this combination of concepts. This feat
is non-trivial and requires solving two key problems. Firstly, one must acquire an abstract, internal
model of different concepts in the world. This implies learning a separate internal representation of
each concept from sensory observations. Secondly, these representations must remain valid when
observations consist of novel compositions of concepts, e.g., “chair” and “beach”. In machine learn-
ing, these two problems are commonly referred to as learning disentangled representations (Bengio
et al., 2013; Higgins et al., 2018; Schölkopf et al., 2021) and compositional generalization (Fodor
and Pylyshyn, 1988; Goyal and Bengio, 2022; Greff et al., 2020; Lake et al., 2017).

Both problems are known to be challenging due to the issue of non-identifiability (Hyvärinen et al.,
2023). Namely, many models can explain the same data equally well, but only some will learn
representations of concepts which are disentangled and generalize compositionally. To guarantee
identifiability with respect to (w.r.t.) these criteria, it is necessary to incorporate suitable inductive
biases into a model (Hyvärinen and Pajunen, 1999; Lachapelle et al., 2023; Locatello et al., 2019).
These inductive biases, in turn, must reflect some underlying properties of the concepts which give
rise to observed data. This raises a fundamental question: What properties of concepts enable
learning models which provably achieve disentanglement and compositional generalization?
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Figure 1: Illustration of Interaction Asymmetry. (Left) Observations x result from a generator f applied to
latent slots zBk that represent separate concepts. As indicated by the reflection of the cylinder upon the cube,
slots can interact during generation. Our key assumption, interaction asymmetry, states that these interactions
across slots must be less complex than interactions within the same slot. (Right) This is formalized by assuming
block-diagonality across but not within slots for the (n+1)th order derivatives of the generator, i.e., Dn+1f .

Many works aim to answer this question by studying properties enabling either disentanglement or
compositional generalization in isolation. This is insufficient, however, as disentanglement alone
does not imply compositional generalization (Montero et al., 2022a; 2021; Schott et al., 2022),
while compositional generalization requires first disentangling the concepts to be composed. Only
a few studies investigate properties enabling both disentanglement and compositional generaliza-
tion (Brady et al., 2023; Lachapelle et al., 2023; Wiedemer et al., 2024a). Yet, the properties pro-
posed in these works are rather restrictive and specific to objects in simple visual scenes. There
is growing evidence, however, that the principles humans use to learn conceptual knowledge are
not concept-specific, but shared across different concepts (objects, attributes, events, etc.) (Behrens
et al., 2018; Constantinescu et al., 2016; Hawkins et al., 2018). This suggests there exist some gen-
eral properties of concepts which enable both disentanglement and compositional generalization.

In this work, we seek to formulate such a general property for disentangling and composing con-
cepts. We begin by aiming to deduce, from first principles, properties which are fundamental to
concepts (§ 3). From this, we arrive at the guiding principle of interaction asymmetry (Principle 3.1)
stating: “Parts of the same concept have more complex interactions than parts of different concepts”.
As illustrated in Fig. 1 (left), we define concepts as distinct groups, or slots, of latent variables which
generate the observed data (§ 2). Interaction asymmetry is then formalized as a block-diagonality
condition across but not within slots ofDn+1f , the tensor of (n+1)th order partial derivatives of the
generator function (Asm. 3.5), where n determines the complexity of interactions, see Fig. 1 (right).

Theory. Using this formulation, we prove that interaction asymmetry dually enables both disentan-
glement (Thm. 4.3) and compositional generalization (Thm. 4.4). We also show that our formalism
provides a unifying framework for prior results of Brady et al. (2023) and Lachapelle et al. (2023), by
proving that the properties studied in these works for visual objects are special cases of our assump-
tions for n=0 and 1, respectively. We provide results for up to n=2, thereby extending these prior
works to more general function classes, and conjecture that our results generalize to arbitrary n�0.

Method. Our theory suggests that to disentangle concepts, a model should (i) enforce invertibility,
without using more latent dimensions than necessary, and (ii) penalize interactions across slots dur-
ing decoding. To translate these insights into a practical method, we leverage a VAE loss (Kingma
and Welling, 2014) for (i), and observe that the Transformer architecture (Vaswani et al., 2017) of-
fers an approximate means to achieve (ii) since interactions are determined by the attention weights
of the model. To this end, we introduce an inexpensive interaction regularizer for a cross-attention
mechanism, which we incorporate, with the VAE loss, into a flexible Transformer-based model (§ 5).

Empirical Results. We test this model’s ability to disentangle concepts of visual objects on a Sprites
dataset (Watters et al., 2019a) and on CLEVR6 (Johnson et al., 2017). We find that the model re-
liably learns disentangled representations of objects, improving performance over an unregularized
Transformer (§ 6). Furthermore, we provide preliminary evidence that our regularized Transformer
can achieve comparable performance to models with more explicit object-centric priors such as Slot
Attention (Locatello et al., 2020b) and Spatial Broadcast Decoders (Watters et al., 2019b).

Notation. We write scalars in lowercase (z), vectors in lowercase bold (z), and matrices in capital
bold (M ). [K] stands for f1, 2, ...,Kg. Di and D2

i,j stand for the first- and second-order partial
derivatives with respect to (w.r.t.) zi and (zi, zj), respectively. If B � [n] and z 2 Rn, zB denotes
the subvector (zi)i∈B indexed by B. A function is Cn if it is n-times continuously differentiable.
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2 BACKGROUND

We begin with formalizing the core ideas of concepts, disentanglement, and compositional gen-
eralization, mostly following the setup of Lachapelle et al. (2023). To begin, we assume that the
observed datax 2 X � Rdx results from applying a diffeomorphic generatorf : Z ! X to
latent vectorsz 2 Z := Rdz , sampled from some distributionpz . Concepts underlyingx (objects,
attributes, events, etc.) are then modelled asK disjoint groups orslotsof latentszB k such that
z = ( zB 1 ; :::; zB K ), whereBk � [dz ]. We assume thatpz is only supported on a subsetZ supp � Z
which gives rise to observed dataXsupp := f (Z supp). This generative process can be summarized as:

x = f (z); z � pz ; supp(pz ) = Z supp: (2.1)

Next, consider a model̂f : Z ! Rdx trained to be invertible fromXsupp to Ẑ supp := ^f � 1(Xsupp),
whose inverse^f � 1 maps to a representation̂z 2 Ẑ supp � Z . This model is said to learn a
disentangledrepresentation ofz 2 Z supp if each model slot̂zB j captures exactly one conceptzB k .

De�nition 2.1 (Disentanglement). Let f : Z ! X be a diffeomorphism and�Z � Z . A model
^f disentanglesz on �Z w.r.t. f if there exist a permutation� of [K ] and slot-wise diffeomorphism

h = ( h1; : : : ; hK ) with h k : RjB � ( k ) j ! RjB k j andjB � (k ) j = jBk j such that for allz 2 �Z :

^f
�
h1

�
zB � (1)

�
; : : : ; hK

�
zB � ( K )

��
= f (z) : (2.2)

In other words, a representation is disentangled if the model inverts the generator up to permutation
and reparametrization of the slots. Forcompositional generalization, we would like this to hold not
only onZ suppbut also for arbitrary combinations of the slots therein. Namely, also on the set

ZCPE := Z1 � Z 2 � � � � � Z K ; with Z k := f zB k j z 2 Z suppg (2.3)

whereZ k denote the marginal supports ofpz andZCPE theCartesian-product extension(Lachapelle
et al., 2023) ofZ supp. In general,Z supp is a subset ofZCPE . Thus, to generalize compositionally, a
model must also achieve disentanglement “out-of-domain” on novel compositions of slots inZCPE .

De�nition 2.2 (Compositional Generalization). Let f : Z ! X be a diffeomorphism. A model̂f
that disentanglesz onZ suppw.r.t. f (Defn. 2.1)generalizes compositionallyif it also disentanglesz
onZCPE w.r.t. f .

On the Necessity of Inductive Biases.It is well known that only a small subset of invertible
models achieve disentanglement onZ supp (Hyvärinen and Pajunen, 1999; Locatello et al., 2019)
or generalize compositionally toZCPE (Lachapelle et al., 2023). To provably achieve these goals
(without explicit supervision), we thus need to further restrict the space of permissible models, i.e.,
place additional assumptions on the generative process in Eq. (2.1). Such assumptions then translate
into inductive biases on a model. To this end, the core challenge is formulating assumptions onpz
or f which faithfully re�ect properties of concepts, while suf�ciently restricting the problem.

Assumptions onpz . To guarantee disentanglement, several assumptions onpz have been proposed,
such as conditional independence of latents given an auxiliary variable (Hyvärinen et al., 2019; Khe-
makhem et al., 2020); particular temporal (Hälvä and Hyvarinen, 2020; Hyvärinen and Morioka,
2016; 2017; Klindt et al., 2021), spatial (Hälvä et al., 2021; 2024), or other latent structures (Kivva
et al., 2022; Kori et al., 2024); multiple views (Ahuja et al., 2022; Brehmer et al., 2022; Gresele et al.,
2020; Locatello et al., 2020a; von Kügelgen et al., 2021; Yao et al., 2024; Zimmermann et al., 2021);
or interventional information (Buchholz et al., 2023; Lachapelle et al., 2022; 2024; Lippe et al.,
2022; 2023; Varici et al., 2024; von K̈ugelgen et al., 2023). While suf�cient for disentanglement,
such assumptions do not guarantee compositional generalization. The latter requires that the behav-
ior of the generator onZCPE can be determined solely from its behavior onZ supp (see Defn. 2.2).
In the most extreme case, where the values of each slotzB k are seen only once,Z supp will be a
one-dimensional manifold embedded inZ , while ZCPE is alwaysdz -dimensional. This highlights
that generalizing fromZ supp to ZCPE is only possible if the form of the generatorf is restricted.

Assumptions onf . Restrictions onf which enable compositional generalization have been pro-
posed by Dong and Ma (2022); Lippl and Stachenfeld (2024); Wiedemer et al. (2024b).Yet, these
results rely on quite limited function classes and do not address disentanglement, assuming it to be
solved a priori. Conversely, several works explore restrictions onDf such as orthogonality (Buch-
holz et al., 2022; Gresele et al., 2021; Horan et al., 2021) or sparsity (Leemann et al., 2023; Moran
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et al., 2022; Zheng and Zhang, 2023) which address disentanglement but not compositional general-
ization. More recently, Brady et al. (2023) and Lachapelle et al. (2023) proposed assumptions onf
which enable both disentanglement and compositional generalization (Wiedemer et al., 2024a). Yet,
these assumptions are overly restrictive such thatf can only model limited types of concepts, e.g.,
non-interacting objects, and not more general concepts. We discuss these two works further in § 4.3.

3 THE INTERACTION ASYMMETRY PRINCIPLE

In this section, we attempt to formulate assumptions that enable disentanglement and compositional
generalization, while capturing more general properties of concepts. To approach this, we take a step
back and try to understand what are the de�ning properties of concepts. Speci�cally, we consider
the question:Why are some structures in the world recognized as different concepts (e.g., apple vs.
dog) and others as part of the same concept?We propose an answer to this for concepts grounded in
sensory data, such as objects (e.g., “car”), events (e.g., “making coffee”), or attributes (e.g., “color”).

Sensory-grounded concepts correspond to reoccurring visual or temporal patterns that follow an
abstract template. They tend to be modular, such that independently changing one concept generally
leaves the structure of other concepts intact (Greff et al., 2015, § 4.1.1; Peters et al., 2017). For
example, a car can change position without affecting the structure of the street, buildings, or people
around it. Thus, different concepts appear, in some sense, tonot interact.

On the other hand, parts of the same concept do not seem to possess this modularity. Namely,
arbitrarily changing one part of a concept without adjusting other parts is generally not possible
without destroying its inherent structure. For example, it is not possible to change the position of the
front half of a car, while maintaining something we would still consider a car, without also changing
the back half's position. Thus, parts of the same concept seem tointeract.

This may then lead us to answer our initial question with: Parts of the same concept interact, while
different concepts do not. However, this is an oversimpli�ed view, as parts of different concepts can,
in fact, interact. For example, in Fig. 1 we see the purple cylinder re�ects upon and thus interacts
with the golden cube. However, such interactions across concepts appear somehow simpler than
interactions within a concept: whereas the latter can alter the concept's structure, the former gener-
ally will not. In other words, the complexity of interaction within and across concepts appears to be
asymmetric. We formulate this as the following principle (see Appx. G.1 for related principles).

Principle 3.1 (Interaction Asymmetry). Parts of the same concept have more complex interactions
than parts of different concepts.

To investigate the implications of Principle 3.1 for disentanglement and compositional generaliza-
tion, we must �rst give it a precise formalization. To this end, we need a mathematical de�nition
of the “complexity of interaction” between parts of concepts, i.e., groups of latents from the same
or different slots. This can be formalized either through assumptions on the latent distributionpz or
on the generatorf . Since the latter are essential for compositional generalization, this is our focus.

Let us start by imagining what it would mean if two groups of latent componentszA andzB interact
with no complexity, i.e., haveno interactionwithin f . A natural way to formalize this is thatzA and
zB affect distinct output componentsf l . Mathematically, this is captured as follows.

De�nition 3.2 (At most0th order/No interaction). Let f : Z ! X beC1, and letA; B � [dz ] be
non-empty.zA andzB haveno interactionwithin f if for all z 2 Z , and alli 2 A; j 2 B :

D i f (z) � D j f (z) = 0 : (3.1)

To de�ne the next order of interaction complexity, we assume thatzA andzB do interact, i.e., they
affect the same outputf l such thatD i f l (z) andD j f l (z) are non-zero for somei 2 A, j 2 B . This
interaction, however, should have the lowest possible complexity. A natural way to capture this is to
say thatzi can affect the same outputf l aszj but cannot affectthe way in whichf l depends onzj .
Since the latter is captured byD j f l (z), this amounts to a question about the2nd order derivative
D 2

i;j f l . We thus arrive at the following de�nition for the next order of interaction complexity.

De�nition 3.3 (At most1st order interaction). Let f : Z ! X beC2, and letA; B � [dz ] be non-
empty.zA andzB haveat most1st order interactionwithin f if for all z 2 Z , and alli 2 A; j 2 B :

D 2
i;j f (z) = 0 : (3.2)
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Using the same line of reasoning, we can continue to de�ne interactions at increasing orders of
complexity. For example, forat most2nd order interaction, zi can affect the derivativeD j f l ,
such thatD 2

i;j f l (z) 6= 0 , but cannot affect the way in whichD j f l depends on any otherzk , i.e.,
D 3

i;j;k f l (z) = 0 . This leads to a general de�nition of interactions withat mostnth ordercomplexity.

De�nition 3.4 (At mostnth order interaction). Let n � 1 be an integer. Letf : Z ! X beCn +1 .
Let A; B � [dz ] be non-empty.zA andzB haveat mostnth order interactionwithin f if for all
z 2 Z , all i 2 A; j 2 B , and all multi-indices� 2 Ndz

0 with j� j = n + 1 and1 � � i ; � j :

D � f (z) = 0 : (3.3)

In other words,zA andzB have at mostnth order interaction withinf if all higher-than-nth order
cross partial derivatives w.r.t. at least one component ofzA and ofzB are zero everywhere. Other-
wise, if the statement in Defn. 3.4 does not hold for somez 2 Z , i 2 A, andj 2 B , we say thatzA
andzB have(n+1) th order interaction atz (and similarly for1st order interaction if Defn. 3.2 does
not hold). With these de�nitions, we can now provide a precise formalization of Principle 3.1.

Assumption 3.5(Interaction asymmetry (formal)). There existsn 2 N0 such that (i) any two distinct
slotszB i andzB j haveat mostnth order interactionwithin f ; and (ii) for all z 2 Z , all slotszB k

and all non-emptyA; B with Bk = A [ B , zA andzB have(n+1) th order interactionwithin f atz.

We emphasize that Asm. 3.5 (ii) does not state thatall subsets of latents within a slot must have
(n+1) th order interaction, but only that a slot cannot besplit into two parts with at mostnth order
interaction, see Fig. 1 (right). We also note that condition (ii) must holduniformlyoverZ , which
resembles the notion of “uniform statistical dependence” among latents introduced by Hyvärinen
and Morioka (2017, Defn. 1). For further discussions of Asm. 3.5, see Appx. H.1.

4 THEORETICAL RESULTS

We now explore the theoretical implications of Asm. 3.5 for disentanglement onZ suppand composi-
tional generalization toZCPE . We provide our results for up to at most2nd order interaction across
slots. All results—i.e., at most0th (no interaction), at most1st, and at most2nd order interaction—use
a uni�ed proof strategy. Thus, we conjecture this strategy can also be used to obtain results forn � 3.
This, however, would require taking(n + 1) � 4 derivatives of compositions of multivariate func-
tions, which becomes very tedious asn grows. Generalnth order results are thus left for future work.

4.1 DISENTANGLEMENT

We start by proving disentanglement onZ supp for which we will need two additional assumptions.

Basis-Invariant Interactions. First, one issue we must address is that our formalization of interac-
tion asymmetry (Asm. 3.5) is notbasis invariant. Speci�cally, it is possible that all splits of a slot
zB k have(n+1) th order interactions while forM k zB k , with M k a slot-wise change of basis matrix,
they have at mostnth order interactions. SinceM k need not affect interactions across slots, interac-
tion asymmetry may no longer hold in the new basis. This makes it ambiguous whether interaction
asymmetry is truly satis�ed, aszB k andM k zB k contain the same information. To address this, we
assume interaction asymmetry holds for all slot-wise basis changes, orequivalent generators.

De�nition 4.1 (Equivalent Generators). A function �f : Rdz ! Rdx is said to beequivalentto a
generatorf if for all k 2 [K ] there exists an invertible matrixM k 2 RjB k j�j B k j such that

8z 2 Rdz : �f (M 1zB 1 ; : : : ; M K zB K ) = f (zB 1 ; : : : ; zB K ): (4.1)

Suf�cient Independence. We require one additional assumption onf which we callsuf�cient in-
dependence. This assumption amounts to a linear independence condition on blocks of higher-order
derivatives off . Its main purpose is to remove redundancy in the derivatives off across slots, which
can be interpreted as further constraining the interaction across slots during generation. In the case

A multi-indexis an ordered tuple� = ( � 1 ; � 2 ; :::; � d ) of non-negative integers� i 2 N0 , with operations
j� j := � 1 + � 2 + ::: + � d , z � := z� 1

1 z� 2
2 ::: z� d

d , and D � := @� 1

@z
� 1
1

@� 2

@z
� 2
2

::: @� d

@z
� d
d

, see Appx. B for details.
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of n = 0 (i.e., no interaction across slots), suf�cient independence reduces to linear independence
between slot-wise Jacobians off (Defn. A.8). This is satis�ed automatically sincef is a diffeomor-
phism. Whenn> 0, we require an analogous linear independence condition on higher order deriva-
tives off . Below, we present this for the casen =2 , while for n =1 , it is presented in Defn. A.9.

De�nition 4.2 (Suf�cient Independence (2nd Order)). A C3 functionf : Rdz ! Rdx with at most
2nd order interactions across slots is said to havesuf�ciently independentderivatives if8z 2 Rdz :

rank

 �
�
D i f (z)

�
i 2 B k

[D 2
i;i 0f (z)] i 2 B k ;i 02 [dz ] [D 3

i;i 0;i 00f (z)]( i;i 0;i 00)2 B 3
k

�

k2 [K ]

!

=
X

k2 [K ]

h
rank

��
[D i f (z)] i 2 B k [D 2

i;i 0f (z)] i 2 B k ;i 02 [dz ]
��

+ rank
�

[D 3
i;i 0;i 00f (z)]( i;i 0;i 00)2 B 3

k

�i
:

With Defns. 4.1 and 4.2, we can now state our theoretical results; see Appx. A for complete proofs.

Theorem 4.3(Disentanglement onZ supp). Let n 2 f 0; 1; 2g. Let f : Z ! X be aCn +1 dif-
feomorphism satisfying interaction asymmetry (Asm. 3.5) for all equivalent generators (Defn. 4.1)
and suf�cient independence (Appx. A.2). LetZ supp be regular closed (Defn. A.3), path-connected
(Defn. A.14) and aligned-connected (Defn. A.16). A model^f : Z ! Rdx disentanglesz on Z supp

w.r.t. f (Defn. 2.1) if it is(i) a Cn +1 diffeomorphism between̂Z supp andXsupp with (ii) at most nth

order interactions across slots (Defn. 3.4) on̂Z supp.

Intuition. Assume for a contradiction thath := ^f � 1 � f entanglesa ground-truth slotzB k , i.e.,
DB k h(z) has multiple non-zero blocks. Becausef and ^f are invertible,h must encode all ofzB k

in ẑ := h(z). Further, becausef satis�es interaction asymmetry,zB k cannot be split into two parts
with less than(n+1) th order interaction. Taken together, this implies that ifh entangleszB k , then
there exist partszA andzB of zB k , with (n+1) th order interaction, encoded in different model slots.
Since the model̂f is constrained to have at mostnth order interactionsacrossslots, it cannot capture
this interaction. Thus, the only way that^f can satisfy (i) and (ii) without achieving disentanglement
is if reparametrizingz via h removed the interaction betweenzA andzB . This situation is prevented
by assuming suf�cient independence and that Asm. 3.5 holds for all equivalent generators.

Conditions on Z supp. The regular closed condition onZ supp in Thm. 4.3 ensures that equality be-
tween two functions onZ suppimplies equality of their derivatives, while the path-connectedness con-
dition prevents the one-to-one correspondence between the slots ofz and those of̂z from changing
across differentz (Lachapelle et al., 2023). The aligned-connectedness condition is novel and allows
one to take integrals to go fromlocal to globaldisentanglement (see Appx. A.3 for more details).

4.2 COMPOSITIONAL GENERALIZATION

We now show how Asm. 3.5 also enables learning a model that generalizes composition-
ally (Defn. 2.2), i.e., that equality off and ^f � h on Z supp also implies their equality onZCPE .
As discussed in § 2, such generalization is non-trivial and requires speci�c restrictions on a function
class. A key restriction imposed by interaction asymmetry is that interactions across slots are limited
to at mostnth order. In Thm. 4.3, this preventŝf � h from modelling interactions between parts of
the same ground-truth slot in different model slots. We now aim to show that limiting the interac-
tions across slots serves the dual role of makingf and ^f � h “predictable”, such that their behavior
on ZCPE can be determined fromZ supp. To do this, we will require a characterization of the form
of functions with at mostnth order interactions across slots, which we prove in Thm. C.2 to be:

f (z) =
P K

k=1 f k (zB k ) +
P

� :j � j� n c� z � : (4.2)

wherec� 2 Rdx . In the �rst sum, slots are processedseparatelyby functionsf k , while in the
second, they can interact more explicitly via polynomial functions of components from different
slots, with degree determined by the order of interaction,n. With this, we can now state our result.

Theorem 4.4 (Compositional Generalization). Let n 2 f 0; 1; 2g. Let Z supp be regular closed
(Defn. A.3). Letf : Z ! X and ^f : Z ! Rdx be C3 diffeomorphisms with at most nth order
interactions across slots onZ . If ^f disentanglesz on Z supp w.r.t. f (Defn. 2.1), then it generalizes
compositionally (Defn. 2.2).
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Figure 2: See intuition for Theorem 4.4.

Intuition. Consider the red dotted line in Fig. 2
(left) corresponding tof z 2 R2 j z1 = z�

1g. To
generalize compositionally, the behavior of the
partial derivative@fl

@z1
(z�

1 ; z2) on this line must
be predictable from the behavior off onZ supp,
and similarly for ^f � h . Becausef and, as we
show, ^f � h have at mostnth order interactions
across slots onRdz , the form of this derivative
is constrained to be a �xed-degree polynomial,
see Eq. (4.2) and Fig. 2 (right). Thus, its global behavior on the dotted line inRdz can be determined
from its derivative locally in a region inZ supp. Applying this reasoning to all such line segments in-
tersectingZ supp, we can show that the behavior off and ^f � h onZCPEcan be determined fromZ supp.

4.3 UNIFYING AND EXTENDING PRIOR RESULTS

We now show that our theory also recovers the results of Brady et al. (2023) and Lachapelle et al.
(2023) as special cases forn = 0 andn = 1 , and extends them to more �exible generative processes.

At most 0th Order Interaction. Brady et al. (2023) proposed two properties onf , which en-
able disentanglement and compositional generalization (Wiedemer et al., 2024b):compositionality
(Defn. E.1) andirreducibility (Defn. E.2). Compositionality states that different slots affect distinct
output components such thatD f (z) has a block-like structure. This is equivalent tof having at most
0th order interaction across slots (Defn. 3.2). Irreducibility is a rank condition onDB k f (z) which
Brady et al. (2023) interpreted as parts of the same object sharing information. In Thm. E.3, we
show that irreducibility is equivalent tof having 1st order interaction within slots for all equivalent
generators. Thus, the assumptions in Brady et al. (2023) are equivalent to interaction asymmetry for
all equivalent generators whenn = 0 . Further, we recover their disentanglement result using a novel
proof strategy, uni�ed with proofs for at most1st / 2nd order interaction across slots (Thm. A.20).

At most 1st Order Interaction. Lachapelle et al. (2023) also proposed two assumptions onf
for disentanglement and compositional generalization:additivity (Defn. E.4) andsuf�cient non-
linearity (Defn. E.5). Additivity is equivalent tof l having a block-diagonal Hessian for all
l 2 [dx ] (Lachapelle et al., 2023). This is the same asf having at most1st order interaction across
slots (Defn. 3.4). Suf�cient nonlinearity is a linear independence condition on columns of1st and2nd

derivatives off . In Thm. E.6, we show that suf�cient nonlinearity implies thatf satis�es suf�cient
independence forn = 1 and has 2nd order interaction within slots for all equivalent generators. Fur-
ther, we conjecture that the reverse implication does not hold. Thus, the assumptions of Lachapelle
et al. (2023) imply, and are conjectured to be stronger than, our assumptions whenn = 1 . We also
recover their same disentanglement result using a uni�ed proof strategy (Thm. A.22).

Allowing More Complex Interactions. Our theory not only uni�es but also extends these prior
results to more general function classes. This is clear from considering the form of functions with at
mostnth order interactions across slots in Eq. (4.2). For at most0th (Brady et al., 2023) or1st order
interactions (Lachapelle et al., 2023), the sum of polynomials on the RHS of (4.2) vanishes. Conse-
quently,f reduces to anadditivefunction. Such generators can only model concepts with trivial in-
teractions such as non-occluding objects. In contrast, we are able to go beyond additive interactions
via the polynomial terms in (4.2). This formally corroborates the “generality” of interaction asym-
metry, in that it enables more �exible generative processes where concepts can explicitly interact.

5 METHOD: ATTENTION-REGULARIZED TRANSFORMER-VAE

We now explore how our theoretical results in § 4 can inform the design of a practical estimation
method. Our theory puts forth two key properties that a model should satisfy: (i) invertibility and (ii)
limited interactions across slots of at mostnth order. To achieve disentanglement onZ supp, (i) and (ii)
must hold only “in-domain” onẐ suppandXsupp (Thm. 4.3), while for compositional generalization,
they must also hold out-of-domain, on all ofZ andX (Thm. 4.4). We will focus on approaches
for achieving (i) and (ii) in-domain. Achieving them out-of-domain requires addressing separate
practical challenges, which are out of the scope of this work. We discuss this in detail in Appx. H.3.
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On Scalability. Approaches that enforce (i) and (ii)exactlywill generally only be computationally
tractable in low-dimensional settings. Such computational issues are typical when translating a
disentanglement result into an empirical method, often resulting in methods which directly adhere
to theory but cannot scale beyond toy data (e.g., Brady et al., 2023; Gresele et al., 2021). Our core
motivation, however, is learning representations of concepts underlyinghigh-dimensionalsensory
data, such as images. Thus, to formulate a method which scales to such settings, we do not restrict
ourselves to approaches which exactly enforce (i) and (ii) and also exploreapproximateapproaches.

(i) Invertibility. Our theory requires invertibility betweenXsupp � Rdx andẐ supp � Z = Rdz . For
most settings of interest, the observed dimensiondx exceeds the ground-truth latent dimensiondz .
Thus, we generally cannot use models which are invertible by construction such as normalizing
�ows (Papamakarios et al., 2021). An alternative is to use anautoencoderin which ^f � 1 and ^f are
parameterized separately by anencoderĝ : Rdx ! Rdẑ and adecoder ^f : Rdẑ ! Rdx , which are
trained to invert each other (on̂Z suppandXsupp) by minimizing a reconstruction lossL rec := Ekx �
^f (ĝ(x ))k2. Minimizing L rec alone, however, does not suf�ce unless the inferred latent dimensiondẑ

equals the ground-truthdz . Yet, in practicedz is unknown. Moreover, choosingdẑ > d z is important
for scalability (Sajjadi et al., 2022a). A viable alternative is thus to employ a soft constraint where
dẑ > d z , but the model is encouraged to encodex using minimal latent dimensions. To achieve
this, we leverage the well known VAE loss (Kingma and Welling, 2014), which couplesL rec with
a KL-divergence lossL KL between a factorized posteriorq(ẑ jx ) and prior distributionp(ẑ), i.e.,
L KL :=

P
i 2 [dẑ ] D KL (q(ẑi jx )kp(ẑi )) . This loss encourages eachẑi to be insensitive to changes inx

such that unnecessary dimensions should contain no information aboutx (Rolinek et al., 2019).

(ii) At Most nth Order Interactions. One approach to enforce at mostnth order interactions across
slots would be to parameterize the decoder^f to match the form of such functions (see Thm. C.2) for
some �xedn. However, this can result in an overly restrictive inductive bias and limit scalability.
Moreover,n is generally unknown. Thus, a more promising approach is toregularizeinteractions
to beminimal. Doing this naively though using gradient descent would require computing gradients
of high-order derivatives, which is intractable beyond toy data. This leads to the question: Is there a
scalable architecture which permits ef�cient regularization of the interactions across slots?

Transformers for Interaction Regularization. We make the observation that theTransformer
architecture (Vaswani et al., 2017) provides an ef�cient means to approximately regularize interac-
tions. In a Transformer, slots are only permitted to interact via anattention mechanism. We will
focus on across-attentionmechanism, which maps a latent vectorẑ to outputx̂ l (e.g., a pixel) via:

K = W K [ẑB 1 � � � ẑB K ]; V = W V [ẑB 1 � � � ẑB K ]; Q = W Q [o1 � � � odx ]; (5.1)

A l;k =
exp

�
Q>

:;l K :;k
�

P
i 2 [K ] exp

�
Q>

:;l K :;i
� ; �x l = A l; :V > ; x̂ l =  ( �x l ) : (5.2)

In Eq. (5.1), all slots are assumed to have equal size, and keyK :;k and valueV:;k vectors are com-
puted for each slotk 2 [K ]. Query vectors are computed for output dimensionsl 2 [dx ] (e.g., pixel
coordinates) and eachl is assigned a �xed vectorol . In Eq. (5.2), queries and keys are used to com-
pute attention weightsA l;k . These weights determine the slots pixell “attends” to when generating
pixel token�x l , which is mapped to a pixel̂x l by nonlinear function ; see Appx. F for further details.

Within cross-attention, interactions across slots occur if the query vector for a pixell attends to
multiple slots, i.e., ifA l;k is non-zero for more than onek. Conversely, ifA l;k is non-zero for only
onek, then, intuitively, no interactions should occur. This intuition can be corroborated formally
by computing the Jacobian of cross-attention w.r.t. each slot (see Appx. F.1). Thus, an approximate
means to minimize interactions across slots is to regularizeA towards having only one non-zero
entry for each rowA l; :. To this end, we propose to minimize the sum of all pairwise products
A l;j A l;k , wherej 6= k (see Fig. 4). This quantity is non-negative and will only be zero when each
row of A has exactly one non-zero entry. This resembles thecompositional contrastof Brady et al.
(2023), but computed onA , which can be ef�ciently optimized, as opposed to the Jacobian of^f
which is intractable to optimize. We refer to this regularizer asL interact, see Eq. (F.9).

Model. Combining these different objectives leads us to the following weighted three-part-loss:

L disent( ^f ; ĝ; x ) = L rec + � L interact+ � L KL ; (5.3)
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Figure 3:(A) Sprites Normalized slot-wise Jacobians for an unregularized (� = 0 ; � = 0 ) and a regularized
(� > 0; � > 0) Transformer and a Spatial Broadcast Decoder (SBD). The unregularized model encodes objects
across multiple slots, while the regularized model matches the disentanglement of the SBD.(B) CLEVR6 Slot-
wise Jacobians for a regularized Transformer and a SBD on objects in CLEVR6 which interact via re�ections.
As can be seen in reconstructions and Jacobians, the regularized Transformer models re�ections, while mostly
removing unnecessary interactions, while the SBD fails to model re�ections due to its restricted architecture.

We apply this loss to a �exible Transformer-based autoencoder, similar to the models of Jabri et al.
(2023); Jaegle et al. (2022); Sajjadi et al. (2022b). For the encoderĝ, we �rst map datax to features
using the CNN of Locatello et al. (2020b). These features are processed by a Transformer, which has
both self- and cross-attention at every layer, yielding a representationẑ. Our decoder̂f then mapŝz
to an output̂x using a cross-attention Transformer regularized withL interact, see Appx. J for details.

Relationship to Models In Object-Centric Learning. Existing models for learning disentangled
representations of concepts, particularly for disentangling objects without supervision, typically rely
on architectural priors rather than regularization (Greff et al., 2019; Locatello et al., 2020b; Seitzer
et al., 2023; Singh et al., 2022a). While such priors promote disentanglement, they are often too
restrictive. For example, Spatial Broadcast Decoders (Watters et al., 2019b) decode slots separately
and only allow for weak interaction through a softmax function, which prevents modelling real-
world data where objects exhibit more complex interactions (Singh et al., 2022a). While some works
have shown success in disentangling objects using more powerful Transformer decoders (Sajjadi
et al., 2022a; Singh et al., 2022a;b), they rely on encoders that use Slot Attention (Locatello et al.,
2020b) as an architectural component, which differs from current large-scale models, typically based
on Transformers (Anil et al., 2023). In contrast, we explore the more �exible approach of starting
with a very general Transformer-based model and regularizing it towards a more constrained model.

6 EXPERIMENTS

We now apply our attention-regularized Transformer-VAE (§ 5) for learning representations of con-
cepts. Since this model is designed to enforce the criteria outlined in Thm. 4.3 for disentanglement
on Z supp, we focus on evaluating disentanglement, as opposed to compositional generalization. To
this end, we focus on disentangling objects in visual scenes, and leave an empirical study of a wider
range of concepts (e.g., attributes, object-parts, events) for future work (see Appx. J for details).

Data. We consider two multi-object datasets in our experiments. The �rst, which we refer to as
Sprites (Brady et al., 2023; Watters et al., 2019a; Wiedemer et al., 2024b), consist of images with2–
4 objects set against a black background. The second is the dataset (Johnson et al., 2017), consisting
of images with2–6 objects. In Sprites, objects do not have re�ections and rarely occlude such
that slots have essentially have no interaction. In CLEVR6, however, objects can cast shadows and
re�ect upon each other (see Fig. 1 for an example), introducing more complex interactions.

Metrics. A common metric for object disentanglement is the Adjusted-Rand Index (ARI; Hubert
and Arabie, 1985). The ARI measures the similarity between the set of pixels encoded by a model
slot, and the set of ground-truth pixels for a given object in a scene, yielding an optimal score if each
slot corresponds to exactly one object. To assign a pixel to a unique model slot, prior works typically
choose the slot with the largest attention score (from, e.g., Slot Attention) for that pixel (Seitzer
et al., 2023). However, using attention scores can make model comparisons challenging and is
also somewhat unprincipled (see Appx. J.2). We thus consider an alternative and compute the ARI
using the Jacobian of a decoder (J-ARI). Speci�cally, we assign a pixell to the slot with the largest
L 1 norm for the slot-wise JacobianDB k f̂ l (ẑ ) (see Fig. 3 for a visualization of these Jacobians).

While J-ARI indicates which slots are most responsible for encoding each object, it does not indicate
if additional slots affect the same object, i.e.,kDB k f̂ l (ẑ )k1 6= 0 for more than onek. To measure
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Table 1:Empirical Results. We show the mean� std. dev. for J-ARI and JIS (in %) over 3 seeds for different
choices of encoders and decoders and weights of the loss terms in Eq. (5.3) on Sprites and CLEVR6.

Model Sprites CLEVR6

Encoder Decoder Loss J-ARI(" ) JIS (" ) J-ARI (" ) JIS (" )

Slot Attention Spatial-Broadcast � = 0 ; � = 0 89:3 � 1:5 91:4 � 0:8 97:0 � 0:2 95:3 � 0:7
Slot Attention Transformer � = 0 ; � = 0 90:1 � 1:4 73:6 � 1:5 95:5 � 1:0 63:1 � 1:0
Transformer Transformer � = 0 ; � = 0 80:5 � 4:1 57:0 � 8:0 92:7 � 3:3 54:8 � 3:5
Transformer Transformer � = 0 :05; � = 0 82:8 � 3:6 73:8 � 4:0 79:2 � 12:8 51:6 � 5:9
Transformer Transformer � = 0 ; � = 0 :05 92:6 � 2:0 92:8 � 0:9 96:6 � 0:3 80:3 � 0:4
Transformer Transformer � = 0 :05; � = 0 :05 (Ours) 93:7 � 0:6 95:0 � 1:7 96:5 � 0:4 83:8 � 1:1

this, we also introduce the Jacobian Interaction Score (JIS). JIS is computed by taking the maximum
of kDB k f̂ l (ẑ )k1 across slots after normalization, averaged over all pixels. If each pixel is affected by
only one slot, JIS is1. For datasets where objects essentially do not interact like Sprites, JIS should
be close to1, whereas for CLEVR6, it should be as high as possible while maintaining invertibility.

6.1 RESULTS

L disent Enables Object Disentanglement.In Tab. 1, we compare the J-ARI and JIS of our regu-
larized Transformer-based model (� > 0; � > 0) trained withL disent (Eq. (5.3)) to the same model
trained without regularization (� = 0 ; � = 0 ), i.e., with onlyL rec. On Sprites, the regularized model
achieves notably higher scores for both J-ARI and JIS. This is corroborated by visualizing the slot-
wise Jacobians in Fig. 3A, where we see the regularized model cleanly disentangles objects, whereas
the unregularized model often encodes objects across multiple slots. Similarly, on CLEVR6, the reg-
ularized model achieves superior disentanglement, as indicated by the higher values for both metrics.

Comparison to Existing Object-Centric Autoencoders. In Tab. 1, we also compare our model
to existing models using encoders with Slot Attention and Spatial Broadcast Decoders (SBDs).
On Sprites, our model achieves higher J-ARI and JIS than these models, despite using a weaker
architectural prior. On CLEVR6, our model outperforms Slot Attention with a Transformer decoder
in terms of J-ARI and JIS. Models using a SBD, however, achieve a higher and nearly perfect JIS,
i.e., the learned slots essentially never affect the same pixel. In Fig 3B, we see this comes at the cost
of SBDs failing to model re�ections between objects, while our model captures this interaction. This
highlights that regularizing a �exible architecture withL disent can enable a better balance between
restricting interactions and model expressivity.

Ablation Over Losses. Lastly, in Tab. 1, we ablate the impact of the regularizers inL disent.
Training withoutL KL (�> 0; � =0 ) can in some cases give improvements in J-ARI and JIS over an
unregularized model (� =0 ; � =0 ). However, across datasets this loss yields worse disentanglement
thanL disent (� > 0; � > 0). This highlights that penalizing latent capacity viaL KL is important for
object disentanglement. Training withoutL interac (� = 0 ; � > 0) generally yields a drop across both
metrics compared toL disent, though on CLEVR6 this loss achieves a comparable J-ARI. We found
that training withL KL can, in some cases, implicitly minimizeL interac, explaining this result (Fig. 5).

More Complex Data. Tab. 2 in Appx. I presents additional results for the visually complex CLEVR-
Tex dataset (Karazija et al., 2021). For these experiments, we follow Seitzer et al. (2023) and recon-
struct image representations based on a pre-trained encoder rather than the original images. We �nd
our model to achieve superior J-ARI compared to an unregularized Transformer and a Slot Attention
baseline, but slot-wise MLP decoders yield higher JIS. For further details, see Appx. I.

7 CONCLUSION

In this work, we proposed interaction asymmetry as a general principle for learning disentangled
and composable representations. Formalizing this idea led to a constraint on the partial derivatives
of the generator function, which uni�es assumptions from prior efforts and extends their results to
a more �exible class of generators that allow for non-trivial interactions. These theoretical insights
inspired the development of a �exible estimation method based on the Transformer architecture with
a novel cross-attention regularizer, which can be ef�ciently implemented at scale, and which shows
promising results on object-centric learning datasets. Future work should seek to further extend our
theoretical results, address the empirical challenges for achieving compositional generalization, and
test our method on more large-scale data involving not only objects but also other types of concepts.
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H. Hälvä and A. Hyvarinen. Hidden markov nonlinear ICA: Unsupervised learning from nonstation-
ary time series. InConference on Uncertainty in Arti�cial Intelligence, pages 939–948. PMLR,
2020. [Cited on p. 3.]
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A D ISENTANGLEMENT PROOFS

A.1 ADDITIONAL DEFINITIONS AND LEMMAS

De�nition A.1 (Ck -diffeomorphism). Let A � Rn andB � Rm . A mapf : A ! B is said to be
aCk -diffeomorphism if it is bijective,Ck and has aCk inverse.

RemarkA.2. The property of being differentiable is usually de�ned only for functions with an open
domain ofRn . Note that, in the de�nition above, bothA andB might not be open sets in their
respective topologies. For an arbitrary domainA � Rn , we say that a functionf is Ck if it can be
extended to aCk function de�ned on an open setU containingA. More precisely,f : A ! B is
Ck if there exists a functiong : U ! Rm such that 1)U is an open set containingA, 2)g is Ck , and
3) g(a) = f (a) for all a 2 A. See p.199 of Munkres (1991) for details about such constructions.

De�nition A.3 (Regular closed sets). A setZ supp � Rdz is regular closed ifZ supp = Z �
supp, i.e. if it

is equal to the closure of its interior (in the standard topology ofRn ).

Lemma A.4(Lachapelle et al. (2023)). LetA; B � Rn and suppose there exists an homeomorphism
f : A ! B . If A is regular closed inRn , we have thatB � B � .

The way we de�nedCk functions with arbitrary domain is such that a function can be differentiable
without having a uniquely de�ned derivative everywhere on its domain. This happens when the
derivative of two distinct extensions differ. The following Lemma states that the derivative of aCk

function is uniquely de�ned on the closure of the interior of its domain.

Lemma A.5 (Lachapelle et al. (2023)). Let A � Rn and f : A ! Rm be aCk function. Then,
its k �rst derivatives are uniquely de�ned onA � in the sense that they do not depend on the speci�c
choice ofCk extension.

Notation For a subsetS � [dz ] and a matrixA 2 Rm � n , A S will denote the sub-matrix consist-
ing of the columns inA indexed byS i.e. A S = [ A :;i ]i 2 S . Similarly, for a vectorz, zS will denote
the sub-vector ofz consisting of components indexed byS i.e. zS := ( zi ) i 2 S .

Lemma A.6. LetA 2 Rm � n and letB be a partition of[n]. If

rank(A ) =
X

S2B

rank(A S ) (A.1)

Then8z 2 Rn s.t. Az = 0 , A SzS = 0 , for anyS 2 B.

Proof. Assume for a contradiction that there exist az 2 Rn , s.t. Az = 0 , and there existS1 2 B
s.t. A S1 zS1 6= 0 .

Now construct the matrix, denoted,A � S1 consisting of all columns inA except those indexed by
S1, i.e.

A � S1 :=
�
[A :;i ]i 2 S

�
S2Bn S1

(A.2)

By using (A.1) and the property that rank([B ; C ]) � rank(B ) + rank(C ), we get

rank(A ) =
X

S2Bn S1

rank(A S ) + rank(A S1 ) (A.3)

� rank(A � S1 ) + rank(A S1 ) (A.4)
� rank(A ) : (A.5)

Consequently, we have that:

rank(A ) = rank(A � S1 ) + rank(A S1 ) (A.6)

This implies that the column spaces of both matrices denoted range(A � S1 ); range(A S1 ) respec-
tively, do not intersect, except at the zero vector.

A simple example of such a situation is the trivial functionf : f 0g ! f 0g which is differentiable at0 but
does not have a well de�ned derivative becauseg(x) = x andh(x) = � x are both differentiable extensions of
f but have different derivatives atx = 0 .
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Now we know that atz

0 = Az (A.7)
= A � S1 z � S1 + A S1 zS1 (A.8)

Consequently,

A � S1 z � S1 = � A S1 zS1 (A.9)

and by our assumed contradiction we know that atz:

A S1 zS1 6= 0 (A.10)

This implies that the column spaces ofA � S1 ; A S1 must intersect at a point other than the zero
vector, which is a contradiction.

Lemma A.7. LetA 2 Rd� d be an invertible matrix andf B1; : : : ; BK g be a partition of[d]. Assume
there arek1; k2; k 2 [K ] such that:

A B k ;B k 1
6= 0 6= A B k ;B k 2

(A.11)

Then there exists a subsetS � [d] with cardinalityjBk j that has the following properties:

1. The sub-blockA B k ;S is invertible.

2. S 6� Bk 0, for anyk0 2 [K ]

Proof. We �rst prove that there must exists anS satisfying point 1. SinceA is invertible, each
subset of rows is linearly independent and thus rank(A B k ;:) = jBk j. This implies that there exist a
setS � [d] with cardinalityjBk j such that8i 2 S;A B k ;i are linearly independent, and thus form a
basis ofRjB k j .

If S 6� Bk 0 for all k0 2 [K ], we are done.

We consider the case where there exists ak0 such thatS � Bk 0. We will show that we can construct
a differentS� from S which satis�es both conditions.

We know by (A.11) that there exist a second blockk� 6= k0 such that for somej � 2 Bk � , A B k ;j � 6=
0. Sincef A B k ;i gi 2 S forms a basis ofRjB k j , the vectorA B k ;j � can be represented uniquely as

A B k ;j � =
X

i 2 S

ai A B k ;i ; (A.12)

whereai 2 R for all i . BecauseA B k ;j � 6= 0 , there existsj 2 S such thata j 6= 0 . Because this
representation is unique, we know thatA B k ;j � is outside the span off A B k ;i gi 2 Snf j g. This means
that, by takingS� := ( S n f j g) [ f j � g, we have thatf A B k ;i gi 2 S � is a basis forRjB k j or, in other
words,A B k ;S � is invertible. Also,S� is not included in a single block sinceS n f j g � Bk 0 and
j � 2 Bk � with k0 6= k� .

A.2 SUFFICIENT INDEPENDENCEASSUMPTIONS

De�nition A.8 (Suf�cient Independence (0th Order)). Let f : Rdz ! Rdx be aC1 function with 0th

order interactions between slots (Def. 3.2). The functionf is said to havesuf�ciently independent
derivatives if8z 2 Rdz :

rank
� �

[D i f (z)] i 2 B k

�
k2 [K ]

�
=

X

k2 [K ]

rank
�
[D i f (z)] i 2 B k

�
(A.13)

De�nition A.9 (Suf�cient Independence (1st Order)). Let f : Rdz ! Rdx be aC2 function with
at most1storder interactionsbetween slots (Def. 3.3). The functionf is said to havesuf�ciently
independentderivatives if8z 2 Rdz :

rank

 �
�
D i f (z)

�
i 2 B k

�
D 2

i;i 0f (z)
�

( i;i 0)2 B 2
k

�

k2 [K ]

!

=
X

k2 [K ]

h
rank

�
[D i f (z)] i 2 B k

�
+ rank

� �
D 2

i;i 0f (z)
�

( i;i 0)2 B 2
k

�i
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De�nition 4.2 (Suf�cient Independence (2nd Order)). A C3 functionf : Rdz ! Rdx with at most
2nd order interactions across slots is said to havesuf�ciently independentderivatives if8z 2 Rdz :

rank

 �
�
D i f (z)

�
i 2 B k

[D 2
i;i 0f (z)] i 2 B k ;i 02 [dz ] [D 3

i;i 0;i 00f (z)]( i;i 0;i 00)2 B 3
k

�

k2 [K ]

!

=
X

k2 [K ]

h
rank

��
[D i f (z)] i 2 B k [D 2

i;i 0f (z)] i 2 B k ;i 02 [dz ]
��

+ rank
�

[D 3
i;i 0;i 00f (z)]( i;i 0;i 00)2 B 3

k

�i
:

A.3 FROM LOCAL TO GLOBAL DISENTANGLEMENT

This section takes care of technical subtleties when one has to go from local to global disentan-
glement. The disentanglement guarantee of this work is proven by �rst showing thatDh, i.e. the
Jacobian ofh := f � 1 � ^f , has a block-permutation structure everywhere, and from there showing
that h can be written ash(z) = ( h1(zB � (1) ); h2(zB � (2) ); : : : ; hK (zB � ( K ) )) (see De�ntion 2.1).
Lachapelle et al. (2023) refers to the �rst condition onDh aslocal disentanglementand the sec-
ond condition onh asglobal disentanglement, the latter of which corresponds to the de�nition of
disentanglement employed in the present work. The authors also show that going from local to
global disentanglement requires special care when considering very general supportsZ supp, like we
do in this work, as opposed to the more common assumption thatZ supp := Rdz which makes this
step more direct (e.g., see Hyvärinen et al. (2019)). This section reuses de�nitions and lemmata
taken from Lachapelle et al. (2023) and introduces a novel suf�cient condition on the support of
the latent factors, we namedaligned-connectedness, to guarantee that the jump from local to global
disentanglement can be made.
De�nition A.10 (Partition-respecting permutations). Let B := f B1; B2; : : : ; BK g be a partition of
f 1; :::; dg. A permutation� overf 1; :::; dg respectsB if, for all B 2 B ; � (B ) 2 B .

De�nition A.11 (B-block permutation matrices). A matrix A 2 Rd� d is a B-block permutation
matrix if it is invertible and can be written asA = CP � whereP � is the matrix representing the
B-respecting permutation� (De�nition A.10), i.e. P� ei = e� ( i ) , andC 2 Rd� d is such that for all
distinct blocksB; B 0 2 B, CB;B 0 = 0 .
Proposition A.12. The inverse of aB-block permutation matrix is also aB-block permutation ma-
trix.

Proof. First note thatC must be invertible, otherwiseA is not. Also,C � 1 must also be such that
(C � 1)B;B 0 = 0 for all distinct blocksB; B 0 2 B. This is because, without loss of generality, we
can assume the blocks ofB are contiguous which implies thatC is a block diagonal matrix so that
C � 1 is also block diagonal. Since� preservesB, we have thatP >

� C � 1P � is also block diagonal
since, for all distinctB; B 0 2 B, (P >

� C � 1P � )B;B 0 = ( C � 1) � (B ) ;� (B 0) = 0 , where we used the
fact that the blocks� (B ) and� (B 0) are inB, because� is B-preserving, and are distinct, because�
is a bijection. We can thus see that

A � 1 = P >
� C � 1

= P >
� C � 1P � P >

�

= ~CP >
�

= ~CP � � 1 ;

where ~C := P >
� C � 1P � is block diagonal and� � 1 is block-preserving.

De�nition A.13 (Local disentanglement; Lachapelle et al. (2023)). A learned decoder̂f : Rdz !
Rdx is said to be locally disentangled w.r.t. the ground-truth decoderf when ^f � h(z) = f (z)
for all z 2 Z supp where the mappingh is a diffeomorphism fromZ supp onto its image satisfying
the following property: for allz 2 Z supp, Dh(z) is a block-permutation matrix respectingB :=
f B1; : : : ; BK g.

Note that, in the above de�nition, the permutation of the blocks might change from onez to another
(see Example 5 in Lachapelle et al. (2023)). To prevent this possibility, we will assume thatZ supp is
path-connected:
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De�nition A.14 (Path-connected sets). A set Z supp � Rdz is path-connected if for all pairs of
pointsz0; z1 2 Z supp, there exists a continuous map� : [0; 1] ! Z supp such that� (0) = z0 and
� (1) = z1. Such a map is called a path betweenz0 andz1.

The following Lemma from Lachapelle et al. (2023) can be used to show that whenh is a diffeo-
morphism andZ supp is path-connected, the block structure cannot change. This is due to the fact
thatDh(z) is invertible everywhere and a continuous function ofz. We restate the Lemma without
proof.

Lemma A.15(Lachapelle et al. (2023)). Let Cbe a path-connected topological space and letM :
C ! Rd� d be a continuous function. Suppose that, for allc 2 C, M (c) is an invertibleB-block
permutation matrix (De�nition A.11). Then, there exists aB-respecting permutation� such that for
all c 2 C and all distinctB; B 0 2 B, M (c) � (B 0) ;B = 0 .

It turns out that, in general, having thatDh has a constant block-permutation structure across its
supportZ supp is not enough to make the jump to global disentanglement. See Example 7 from
Lachapelle et al. (2023). We now propose a novel condition on the supportZ suppand will show it is
suf�cient to guarantee global disentanglement in Lemma A.18.

De�nition A.16 (Aligned-connected sets). A setA � Rd is said to bealigned-connectedw.r.t. a
partition f B1; B2; : : : ; BK g if, for all k 2 [K ] and alla0 2 A , the setf a 2 A j aB k = a0

B k
g is

path-connected.

RemarkA.17 (Relation to path-connectedness). There exist sets that are path-connected but not
aligned-connected and vice-versa. Example 7 from Lachapelle et al. (2023) presents a “U-shaped”
support that is path-connected but not aligned-connected. Moreover, the setA := A (1) [ A (2)

whereA (1) := f a 2 R2 j a1 � 1; a2 � 1g andA (2) := f a 2 R2 j a1 � � 1; a2 � � 1g is
aligned-connected w.r.t. the partitionB = ff 1g; f 2ggbut not path-connected.

We now show how aligned-connectedness combined with path-connectedness is enough to guaran-
tee global disentanglement from local disentanglement.

Lemma A.18 (Local to global disentanglement). Supposeh is a diffeomorphism fromZ supp �
Rdz to its image and supposeDh(z) is a B-block permutation matrix for allz 2 Z supp (local
disentanglement). IfZ supp is path-connected (Defn. A.14) and aligned-connected set (Defn. A.16),
thenh(z) = ( h1(zB � (1) ); : : : ; h1(zB � ( K ) )) for all z 2 Z supp where theh k are diffeomorphisms
(global disentanglement).

Proof. Sinceh is a diffeomorphism,Dh is continuous andDh(z) is invertible for allz 2 Z supp.
Since we also have thatZ supp is path-connected, we can apply Lemma A.15 to get that there exists
a permutation� : [K ] ! [K ] such that, for allz 2 Z supp and all distinctk; k0 2 [K ], we have
Dh(z)B k ;B � ( k 0)

= 0 . In other words,DB � ( k 0)
hB k (z) = 0 . We must now show thathB k (z)

depends solely onzB � ( k ) . Consider another pointz0 2 Z supp such thatzB � ( k ) = z0
B � ( k )

. We will
now show thathB k (z) = hB k (z0), i.e. changingzB c

� ( k )
does not in�uencehB k (z).

BecauseZ supp is aligned-connected, there exists a continuous path� : [0; 1] ! Z supp such that
� (0) = z0, � (1) = z and� B � ( k ) (t) = zB � ( k ) = z0

B � ( k )
for all t 2 [0; 1]. By the fundamental

This lemma also holds ifC is connected.
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theorem of calculus, we have that

hB k (z) � hB k (z0) =
Z 1

0
(hB k � � )0(t)dt

=
Z 1

0
DhB k (� (t)) � 0(t)dt

=
Z 1

0

0

@DB � ( k ) hB k (� (t)) � 0
B � ( k )

(t) +
X

k 06= k

DB � ( k 0)
hB k (� (t)) � 0

B � ( k 0)
(t)

1

A dt

=
Z 1

0

0

@DB � ( k ) hB k (� (t))0 +
X

k 06= k

0� 0
B � ( k 0)

(t)

1

A dt

= 0 ;

where we used the fact that� B � ( k ) (t) is a constant function oft andDB � ( k 0)
hB k (z) = 0 for distinct

k; k0.

We conclude that, for allk, we can writehB k (z) = hB k (zB � ( k ) ), which is the desired result.

Additionally, the functionshB k (zB � ( k ) ) are diffeomorphisms because their Jacobians must be in-
vertible otherwise the Jacobian ofh (which is block diagonal) would not be invertible (which would
violate the fact that it is a diffeomorphism).

Contrasting with Lachapelle et al. (2023).Instead of assuming aligned-connectedness, Lachapelle
et al. (2023) assumed that the block-speci�c decoders, which would correspond to thef k (zB k ) in
(4.2), are injective which, when combined with path-connectedness, is also enough to go from local
to global disentanglement in the context of additive decoders (n = 1 ). Whether a similar strategy
could be adapted for more general decoders with at mostnth order interactions is left as future work.

A.4 DISENTANGLEMENT (AT MOST 0TH ORDER/NO INTERACTION)

Lemma A.19. Let Z supp � Z be a regular closed set (Defn. A.3). Letf : Z ! X be C1 and
h : Ẑ supp ! Z suppbe a diffeomorphism. Let̂f := f � h . If f has no interaction (De�nition 3.4 with
n = 0 ), then, for allj; j 0 2 [dz ] andz 2 Ẑ supp, we have

D j
^f (z) � D j 0 ^f (z) = W f (h(z))m h (z; (j; j 0)) ; (A.14)

where

W f (z) := [ W f
k (z)]k2 [K ]

W f
k (z) := [ D i 1 f (z) � D i 2 f (z)]( i 1 ;i 2 )2 B 2

k

m h (z; (j; j 0)) := [ m h
k (z; (j; j 0))] k2 [K ]

m h
k (z; (j; j 0)) := [ D j 0h i 1 (z)D j h i 2 (z)]( i 1 ;i 2 )2 B 2

k
:

Proof. We have that

^f (z) = f � h(z); 8z 2 Ẑ supp:

Following the same line of argument as Lachapelle et al. (2023), we can use Lemma A.5 to say that

the function ^f (z) = f � h(z) has well-de�ned derivatives on(Ẑ supp) � . Sinceh � 1 is a diffeomor-

phism fromZ supp(which is regular closed) tôZ supp, Lemma A.4 implies that̂Z supp � (Ẑ supp) � . This
means that the function̂f (z) = f � h(z) has well-de�ned derivatives for allz 2 Ẑ supp.

By taking the derivative w.r.t.z j on both sides of̂f (z) = f � h(z), we get

D j
^f (z) =

X

k2 [K ]

X

i 2 B k

D i f (h(z))D j h i (z) (A.15)

23



Published as a conference paper at ICLR 2025

We thus have that

D j
^f (z)D j 0 ^f (z) =

0

@
X

k1 2 [K ]

X

i 1 2 B k 1

D i 1 f (h(z))D j h i 1 (z)

1

A �

0

@
X

k2 2 [K ]

X

i 2 2 B k 2

D i 2 f (h(z))D j 0h i 2 (ẑ )

1

A

=
X

k1 2 [K ]

X

i 1 2 B k 1

X

k2 2 [K ]

X

i 2 2 B k 2

D i 1 f (h(z)) � D i 2 f (h(z))D j h i 1 (z)D j 0h i 2 (z)

=
X

k1 2 [K ]

X

i 1 2 B k 1

X

i 2 2 B k 1

D i 1 f (h(z)) � D i 2 f (h(z))D j h i 1 (z)D j 0h i 2 (z) ;

where the last equality used the fact thatf has no interaction (De�nition 3.2). We conclude by
noticing

D j
^f (z)D j 0 ^f (z) =

X

k1 2 [K ]

X

( i 1 ;i 2 )2 B 2
k 1

D i 1 f (h(z))D i 2 f (h(z))D j h i 1 (z)D j 0h i 2 (z)

= W f (h(z))m h (z; (j; j 0)) :

Theorem A.20. Let f : Z ! X be a C1 diffeomorphism satisfying interaction asymmetry
(Asm. 3.5) for all equivalent generators (Defn. 4.1) forn = 0 . Let Z supp � Z be regular
closed (Defn. A.3), path-connected (Defn. A.14) and aligned-connected (Defn. A.16). A model
^f : Z ! Rdx disentanglesz on Z supp w.r.t. f (Defn. 2.1) if it is (i) a C1 diffeomorphism between

Ẑ suppandXsuppwith (ii ) at most 0th order interactions across slots (Defn. 3.4) on̂Z supp.

Proof. As mentioned in Section A.3, the proofs will proceed in two steps: First, we show local
disentanglement (De�nition A.13) and then we show (global) disentanglement via Lemma A.18.
We �rst show local disentanglement.

Remark: We will use the following notation below:

D 1
i;j f (z) := D j f (z) � D i f (z) 2 Rm (A.16)

We �rst de�ne the functionh : Ẑ supp ! Z supp relating the latent spaces of these functions onẐ supp:

h := f � 1 � ^f (A.17)

The function ^f can then be written in terms off andh on Ẑ supp:

^f = f � h (A.18)

Becausef ; ^f are bothC1 diffeomorphism betweenZ supp; Xsupp andẐ supp; Xsupp, respectively, we
have thath is aC1 diffeomorphism.

By Lemma A.19, for allz 2 Ẑ supp; j; j 0 2 [dz ], we have:

D j
^f (z) � D j 0 ^f (z) = W f (h(z))m h (z; (j; j 0)) (A.19)

wherew f andm h are de�ned in Lemma A.19.

De�ne the sets
D :=

[

k2 [K ]

B 2
k ; Dc := f 1; : : : ; dzg2 n D (A.20)

Because^f has no interaction (De�nition 3.2), we have that, for all(j; j 0) 2 D c

0 = W f (h(z))m h (z; (j; j 0))

=
X

k2 [K ]

W f
k (h(z))m h

k (z; (j; j 0)) :
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Becausef has no interaction, each rowW f
k (h(z))n; � is non-zero for at most onek 2 [K ] (although

this k can change for different values ofn andz). This implies that for allz 2 Ẑ supp; (j; j 0) 2 D c,
k 2 [K ]:

0 = W f
k (h(z))m h

k (z; (j; j 0)) (A.21)
Case 1:jBk j = 1 (One-Dimensional Slots)

WhenjBk j = 1 , for all k 2 [dz ], the matrixW f
k (h(z)) can be written as:

W f
k (h(z)) = [ D k f (z) � D k f (z)] (A.22)

This matrix has a single column, which must be non-zero sincef is aC1 diffeomorphism. Thus,
W f

k (h(z)) has full column rank and thus has a null space equal to0. Using Eq. (A.21), we conclude
that for all(j; j 0) 2 D c, k 2 [dz ]:

0 = m h
k (z; (j; j 0)) (A.23)

Applying the de�nition ofm h
k (z; (j; j 0)) , this implies that for all(j; j 0) 2 D c, k 2 [dz ]:

0 = D j 0h k (z)D j h k (z) (A.24)

This means each row of the Jacobian matrixDh(z) cannot have more than one nonzero value. Since
the Jacobian is invertible, these nonzero values must all be different for different rows, otherwise
a whole column would be zero. HenceDh(z) is a permutation-scaling matrix, i.e. we have local
disentanglement.

Case 2:jBk j > 1 (Multi-Dimensional Slots)

Assume for a contradiction that̂f is not locally disentangled onZ suppw.r.t f . This implies that there
exist az � 2 Ẑ supp, k; k0; k002 [K ] for k0 6= k00, such that:

DB k 0hB k (z � ) 6= 0 ; DB k 00hB k (z � ) 6= 0 (A.25)

Becausef ; ^f areC1 diffeomorphisms, we know thath is also aC1 diffeomorphism. Coupling this
with Eq. (A.25), Lemma A.7 tells us that there exist anS � [dz ] with cardinalityjBk j such that:

8B 2 B; S 6� B; and 8i 2 S; D i hB k (z � ) are linearly independent. (A.26)

Now choose any�B 2 B such thatS1 := S \ �B 6= ; . Furthermore, de�ne the setS2 := S n S1.
BecauseS 6� �B , we know thatS2 is non-empty. Further, by constructionS = S1 [ S2. In other
words,S1 andS2 are non-empty, form a partition ofS, and do not contain any indices from the
same slot.

Now construct the matrices, denotedA S1 andA S2 as follows:

A S1 := DS1 hB k (z � ); A S2 := DS2 hB k (z � ) (A.27)

And the matrix denotedA k as:
A k := [ A S1 ; A S2 ] (A.28)

Note that because,8i 2 S, D i hB k (ẑ � ) are linearly independent (Eq. (A.26)), we know thatA k is
invertible.

Now, de�ne the following block diagonal matrixA 2 Rdz � dz as follows:

A :=

2

6
6
4

A 1 0 : : : 0
0 A 2 : : : 0
...

...
...

...
0 0 : : : A K

3

7
7
5 (A.29)

where8i 2 [K ] n f kg; A i is the identity matrix, and thus invertible, whileA k is de�ned according
to Eq. (A.28).

De�ne �Z := A � 1Z , the function�h : �Z ! Z as�h(z) := Az and the function�f : �Z ! X as
�f := f � �h . By construction we have

8z 2 Z ; �f
�
A � 1

1 zB 1 ; : : : ; A � 1
K zB K

�
= f (zB 1 ; : : : ; zB K ) : (A.30)
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Because allA � 1
i are invertible, then�f is equivalentto f in the sense of Def. (4.1).

We can now apply Lemma A.19 to�f = f � �h to obtain, for allj; j 0 2 [dz ]:

D j �f (z) � D j 0 �f (z) = W f ( �h(z))m
�h (z; (j; j 0)) : (A.31)

Choose�z 2 �Z such that�h( �z) = h(z � ), which is possible becauseh(z � ) 2 Z and�h is a bijection
from �Z to Z ). We can then write

D j �f ( �z) � D j 0 �f ( �z) = W f (h(z � ))m
�h ( �z; (j; j 0)) : (A.32)

Let J; J 0 � Bk be a partition ofBk such thatJ is the set of columns ofA corresponding toA S1

andJ 0 be the set of columns ofA corresponding toA S2 . More formally, we have

A B k ;J = A S1 and A B k ;J 0 = A S2

SinceA S1 = DS1 hB k (z � ) andA S2 = DS2 hB k (z � ), we have that

A B k ;J = DS1 hB k (z � ) and A B k ;J 0 = DS2 hB k (z � )

SinceD �h( �z) = A , we have

D J
�hB k ( �z) = DS1 hB k (z � ) and D J 0 �hB k ( �z) = DS2 hB k (z � ) :

Choose some(j; j 0) 2 J � J 0. We know there must exist(s; s0) 2 S1 � S2 such that

D j
�hB k ( �z) = D shB k (z � ) and D j 0 �hB k ( �z) = D s0hB k (z � ) :

which implies

m
�h
k ( �z; (j; j 0)) = m h

k (z � ; (s; s0)) : (A.33)

Moreover, since the Jacobian of�h is block diagonal, we have thatm �h
k 0(z; (j; j 0)) = 0 for all k0 6= k

(recall thatj; j 0 2 Bk ). This means we can rewrite (A.32) as

D j �f ( �z) � D j 0 �f ( �z) = W f
k (h(z � ))m

�h
k ( �z; (j; j 0)) : (A.34)

Plugging (A.33) into the above equation yields

D j �f ( �z) � D j 0 �f ( �z) = W f
k (h(z � ))m h

k (z � ; (s; s0)) : (A.35)

Since(s; s0) 2 S1 � S2 � D c, we can apply (A.21) to get

D j �f ( �z) � D j 0 �f ( �z) = W f
k (h(z � ))m h

k (z � ; (s; s0)) = 0 : (A.36)

In other words, we found a partitionJ; J 0 of the blockBk such thatD j �f ( �z) � D j 0 �f ( �z) = 0 for
all (j; j 0) 2 J � J 0. This means that the blocksJ andJ 0 haveno interactionin �f at �z. This is a
contradiction with Assm. 3.5. Hence, we have local disentanglement.

Local to global disentanglement. We showed thatDh(z) is a block-permutation matrix for
all z 2 Ẑ supp, i.e. local disentanglement. Consider the inverseh, v := h � 1. The Jaco-
bian of v is given byDv(z) = Dh � 1(z) = Dh(v(z)) � 1, by the inverse function theorem.
By Proposition A.12, this meansDv(z) is also a block permutation matrix for allz 2 Z supp.
Since Z supp is aligned-connected (De�nition A.16), Lemma A.18 guarantees that we can write
v(z) = ( v1(zB � (1) ); : : : ; vK (zB � ( K ) )) for all z 2 Z supp where thevk are diffeomorphisms. This

implies thath(z) = ( v � 1
1 (zB � � 1 (1)

); : : : ; v � 1
K (zB � � 1 ( K )

)) for all z 2 Ẑ supp, which concludes the
proof.

A.5 DISENTANGLEMENT (AT MOST 1ST ORDER INTERACTION)

Lemma A.21. Let Z supp � Z be a regular closed set (Defn. A.3). Letf : Z ! X be C1 and
h : Ẑ supp ! Z supp be a diffeomorphism. Let̂f := f � h . If f has at most1st order interaction
(De�nition 3.4 withn = 1 ), then, for allj; j 0 2 [dz ] andz 2 Ẑ supp, we have

D 2
j;j 0

^f (z) = W f (h(z))m h (z; (j; j 0)) ; (A.37)
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where

W f (z) := [ W f
k (z))] k2 [K ]

W f
k (z) :=

h
[D i 1 f (z)] i 1 2 B k ; [D 2

i 1 ;i 2
f (z)]( i 1 ;i 2 )2 B 2

k

i

m h (z; (j; j 0)) := [ m h
k (z; (j; j 0))] k2 [K ]

m h
k (z; (j; j 0)) :=

h
[D 2

j;j 0h i 1 (z)] i 1 2 B k ; [D j 0h i 2 (z)D j h i 1 (z)]( i 1 ;i 2 )2 B 2
k

i
:

Proof. The exact same argument as the one presented in Lemma A.19 (based on Lachapelle et al.
(2023)) guarantees that,̂f andf � h have equal derivatives on̂Z supp. We leverage this fact next.

By taking the derivative w.r.t.z j on both sides of̂f (z) = f � h(z), we get

D j ^f (z) =
X

k2 [K ]

X

i 2 B k

D i f (h(z))D j h i (z) (A.38)

Now take another derivative w.r.t.z j 0 for somej 0 2 [dz ] to get

D 2
j;j 0

^f (z) =
X

k1 2 [K ]

X

i 1 2 B k 1

2

4D i 1 f (h(z))D 2
j;j 0h i 1 (z) +

X

k2 2 [K ]

X

i 2 2 B k 2

D 2
i 1 ;i 2

f (h(z))D j 0h i 2 (z)D j h i 1 (z)

3

5

Because we haveat most �rst order interactions(Def. 3.4 withn = 1 ), the second sum over[K ]
drops, and we are left with:

D 2
j;j 0

^f (z) =
X

k1 2 [K ]

X

i 1 2 B k 1

2

4D i 1 f (h(z))D 2
j;j 0h i 1 (z) +

X

i 2 2 B k 1

D 2
i 1 ;i 2

f (h(z))D j 0h i 2 (z)D j h i 1 (z)

3

5

=
X

k1 2 [K ]

2

6
4

X

i 1 2 B k 1

D i 1 f (h(z))D 2
j;j 0h i 1 (z) +

X

( i 1 ;i 2 )2 B 2
k 1

D 2
i 1 ;i 2

f (h(z))D j 0h i 2 (z)D j h i 1 (z)

3

7
5

= W f (h(z))m h (z; (j; j 0)) ;

which concludes the proof.

Theorem A.22. Let f : Z ! X be a C2 diffeomorphism satisfying interaction asymme-
try (Asm. 3.5) for all equivalent generators (Defn. 4.1) forn = 1 and suf�cient independence
(Defn. A.9). LetZ supp � Z be regular closed (Defn. A.3), path-connected (Defn. A.14) and aligned-
connected (Defn. A.16). A model^f : Z ! Rdx disentanglesz on Z supp w.r.t. f (Defn. 2.1) if it is
(i) a C2 diffeomorphism between̂Z suppandXsuppwith (ii ) at most 1st order interactions across slots
(Defn. 3.4) onẐ supp.

Proof. As mentioned in Section A.3, the proofs will proceed in two steps: First, we show local
disentanglement (De�nition A.13) and then we show (global) disentanglement via Lemma A.18.
We �rst show local disentanglement.

We �rst de�ne the functionh : Ẑ supp ! Z supp relating the latent spaces of these functions onẐ supp:

h := f � 1 � ^f (A.39)

The function ^f can then be written in terms off andh on Ẑ supp:

^f = f � h (A.40)

Becausef ; ^f are bothC2 diffeomorphism betweenZ supp; Xsupp andẐ supp; Xsupp, respectively, we
have thath is aC2 diffeomorphism.
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Since f has at most 1st order interactions, we can apply Lemma A.21 to obtain, for allz 2
Ẑ supp; j; j 0 2 [dz ],

D 2
j;j 0

^f (z) = W f (h(z))m h (z; (j; j 0)) :

Since ^f has at most 1st order interaction, we have that, for all(j; j 0) 2 D c

0 = W f (h(z))m h (z; (j; j 0)) : (A.41)

By de�ning

W f ;rest
k (z) := [ D i 1 f (z)] i 1 2 B k

W f ;high
k (z) := [ D 2

i 1 ;i 2
f (z)]( i 1 ;i 2 )2 B 2

k

m h ;rest
k (z; (j; j 0)) := [ D 2

j;j 0h i 1 (z)] i 1 2 B k

m h ;high
k (z; (j; j 0)) := [ D j 0h i 2 (z)D j h i 1 (z)]( i 1 ;i 2 )2 B 2

k

we can restate the suf�ciently independent derivative assumption (Def. A.9) as, for allz 2 Z

rank
�
W f (z)

�
=

X

k2 [K ]

h
rank

�
W f ;rest

k (z)
�

+ rank
�

W f ;high
k (z)

�i

This condition allows us to apply Lemma A.6 to go from (A.41) to, for all(j; j 0) 2 D c, k 2 [K ]:

0 = W f ;high
k (h(z))m h ;high

k (z; (j; j 0)) (A.42)

Case 1:jBk j = 1 (One-Dimensional Slots) By Assumption 3.5.ii, (withA = B = f ig) D 2
i;i f (z) 6=

0. Note thatW f ;high
k (h(z)) = D 2

k;k f (z). Hence, (A.42) implies thatm h ;high
k (z; (j; j 0)) = 0 (which

is a scalar). This meansm h ;high
k (z; (j; j 0)) = D j 0h k (z)D j h k (z) = 0 . Since this is true for allk and

all distinctj; j 0, this means each row has at most one nonzero entry. SinceDh(z) is invertible, these
nonzero entries must appear on different columns, otherwise a column will be �lled with zeros. This
meansDh(z) is a permutation-scaling matrix, i.e. we have local disentanglement (De�nition A.13).

Case 2:jBk j > 1 (Multi-Dimensional Slots)

Assume for a contradiction that̂f is not locally disentangled onZ supp w.r.t. f . This implies that
there exist az � 2 Ẑ supp, k; k0; k002 [K ] with k0 6= k00such that:

DB k 0hB k (z � ) 6= 0 ; DB k 00hB k (z � ) 6= 0 (A.43)

Becausef ; ^f areC1 diffeomorphisms, we know thath is also aC1 diffeomorphism. Coupling this
with Eq. (A.43), Lemma A.7 tells us that there exist anS � [dz ] with cardinalityjBk j such that:

8B 2 B; S 6� B; and 8i 2 S; D i hB k (z � ) are linearly independent. (A.44)

Now choose any�B 2 B such thatS1 := f S \ �B g 6= ; . Furthermore, de�ne the setS2 := S n S1.
BecauseS 6� �B , we know thatS2 is non-empty. Further, by constructionS = S1 [ S2. In other
words,S1 andS2 are non-empty, form a partition ofS, and do not contain any indices from the
same slot.

Now construct the matrices, denotedA S1 andA S2 as follows:

A S1 := DS1 hB k (z � ); A S2 := DS2 hB k (z � ) (A.45)

And the matrix denotedA k as:
A k := [ A S1 ; A S2 ] (A.46)

Note that because,8i 2 S, D i hB k (ẑ � ) are linearly independent (Eq. A.44), we know thatA k is
invertible.

Now, de�ne the following block diagonal matrixA 2 Rdz � dz as follows:

A :=

2

6
6
4

A 1 0 : : : 0
0 A 2 : : : 0
...

...
...

...
0 0 : : : A K

3

7
7
5 (A.47)
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where8i 2 [K ] n f kg; A i is the identity matrix, and thus invertible, whileA k is de�ned according
to Eq. (A.46).

De�ne �Z := A � 1Z , the function�h : �Z ! Z as�h(z) := Az and the function�f : �Z ! X as
�f := f � �h . By construction we have

8z 2 Z ; �f
�
A � 1

1 zB 1 ; : : : ; A � 1
K zB K

�
= f (zB 1 ; : : : ; zB K ) : (A.48)

Because allA � 1
i are invertible, then�f is equivalentto f in the sense of Def. (4.1).

We can now apply Lemma A.21 to�f = f � �h to obtain, for allj; j 0 2 [dz ]:

D 2
j;j 0

�f (z) = W f ( �h(z))m
�h (z; (j; j 0)) : (A.49)

Choose�z 2 �Z such that�h( �z) = h(z � ), which is possible becauseh(z � ) 2 Z and�h is a bijection
from �Z to Z . We can then write

D 2
j;j 0

�f ( �z) = W f (h(z � ))m
�h ( �z; (j; j 0)) : (A.50)

Let J; J 0 � Bk be a partition ofBk such thatJ is the set of columns ofA corresponding toA S1

andJ 0 be the set of columns ofA corresponding toA S2 . More formally, we have

A B k ;J = A S1 and A B k ;J 0 = A S2 :

SinceA S1 = DS1 hB k (z � ) andA S2 = DS2 hB k (z � ), we have that

A B k ;J = DS1 hB k (z � ) and A B k ;J 0 = DS2 hB k (z � )

SinceD �h( �z) = A , we have

D J
�hB k ( �z) = DS1 hB k (z � ) and D J 0 �hB k ( �z) = DS2 hB k (z � ) :

For all (j; j 0) 2 J � J 0, there must exist(s; s0) 2 S1 � S2 such that

D j
�hB k ( �z) = D shB k (z � ) and D j 0 �hB k ( �z) = D s0hB k (z � ) :

This implies that, for all(j; j 0) 2 J � J 0, there exists(s; s0) 2 S1 � S2 such that

m
�h ;high
k ( �z; (j; j 0)) = m h ;high

k (z � ; (s; s0)) : (A.51)

Moreover, since�h is a block-wise function we have that, for all(j; j 0) 2 J � J 0 � Bk andk0 2
[K ] n f kg, m �h

k 0( �z; (j; j 0)) = 0 . We can thus write:

D 2
j;j 0

�f ( �z) = W f
k (h(z � ))m

�h
k ( �z; (j; j 0)) : (A.52)

Since�h is linear, we have thatm
�h ;rest
k ( �z; (j; j 0)) = 0 , and thus

D 2
j;j 0

�f ( �z) = W f ;high
k (h(z � ))m

�h ;high
k ( �z; (j; j 0)) : (A.53)

Plug the (A.51) into the above to obtain that, for all(j; j 0) 2 J � J 0,

D 2
j;j 0

�f ( �z) = W f ;high
k (h(z � ))m h ;high

k (z � ; (s; s0)) = 0 ; (A.54)

where the very last “= 0 ” is due to (A.42) (recall(s; s0) 2 S1 � S2 � D c).

In other words, we found a partitionJ; J 0 of the blockBk and a value�z such thatD 2
j;j 0

�f ( �z) = 0
for all (j; j 0) 2 J � J 0. This means that the blocksJ andJ 0 haveno second order interactionin �f
at �z. This is a contradiction with Assm. 3.5. Hence, we have local disentanglement.

From local to global disentanglement. The same argument as in the proof of Theorem A.20
applies.

29



Published as a conference paper at ICLR 2025

A.6 DISENTANGLEMENT (AT MOST 2ND ORDER INTERACTION)

Lemma A.23. Let Z supp � Z be a regular closed set (Defn. A.3). Letf : Z ! X be C1 and
h : Ẑ supp ! Z supp be a diffeomorphism. Let̂f := f � h . If f has at most2nd order interaction
(De�nition 3.4 withn = 2 ), then, for allj; j 0 2 [dz ] andz 2 Ẑ supp, we have

D 3
j;j 0;j 00

^f (z) = W f (h(z))m h (z; (j; j 0; j 00)) ; (A.55)

where

W f (z) := [ W f
k (z))] k2 [K ]

W f
k (z) :=

h
[D i 1 f (z)] i 1 2 B k ;

[D 2
i 1 ;i 2

f (z)] i 1 2 B k ;i 2 2 [dz ];

[D 3
i 1 ;i 2 ;i 3

f (z)]( i 1 ;i 2 ;i 3 )2 B 3
k

i

m h (z; (j; j 0; j 00)) := [ m h
k (z; (j; j 0; j 00))] k2 [K ]

m h
k (z; (j; j 0; j 00)) :=

h
[D 3

j;j 0;j 00h i 1 (z)] i 1 2 B k ;

[D j h i 1 (z)D 2
j 0;j 00h i 2 (z) + D j 0h i 2 (z)D 2

j;j 00h i 1 (z) + D j 00h i 2 (z)D 2
j;j 0h i 1 (z)] i 1 2 B k ;i 2 2 [dz ]

[D j 00h i 3 (z)D j 0h i 2 (z)D j h i 1 (z)]( i 1 ;i 2 ;i 3 )2 B 3
k

i
:

Proof. As argued in Lemma A.21, differentiatinĝf (z) = f � h(z) w.r.t. z j andz j 0 on both sides
yields

D 2
j;j 0

^f (z) =
X

k1 2 [K ]

X

i 1 2 B k 1

2

4D i 1 f (h(z))D 2
j;j 0h i 1 (z) +

X

k2 2 [K ]

X

i 2 2 B k 2

D 2
i 1 ;i 2

f (h(z))D j 0h i 2 (z)D j h i 1 (z)

3

5

Now take another derivative with respect tozj 00 to computeD 3
j;j 0;j 00

^f (z). For the �rst term in the
sum, we have:

X

k1 2 [K ]

X

i 1 2 B k 1

2

4
X

k2 2 [K ]

X

i 2 2 B k 2

D 2
i 1 ;i 2

f n (h(z))D j 00h i 2 (z)D 2
j;j 0h i 1 (z) + D i 1 f n (h(z))D 3

j;j 0;j 00h i 1 (z)

3

5

And for the second term in the sum (the nested sum), we have:

X

k1 2 [K ]

X

i 1 2 B k 1

X

k2 2 [K ]

X

i 2 2 B k 2

"
X

k3 2 [K ]

X

i 3 2 B k 3

D 3
i 1 ;i 2 ;i 3

f n (h(z))D j 00h i 3 (z)D j 0h i 2 (z)D j h i 1 (z) +

D 2
i 1 ;i 2

f n (h(z))
h
D 2

j 0;j 00h i 2 (z)D j h i 1 (z) + D j 0h i 2 (z)D 2
j;j 00h i 1 (z)

i
#

Because we have at most second order interactions (Def. 3.4 withn = 2 ), this term can be rewritten
as:

X

k1 2 [K ]

X

i 1 2 B k 1

"
X

i 2 2 B k 1

X

i 3 2 B k 1

D 3
i 1 ;i 2 ;i 3

f n (h(z))D j 00h i 3 (z)D j 0h i 2 (z)D j h i 1 (z) +

X

k2 2 [K ]

X

i 2 2 B k 2

D 2
i 1 ;i 2

f n (h(z))
h
D 2

j 0;j 00h i 2 (z)D j h i 1 (z) + D j 0h i 2 (z)D 2
j;j 00h i 1 (z)

i
#
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Combining the �rst and second terms, we get:

D 3
j;j 0;j 00

^f (z) =
X

k1 2 [K ]

X

i 1 2 B k 1

"

D i 1 f (h(z))D 3
j;j 0;j 00h i 1 (z) +

X

k2 2 [K ]

X

i 2 2 B k 2

D 2
i 1 ;i 2

f (h(z))
�

D j h i 1 (z)D 2
j 0;j 00h i 2 (z) + D j 0h i 2 (z)D 2

j;j 00h i 1 (z) + D j 00h i 2 (z)D 2
j;j 0h i 1 (z)

�
+

X

i 2 2 B k 1

X

i 3 2 B k 1

D 3
i 1 ;i 2 ;i 3

f (h(z))D j 00h i 3 (z)D j 0h i 2 (z)D j h i 1 (z)

#

=
X

k1 2 [K ]

"
X

i 1 2 B k 1

D i 1 f (h(z))D 3
j;j 0;j 00h i 1 (z) +

X

i 1 2 B k 1

X

i 2 2 [dz ]

D 2
i 1 ;i 2

f (h(z))
�

D j h i 1 (z)D 2
j 0;j 00h i 2 (z) + D j 0h i 2 (z)D 2

j;j 00h i 1 (z) + D j 00h i 2 (z)D 2
j;j 0h i 1 (z)

�
+

X

( i 1 ;i 2 ;i 3 )2 B 3
k 1

D 3
i 1 ;i 2 ;i 3

f (h(z))D j 00h i 3 (z)D j 0h i 2 (z)D j h i 1 (z)

#

= W f (h(z))m h (z; (j; j 0; j 00)) :

Theorem A.24. Let f : Z ! X be a C3 diffeomorphism satisfying interaction asymme-
try (Asm. 3.5) for all equivalent generators (Defn. 4.1) forn = 2 and suf�cient independence
(Defn. 4.2). LetZ supp � Z be regular closed (Defn. A.3), path-connected (Defn. A.14) and aligned-
connected (Defn. A.16). A model^f : Z ! Rdx disentanglesz on Z supp w.r.t. f (Defn. 2.1) if it is
(i) a C3 diffeomorphism between̂Z suppandXsuppwith (ii ) at most 2nd order interactions across slots
(Defn. 3.4) onẐ supp.

Proof. As mentioned in Section A.3, the proofs will proceed in two steps: First, we show local
disentanglement (De�nition A.13) and then we show (global) disentanglement via Lemma A.18.
We �rst show local disentanglement.

We �rst de�ne the functionh : Ẑ supp ! Z supp relating the latent spaces of these functions onẐ supp:

h := f � 1 � ^f (A.56)

The function ^f can then be written in terms off andh on Ẑ supp:

^f = f � h (A.57)

Becausef ; ^f are bothC2 diffeomorphism betweenZ supp; Xsupp andẐ supp; Xsupp, respectively, we
have thath is aC2 diffeomorphism.

Since ^f has at most 2nd order interaction, we have that, for allz 2 Ẑ supp; (j; j 0; j 00) 2 D c � [dz ],

0 = W f (h(z))m h (z; (j; j 0; j 00)) : (A.58)
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By de�ning

W f ;rest
k (z) :=

�
[D i 1 f (z)] i 1 2 B k ;

[D 2
i 1 ;i 2

f (z)] i 1 2 B k ;i 2 2 [dz ]

�

W f ;high
k (z) := [ D 3

i 1 ;i 2 ;i 3
f (z)]( i 1 ;i 2 ;i 3 )2 B 3

k

m h ;rest
k (z; (j; j 0; j 00)) :=

�
[D 3

j;j 0;j 00h i 1 (z)] i 1 2 B k ;

[D j h i 1 (z)D 2
j 0;j 00h i 2 (z) + D j 0h i 2 (z)D 2

j;j 00h i 1 (z) + D j 00h i 2 (z)D 2
j;j 0h i 1 (z)] i 1 2 B k ;i 2 2 [dz ]

�

m h ;high
k (z; (j; j 0; j 00)) := [ D j 00h i 3 (z)D j 0h i 2 (z)D j h i 1 (z)]( i 1 ;i 2 ;i 3 )2 B 3

k
;

we can restate the suf�ciently independent derivative assumption (Def. 4.2) as, for allz 2 Z

rank
�
W f (z)

�
=

X

k2 [K ]

h
rank

�
W f ;rest

k (z)
�

+ rank
�

W f ;high
k (z)

�i

This condition allows us to apply Lemma A.6 to go from (A.58) to, for all(j; j 0; j 00) 2 D c � [dz ],
k 2 [K ]:

0 = W f ;high
k (h(z))m h ;high

k (z; (j; j 0; j 00)) (A.59)

Case 1: jBk j = 1 (One-Dimensional Slots) By Assumption 3.5.ii (withA = B = f ig),
we have thatD 3

i;i;i f (z) 6= 0 . Note thatW f ;high
k (h(z)) = D 3

k;k;k f (z). Hence, (A.42) im-

plies thatm h ;high
k (z; (j; j 0; j 00)) = 0 (which is a scalar). This meansm h ;high

k (z; (j; j 0; j 00)) =
D j 00h k (z)D j 0h k (z)D j h k (z) = 0 for all (j; j 0; j 00) 2 D c � [dz ]. In particular, we have

D j 0h k (z)2D j h k (z) = 0 ;

for all (j; j 0) 2 D c. Since this is true for allk and all distinctj; j 0, this means each row ofDh(z) has
at most one nonzero entry. SinceDh(z) is invertible, these nonzero entries must appear on different
columns, otherwise a column would be �lled with zeros. This meansDh(z) is a permutation-scaling
matrix, i.e. we have local disentanglement (De�nition A.13).

Case 2:jBk j > 1 (Multi-Dimensional Slots)

Assume for a contradiction that̂f does not disentangledz on Z suppw.r.t. f . This implies that there
exist az � 2 Ẑ supp, k; k0; k002 [K ] with k0 6= k00such that:

DB k 0hB k (z � ) 6= 0 ; DB k 00hB k (z � ) 6= 0 (A.60)

Becausef ; ^f areC3 diffeomorphisms, we know thath is also aC3 diffeomorphism. Coupling this
with Eq. (A.60), Lemma A.7 tells us that there exist anS � [dz ] with cardinalityjBk j such that:

8B 2 B; S 6� B; and 8i 2 S; D i hB k (z � ) are linearly independent. (A.61)

Now choose any�B 2 B such thatS1 := f S \ �B g 6= ; . Furthermore, de�ne the setS2 := S n S1.
BecauseS 6� �B , we know thatS2 is non-empty. Further, by constructionS = S1 [ S2. In other
words,S1 andS2 are non-empty, form a partition ofS, and do not contain any indices from the
same slot.

Now construct the matrices, denotedA S1 andA S2 as follows:

A S1 := DS1 hB k (z � ); A S2 := DS2 hB k (z � ) (A.62)

And the matrix denotedA k as:
A k := [ A S1 ; A S2 ] (A.63)

Note that because,8i 2 S, D i hB k (ẑ � ) are linearly independent (Eq. (A.61)), we know thatA k is
invertible.
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Now, de�ne the following block diagonal matrixA 2 Rdz � dz as follows:

A :=

2

6
6
4

A 1 0 : : : 0
0 A 2 : : : 0
...

...
...

...
0 0 : : : A K

3

7
7
5 (A.64)

where8i 2 [K ] n f kg; A i is the identity matrix, and thus invertible, whileA k is de�ned according
to Eq. (A.63).

De�ne �Z := A � 1Z , the function�h : �Z ! Z as�h(z) := Az and the function�f : �Z ! X as
�f := f � �h . By construction we have

8z 2 Z ; �f
�
A � 1

1 zB 1 ; : : : ; A � 1
K zB K

�
= f (zB 1 ; : : : ; zB K ) : (A.65)

Because allA � 1
i are invertible, then�f is equivalentto f in the sense of Def. (4.1).

We can now apply Lemma A.23 to�f = f � �h to obtain, for allj; j 0; j 002 [dz ]:

D 3
j;j 0;j 00

�f (z) = W f ( �h(z))m
�h (z; (j; j 0; j 00)) : (A.66)

Choose�z 2 �Z such that�h( �z) = h(z � ), which is possible becauseh(z � ) 2 Z and�h is a bijection
from �Z to Z . We can then write

D 3
j;j 0;j 00

�f ( �z) = W f (h(z � ))m
�h ( �z; (j; j 0; j 00)) : (A.67)

Let J; J 0 � Bk be a partition ofBk such thatJ is the set of columns ofA corresponding toA S1

andJ 0 be the set of columns ofA corresponding toA S2 . More formally, we have

A B k ;J = A S1 and A B k ;J 0 = A S2

SinceA S1 = DS1 hB k (z � ) andA S2 = DS2 hB k (z � ), we have that

A B k ;J = DS1 hB k (z � ) and A B k ;J 0 = DS2 hB k (z � )

SinceD �h( �z) = A , we have

D J
�hB k ( �z) = DS1 hB k (z � ) and D J 0 �hB k ( �z) = DS2 hB k (z � ) :

For all (j; j 0; j 00) 2 J � J 0 � Bk there must exist(s; s0; s00) 2 S1 � S2 � S such that

D j
�hB k ( �z) = D shB k (z � ); D j 0 �hB k ( �z) = D s0hB k (z � ); andD j 00�hB k ( �z) = D s00hB k (z � ) :

This implies that for all(j; j 0; j 00) 2 J � J 0 � Bk there must exist(s; s0; s00) 2 S1 � S2 � S such
that

m
�h ;high
k ( �z; (j; j 0; j 00)) = m h ;high

k (z � ; (s; s0; s00)) : (A.68)

Moreover, since�h is a block-wise function, we have that, for all(j; j 0; j 00) 2 J � J 0 � Bk � B 3
k

and allk0 2 [K ] n f kg, we havem �h
k 0( �z; (j; j 0; j 00)) = 0 , which allows us to rewrite (A.67) as

D 3
j;j 0;j 00

�f ( �z) = W f
k (h(z � ))m

�h
k ( �z; (j; j 0; j 00)) : (A.69)

Since�h is linear, we have thatm
�h ;rest
k ( �z; (j; j 0; j 00)) = 0 , and thus

D 3
j;j 0;j 00

�f ( �z) = W f ;high
k (h(z � ))m

�h ;high
k ( �z; (j; j 0; j 00)) : (A.70)

Plug (A.68) into the above to obtain that for all(j; j 0; j 00) 2 J � J 0 � Bk , there exists(s; s0; s00) 2
S1 � S2 � S such that

D 3
j;j 0;j 00

�f ( �z) = W f ;high(h(z � ))m h ;high
k (z � ; (s; s0; s00)) = 0 ; (A.71)

where the very last “= 0 ” is due to (A.59) (recall(s; s0; s00) 2 S1 � S2 � S � D c � [dz ]).
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In other words, we found a partitionJ; J 0 of the blockBk and a value�z such thatD 3
j;j 0;j 00

�f ( �z) = 0
for all (j; j 0; j 00) 2 J � J 0 � Bk . One can show that�f as no 3rd order interaction across blocks
because it is equivalent tof , which also has no 3rd order interactions across blocks. We thus have
thatD 3

j;j 0;j 00
�f ( �z) = 0 for all (j; j 0; j 00) 2 J � J 0 � [dz ]. This means that the blocksJ andJ 0 have

no third order interactionin �f at �z. This is a contradiction with Assm. 3.5.

From local to global disentanglement. The same argument as in the proof of Theorem A.20
applies.

B MULTI -INDEX NOTATION

Multi-index notation is a convenient shorthand to denote higher order derivatives. A multi-index of
dimensiond is an ordered tuple� = ( � 1; : : : ; � d) 2 Nd. We introduce the shorthands

j� j =
dX

i =1

� i ; � ! =
dY

i =1

� i ! (B.1)

and we write� � � if � i � � i for all i and� � � denotes the element wise sum (difference) of the
entries. We write

D � =
@� 1

@z� 1
1

: : :
@� d

@z� d
d

(B.2)

and

z � =
dY

i =1

z� i
i : (B.3)

We will need the important property that

D � z � =

(
� !

( � � � )! z � � � if � � �
0 otherwise.

(B.4)

Consider now a partition ofdz into slotsB1; : : : ; Bk . We de�ne the set of interaction multi-indices
of ordern for n � 2 by

I n = f � 2 Ndz : j� j = n, 9i 1; i 2 s. t. i 1 2 Bk1 , i 2 2 Bk2 with k1 6= k2 and� i 1 ; � i 2 > 0g; (B.5)

i.e., the set of all multi-indices such that the non-zero components are contained in at least two
blocks. ClearlyI n depends on the block partition which we do not re�ect in the notation. We also
consider

I � n =
[

2� m � n

I m : (B.6)

Clearly, if � 2 I j � j and� is any multi-index, then� + � 2 I j � j+ j � j .

C CHARACTERIZATION OF FUNCTIONS WITH AT MOST nTH ORDER
INTERACTIONS

In this section we characterize functions with interaction of at mostnth order by proving Theo-
rem C.2. Our characterization relies on the notion of aligned-connectedness introduced in De�ni-
tion A.16 and the following topological notion.

De�nition C.1. A topological spaceX is contractible if there is a continuous functionF : X �
[0; 1] ! X such thatF (x; 0) = x andF (x; 1) = x0 for a pointx0 2 X . We call a subset ofRd

contractible if it is contractible as a topological space with respect to the induced subspace topology.
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Roughly, contractibility means that we can transform a topological space continuously into a point,
which is possible if the space has no holes. Note that, e.g., all one dimensional connected sets and
all convex sets are contractible. Sets that are not contractible are, e.g., spheres and disconnected
sets. Note that the characterization in the following theorem generalizes Proposition 7 in Lachapelle
et al. (2023) by allowing higher order interactions and showing the result for more general domains.
We denote, similar to (2.3), for
 � Rdx by 
 i = f zB i : z 2 
 g the projections of
 on the blocks.

Theorem C.2(Characterization of functions with at mostnth order interactions across slots.). Let

 be an open connected and aligned-connected set such that
 k is contractible. Letf (z) =
f (zB 1 ; zB 2 ; :::; zB K ) be aCn +1 function on
 for an integern 2 Z � 1. Then any distinct slots
zB i and zB j have at mostnth order interaction withinf (Defn. 3.4) if and only if, for some con-
stants

�
c� 2 Rdx

	
� 2 I � n

and someCn +1 functionsf k : 
 k ! Rdx such that for allz 2 Z

f (z) =
KX

k=1

f k (zB k ) +
X

� 2 I � n

c� z � : (C.1)

RemarkC.3. To avoid unnecessary complications we focus on the case where the ground truthf is
de�ned onZ = Rdz . Then
 = Z clearly satis�es the assumptions and actually the proof is slightly
simpler. The more general result here would allows us to handle alsoZ ( R dz in Appendix D with
minor changes.

The proof can be essentially decomposed in two steps: We show how to reduce from interaction of
at most ordern to interaction of at most ordern � 1 and then we establish the induction base for
n = 2 .

Lemma C.4. Supposef : 
 ! Rdx is a Cn +1 function and
 open and connected. Assume that
f has interaction of at most ordern between any two different slots for somen � 2. Letz0 2 
 be
any point. Then the function

f (z) �
X

� 2 I n

D � f (z0)
� !

z � (C.2)

has interaction of order at mostn � 1.

Proof. First we observe thatf having interaction at mostn implies thatD � f is constant in
 for
� 2 I n . Indeed, since� 2 I n we conclude� + ei 2 I n +1 whereei denotes the tuple withi -th entry
1 and all other entries 0. Then, by de�nition of having interaction at most inn in De�nition 3.4, we
conclude that

@i D � f (z) = D � + ei f (z) = 0 : (C.3)

This implies that the total derivative ofD � f vanishes on
 , which implies thatD � f is constant
because
 is connected. Consider now any� 2 I n . Then we �nd using (B.4)

D �

 

f (z) �
X

� 2 I n

D � f (z0)
� !

z �

!

= D � f (z) �
D � f (z0)

� !
� ! = 0 (C.4)

where we used thatD � f is constant andD � z � = 0 for � 6= � if j� j = j� j. This ends the
proof.

We now establish the functional form for interaction of at most order 1. This is essentially a sim-
ilar statement as in Proposition 7 in Lachapelle et al. (2023) except that we consider more general
domains so that their proof does not apply.

Lemma C.5. Assume
 is an open connected and aligned-connected set such that
 k is con-
tractible. If f is a function such that different slots have interaction at most of order 1 then there are
functionsf k such that

f (z) =
KX

k=1

f k (zB k ): (C.5)
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Proof. Fix a 1 � k � K . With slight abuse of notation we writez = ( zB k ; zB c
k
). Fix now some

valuezB k . We claim that for allzB c
k
; z0

B c
k

such that(zB k ; zB c
k
); (zB k ; z0

B c
k
) 2 


D z B k
f ((zB k ; zB c

k
)) = D z B k

f ((zB k ; z0
B c

k
)) : (C.6)

By assumption we indeed know that
D z B c

k
D z B k

f ((zB k ; zB c
k
)) = 0 : (C.7)

Moreover, by aligned-connectedness we know that the set
 zB k
= f zB c

k
: (zB k ; zB c

k
) 2 
 g is

connected so we conclude that the function

 zB c

k
! RjB k j� dx ; zB c

k
! D z B k

f ((zB k ; zB c
k
)) (C.8)

is indeed constant. This implies that there is a functiongk depending onzB k such that

gk (zB k ) = D z B k
f ((zB k ; zB c

k
)) (C.9)

for all z = ( zB k ; zB c
k
) 2 
 . Locally gk is the gradient of a function, but by assumption
 k is

contractible and therefore, by the Poincaré-Lemma, there is a functionf k such thatD f k = gk .
Then we �nd

D z B k
f ((zB k ; zB c

k
)) = g(zB k ) = D z B k

f k (zB k ) = D z B k

 
KX

k 0=1

f k 0
(zB k 0)

!

: (C.10)

Thus the differencef �
P K

k=1 f k has vanishing derivative on
 and since
 is connected we
conclude that it is constant. This implies (C.5) after shifting onef k by this constant.

Based on these two lemmas the proof of Theorem C.2 is straightforward.

Proof of Theorem C.2.In the �rst step we show that if the at mostn-th order interaction condition
holds thenf can be written as in (C.1), i.e., ') '. Applying inductively Lemma C.4 we conclude
that there are constantsc� 2 Rdx such that

f (z) �
nX

m =2

X

� 2 I m

c� z � (C.11)

has interaction of order at most1. Thus, we can apply Lemma C.5 which implies that a represen-
tation as in (C.1) exists on
 . For the reverse direction '( ' we observe that clearly the functional
form implies for� 2 I n +1 the relation

D � f = 0 : (C.12)

Let us show through examples that the topological conditions on the set
 are neccessary. The
following examples shows that the condition that
 k is contractible cannot be dropped.
ExampleC.6. For everyz 2 R2 n f 0g we denote by� (z) 2 [0; 2� ) the argument (i.e., the angle
to the positivex-axis in radian) and byr (z) = jzj the radius ofz. We consider
 � R4 and
B1 = f 1; 2g, B2 = f 3; 4g given by


 = f z : r (zB 1 ); r (zB 2 ) 2 (1; 2); (� (zB 1 ) � � (zB 2 ) mod 2� ) 2 (0; � )g (C.13)
and the function

f : 
 ! R; f (z) = � (zB 1 ) � � (zB 2 ) mod 2�: (C.14)
Then
 is aligned-connected because the sets in questions are annular sectors and in particular path
connected. Moreover,f is smooth because� (zB 1 ) � � (zB 2 ) mod 2� 2 (0; � ) so it does not jump
andD zB 1

D zB 2
f = 0 because it is locally additive. However it is not globally additive as in (C.1).

The necessity of the aligned conncetedness condition can be shown by an example that is similar to
Example 7 in Lachapelle et al. (2023).
ExampleC.7. Consider
 = ([ � 1; 0]� [� 2; 2])[ ([0; 1]� [1; 2])[ ([0; 1]� [� 2; � 1]) andf : 
 ! R
given by

f (z) =
�

z3
1 if z1; z2 > 0

0 otherwise:
(C.15)

Thenf is C2, f has interaction of order at most 1 butf cannot be written as in (C.1). Note that

is not aligned-connected becausef z2 : (1=2; z2) 2 
 g = [ � 2; � 1] [ [1; 2] is not connected.
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D COMPOSITIONAL GENERALIZATION PROOFS

In this appendix we prove extrapolation result Theorem 4.4. Based on the functional form derived
in Theorem C.2 we relate two differenent disentangled representations.

Lemma D.1. Let f : Z ! Rdx be aC3 diffeomorphism of the form:

f (z) =
KX

k=1

f k (zB k ) +
X

� 2 I 2

c� z � (D.1)

for somef i in C3. Let ^f : Z ! Rdx be a diffeomorphism of the same functional form. Let
h : Z supp ! Z be such thatf = ^f � h on Z supp. If h is a slot-wise function, i.e. for allk 2
[K ]; h k (z) = h k (zB k ) andZ supp is regularly closed then for allz 2 Z supp

KX

k=1

f k (zB k ) =
KX

k=1

^f
� (k )

(h k (zB k )) + L(z) (D.2)

for some af�ne functionL : Rdz ! Rdx .

RemarkD.2. We note that it is not possible to remove the af�ne functionL from the state-
ment. Indeed if all slots have dimension1 and h1(z1) = z1 + 1 , h2(z2) = z2 + 1 then
h1(z1)h2(z2) � z1z2 = z1 + z2 + 1 is an additive function. Moreover, we cannot in general
prove thath itself is slotwise af�ne because the coef�cientsc can be zero. In this caseh can be any
slot-wise diffeomorphism.

Proof. First we remark that the polynomial part of the functional form in (D.1) contains all terms
zi zj wherei; j are in different slots, thus it can be equivalently written as

X

� 2 I 2

c� z � =
KX

k=1

KX

k 0= k+1

�
zB k 
 zB k 0

�
A kk 0 (D.3)

for some constant matricesf A kk 0 2 R( jB k j�j B k 0j ) � N gk<k 02 [K ], where
 denotes the Kronecker
product (e.g.,[z1; z2] 
 [z3; z4] = [ z1z3; z1z4; z2z3; z2z4]).

We assume that the permutation� is the identity. We know thatf ; ^f are diffeomorphisms between
the same spaces and can thus be related by the functionh via:

f = ^f � h (D.4)

Inserting the functional forms forf ; ^f and leveraging thath is a slot-wise function and� is the
identity, we have for allz 2 Z

KX

k=1

f k (zB k ) +
KX

k=1

KX

k 0= k+1

�
zB k 
 zB k 0

�
A kk 0

=
KX

k=1

^f k (hB k (zB k )) +
KX

k=1

KX

k 0= k+1

�
h k (zB k ) 
 h k 0

(zB k 0)
�

Â kk 0:

(D.5)

To prove the claim we now consider the expression

L(z) =
KX

k=1

f k (zB k ) �
KX

k=1

^f k (hB k (zB k ))

=
KX

i = k

KX

k 0= k+1

�
h k (zB k ) 
 h k 0

(zB k 0)
�

Â kk 0 �
KX

k=1

KX

k 0= k+1

�
zB k 
 zB k 0

�
A kk 0

(D.6)
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and prove thatL (z) is an af�ne function. To show this it is suf�cient to prove that the second
derivativeD 2L vanishes becauseZ supp is path-connected. Thus we consider all partial derivatives.
Consider �rst the case wherei 2 Bk andi 0 2 Bk 0 for k < k 0. Then we �nd that

D i D i 0L(z) = D i D i 0

 
KX

k=1

f k (zB k ) �
KX

k=1

^f k (hB k (zB k ))

!

= 0 : (D.7)

It remains to consider derivatives of the formD i D i 0 wherei; i 0 2 Bk for some sloti . Then we
clearly have

D i D i 0

KX

k=1

KX

k 0= k+1

�
zB k 
 zB k 0

�
A kk 0 = 0 (D.8)

because this is a linear expression inzB k . Next, we want to show that

D i D i 0

�
h k (zB k ) 
 h k 0

(zB k 0)
�

Â kk 0 = 0 (D.9)

for all k < k . To prove this we show the more general statement (that will be used in the proof of
Theorem 4.4 below) that for anyk 6= k0 and any vectorv 2 RB k 0 the functions

zB k ! (h k (zB k ) 
 v)Â kk 0 (D.10)

are af�ne onZ k or equivalently that

D i D i 0

�
h k (zB k ) 
 v)

�
Â kk 0 = 0 (D.11)

for everyv 2 RB k 0 . To prove this we consider anyj 2 Bk 0 and apply the derivativeD i D i 0D j to
(D.5) to get

0 =
�

D i D i 0h k (zB k ) 
 D j h k 0
(zB k 0)

�
Â kk 0 (D.12)

for everyz 2 �Z supp . Now we use that by assumptionh is a diffeomorphism. Using the block
structure ofh we �nd that alsoh k are diffeomorphisms. In particular, this implies that for any
z 2 �Z supp the vectors(D j h k 0

(zB k 0)) j 2 B k 0 are linearly independent vectors inRjB k 0j and they thus
generateRjB k 0j . Therefore we can �nd coef�cients� j (depending onzB k 0) such that

X

j 2 B k 0

� j D j h k 0
(zB k 0) = v (D.13)

Then we get using (D.12)

D i D i 0

�
h k (zB k ) 
 v)

�
Â kk 0 = D i D i 0

0

@h k (zB k ) 


0

@
X

j 2 B k 0

� j D j h k 0
(zB k 0)

1

A

1

A Â kk 0

=
X

j 2 B k 0

� j

�
D i D i 0h k (zB k ) 
 D j h k 0

(zB k 0)
�

Â kk 0 = 0 :

(D.14)

So (D.10) holds and thus also (D.9) (we actually only get this for pointszk 2 Z k such that there is
z 2 �Z supp with zk = zB k but by continuity and sinceZ supp is regularly closed this actually holds
on Z k ). The same reasoning shows that this is also true ifi; i 0 2 Bk 0 (instead ofi; i 0 2 Bk ). We
then �nd that fori; i 0 2 Bk

D i D i 0

KX

k=1

KX

k 0= k+1

�
h k (zB k ) 
 h k 0

(zB k 0)
�

Â kk 0 =

=
KX

k=1

KX

k 0= k+1

D i D i 0

�
h k (zB k ) 
 h k 0

(zB k 0)
�

Â kk 0 = 0 :

(D.15)

The last display together with (D.8) and (D.7) imply thatD 2L = 0 and thusL is af�ne. When� is
not the identity the proof is similar.
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We also need the following simple lemma which states that we have unique Cartesian-product ex-
tension of functions with interaction of order at mostn between different slots.

Lemma D.3. Letf : Z ! Rdx be aC3 diffeomorphism with interaction at mostn between different
slots such thatZ supp is regularly closed and forz 2 Z supp

f (z) =
KX

k=1

f k (zB k ) +
X

2� m � n

X

� 2 I m

c� z � (D.16)

for somef i in C3. Then this relation holds onZCPE .

Proof. We know by Theorem C.2 that a representation as in (D.16) holds onZ = Rdz and thus can
be restricted toZCPE , however it might not be the same representation but involve functions~f k and
constants~c� . Taking the difference and setting�f k = f k � ~f k and�c� = c� � ~c� we �nd that on
Z supp

0 =
KX

k=1

�f k (zB k ) +
X

2� m � n

X

� 2 I m

�c� z � : (D.17)

But by applyingD � for � 2 I m for m = n down tom = 2 we �nd �c� = 0 for all � 2 I � n and thus
the polynomial term vanishes. Next, we applyD and �nd that �f k is constant onZ k (becauseZ supp
is regularly closed). This implies that (D.17) holds inZCPE and thus (D.16) holds onZCPE .

Using the previous lemmas we can prove Theorem 4.4.

Theorem 4.4 (Compositional Generalization). Let n 2 f 0; 1; 2g. Let Z supp be regular closed
(Defn. A.3). Letf : Z ! X and ^f : Z ! Rdx be C3 diffeomorphisms with at most nth order
interactions across slots onZ . If ^f disentanglesz on Z supp w.r.t. f (Defn. 2.1), then it generalizes
compositionally (Defn. 2.2).

Proof of Theorem 4.4.Note that Corollary 3 in Lachapelle et al. (2023) already handles the case
n = 0 ; 1 but the proof below is more general, and also covers the case ofn = 0 ; 1, since functions
with at most 0th and 1st order interactions are special cases of functions with at most 2nd order
interactions assumingf is aC3 diffeomorphism.

We can apply Theorem C.2 tof which implies thatf can be written onZ = Rdz as in (C.1) and as
explained in Lemma D.1 an equivalent representation is

f (z) =
KX

k=1

f k (zB k ) +
KX

k=1

KX

k 0= k+1

�
zB k 
 zB k 0

�
A kk 0: (D.18)

and we have similarly

^f (z) =
KX

k=1

^f k (zB k ) +
KX

k=1

KX

k 0= k+1

�
zB k 
 zB k 0

�
Â kk 0: (D.19)

By assumption we havef = ^f � h on Z supp whereh(z) :=
�
h1

�
zB � (1)

�
; : : : ; hK

�
zB � ( K )

��

and the functionsh k : RjB � ( k ) j ! RjB k j are diffeomorphisms. Our goal is to show that this
relation actually holds on the Cartesian-product extensionsZCPE . Let U be the set of points
such thatf (z) = ^f � h(z) for z 2 U. We claim that if z = ( zB 1 ; : : : ; zB K ) 2 �U then
z0 = ( zB 1 ; : : : ; z0

B l
; : : : ; zB K ) 2 U for any z0

B l
2 Z l . Let us de�ne the mapez : Z l ! Z

given byez (z0
B l

) = z0. We know by Lemma D.1 that the function

z !
KX

k=1

f k (zB k ) �
KX

k=1

^f
� (k )

(h k (z)B k )) = L(z) (D.20)

39



Published as a conference paper at ICLR 2025

is af�ne on Z supp. Applying Lemma D.3 the same holds onZCPE . Thus we conclude that

z0
B l

!
KX

k=1

f k (ez (z0
B l

)B k ) �
KX

k=1

^f
� (k )

(h k (ez (z0
B l

)B k )) = L(ez (z0
B i

)) (D.21)

is af�ne on Z l . Moreover,

z0
B l

!
KX

k=1

KX

k 0= k+1

�
ez (z0

B l
)B k 
 ez (z0

B l
)B k 0

�
A kk 0 (D.22)

is clearly af�ne onZ l and by (D.10) the same holds for

z0
B l

!
KX

k=1

KX

k 0= k+1

�
h k (ez (z0

B l
)B k ) 
 h k 0

(ez (z0
B l

)B k 0)
�

A kk 0: (D.23)

The last three displays together imply that

z0
B l

! f (ez (z0
B l

)) � ^f � h(ez (z0
B l

)) (D.24)

is af�ne on Z l and since it is zero in a neighbourhood ofz0
B l

= zB l (becausez 2 �U) it is equal to
zero onZ l . Since this is true for any slotB l we can now conclude thatU = Z . Indeed, pick any
open rectangleZ 0

1 � Z 0
2 � : : : � Z 0

K � Z supp � U . We then infer that�Z1 � Z 0
2 � : : : � Z 0

K � U
and by inducting over the slots and applying continuity at the boundary we obtain the claim.

E UNIFYING ASSUMPTIONS FROMPRIOR WORK

E.1 AT MOST 0TH ORDER INTERACTION ACROSSSLOTS

To prove that the assumptions in Brady et al. (2023) are a special case of our assumptions forn = 0 ,
we �rst restate their assumptions formally. To this end, we �rst de�ne the following set:

8S � [dz ] I S (z) := f l 2 [dx ] : DS f l (z) 6= 0 g: (E.1)

The assumption ofcompositionalityin Brady et al. (2023) can now be stated:
De�nition E.1 (Compositionality). A differentiable functionf : Z ! X , is said to becomposi-
tional if:

8z 2 Z ; k; j 6= k 2 [K ] : I k (z) \ I j (z) = ; : (E.2)

We now state the second assumption in Brady et al. (2023), deemedirreducibility.
De�nition E.2 (Irreducibility). A differentiable functionf : Z ! X , is said to beirreducibleif for
all z 2 Z andk 2 [K ] and any partitionI k (z) = S1 [ S2 (i.e., S1 \ S2 = ; andS1; S2 6= ; ), we
have:

rank
�
D f S1 (z)

�
+ rank

�
D f S2 (z)

�
> rank

�
D f I k (z)

�
: (E.3)

We now prove that compositionality and irreducibility are equivalent tof having satisfying interac-
tion asymmetry (3.5) for all equivalent generators (4.1) forn = 0 .
Theorem E.3. A C1 diffeomorphismf : Z ! X satis�es compositionality (Def. E.1) and irre-
ducibility (Def. E.2) if and only iff has at most 0th order interaction across slots (Defn. 3.2) and
satis�es interaction asymmetry (Assm. 3.5) for all equivalent generators (4.1).

Proof. We start by proving the forward direction, i.e., that compositionality and irreducibility
imply thatf has at most 0th order interaction across slots and satis�es interaction asymmetry for all
equivalent generators.

The de�nitions of compositionality and at most 0th order interaction across slots are pre-
cisely equivalent, thus we only need to show that compositionality and irreducibility imply that
f satis�es interaction asymmetry for all equivalent generators. To show this we will prove the
following contraposition: that iff has at most 0th order interaction across slots anddoes notsatisfy
interaction asymmetry for all equivalent generators, thenf is not irreducible.
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Sincef has at most 0th order interaction across slots anddoes notsatisfy interaction asymmetry for
all equivalent generators, this implies that there exists a matrixA 2 RjB k � B k j and a partition ofBk ,
into A; B (A [ B = Bk ; A \ B = ; ) such that within the function�f de�ned as:

8z 2 Z ; �f (A 1zB 1 ; : : : ; A K zB K ) = f (zB 1 ; : : : ; zB K ): (E.4)

where A i such thati 6= k is the identity matrix, the latents�zA ; �zB have no interaction.
This implies that under�f , I A ( �z) does not intersect withI B ( �z). Further, because�f is in-
vertible, we know thatD �f B k ( �z) is full column rank. Coupling these two properties, we
conclude that rank(D �f B k ( �z)) = rank(D �f A ( �z)) + rank(D �f B ( �z)) . Furthermore, the Jaco-
bians D �f ( �z) and Df (z) will be related by an invertible linear map by construction. Thus,
D �f S ( �z) and Df S (z) have equal rank for any subsetS � [dz ]. Therefore, we conclude that
rank(D f B k (z)) = rank(D f A (z)) + rank(D f B (z)) . BecauseA andB form a partition ofBk we
conclude thatf is not irreducible.

We now prove the reverse direction iff has at most 0th order interaction across slots and
satis�es interaction asymmetry for all equivalent generators thenf satis�es compositionality
and irreducibility. As noted before, the de�nitions of compositionality and at most 0th order
interaction across slots are precisely equivalent. Thus, we only need to show that iff has at most
0th order interaction across slots and satis�es interaction asymmetry then this impliesf satis�es
irreducibility. To show this, will prove the following contraposition: that iff does not satisfy
irreducibility, then it does notsatisfy interaction asymmetry for all equivalent generators with
n = 0 .

Sincef is not irreducible, we know that there exist az, a slotk 2 [K ], and a partition ofBk
into A; B such that rank(D f B k (z)) = rank(D f A (z)) + rank(D f B (z)) . BecauseDf B k (z) is full
column rank this implies that rank(D f A (z)) = jAj and rank(D f B (z)) = jB j. Now take two
matricesM S1 2 Rdx �j A j andM S2 2 Rdx �j B j such that the column space ofM S1 is the same
asDf A (z) and the columns space ofM S2 is the same asDf B (z). Now construct the following
matrix M 2 Rdx �j B k j as follows:

M := [ M S1 ; M S2 ] (E.5)
Note that by construction this matrix has a block structure such that rows forM S1 are never non-
zero for the same rows asM S2 . BecauseM andDf B k (z) are both full column rank, then there
exist a matrixA k 2 RjB k j�j B k j such that:

M := Df B k (z)A k (E.6)

Now de�ne the function�f as follows:

8z 2 Z ; �f
�
A � 1

1 zB 1 ; : : : ; A � 1
K zB K

�
= f (zB 1 ; : : : ; zB K ) : (E.7)

such thatA � 1
i is de�ned as above wheni = k, and otherwise it is the identity matrix.

Writing the derivative ofD �f B k ( �z) in terms off we getD f B k (z)A k = M . BecauseM has a block
structure we conclude that there exist a partition ofBk such that these latents have no interaction
within �f at �z. Because�f is equivalent tof we conclude that the function does not satisfy interaction
asymmetry forn = 0 .

E.2 AT MOST 1ST ORDER INTERACTION ACROSSSLOTS

We now prove that the assumptions in Lachapelle et al. (2023) are a special case of our assumptions
for n = 1 . To this end, we �rst restate their assumptions. The �rst assumption in Lachapelle et al.
(2023) is that the generatorf is additive:
De�nition E.4 (Additive decoder). A C2 diffeomorphismf : Z ! X is said to be additive if:

f (z) =
X

k2 [K ]

f k (z); wheref k : RjB k j ! Rdx for anyk 2 [K ] andz 2 Z : (E.8)

De�nition E.5 (Suf�cient Nonlinearity). Let f : Z ! X be aC2 diffeomorphism. For allk 2 [K ],
let B 2

k � := B 2
k \ f (i 1; i 2)ji 2 � i 1g. f is said to satisfysuf�ciently nonlinearityif 8z 2 Z the

following matrix has full column-rank:

W (z) :=
�
[D i f (z)] i 2 B k

�
D 2

i;i 0f (z)
�

( i;i 0)2 B 2
k �

�

k2 [K ]
(E.9)
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We now state our result.
Theorem E.6. Let f : Z ! X be aC2 diffeomorphism. Iff satis�es additivity (Def. E.4) and
suf�cient nonlinearity (Def. E.5) thenf has at most 1st order interactions across slots (Defn. 3.3),
satis�es suf�cient independence (Defn. A.9), and satis�es interaction asymmetry (Asm. 3.5) for all
equivalent generators (Defn. 4.1) forn = 1 .

Proof. We note thatf having at most �rst order interactions across slots is equivalent to having a
block-diagonal Hessian for every observed component. Such functions were proven to be equivalent
to additive functions in Lachapelle et al. (2023). Furthermore, suf�cient independence is clearly
implied by suf�cient nonlinearity as if all columns of the matrixW (z) are linearly independent,
then blocks[D i f (z)] i 2 B k

�
D 2

i;i 0f (z)
�

( i;i 0)2 B 2
k �

will have non-intersecting columns spaces for all

k 2 [K ] and will thus satisfy suf�cient independence (Def. A.9. Consequently, the only thing we
need to show is that suf�cient nonlinearity (Def. E.5) implies interaction asymmetry (Assm. 3.5)
for all equivalent generators (4.1).

Assume for a contradiction that suf�cient nonlinearity (Def. E.5) did not imply interaction
asymmetry (Assm. 3.5) for all equivalent generators (4.1) withn = 1 . This would imply that there
exists an equivalent generator tof denoted�f de�ned in terms of a slot-wise linear functionh:

�f = f � h (E.10)
such that �f has at most �rst order interaction within some slotBk . In other words, leveraging
Lemma A.21, there exist a(j; j 0) 2 B 2

k and az 2 Z s.t.

0 = D 2
j;j 0

�f (z) = W f (h(z))m h (z; (j; j 0)) ; (E.11)

BecauseW f (h(z)) is assumed to be full rank by suf�cient nonlinearity (Def. E.5), then in order for
this equation to holdm h (z; (j; j 0)) must be zero. Note, however, that by constructionh is de�ned
slot-wise such thatzj ; z0

j map to the same slothB k . By construction, if twozj ; z0
j affect the same

slothB k thenm h (z; (j; j 0)) , cannot be zero. Thus, we obtain a contradiction.

F TRANSFORMERS FORINTERACTION REGULARIZATION

Each layer of a Transformer (Vaswani et al., 2017) consist of two main components: an MLP sub-
layer and an attention mechanism. Notably, in the MLP sub-layer, MLPs are applied separately to
each slot or pixel query and their outputs are then concatenated. Further, additional layer normaliza-
tion operations (Ba, 2016) are typically used in Transformers but are also separately applied to each
slot or pixel query. Thus, the only opportunity for interaction between slots in a Transformer oc-
curs through the attention mechanism. Our focus in this work is on the cross-attention mechanism,
opposed to the alternative self-attention. As noted in § 5, cross-attention takes the form:

K = W K [ẑB k ]k2 [K ]; V = W V [ẑB k ]k2 [K ]; Q = W Q [od]d2 [dx ]; (F.1)

A d;k =
exp

�
Q>

:;d K :;k

�

P
l 2 [K ] exp

�
Q>

:;d K :;l

� ; �x d = A d;:V > ; x̂d =  ( �x d) : (F.2)

whereK :;k ; V:;k 2 Rdq , W K ; W V 2 Rdq �j B k j for query dimensiondq. Further,od 2 Rdo , Q :;l 2
Rdq , W Q 2 Rdq � do , wheredo is the dimension of a pixel coordinate vector, and : Rdq ! R.

Additional Details. In Eq. (F.2), we do not include the scaling factord
� 1

2
q for A d;k , that is typically

used as it does not affect our arguments below. We do, however, include it in our experiments.
Further, whenx is an RGB image,̂xd will not be a scalar but will instead be a vector inR3 since each
pixel has3 color channels. Additionally, in our experiments, multi-head attention is used. In this
case, slot keys and values and pixel queries are partitioned intoh sub-vectors. Eqs. (F.1) and (F.2)
are then applied separately to each resulting sub-latent, and the resulting outputs are concatenated.
When using multiple layers of cross-attention, as we do in our experiments, is only applied at
the last layer and vectorsol for a subsequent layer are de�ned as the vectors�x d from the prior
layer. Eqs. (F.1) and (F.2) is then repeated. We discuss how these additional caveats are dealt with
empirically when implementingL interactbelow in Appx. F.2, however, they do not affect our formal
argument regarding regularizing interactions in Appx. F.1.
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F.1 JACOBIAN OF CROSS-ATTENTION MECHANISM

Our goal is to show that ifA d;k in equation is0, then partial derivative of Eqs. (F.1) and (F.2) w.r.t
slot ẑB k , i.e, @̂x d

@̂zB k
will also be zero. This would then imply that ifA d;: is non-zero for at most one

slot k for everyd 2 [dx ], and everŷz 2 Ẑ supp, then slots do not interact in the sense of Defn. 3.2,
since all such derivative products@̂x d

@̂z B k

@̂x d
@̂z B l

for l 6= k are zero. To this end, we are interested in
computing the derivative:

@̂xd

@(ẑB m )r
= @i  ( �x )

@( �x d) i

@(ẑB m )r
(F.3)

where we here and from now on use the convention that we sum over every index that appears only
on one side. To evaluate this we decompose the terms

( �x d) i = A d;k Vi;k = A d;k W V
i;j (ẑB k ) j : (F.4)

We setM d;: = o>
d (W Q )> W K so that

Q>
:;d K :;k = M d;i (ẑB k ) i : (F.5)

This implies that

@
@(ẑB m ) i

exp(Q>
:;d K :;k ) = M d;i � km exp(Q>

:;d K :;k ) (F.6)

where� is the Kronecker-Delta (and here no summation overk or d is done). This implies using the
product rule and the chain rule that

@A d;k

@(ẑB m ) i
= M d;i � k;m A d;k � M d;i A d;k A d;m : (F.7)

Plugging this together we get

@̂xd

@(ẑB m )r
= @i  ( �x )

@( �x d) i

@(ẑB m )r

= A d;m W V
i;r @i  ( �x ) + @i  ( �x )W V

i;j (ẑB k ) j
@A d;k

@(ẑB m )r

= A d;m W V
i;r @i  ( �x ) + @i  ( �x )W V

i;j (ẑB k ) j (M d;r � k;m A d;k � M d;r A d;k A d;m )

= A d;m @i  ( �x )(W V
i;r + W V

i;j (ẑB m ) j M d;r ) � @i  ( �x )W V
i;j (ẑB k ) j M d;r A d;k A d;m

(F.8)

From this, we can see that ifA d;m = 0 , then the partial derivative@̂x d
@̂z B m

, will indeed be zero as
A d;m scales both terms in the last line of Eq. (F.8).

F.2 INTERACTION REGULARIZER

Based on Appx. F.1, we propose to regularize the interaction in a Transformer by minimizing the
sum of all pairwise productsA l;j A l;k , wherej 6= k. More speci�cally, we minimize the following
loss:

L interact := E
X

l 2 [dx ]

X

j 2 [K ]

KX

k= j +1

A l;j (ẑ )A l;k (ẑ ) (F.9)

whereA l;k (ẑ ) is used to indicate the input dependence of attention weights on latentsẑ . L interact is
a non-negative quantity which will be zero if and only if a matrix has at most one non-zero for each
row (Brady et al., 2023).

Code to computeL interact for a batch of attention matrices can be seen in Fig. 4. We note that when
using multiple attention heads, we �rst sum the attention matrices over all heads to ensure consistent
pixel assignments across different heads.
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Figure 4: PyTorch code to computeL interact.

When using multiple layers, we also sum the
attention matrices over each layer, for the same
reason.L interact is then computed on the result-
ing attention matrix.

Regularizing Higher Order Interactions. We
note that while we motivateL interact as a regu-
larizer for 1st order interactions, we do not ex-
plicitly address regularizing for higher order in-
teractions, i.e., forn � 2. We conjecture there
is a relationship between regularizingL interact and higher order interactions but that it is less direct
than the 1st order case. We leave it to future work to explore these connections further, as well
as alternative, computationally ef�cient regularizers which can more directly penalize higher order
interactions.

Computational Ef�ciency. We note that regularizing withL interact adds minimal additional com-
putational overhead since attention weights are already computed at each forward pass through the
model, and, moreover can be easily optimized using gradient descent. This is in contrast to Brady
et al. (2023) which required computing the Jacobian of the decoder^f at each forward pass and then
optimizing it using gradient descent. This results in second-order optimization which is computa-
tionally intractable for high-dimensional data such as images (Brady et al., 2023).

G EXTENDED RELATED WORK

G.1 THEORY

Relationship Between Principle 3.1 and Other Principles.The principle of interaction asymme-
try, “parts of the same concept have more complex interactions, than parts of different concepts”
(3.1), is intuitively similar to several prior principles explored for learning concepts. For exam-
ple, the prior works of Baldwin et al. (2008); Reynolds et al. (2007); Schmidhuber (1990); Zacks
et al. (2011) on disentangling events/sub-task (e.g., “making coffee”, “driving to work”), Greff et al.
(2015); Hyvarinen and Perkio (2006) on disentangling objects in an image, and Schmidhuber (1992)
are all essentially based on the principle that parts of same concept aremore mutually predictable
than parts of different concepts. Similarly, Hochreiter and Schmidhuber (1999); Jiang et al. (2022)
implicitly use the idea that parts of same concept aremore compressiblethan different concepts.
Research on networks, use the idea that nodes from the same “community” interact more strongly
than nodes from different communities (Fortunato and Hric, 2016), which also resembles ideas from
clustering that points from the same cluster have higher mutual information than from different clus-
ters (Kraskov et al., 2005). This network-based framework was applied by Schapiro et al. (2013) as
a model for grouping temporal events. Lastly, Greff et al. (2020) propose that objects do not interact
much with their surroundings but internally have a strong structure. While these different ideas are
intuitively similar to interaction asymmetry, they take on different formalizations. Moreover, these
principles are generally used as high-level heuristics for designing a learning algorithm, and their
theoretical implications for disentanglement and compositional generalization are not explored.

Connection with Information Bottleneck Principle. Another notable principle for learning repre-
sentations is the Information Bottleneck principle (Alemi et al., 2016; Tishby et al., 2000) which has
also been applied in the context of learning disentangled representations (Meo et al., 2024). In the
context of disentanglement, this principle suggest learning a representation which tries to balance
a trade-off between minimizing the mutual information between a latent vectorz and an observa-
tion x , and ensuring thatz contains suf�cient information to predict, i.e., reconstructx . From a
theoretical standpoint, the Information Bottleneck principle differs from the principle of interaction
asymmetry as de�ned in Asm. 3.5. Speci�cally, Asm. 3.5 is an assumption on thegeneratorf
and does not place assumptions on the latent distributionpz . Consequently, our theory describes a
setting in which disentanglement can be achieved without explicitly enforcing any additional prop-
erties onpz . We note, however, that despite this key difference, our theory does yield insights which
resemble the Information Bottleneck principle. Speci�cally, as noted in § 5, our theory suggest that
if a model uses an inferred latent dimensiondẑ greater than the ground-truth dimensiondz , then it
should aim to encodex using the minimal necessary latent dimension, i.e., the mutual information
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betweenx and unnecessary latent dimensions should be minimized, while ensuring thatx can be
reconstructed fromz.

On the Relationship Between Disentanglement and Compositional Generalization.A key
premise motivating our theoretical study of compositional generalization is that, from a theoreti-
cal perspective, disentanglement does not directly imply compositional generalization. Speci�cally,
this would require that equality betweenf and ^f on Z supp (disentanglement Defn. 2.1) implies that
these functions were also equal on all ofZ (compositional generalization Defn. 2.2). As noted
by Lachapelle et al. (2023); Wiedemer et al. (2024a), this will not be true for arbitrary functions and
necessitates restrictions on the form off ; ^f on all of Z . While several works have provided empir-
ical corroboration of this theoretical statement for concepts of objects (Wiedemer et al., 2024a) and
object attributes (Montero et al., 2021; 2022b; Schott et al., 2022), prior works in disentanglement
have suggested that disentanglement can in some cases enable compositional generalization (Es-
maeili et al., 2018; Higgins et al., 2017; Mahon et al., 2023). We hypothesize that the compositional
generalization abilities observed in the latter works are a consequence of only leaving a small num-
ber of novel combinations out of the training set, such that compositional generalization becomes
much easier compared to the more restricted training domains explored in (Montero et al., 2021;
Wiedemer et al., 2024a). With this being said, it is possible that through hidden inductive biases in
a model, disentanglement can directly lead to compositional generalization, which would not be at
odds with our theoretical observation.

Polynomial Decoders.As noted in § 4.2, Asm. 3.5 implies that the cross-partial derivatives of the
generatorf consisting of components from different slots will be �nite-degree polynomials. This
partially resembles the polynomial constraints onf in Ahuja et al. (2023) for disentanglement. Im-
portantly, however, Ahuja et al. (2023) assume thatall cross-partial derivatives off are polynomial
such that the entire functionf is a �nite-degree polynomial. In contrast, Asm. 3.5 constrains the
form of cross-partial derivativesacrossslots to be polynomial, butdoes notconstrain the form of
cross-partial derivativeswithin the same slot. In other words, Asm. 3.5 only constrains the interac-
tions across slots, while Ahuja et al. (2023) constrains all possible interactions. This is an important
distinction since the former gives rise to much more �exible generators than the latter (see Eq. (4.2)).

G.2 METHOD AND EXPERIMENTS

VAE Losses in Object-Centric Models. Prior work in Wang et al. (2023) also apply a VAE loss
to an unsupervised object-centric learning setting. However, while we minimizeL KL directly on in-
ferred slots in̂z given by our Transformer encoder, Wang et al. (2023) minimizeL KL on an interme-
diate representation which is then further processed to yieldẑ . Furthermore, the focus of Wang et al.
(2023) is on scene generation an not penalizing the capacity ofẑ . Additionally, Kori et al. (2024)
explore a loss for object-centric learning resembling a VAE loss, though their aim is to enforce a
certain probabilistic structure on̂z implied by their theoretical disentanglement result, opposed to
penalize latent capacity.

Inductive Bias Through Explicit Supervision. Recently, many works have shown remarkable em-
pirical success in disentangling (Kirillov et al., 2023; Ravi et al., 2024) and composing (Brooks
et al., 2023; Ramesh et al., 2021; 2022; Ruiz et al., 2023; Saharia et al., 2022) visual concepts in
images on web-scale data. These works achieve this through explicit supervision via segmentation
masks or natural language descriptions of each concept, opposed to constraints on the generative pro-
cess in Eq. (2.1). Notably, however, many species in human's evolutionary lineage disentangle and
compose concepts in sensory datawithoutusing explicit supervision like natural language (Behrens
et al., 2018; LeCun, 2022; Summer�eld, 2022; Tolman, 1948). This suggest the existence of a
self-supervised coding mechanism for disentanglement and compositional generalization that is still
lacking in current machine learning models. The present work aims to make theoretical and empiri-
cal progress towards such a mechanism.

Relation Between a Transformer Regularized withL interact and Prior Works. Goyal et al. (2021)
proposed RIMs which is a Transformer-style architecture aimed at enforcing a “modular” structure.
Contrary to our work, Goyal et al. (2021) do not regularize for modularity, but posit that it may
emerge from “competition” induced by an attention mechanism. Similarly, Lamb et al. (2021) pro-
pose an alternative Transformer architecture aimed at enforcing modularity, which also tries to en-
force competition using a mechanism similar to Goyal et al. (2021). More recently, Vani et al. (2024)
propose a novel Transformer component which is aimed at yielding disentanglement by processing a
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Transformer embedding into different slots using separate attention heads for each slot. While these
works are similar to ours in that they aim to learn disentangled representations of concepts using a
Transformer-style architecture, they are based on architectural changes to a Transformer, whereas
we use a standard cross-attention Transformer decoder and regularize it explicitly towards having a
“modular” structure usingL interact.

H EXTENDED DISCUSSION

H.1 THEORETICAL ASSUMPTIONS

Non-Homogeneous Interactions.One potential limitation of our formulation of interaction asym-
metry (Asm. 3.5) is that the order of interaction,n, across slots, must be the same for all latent vec-
torsz 2 Z and for any two slotszB i ; zB j . This assumption will potentially be violated in practice.
For example, for concepts of visual objects, it is likely that within each image, only a few objects,
i.e., slots, interact at a time (e.g., see Fig. 1), such that different slots will have different orders of in-
teraction withinz. We conjecture that our theory can be extended to handle such non-homogeneous
interactions, however, we leave this for future work. Furthermore, we note that despite this potential
mismatch between theory and practice, our method still achieved robust object-disentanglement on
data in which the order of interaction appears to be non-homogeneous, e.g., CLEVR6.

Requirements on the Observed Dimension.We note that an implication of suf�cient independence
for n > 0 (wheren is the order of interaction across slots) is that the observed dimensiondx must
be greater than the latent dimensiondz . Moreover, the requireddx will scale as a function of the
number of latent slotsK , the slot dimensionsjBk j, and the order of interaction across slots(n).
For example, for functions with at most 1st order interactions across slots, ensuring that the rank
condition in suf�cient independence (Defn. A.9) is met requires thatdx �

P
k2 [K ]

jB k j ( jB k j+1)
2 + dz .

Furthermore, for functions with at most 2nd order interactions, satisfying this condition (Defn. 4.2)
requiresdx �

P
k2 [K ]

jB k j ( jB k j+1)( jB k j+2)
6 + dz (dz +1)

2 + dz . We note that we are interested in
modelling high-dimensional sensory data, such as images, in which the observed dimensiondx will
be much greater than the latent dimensiondz . Thus, for practical cases of interest, we expect these
requirements ondx to be met.

Concepts Potentially not Captured by Interaction Asymmetry. For certain concepts, it is not
obvious if interaction asymmetry will always hold. For example, consider object attributes such as
thex-y-position of an object, which can be modelled by one-dimensional slots. For such concepts,
the interaction within a slot, i.e., the interaction of each latent component w.r.t. itself, should, intu-
itively, be a simple function. It is thus not obvious if the interaction within each slot will necessarily
be more complex than interactions across slots, such thatf may not satisfy interaction asymme-
try (Asm. 3.5). Additionally, it is not immediately clear how interaction asymmetry can be applied
to more abstract concepts which are not directly grounded in sensory data such as the concept of
“democracy” or the concept of a “function” in mathematics.

Restrictiveness of the Aligned-Connected Assumption.Our theoretical results in § 4 leverage
the assumption that the latent spaceZ supp is aligned-connected Defn. A.16. To assess whether the
aligned-connectedness assumption is realistic, we believe it is helpful to look at concrete mathemat-
ical examples of supports that satisfy it. For example, the whole spaceRdz is aligned-connected.
More generally, any convex set is aligned-connected. This include the hypercube[0; 1]dz , any closed
ball, and much more. Some aligned-connected sets are not convex. For example, the ”L-shaped”
set[0; 2]2 n [1; 2]2 is aligned-connected but not convex. This last example is useful to model con-
crete settings where some combinations of latent factors are not observed at training time. This
corresponds to the running example of Lachapelle et al. (2023) consisting of two balls moving up
and down where the con�gurations where both balls appear in the top half of the image are never
observed.

H.2 METHOD AND EXPERIMENTS

Self-Attention in Transformer Decoders. Our Transformer decoder in § 5 resembles the models
from Jaegle et al. (2022); Sajjadi et al. (2022a;b) which only rely on a cross-attention mechanism.
However, other works in object-centric learning leverage Transformer decoders which also include
a self-attention mechanism between queries at each layer (Seitzer et al., 2023; Singh et al., 2022a).
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When reconstructing individual pixels, e.g., on Sprites and CLEVR6 in § 6, applying self-attention
between queries will not scale to high-dimensional images since it requires computingn� n attention
weights, wheren is the number of pixels. However, when reconstructingimage patches, as was
done in our experiments on CLEVRTex, using self-attention is scalable since we have a signi�cantly
smaller number of queries, e.g.,16 � 16 on CLEVRTex. While we found that we could achieve
strong disentanglement using only a cross-attention mechanism on CLEVRTex, it is possible that
using self-attention could be advantageous when reconstructing image patches in even more complex
settings. For such models, however, it is not immediately obvious how to regularize the decoder to
match our theory since adding self-attention between pixels will introduce additional interactions
between slots. We leave it for future work to investigate if our current training objective will still
yield robust object-disentanglement for such a model and, furthermore, if such a model can be
regularized to be in line with our theory.

Trade-Offs with Slot Attention. On Sprites and CLEVR6 (§ 6) as well as CLEVRTex , we found
that our regularized Transformer autoencoder achieved superior disentanglement, based on our met-
rics, to an unregularized variant with a Slot Attention encoder. Despite this, we emphasize that
our goal is not to propose our method as superior to Slot Attention-based methods. Instead, we
highlight that both methods offer different trade-offs. For example, training with our proposed loss
(Eq. (5.3)) enables using a general Transformer encoder, thus potentially allowing our model to be
applied more generally at scale compared to encoders with more explicit object-centric priors such
as Slot Attention. This, however, comes at the cost of training with regularizers which require hyper-
parameter selection. While our experiments did not require extensive hyperparameter tuning, it is
possible that certain datasets will exhibit increased sensitivity to these hyperparameters. Addition-
ally, our interaction regularizer is based on decoders which only use a cross-attention mechanism.
While this architecture yielded strong disentanglement in our experiments, Slot Attention encoders
have been shown to enable disentanglement using more expressive decoders which also use self-
attention (Seitzer et al., 2023; Singh et al., 2022a).

Latent Prediction-Based Disentanglement MetricsOne potential issue with our Jacobian-based
disentanglement metrics is that they may fail to measure whether multiple slots actually encode the
same object. Speci�cally, if two slots affect the same object in pixel space, this could be due to
both slots encoding the object in latent space, or it could be due to slot interactions modelled by the
decoder. De�nitively resolving this potential ambiguity would require measuring the information
encoded in each slot directly in latent space. Along this line, prior works have considered latent
prediction metrics in which the R2 score is computed from the predictions of a model �t between
each inferred slot and the best matching ground-truth slot (Dittadi et al., 2022; Jiang et al., 2023;
Locatello et al., 2020b). While these metrics indicate if an inferred slot contains all information for
a given object, they are insuf�cient for resolving the possible ambiguity of our current metrics. This
is because these metrics do not indicate if an inferred slot contains information aboutmore than
oneobject. This issue with latent prediction metrics was pointed out by Brady et al. (2023) who
aimed to address it by measuring the R2 score from an additional predictor �t to the second-best
matching ground-truth slot. We found this metric to yield inconsistent results on CLEVR6, which
we hypothesize was due to issues when determining the second-best matching ground-truth slot.
This lead us to focus on decoder-based metrics which are more straightforward to compute. We
leave it for future work to formulate a latent prediction metric which overcomes the aforementioned
issues of prior works.

On Hyperparameter Selection. One potential limitation of using our regularized loss (Eq. (5.3))
in terms of scalability is that hyperparameter selection is required. In our experiments on Sprites
and CLEVR6 (§ 6), extensive hyperparameter tuning was not required. Furthermore, we found the
values of� = 0 :05, � = 0 :05 to work robustly across both datasets, though the reconstruction
loss was weighted by a factor of 5 on Sprites and 1 on CLEVR6. This indicates some level of ro-
bustness of these hyperparameters across datasets which contain varying complexity of interaction.
On CLEVRTex (Appx. I), we found that these exact hyperparameter values did not transfer directly
and a small amount of tuning was required to arrive at our values (.1 for all terms in the loss). We
hypothesize that this is because, in our current implementation of our loss, the magnitude of the
reconstruction loss scales with the dimension of the data. To this end, because the data dimension
increased signi�cantly on CLEVRTex (256 encoded image patches, each with 768 dimensions), the
contribution of the reconstruction term to the loss needed to be slightly diminished. With all this
being said, it is possible that more complex dataset could require more extensive hyperparameter
tuning, however, we leave this for future work to investigate.
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Applying our Method to Other Types of Concepts. One important direction for future work
is to apply our method to data consisting of different types of concepts such as object-attributes
or temporal events. For object-attributes, our same empirical framework can be applied, but with
the additional caveat that the Transformer is permutation invariant, while object-attributes do not
posses the same permutation invariance as objects. To this end, methods such as adding a positional
encoding to each slot, must be used to address this. Additionally, as noted by Gopalakrishnan
et al. (2023); Kipf et al. (2019), the problem of disentangling temporal events in image sequences
can also be modelled naturally using a slot-based framework. In this case, the “tokens” that a slot
encoder, e.g., a Transformer or Slot Attention, operates on are not pixels processed by a CNN, as in
our current model. Instead, they would correspond to individual images in the sequence which are
each mapped into representation “tokens”. These tokens can then be mapped into slots by, e.g., a
Transformer, and then decoded back to output space, where the queries for the Transformer decoder
also would not correspond to individual pixels but instead to images in the temporal sequence.

Limitations of L disent. One potential issue withL rec is that for real-world data, reconstructing
every pixel in an image exactly, may not be necessary and could lead to overly prioritizing tasks
irrelevant information in̂z such as the background (Seitzer et al., 2023). It would thus be interesting
to see if our theory and method could be extended to a self-supervised setting, as in Seitzer et al.
(2023), in which exact invertibility is not strictly necessary. RegardingL KL , we �rst note that in
addition to a model having inferred latent dimensionalitydẑ equal to ground-truth dimensiondz ,
our theory also requires that the inferred slot dimensions equals the ground-truth slot dimensions.
While L KL explicitly regularizes for the former, it does not directly regularize for the latter. More
speci�cally, L KL could, in principle, penalize latent capacity by putting information from all, e.g.,
objects, in one slot (assuming the slot size is large enough), opposed to distributing this information
over components from different slots. Despite this, we found that this failure mode did not occur in
our experiments. Another potential issue withL KL is that it aims to enforce statistically independent
latents which could lead to sub-optimal solutions if the ground-truth latents exhibit strong statistical
dependencies. Lastly, regardingL interact, a shortcoming of this regularizer is that, while it directly
regularizes 1st order interactions (Appx. F.1), its connection to regularizing higher order interactions
is not as direct. Future work should thus aim to investigate this point further both theoretically and
empirically.

H.3 ENFORCINGTHEORETICAL CRITERIA OUT-OF-DOMAIN .

As noted in § 5, enforcing (i) invertibility and (ii) at mostnth order interactions across slots on̂f ,
out-of-domain, i.e., globally on all ofZ , poses distinct practical challenges. We now discuss this in
detail. To this end, we �rst discuss enforcing (ii) globally onZ .

Restricting Interactions Globally. The easiest way to enforce that^f has at mostnth order interac-
tions across slots onZ is to directly parameterizêf to match the form of such functions for some
n (Eq. (4.2)). This is, for example, how at most 1st order interactions were enforced in Lachapelle
et al. (2023), i.e., by de�ning^f to be an additive function (Defn. E.4) on all ofZ . We found for
higher order interactions, parameterizing^f directly to match the form of Eq. (4.2) leads to training
dif�culties on toy data. Moreover, even if we could easily train such a model, this explicit form
would pose an overly restrictive inductive bias when scaling to more realistic data. This motivated
us to consider how to regularize for (ii) opposed to enforce it explicitly. The issue with this approach
is that we only regularize the derivatives of^f in-domain onẐ supp. Yet, enforcing structure on the
derivatives of ^f on Ẑ supp does not imply that same structure will be enforced on all ofZ . As noted
in § 4.2, however, by knowing the behavior of the derivatives of^f on Ẑ supp, we can infer their be-
havior everywhere onZ . Thus, in principle, it should be possible to propagate the correct derivative
structure learned bŷf locally onẐ supp, to all of Z . Practically, however, it is not obvious how this
can be done in an effective manner. Thus, properly addressing this challenge would require further
methodological and empirical contributions, which are not within the scope of the present work.

Enforcing Invertibility Globally. Additionally, even if ^f satis�es (ii) globally, we still must enforce
(i) invertibility, globally. As noted in § 5, it is not feasible to de�nêf such that it is an invertible
function fromZ to X by construction. This necessitated parameterizing the inverse of^f with an
encoderĝ which was trained to invert thedecoder ^f via a reconstruction loss. Assuming that a
decoder ^f satis�es (ii) globally, and is invertible on̂Z supp, it is possible to show that̂f will be
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invertible on all ofZ and thus generalize compositionally. The issue, however, is that our encoderĝ
is only trained to invert^f on Ẑ suppbut not on unseen data from the rest of ofZ . Consequently, even
if ^f generalizes compositionally, an encoderĝ will not invert ^f out-of-domain, and can thus yield
an arbitrary representationŝz on such data. This “encoder-decoder inconsistency” was pointed out
by Wiedemer et al. (2024a), which studied compositional generalization for decoders with at most
0th and 1st order interactions. They proposed a loss which addresses this problem by �rst generating
out-of-domain samples usinĝf , and then training the encoderĝ to invert ^f on this “imagined” data.
The implementation of this loss in Wiedemer et al. (2024a), deemedcompositional consistency,
was shown to be ineffective for images consisting of more than 2 objects, however (Wiedemer
et al., 2024a). Consequently, scaling this loss, or exploring alternative losses for encoder-decoder
consistency, remain open research question that require a deeper investigation to properly address.

For these reasons, the empirical aspects of this work focus on enforcing (i) and (ii) in-domain to
achieve disentanglement onZ supp (Thm. 4.3). As highlighted above, however, our theory elucidates
the core problems that need to be solved empirically to also achieve compositional generalization,
thus giving a clear direction for future work.

I EXPERIMENTS ONCLEVRTEX

In this section, we conduct additional experiments on the CLEVRTex dataset (Karazija et al.,
2021).This dataset constitutes a signi�cant step up in complexity from CLEVR6 and has been shown
to be highly challenging for existing object-centric models (Biza et al., 2023; Karazija et al., 2021).
We outline our experimental setup and results below.

I.1 EXPERIMENTAL SETUP

Data. Each image in CLEVRTex consist of between 3 and 10 objects with rich textures, set against
complex backgrounds (see Fig. 7 for example images). The dataset consists of 50,000 images. We
use 40,000 images for training and 5,000 for validation and testing, respectively.

Models. We train 4 models on this data. The �rst model is our regularized Transformer autoencoder
from § 5, for which we weight each term in the loss in Eq. (5.3) by a hyperparameter value of:1.
The second model is an unregularized Transformer autoencoder, and the third model is an unreg-
ularized autoencoder which uses a Slot Attention encoder with both a Transformer and slot-wise
MLP decoder. We train all models using the same setup as in § 6, however, instead of reconstructing
the original images, we reconstruct a representation of each image given by a Vision Transformer
(ViT) (Dosovitskiy et al., 2021), which is pretrained using the DINO method (Caron et al., 2021).
This approach, deemed DINOSAUR (Seitzer et al., 2023), was shown to help object-centric mod-
els scale to datasets with increased visual complexity. We thus replace the CNN backbone used in
our experiments on Sprites and CLEVR6 with a pretrained ViT which operates on8 � 8 patches
of the original images. These patches are mapped to features which are then processed by either a
Transformer or Slot Attention encoder. For all models, we use 11 slots with a slot dimension of 64.

Training and Evaluation Details We train all models across 3 random seeds using batches of 32.
In all cases, we use the Adam optimizer (Kingma and Ba, 2015) with a learning rate of5 � 10� 4

which we warm-up for the �rst 10,000 training iterations and then decay by a factor of 10 throughout
training. We also warm-up the value of� for the �rst 25,000 training iterations. We report the J-ARI
and JIS for each model after training for 300,000 iterations. To compute these scores, we bilinearly
interpolate our normalized Jacobian maps to match the shape of the original image, since we are
reconstructing image patches. When computing J-ARI and JIS for the slot-wise MLP decoder, we
rely on the alpha-mask of the decoder opposed to its Jacobian due to computational issues when
computing the Jacobian for this model.

I.2 RESULTS

We report our results in Tab. 2. As we can see, similar to on Sprites and CLEVR6, our regular-
ized Transformer achieves strong object-disentanglement, outperforming both unregularized base-
line methods in terms of J-ARI. Our model also a achieve superior JIS compared to all baseline
models with the exception being the slot-wise MLP decoder. This is not unexpected, however, as
this decoder explicitly constrains interactions in the same way as the Spatial Broadcast Decdoer used
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Table 2:Empirical Results. We show the mean� std. dev. for J-ARI and JIS (in %) over 3 seeds for different
choices of encoders and weights of the loss terms in Eq. (5.3) on CLEVRTex.

Encoder Decoder Loss J-ARI(" ) JIS (" )

Transformer Transformer � = 0 ; � = 0 81:4 � 3:7 50:9 � 2:8
Slot Attention Transformer � = 0 ; � = 0 94:2 � 0:2 54:4 � 0:3
Slot Attention Slot-wise MLP � = 0 ; � = 0 92:8 � 0:2 84:3 � 0:4
Transformer Transformer � = 0 :1; � = 0 :1 (Ours) 95:9 � 0:06 65:4 � 0:6

in other experiments. We also visually corroborate these results by plotting normalized slot-wise Ja-
cobians for each model which can be seen in Fig. 7.

J EXPERIMENTAL DETAILS

J.1 DATA , MODEL, AND TRAINING DETAILS

Data. The Sprites dataset used in § 6 was generated using the Spriteworld renderer (Watters et al.,
2019a) and consist of 100,000 images of size64 � 64 � 3 each with between 2 and 4 objects. The
CLEVR6 dataset (Johnson et al., 2017; Locatello et al., 2020b) consist of 53,483 images of size
128� 128� 3 each with between 2 and 6 objects. For Sprites, we use 5,000 images for validation,
5,000 for testing, and the rest for training, while for CLEVR6, we use 2,000 images for validation
and 2,000 for testing.

Encoders. All models use encoders which �rst process images using the same CNN of Locatello
et al. (2020b). When using a Transformer encoder, these CNN features are fed to a 5 layer Trans-
former which uses both self- and cross-attention with 4 attention heads. When using a Slot Attention
encoder, we use3 Slot Attention iterations, and use the improved implicit differentiation proposed
in Chang et al. (2022). Both the Transformer and Slot Attention encoders use learned query vectors
opposed to randomly sample queries, which was shown by Biza et al. (2023) to yield improved
performance for Slot Attention. On Sprites, all models use5 slots, each with32 dimensions, while
on CLEVR6, all models use7 slots, each with64 dimensions. When using a VAE loss, this slot
dimension doubles since we must model the mean and variance of each latent dimension.

Decoders.When using a Spatial Broadcast decoder (Watters et al., 2019b), we use the same archi-
tecture as (Locatello et al., 2020b) across all experiments, using a channel dimension of32 for both
datasets. When using a Transformer decoder, we �rst upscale slots to 516 dimensions by processing
them separately using a 2 layer MLP, with a hidden dimension of 2064. We then apply a 2 layer
cross-attention Transformer to these features which uses 12 attention heads. To obtain the vectors
ol in Eq. (5.1), we apply a 2D positional encoding to each pixel coordinate. This vector is then
mapped by a 2 layer MLP with a hidden dimension of 360 to yieldol , which has dimension 180.
The function in Eq. (5.2) is implemented by a 3 layer MLP with a hidden dimension of 180, which
outputs a 3 dimensional pixel̂x l for each pixell . We additionally note that this architecture does
not rely on auto-regressive masking as in Singh et al. (2022a).

Training Details. We train all models on Spriteworld across 3 random seeds using batches of 64 for
500,000 iterations. For CLEVR6, we use batches of 32 and train for 400,000 iterations. In all cases,
we use the Adam optimizer (Kingma and Ba, 2015) with a learning rate of5� 10� 4 which we warm-
up for the �rst 30,000 training iterations and then decay by a factor of 10 throughout training. When
training with� L KL and� L interact, we use hyperparameter weights of 0.05, which we found to work
well across both datasets. We found much larger values could lead to more training instability and,
in some cases, insuf�cient optimization ofL rec, while smaller values often did not lead to suf�cient
optimization of the regularizers. We warm-up the value of� for the �rst 30,000 training iterations.
Additionally, when training with� or � , we drop the value of the learning rate after 30,000 training
iterations to1 � 10� 4, which improved training stability. Lastly, on Sprites, we weightL rec by a
factor of 5, when training with� or � .
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J.2 METRICS AND EVALUATION

Computing ARI with Attention Scores. To compute the Adjusted Rand Index (ARI), each pixel
must first be assigned to a unique model slot. To this end, prior works typically choose the slot
with the largest attention score from either Slot Attention or the alpha mask of a Spatial Broadcast
decoder (Locatello et al., 2020b; Seitzer et al., 2023). This approach can be problematic since
the attention scores used are model-dependent, making a direct comparison of ARI across models
challenging. Further, the relationship between attention scores and the pixels encoded in a model
slot is somewhat indirect. As noted in § 6, we consider an alternative and compute the ARI using the
Jacobian of a decoder (J-ARI). Specifically, we assign a pixel l to the slot with the largest L1 norm
for the slot-wise Jacobian DBk f̂l(ẑ). This can be done for any autoencoder and provides a more
principled metric for object disentanglement since a decoder’s Jacobian directly describes the pixels
each slot encodes (assuming f̂ , ĝ invert each other).

Evaluation. We select models for testing which had the highest average values for J-ARI and JIS
(each of which take values from 0 to 1) on the validation set. These models were then evaluated on
the test set yielding the scores reported in Tab. 1.

J.3 ADDITIONAL FIGURES

In this subsection, we include 3 additional experimental figures. In Fig. 5, we compare the value
of Linteract throughout training for a model with a Transformer encoder and decoder, trained using
a our regularized loss Eq. (5.3), the VAE loss and a standard autoencoder loss on both Sprites and
CLEVR6. We plot values over 3 random seeds; the shaded regions in the plots indicate one standard
deviation from the mean. We find on Sprites (A) and CLEVR6 (B) that the VAE loss achieves
much lower Linteract than the unregularized model. This provides a possible explanation for the solid
object disentanglement often achieved by the VAE loss in Tab. 1. We also observe, however, that
using α > 0 leads to much lower values for Linteract compared to the implicit regularization from the
VAE loss.

In Fig. 6, we compare slot-wise Jacobians for our model versus baseline models across both Sprites
(A) and CLEVR6 (B). To create these plots, we normalize the partial derivatives across slots such
that they only take values between 0 and 1. The colors associated with partial derivative values
can be interpreted using the color bar at the bottom of (A). We only compute partial derivatives
on the foreground pixels and set the derivatives of background pixels w.r.t each slot to 0. We see
that when regularizing interactions via our model, slots rarely affect the same pixels (i.e., interact)
unnecessarily, while for unregularized models, multiple slots often affect the same pixels even when
no interactions should occur, e.g., for images in Sprites (A).

In Fig. 7, we compare slot-wise Jacobians on CLEVRTex as was done in Fig. 6 and also observe
here that the regularized Transformer achieves cleaner object decompositions compared to baseline
models.

In Fig. 8, we compare decoder attention maps w.r.t. each slot for our model versus baseline models
from § 6,which also use a Transformer decoder. These maps, which indicate the slots each pixel
attends to, are plotted for both Sprites (A) and CLEVR6 (B). We compute these values by taking
the mean attention weight over decoder layers. Similar to Fig. 6, we see that, in our model, pixels
rarely unnecessarily attend to multiple slots. On the other hand, for unregularized models, pixels
often attend to multiple slots in cases where no interactions between slots should occur.
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A B

Figure 5: Analysis of Linteract when using a VAE loss. We plot Linteract for the first 400,000 training
iterations for a Transformer autoencoder trained without regularization (α=0, β=0), with a VAE
loss which does not explicitly optimize Linteract (α = 0, β = 0.05), and with the loss in Eq. (5.3)
which regularizes both losses (α=0.05, β=0.05).
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Figure 6: Normalized Slot-wise Jacobians. We plot the Jacobians w.r.t. each slot (columns) for
5 random test images (rows) from (A) Sprites and (B) CLEVR6 for our regularized Transformer
model and the baseline models used in our experiments in § 6.
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Figure 7: Normalized Slot-wise Jacobians (CLEVRTex). We plot the Jacobians w.r.t. each slot
(columns) for 5 random test images (rows) from CLEVRTex for our regularized Transformer model
and the baseline models used in our experiments in Appx. I.
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Figure 8: Slot-wise Transformer Decoder Attention Maps. We plot decoder attention maps w.r.t.
each slot (columns) for 5 random test images (rows) from (A) Sprites and (B) CLEVR6 for our reg-
ularized Transformer decoder and the baseline models in § 6 which also use a Transformer decoder.
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