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ABSTRACT

Learning disentangled representations of concepts and re-composing them in
unseen ways is crucial for generalizing to out-of-domain situations. However, the
underlying properties of concepts that enable such disentanglement and composi-
tional generalization remain poorly understood. In this work, we propose the prin-
ciple of interaction asymmetry which states: “Parts of the same concept have more
complex interactions than parts of different concepts”. We formalize this via block
diagonality conditions on the (n+1)™ order derivatives of the generator mapping
concepts to observed data, where different orders of “complexity” correspond to
different n. Using this formalism, we prove that interaction asymmetry enables
both disentanglement and compositional generalization. Our results unify recent
theoretical results for learning concepts of objects, which we show are recovered
as special cases with n = 0 or 1. We provide results for up to n = 2, thus extend-
ing these prior works to more flexible generator functions, and conjecture that the
same proof strategies generalize to larger n. Practically, our theory suggests that,
to disentangle concepts, an autoencoder should penalize its latent capacity and the
interactions between concepts during decoding. We propose an implementation
of these criteria using a flexible Transformer-based VAE, with a novel regularizer
on the attention weights of the decoder. On synthetic image datasets consisting
of objects, we provide evidence that this model can achieve comparable object
disentanglement to existing models that use more explicit object-centric priors.

1 INTRODUCTION

A core feature of human cognition is the ability to use abstract conceptual knowledge to generalize
far beyond direct experience (Behrens et al., 2018; Mitchell, 2021; Murphy, 2004; Tenenbaum et al.,
2011). For example, by applying abstract knowledge of the concept “chair”, we can easily infer how
to use a “chair on a beach”, even if we have not yet observed this combination of concepts. This feat
is non-trivial and requires solving two key problems. Firstly, one must acquire an abstract, internal
model of different concepts in the world. This implies learning a separate internal representation of
each concept from sensory observations. Secondly, these representations must remain valid when
observations consist of novel compositions of concepts, e.g., “chair” and “beach”. In machine learn-
ing, these two problems are commonly referred to as learning disentangled representations (Bengio
et al., 2013; Higgins et al., 2018; Scholkopf et al., 2021) and compositional generalization (Fodor
and Pylyshyn, 1988; Goyal and Bengio, 2022; Greff et al., 2020; Lake et al., 2017).

Both problems are known to be challenging due to the issue of non-identifiability (Hyvirinen et al.,
2023). Namely, many models can explain the same data equally well, but only some will learn
representations of concepts which are disentangled and generalize compositionally. To guarantee
identifiability with respect to (w.r.t.) these criteria, it is necessary to incorporate suitable inductive
biases into a model (Hyvirinen and Pajunen, 1999; Lachapelle et al., 2023; Locatello et al., 2019).
These inductive biases, in turn, must reflect some underlying properties of the concepts which give
rise to observed data. This raises a fundamental question: What properties of concepts enable
learning models which provably achieve disentanglement and compositional generalization?
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Figure 1: Illustration of Interaction Asymmetry. (Left) Observations X result from a generator ¥ applied to
latent slots zg, that represent separate concepts. As indicated by the reflection of the cylinder upon the cube,
slots can interact during generation. Our key assumption, interaction asymmetry, states that these interactions
across slots must be less complex than interactions within the same slot. (Right) This is formalized by assuming
block-diagonality across but not within slots for the (n-+1)" order derivatives of the generator, i.e., D"*1F.

Many works aim to answer this question by studying properties enabling either disentanglement or
compositional generalization in isolation. This is insufficient, however, as disentanglement alone
does not imply compositional generalization (Montero et al., 2022a; 2021; Schott et al., 2022),
while compositional generalization requires first disentangling the concepts to be composed. Only
a few studies investigate properties enabling both disentanglement and compositional generaliza-
tion (Brady et al., 2023; Lachapelle et al., 2023; Wiedemer et al., 2024a). Yet, the properties pro-
posed in these works are rather restrictive and specific to objects in simple visual scenes. There
is growing evidence, however, that the principles humans use to learn conceptual knowledge are
not concept-specific, but shared across different concepts (objects, attributes, events, etc.) (Behrens
et al., 2018; Constantinescu et al., 2016; Hawkins et al., 2018). This suggests there exist some gen-
eral properties of concepts which enable both disentanglement and compositional generalization.

In this work, we seek to formulate such a general property for disentangling and composing con-
cepts. We begin by aiming to deduce, from first principles, properties which are fundamental to
concepts (§ 3). From this, we arrive at the guiding principle of interaction asymmetry (Principle 3.1)
stating: “Parts of the same concept have more complex interactions than parts of different concepts”.
As illustrated in Fig. 1 (left), we define concepts as distinct groups, or slots, of latent variables which
generate the observed data (§ 2). Interaction asymmetry is then formalized as a block-diagonality
condition across but not within slots of D"*1F, the tensor of (n+1)" order partial derivatives of the
generator function (Asm. 3.5), where n determines the complexity of interactions, see Fig. 1 (right).

Theory. Using this formulation, we prove that interaction asymmetry dually enables both disentan-
glement (Thm. 4.3) and compositional generalization (Thm. 4.4). We also show that our formalism
provides a unifying framework for prior results of Brady et al. (2023) and Lachapelle et al. (2023), by
proving that the properties studied in these works for visual objects are special cases of our assump-
tions for n=0 and 1, respectively. We provide results for up to n =2, thereby extending these prior
works to more general function classes, and conjecture that our results generalize to arbitrary n 0.

Method. Our theory suggests that to disentangle concepts, a model should (i) enforce invertibility,
without using more latent dimensions than necessary, and (ii) penalize interactions across slots dur-
ing decoding. To translate these insights into a practical method, we leverage a VAE loss (Kingma
and Welling, 2014) for (i), and observe that the Transformer architecture (Vaswani et al., 2017) of-
fers an approximate means to achieve (ii) since interactions are determined by the attention weights
of the model. To this end, we introduce an inexpensive interaction regularizer for a cross-attention
mechanism, which we incorporate, with the VAE loss, into a flexible Transformer-based model (§ 5).

Empirical Results. We test this model’s ability to disentangle concepts of visual objects on a Sprites
dataset (Watters et al., 2019a) and on CLEVR6 (Johnson et al., 2017). We find that the model re-
liably learns disentangled representations of objects, improving performance over an unregularized
Transformer (§ 6). Furthermore, we provide preliminary evidence that our regularized Transformer
can achieve comparable performance to models with more explicit object-centric priors such as Slot
Attention (Locatello et al., 2020b) and Spatial Broadcast Decoders (Watters et al., 2019b).

Notation. We write scalars in lowercase (z), vectors in lowercase bold (z), and matrices in capital
bold (M). [K] stands for f1,2,..., Kg. D, and Di2 ; stand for the first- and second-order partial

derivatives with respect to (w.r.t.) z; and (z;, 2;), resﬁectively. If B [n]and z 2 R™, Zp denotes
the subvector (z;);c s indexed by B. A function is C™ if it is n-times continuously differentiable.
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2 BACKGROUND

We begin with formalizing the core ideas of concepts, disentanglement, and compositional gen-
eralization, mostly following the setup of Lachapelle et al. (2023). To begin, we assume that the
observed data 2 X R% results from applying a diffeomorphic generafor: Z | X to

latent vectorg 2 Z := RY%, sampled from some distributiqn . Concepts underlying (objects,
attributes, events, etc.) are then modellecKaslisjoint groups orslots of latentszg, such that

z =(zg,;:5 28, ), WwhereBy  [d,]. We assume that, is only supported on a subsgg,p, Z

which gives rise to observed daXg,pp = f (Zsupp. This generative process can be summarized as:

x = f(2); Z Pz, supp(p;) = Z supp: (2.1)

Next, consider a modéf : Z ! R% trained to be invertible fronXsuppt0 Zsupp:= f* (Xsupp

whose inverse” 1 maps to a representatigh 2 Zs,,, Z . This model is said to learn a
disentangledepresentation af 2 Z g,ppif each model slofs; captures exactly one conceqy, -

De nition 2.1 (Disentanglement)Letf : Z ! X be a diffeomorphism and Z . A model
f* disentanglez onZ w.rt. f if there exist a permutation of [K ] and slot-wise diffeomorphism

* hi zg o i he zg ) =f(z): (2.2)

In other words, a representation is disentangled if the model inverts the generator up to permutation
and reparametrization of the slots. Fmmpositional generalizationve would like this to hold not
only onZg,ppbut also for arbitrary combinations of the slots therein. Namely, also on the set

Zepe =21 Z o Z k., with Zyg = fZBk j V4 ZZSup;g (23)

whereZ denote the marginal supportsm@fandZ cpe theCartesian-product extensighachapelle
etal., 2023) oZ sypp In generalZs,ppis a subset of cpe . Thus, to generalize compositionally, a
model must also achieve disentanglement “out-of-domain” on novel compositions of Lisdn

De nition 2.2 (Compositional Generalization)etf : Z ! X be a diffeomorphism. A modé{
that disentangles onZsyppw.r.t. f (Defn. 2.1)generalizes compositionalifit also disentangles
onZcpg W.r.t.f.

On the Necessity of Inductive Biases.It is well known that only a small subset of invertible
models achieve disentanglement Bg,,, (Hyvarinen and Pajunen, 1999; Locatello et al., 2019)

or generalize compositionally t8cpe (Lachapelle et al., 2023). To provably achieve these goals
(without explicit supervision), we thus need to further restrict the space of permissible models, i.e.,
place additional assumptions on the generative process in Eq. (2.1). Such assumptions then translate
into inductive biases on a model. To this end, the core challenge is formulating assumptgns on

orf whichfaithfully re ect properties of concepts, while suf ciently restricting the problem.

Assumptions onp, . To guarantee disentanglement, several assumptiops bave been proposed,
such as conditional independence of latents given an auxiliary variablé(idgwn et al., 2019; Khe-
makhem et al., 2020); particular temporal &t and Hyvarinen, 2020; Hyrinen and Morioka,
2016; 2017; Klindt et al., 2021), spatial éiVa et al., 2021; 2024), or other latent structures (Kivva
etal., 2022; Kori et al., 2024); multiple views (Ahuja et al., 2022; Brehmer et al., 2022; Gresele et al.,
2020; Locatello et al., 2020a; voriigelgen et al., 2021; Yao et al., 2024; Zimmermann et al., 2021);
or interventional information (Buchholz et al., 2023; Lachapelle et al., 2022; 2024; Lippe et al.,
2022; 2023; Varici et al., 2024; vonilelgen et al., 2023). While suf cient for disentanglement,
such assumptions do not guarantee compositional generalization. The latter requires that the behav-
ior of the generator o@ cpe can be determined solely from its behavior D, (see Defn. 2.2).

In the most extreme case, where the values of eaclzglotare seen only once sy, will be a
one-dimensional manifold embeddeddn while Z cpe is alwaysd,-dimensional. This highlights

that generalizing fronZ s,ppt0 Zcpe is only possible if the form of the generatoris restricted.

Assumptions onf . Restrictions orf which enable compositional generalization have been pro-
posed by Dong and Ma (2022); Lippl and Stachenfeld (2024); Wiedemer et al. (2024b).Yet, these
results rely on quite limited function classes and do not address disentanglement, assuming it to be
solved a priori. Conversely, several works explore restriction® brsuch as orthogonality (Buch-

holz et al., 2022; Gresele et al., 2021; Horan et al., 2021) or sparsity (Leemann et al., 2023; Moran
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etal., 2022; Zheng and Zhang, 2023) which address disentanglement but not compositional general-
ization. More recently, Brady et al. (2023) and Lachapelle et al. (2023) proposed assumptions on
which enable both disentanglement and compositional generalization (Wiedemer et al., 2024a). Yet,
these assumptions are overly restrictive suchfthean only model limited types of concepts, e.g.,
non-interacting objects, and not more general concepts. We discuss these two works further in § 4.3.

3 THE INTERACTION ASYMMETRY PRINCIPLE

In this section, we attempt to formulate assumptions that enable disentanglement and compositional
generalization, while capturing more general properties of concepts. To approach this, we take a step
back and try to understand what are the de ning properties of concepts. Speci cally, we consider
the questionWhy are some structures in the world recognized as different concepts (e.g., apple vs.
dog) and others as part of the same conce® propose an answer to this for concepts grounded in
sensory data, such as objects (e.g., “car”), events (e.g., “making coffee”), or attributes (e.g., “color”).

Sensory-grounded concepts correspond to reoccurring visual or temporal patterns that follow an
abstract template. They tend to be modular, such that independently changing one concept generally
leaves the structure of other concepts intact (Greff et al., 2015, § 4.1.1; Peters et al., 2017). For
example, a car can change position without affecting the structure of the street, buildings, or people
around it. Thus, different concepts appear, in some senset iateract

On the other hand, parts of the same concept do not seem to possess this modularity. Namely,
arbitrarily changing one part of a concept without adjusting other parts is generally not possible
without destroying its inherent structure. For example, it is not possible to change the position of the
front half of a car, while maintaining something we would still consider a car, without also changing
the back half's position. Thus, parts of the same concept seémnetact

This may then lead us to answer our initial question with: Parts of the same concept interact, while
different concepts do not. However, this is an oversimpli ed view, as parts of different concepts can,
in fact, interact. For example, in Fig. 1 we see the purple cylinder re ects upon and thus interacts
with the golden cube. However, such interactions across concepts appear somehow simpler than
interactions within a concept: whereas the latter can alter the concept's structure, the former gener-
ally will not. In other words, the complexity of interaction within and across concepts appears to be
asymmetric. We formulate this as the following principle (see Appx. G.1 for related principles).

Principle 3.1 (Interaction Asymmetry) Parts of the same concept have more complex interactions
than parts of different concepts.

To investigate the implications of Principle 3.1 for disentanglement and compositional generaliza-
tion, we must rst give it a precise formalization. To this end, we need a mathematical de nition
of the “complexity of interaction” between parts of concepts, i.e., groups of latents from the same
or different slots. This can be formalized either through assumptions on the latent distriipution

on the generatdr. Since the latter are essential for compositional generalization, this is our focus.

Let us start by imagining what it would mean if two groups of latent compormntndzg interact
with no complexityi.e., haveno interactionwithin f . A natural way to formalize this is thaiy and
zg affect distinct output components. Mathematically, this is captured as follows.

De nition 3.2 (At most0" order/No interaction) Letf : Z ! X beC?!, and letA;B  [d,] be
non-emptyz, andzg haveno interactionwithin f ifforallz 2 Z,andalli 2 A;j 2 B:

Dif (z) D;f(z)=0: (3.1)

To de ne the next order of interaction complexity, we assume thaéndzg do interact i.e., they

affect the same outptif such thaD;f(z) andD; f,(z) are non-zero for somie2 A,j 2 B. This
interaction, however, should have the lowest possible complexity. A natural way to capture this is to
say thatz; can affect the same outplit asz; but cannot affectne way in whiclf, depends oz; .

Since the latter is captured Iy; f;(z), this amounts to a question about 21 order derivative
D,2J f|. We thus arrive at the following de nition for the next order of interaction complexity.

De nition 3.3 (At most 1%t order interaction) Letf : Z ! X beC?, and letA;B  [d,] be non-
empty.z, andzg haveat mosti® order interactionwithin f ifforallz 2 Z ,andalli 2 A;j 2 B:

Df f(z)= 0: (3.2)
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Using the same line of reasoning, we can continue to de ne interactions at increasing orders of
complexity. For example, foat most2" order interaction z can affect the derivativ®; f,

such thatDﬁj fi(z) 6 0, but cannot affect the way in whidd; f; depends on any othex, i.e.,
ij;k fi1(z) = 0. This leads to a general de nition of interactions withmosmn™ order complexity.

De nition 3.4 (At mostn'" order interaction) Letn 1 be aninteger. Let : Z ! X beC"*1.
LetA;B [d,] be non-empty.za andzg haveat mostn™ order interactionwithin f if for all

z2Z,alli2A;j 2B, and all multi-indices 2 NSZ withj j= n+1 andl i
D f(z)= 0: (3.3)

In other wordsza andzg have at mosh™ order interaction withirf if all higher-thana™ order
cross partial derivatives w.r.t. at least one componeniyoénd ofzg are zero everywhere. Other-
wise, if the statement in Defn. 3.4 does not hold for san®Z ,i 2 A, andj 2 B, we say thaizp
andzg have(n+1) " order interaction atz (and similarly for1st order interaction if Defn. 3.2 does
not hold). With these de nitions, we can now provide a precise formalization of Principle 3.1.

Assumption 3.5(Interaction asymmetry (formal))There exist® 2 Ng such that (i) any two distinct
slotszg, andzg; haveat mostn™ order interactionwithin f ; and (i) forallz 2 Z , all slotszg,

and all non-empt; B with B, = A[ B, za andzg have(n+1) ™ order interactionwithin f atz.

We emphasize that Asm. 3.5 (ii) does not state Hiasubsets of latents within a slot must have
(n+1) " order interaction, but only that a slot cannotdpdit into two parts with at mosa™ order
interaction, see Fig. 1 (right). We also note that condition (ii) must koliformly over Z , which
resembles the notion of “uniform statistical dependence” among latents introduced Byirtéyv
and Morioka (2017, Defn. 1). For further discussions of Asm. 3.5, see Appx. H.1.

4 THEORETICAL RESULTS

We now explore the theoretical implications of Asm. 3.5 for disentanglemefitgpand composi-
tional generalization td@ cpe . We provide our results for up to at md®¢ order interaction across
slots. All results—i.e., at mo$" (no interaction), at mod!, and at mos2" order interaction—use
a uni ed proof strategy. Thus, we conjecture this strategy can also be used to obtain result3for
This, however, would require takingn + 1) 4 derivatives of compositions of multivariate func-
tions, which becomes very tediousragrows. Generah™ order results are thus left for future work.

4,1 DISENTANGLEMENT

We start by proving disentanglement &g,pp for which we will need two additional assumptions.

Basis-Invariant Interactions. First, one issue we must address is that our formalization of interac-
tion asymmetry (Asm. 3.5) is ndiasis invariant Speci cally, it is possible that all splits of a slot

zg, have(n+1) th order interactions while favl zg . » With M a slot-wise change of basis matrix,
they have at most™" order interactions. Sindd  need not affect interactions across slots, interac-
tion asymmetry may no longer hold in the new basis. This makes it ambiguous whether interaction
asymmetry is truly satis ed, asg, andM (zg, contain the same information. To address this, we
assume interaction asymmetry holds for all slot-wise basis changegualent generators

De nition 4.1 (Equivalent Generators)A functionf : R% | R% is said to beequivalentto a
generatof if for all k 2 [K ] there exists an invertible matrM 2 RIBxii B« such that

8z 2 R% : f (Mazg,;: ;M kzg, )= T (zg,:iii2ZB, ): (4.1)

Suf cient Independence. We require one additional assumption forwhich we callsuf cient in-
dependenceThis assumption amounts to a linear independence condition on blocks of higher-order
derivatives of . Its main purpose is to remove redundancy in the derivativésaafross slots, which

can be interpreted as further constraining the interaction across slots during generation. In the case

A multi-indexis an ordered tuple = ( 1; 2;::; ) of non-negative integers; 2 No, with operations

[ —— .- @1 @2 .. @d :
joi= o1t 2t 4,z = 2ztz,%mzyd, and D= 01T @37 @Zud,seeAppx.Bfordetalls.
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of n=0 (i.e., no interaction across slots), suf cient independence reduces to linear independence
between slot-wise Jacobiansfo{Defn. A.8). This is satis ed automatically sin€eis a diffeomor-

phism. Whem > 0, we require an analogous linear independence condition on higher order deriva-
tives off . Below, we present this for the case 2, while forn=1, it is presented in Defn. A.9.

De nition 4.2 (Suf cient Independence2® Order)) A C3 functionf : R% I R% with at most
2" order interactions across slots is said to hewkciently independenderivatives if8z 2 RY::

rank  Dif (z) 2B, [D%i of (Z)]i2B;i02[d,] [Dig;i ojoof (2)] i 00922
K2[K ] .
X h i
= rank [Dif (2)]ize, [DF of (2)i2e,:i020a,] + rank [DF ool (2)]i 00023
K2[K ]

With Defns. 4.1 and 4.2, we can now state our theoretical results; see Appx. A for complete proofs.

Theorem 4.3(Disentanglement 0@ ¢,py. Letn 2 f0;1;2g. Letf : Z ! X beaC"*! dif-
feomorphism satisfying interaction asymmetry (Asm. 3.5) for all equivalent generators (Defn. 4.1)
and suf cient independence (Appx. A.2). IZa4,,, be regular closed (Defn. A.3), path-connected
(Defn. A.14) and aligned-connected (Defn. A.16). A médelz ! R% disentangleg onZg,pp

w.rt.f (Defn. 2.1) if it is(i) a C"*! diffeomorphism betwee?’ﬁSupp and Xsypp With (i) at most il

order interactions across slots (Defn. 3.4) Baypp

Intuition. Assume for a contradiction that := f* 1 f entanglesa ground-truth slogg, , i.e.,
Dg, h(z) has multiple non-zero blocks. Becadsandf” are invertibleh must encode all ofg,

in 2 := h(z). Further, becauske satis es interaction asymmetryg, cannot be split into two parts
with less thar(n+1) " order interaction. Taken together, this implies that iéntanglesg, , then
there exist partg, andzg of zg, , with (n+1) th order interaction, encoded in different model slots.
Since the modédf'is constrained to have at mast order interactionacrossslots, it cannot capture
this interaction. Thus, the only way thatcan satisfy (i) and (i) without achieving disentanglement
is if reparametrizing viah removed the interaction betweeg andzg . This situation is prevented
by assuming suf cient independence and that Asm. 3.5 holds for all equivalent generators.

Conditions on Zg,pp The regular closed condition dfsyp in Thm. 4.3 ensures that equality be-
tween two functions od s,ppimplies equality of their derivatives, while the path-connectedness con-
dition prevents the one-to-one correspondence between the so@nofthose o2 from changing
across different (Lachapelle et al., 2023). The aligned-connectedness condition is novel and allows
one to take integrals to go frotacal to global disentanglement (see Appx. A.3 for more details).

4.2 COMPOSITIONAL GENERALIZATION

We now show how Asm. 3.5 also enables learning a model that generalizes composition-

ally (Defn. 2.2), i.e., that equality df andf” h on Z supp @lso implies their equality o# cpe .
As discussed in § 2, such generalization is non-trivial and requires speci ¢ restrictions on a function
class. A key restriction imposed by interaction asymmetry is that interactions across slots are limited

to at mostn™ order. In Thm. 4.3, this prevenfS h from modelling interactions between parts of
the same ground-truth slot in different model slots. We now aim to show that limiting the interac-

tions across slots serves the dual role of makingﬂdf’\ h “predictable”, such that their behavior
onZcpe can be determined fromsy,, To do this, we will require a characterization of the form

of functions with at mosh™ order interactions across slots, which we prove in Thm. C.2 to be:
f(2)= (o fX@e)+ | nC2Z: (4.2)
wherec 2 R%. Inthe rst sum, slots are processedparatelyby functionsf ¥, while in the
second, they can interact more explicitly via polynomial functions of components from different
slots, with degree determined by the order of interactionjVith this, we can now state our result.
Theorem 4.4 (Compositional Generalization).etn 2 f0;1;2g. Let Zgyp be regular closed
(Defn. A.3). Lef :Z !X andf :Z! R% beC?3 difftomorphisms with at most'rorder

interactions across slots ad. If f" disentangleg onZg,pw.rt.f (Defn. 2.1), then it generalizes
compositionally (Defn. 2.2).



Published as a conference paper at ICLR 2025

Intuition. Consider the red dotted line in Fig. 2
(left) corresponding téz 2 R? j z; = z, 9. To

generalize compositionally, the behavior of the
partial derivative%(zl;zz) on this line must

be predictable from the behavior bfon Z sypp

and similarly forf* h. Becausd and, as we

show,f* h have at mosht™ order interactions

across slots oRY%, the form of this derivative Figure 2: See intuition for Theorem 4.4.

is constrained to be a xed-degree polynomial,

see Eq. (4.2) and Fig. 2 (right). Thus, its global behavior on the dotted lR&ican be determined
from its derivative locally in a region i@ supp Applying this reasoning to all such line segments in-

tersecting” sypp We can show that the behaviorfofandf” h onZ cpecan be determined frofsypp

4.3 UNIFYING AND EXTENDING PRIOR RESULTS

We now show that our theory also recovers the results of Brady et al. (2023) and Lachapelle et al.
(2023) as special cases fo= 0 andn = 1, and extends them to more exible generative processes.

At most 0" Order Interaction. Brady et al. (2023) proposed two properties fonwhich en-

able disentanglement and compositional generalization (Wiedemer et al., 208@#ipositionality

(Defn. E.1) andrreducibility (Defn. E.2). Compositionality states that different slots affect distinct
output components such tHaf (z) has a block-like structure. This is equivalent tbaving at most

0" order interaction across slots (Defn. 3.2). Irreducibility is a rank conditioB gpf (z) which

Brady et al. (2023) interpreted as parts of the same object sharing information. In Thm. E.3, we
show that irreducibility is equivalent o having £ order interaction within slots for all equivalent
generators. Thus, the assumptions in Brady et al. (2023) are equivalent to interaction asymmetry for
all equivalent generators when= 0. Further, we recover their disentanglement result using a novel
proof strategy, uni ed with proofs for at mog#t/ 2" order interaction across slots (Thm. A.20).

At most 1%t Order Interaction. Lachapelle et al. (2023) also proposed two assumptiont on

for disentanglement and compositional generalizatiadditivity (Defn. E.4) andsuf cient non-
linearity (Defn. E.5). Additivity is equivalent td; having a block-diagonal Hessian for all

| 2 [dx] (Lachapelle et al., 2023). This is the samé asaving at mosii® order interaction across

slots (Defn. 3.4). Suf cient nonlinearity is a linear independence condition on coluniisasfd2"
derivatives off . In Thm. E.6, we show that suf cient nonlinearity implies tliasatis es suf cient
independence far = 1 and has 2 order interaction within slots for all equivalent generators. Fur-
ther, we conjecture that the reverse implication does not hold. Thus, the assumptions of Lachapelle
et al. (2023) imply, and are conjectured to be stronger than, our assumptionsiwhg&n We also
recover their same disentanglement result using a uni ed proof strategy (Thm. A.22).

Allowing More Complex Interactions. Our theory not only uni es but also extends these prior
results to more general function classes. This is clear from considering the form of functions with at
mostn™ order interactions across slots in Eq. (4.2). For at AgBrady et al., 2023) ot order
interactions (Lachapelle et al., 2023), the sum of polynomials on the RHS of (4.2) vanishes. Conse-
quently,f reduces to aadditivefunction. Such generators can only model concepts with trivial in-
teractions such as non-occluding objects. In contrast, we are able to go beyond additive interactions
via the polynomial terms in (4.2). This formally corroborates the “generality” of interaction asym-
metry, in that it enables more exible generative processes where concepts can explicitly interact.

5 METHOD: ATTENTION-REGULARIZED TRANSFORMERVAE

We now explore how our theoretical results in 8 4 can inform the design of a practical estimation
method. Our theory puts forth two key properties that a model should satisfy: (i) invertibility and (ii)
limited interactions across slots of at ma&torder. To achieve disentanglementgyp, (i) and (ii)

must hold only “in-domain” on'Z‘Su,;,pandXSupp (Thm. 4.3), while for compositional generalization,
they must also hold out-of-domain, on all &4f and X (Thm. 4.4). We will focus on approaches
for achieving (i) and (ii) in-domain. Achieving them out-of-domain requires addressing separate
practical challenges, which are out of the scope of this work. We discuss this in detail in Appx. H.3.
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On Scalability. Approaches that enforce (i) and (@xactlywill generally only be computationally
tractable in low-dimensional settings. Such computational issues are typical when translating a
disentanglement result into an empirical method, often resulting in methods which directly adhere
to theory but cannot scale beyond toy data (e.g., Brady et al., 2023; Gresele et al., 2021). Our core
motivation, however, is learning representations of concepts undethgigdimensionakensory

data, such as images. Thus, to formulate a method which scales to such settings, we do not restrict
ourselves to approaches which exactly enforce (i) and (ii) and also exqppreximateapproaches.

(i) Invertibility. Our theory requires invertibility betweeXy,pp RY% andZ\Supp Z = R%. For

most settings of interest, the observed dimensipexceeds the ground-truth latent dimensibn

Thus, we generally cannot use models which are invertible by construction such as normalizing
ows (Papamakarios et al., 2021). An alternative is to us@atoencodein whichf* * andf”" are
parameterized separately by ancoderg : R% | RY% and adecoderf” : R% | R%  which are
trained to invert each other (dﬁuppandxsupg by minimizing a reconstruction lodsec := Ekx

f’\(g(x)) k2. Minimizing L .cc alone, however, does not suf ce unless the inferred latent dimexgion
equals the ground-truty . Yet, in practiced, is unknown. Moreover, choosirdy > d is important

for scalability (Sajjadi et al., 2022a). A viable alternative is thus to employ a soft constraint where
d» > d,, but the model is encouraged to encodesing minimal latent dimensions. To achieve
this, we leverage the well known VAE loss (Kingma and Welling, 2014), which coupleswith

a KL-digergence loss «, between a factorized posteriqf2jx) and prior distributionp(2), i.e.,

Le = i200,1 D (A(2ijx)kp(2)). This loss encourages eatifto be insensitive to changesin

such that unnecessary dimensions should contain no informationxal§Buatinek et al., 2019).

(i) At Most n™ Order Interactions. One approach to enforce at moét order interactions across

slots would be to parameterize the decd@eo match the form of such functions (see Thm. C.2) for
some xedn. However, this can result in an overly restrictive inductive bias and limit scalability.
Moreover,n is generally unknown. Thus, a more promising approach redalarizeinteractions

to beminimal Doing this naively though using gradient descent would require computing gradients
of high-order derivatives, which is intractable beyond toy data. This leads to the question: Is there a
scalable architecture which permits ef cient regularization of the interactions across slots?

Transformers for Interaction Regularization. We make the observation that tfieansformer
architecture (Vaswani et al., 2017) provides an ef cient means to approximately regularize interac-
tions. In a Transformer, slots are only permitted to interact viatéention mechanismwWe will

focus on across-attentioomechanism, which maps a latent vecdaio output®, (e.g., a pixel) via:

K =WK[2g, 28, 1; V=WV, 28,1, Q=WR®o; o041 (5.1)
exp Q7K .k .
A =P 2 S X1 = ARV R = (x)): (5.2)
ik €XP QLK i

In Eq. (5.1), all slots are assumed to have equal size, an& kgyand valueV.., vectors are com-
puted for each sldt 2 [K']. Query vectors are computed for output dimensioBg[dy] (e.g., pixel
coordinates) and eadhs assigned a xed vectar,. In Eq. (5.2), queries and keys are used to com-
pute attention weight8 .« . These weights determine the slots pilkéittends” to when generating
pixel tokenx |, which is mapped to a pix&} by nonlinear function ; see Appx. F for further details.

Within cross-attention, interactions across slots occur if the query vector for alpateands to
multiple slots, i.e., ifA |k is non-zero for more than orke Conversely, ifA . is non-zero for only

onek, then, intuitively, no interactions should occur. This intuition can be corroborated formally
by computing the Jacobian of cross-attention w.r.t. each slot (see Appx. F.1). Thus, an approximate
means to minimize interactions across slots is to regul&izewards having only one non-zero
entry for each rowA ... To this end, we propose to minimize the sum of all pairwise products

A Ak, wherej 6 k (see Fig. 4). This quantity is non-negative and will only be zero when each
row of A has exactly one non-zero entry. This resemblestmpositional contrasdf Brady et al.

(2023), but computed oA , which can be ef ciently optimized, as opposed to the Jacobiaf? of
which is intractable to optimize. We refer to this regularizet agrac; S€€ Eq. (F.9).

Model. Combining these different objectives leads us to the following weighted three-part-loss:

Ldisen(f,\; 0;X)= Lrect Linteractt Lki; (5.3)
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Figure 3:(A) Sprites Normalized slot-wise Jacobians for an unregularized(0; = 0) and a regularized

( > 0, > 0)Transformer and a Spatial Broadcast Decoder (SBD). The unregularized model encodes objects
across multiple slots, while the regularized model matches the disentanglement of th@$8DEVR6 Slot-

wise Jacobians for a regularized Transformer and a SBD on objects in CLEVR6 which interact via re ections.
As can be seen in reconstructions and Jacobians, the regularized Transformer models re ections, while mostly
removing unnecessary interactions, while the SBD fails to model re ections due to its restricted architecture.

We apply this loss to a exible Transformer-based autoencoder, similar to the models of Jabri et al.
(2023); Jaegle et al. (2022); Sajjadi et al. (2022b). For the endhdes rst map datax to features

using the CNN of Locatello et al. (2020b). These features are processed by a Transformer, which has
both self- and cross-attention at every layer, yielding a representationr decodef" then mapg

to an outpu®® using a cross-attention Transformer regularized Withracy S€€ Appx. J for details.

Relationship to Models In Object-Centric Learning. Existing models for learning disentangled
representations of concepts, particularly for disentangling objects without supervision, typically rely
on architectural priors rather than regularization (Greff et al., 2019; Locatello et al., 2020b; Seitzer
et al., 2023; Singh et al., 2022a). While such priors promote disentanglement, they are often too
restrictive. For example, Spatial Broadcast Decoders (Watters et al., 2019b) decode slots separately
and only allow for weak interaction through a softmax function, which prevents modelling real-
world data where objects exhibit more complex interactions (Singh et al., 2022a). While some works
have shown success in disentangling objects using more powerful Transformer decoders (Sajjadi
et al., 2022a; Singh et al., 2022a;b), they rely on encoders that use Slot Attention (Locatello et al.,
2020b) as an architectural component, which differs from current large-scale models, typically based
on Transformers (Anil et al., 2023). In contrast, we explore the more exible approach of starting
with a very general Transformer-based model and regularizing it towards a more constrained model.

6 EXPERIMENTS

We now apply our attention-regularized Transformer-VAE (8 5) for learning representations of con-
cepts. Since this model is designed to enforce the criteria outlined in Thm. 4.3 for disentanglement
on Zsypp We focus on evaluating disentanglement, as opposed to compositional generalization. To
this end, we focus on disentangling objects in visual scenes, and leave an empirical study of a wider
range of concepts (e.g., attributes, object-parts, events) for future work (see Appx. J for details).

Data. We consider two multi-object datasets in our experiments. The rst, which we refer to as
Sprites (Brady et al., 2023; Watters et al., 2019a; Wiedemer et al., 2024b), consist of imags with

4 objects set against a black background. The second is the dataset (Johnson et al., 2017), consisting
of images with2—6 objects. In Sprites, objects do not have re ections and rarely occlude such
that slots have essentially have no interaction. In CLEVRG6, however, objects can cast shadows and
re ect upon each other (see Fig. 1 for an example), introducing more complex interactions.

Metrics. A common metric for object disentanglement is the Adjusted-Rand Index (ARI; Hubert
and Arabie, 1985). The ARI measures the similarity between the set of pixels encoded by a model
slot, and the set of ground-truth pixels for a given object in a scene, yielding an optimal score if each
slot corresponds to exactly one object. To assign a pixel to a unique model slot, prior works typically
choose the slot with the largest attention score (from, e.g., Slot Attention) for that pixel (Seitzer
et al.,, 2023). However, using attention scores can make model comparisons challenging and is
also somewhat unprincipled (see Appx. J.2). We thus consider an alternative and compute the ARI
using the Jacobian of a decoder (J-ARI). Speci cally, we assign a pixethe slot with the largest

L1 norm for the slot-wise Jacobidbg, f(2) (see Fig. 3 for a visualization of these Jacobians).

While J-ARI indicates which slots are most responsible for encoding each object, it does not indicate
if additional slots affect the same object, i.bDka’}(i)kl 6 0 for more than on&. To measure
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Table 1:Empirical Results. We show the mean std. dev. for J-ARI and JIS (in %) over 3 seeds for different
choices of encoders and decoders and weights of the loss terms in Eq. (5.3) on Sprites and CLEVR®6.

Model Sprites CLEVR6

Encoder Decoder Loss J-ARI(") JIS () J-ARI (") JIS ()

Slot Attention ~ Spatial-Broadcast =0; =0 89:3 15 914 08 97:0 0:2 95:3 0:7
Slot Attention  Transformer =0; =0 90:1 14 736 15 955 1.0 631 1.0
Transformer Transformer =0; =0 80:5 41 570 8.0 927 33 548 35
Transformer Transformer =0:05 =0 82:8 36 738 40 792 128 516 59
Transformer Transformer =0; =0:05 926 2.0 928 0.9 966 0:3 803 04
Transformer Transformer =0:05 =0:05(Qurs) 93:7 0:6 95:0 1:7 965 04 838 11

this, we also introduce the Jacobian Interaction Score (JIS). JIS is computed by taking the maximum

ofkDg, t’}(Z‘) ky across slots after normalization, averaged over all pixels. If each pixel is affected by
only one slot, JIS id. For datasets where objects essentially do not interact like Sprites, JIS should
be close tdl, whereas for CLEVRG, it should be as high as possible while maintaining invertibility.

6.1 RESULTS

L gisent ENables Object Disentanglement.In Tab. 1, we compare the J-ARI and JIS of our regu-
larized Transformer-based modeb( 0; > 0) trained withL gisent (EQ. (5.3)) to the same model
trained without regularization (=0; =0), i.e., with onlyL ... On Sprites, the regularized model
achieves notably higher scores for both J-ARI and JIS. This is corroborated by visualizing the slot-
wise Jacobians in Fig. 3A, where we see the regularized model cleanly disentangles objects, whereas
the unregularized model often encodes objects across multiple slots. Similarly, on CLEVRS, the reg-
ularized model achieves superior disentanglement, as indicated by the higher values for both metrics.

Comparison to Existing Object-Centric Autoencoders. In Tab. 1, we also compare our model

to existing models using encoders with Slot Attention and Spatial Broadcast Decoders (SBDs).
On Sprites, our model achieves higher J-ARI and JIS than these models, despite using a weaker
architectural prior. On CLEVR6, our model outperforms Slot Attention with a Transformer decoder

in terms of J-ARI and JIS. Models using a SBD, however, achieve a higher and nearly perfect JIS,
i.e., the learned slots essentially never affect the same pixel. In Fig 3B, we see this comes at the cost
of SBDs failing to model re ections between objects, while our model captures this interaction. This
highlights that regularizing a exible architecture withisentcan enable a better balance between
restricting interactions and model expressivity.

Ablation Over Losses. Lastly, in Tab. 1, we ablate the impact of the regularizerd. jxen:
Training withoutL k. ( > 0; =0) canin some cases give improvements in J-ARI and JIS over an
unregularized model (=0; =0). However, across datasets this loss yields worse disentanglement
thanL gisent( > 0; > 0). This highlights that penalizing latent capacity i@, is important for
object disentanglement. Training withdugerac ( =0; > 0) generally yields a drop across both
metrics compared th giseny though on CLEVRE this loss achieves a comparable J-ARI. We found
that training withL k. can, in some cases, implicitly minimitgnerae €xplaining this result (Fig. 5).

More Complex Data. Tab. 2 in AppxX. | presents additional results for the visually complex CLEVR-

Tex dataset (Karazija et al., 2021). For these experiments, we follow Seitzer et al. (2023) and recon-
struct image representations based on a pre-trained encoder rather than the original images. We nd
our model to achieve superior J-ARI compared to an unregularized Transformer and a Slot Attention
baseline, but slot-wise MLP decoders yield higher JIS. For further details, see Appx. I.

7 CONCLUSION

In this work, we proposed interaction asymmetry as a general principle for learning disentangled
and composable representations. Formalizing this idea led to a constraint on the partial derivatives
of the generator function, which uni es assumptions from prior efforts and extends their results to
a more exible class of generators that allow for non-trivial interactions. These theoretical insights
inspired the development of a exible estimation method based on the Transformer architecture with
a novel cross-attention regularizer, which can be ef ciently implemented at scale, and which shows
promising results on object-centric learning datasets. Future work should seek to further extend our
theoretical results, address the empirical challenges for achieving compositional generalization, and
test our method on more large-scale data involving not only objects but also other types of concepts.

10
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A DISENTANGLEMENT PROOFS

A.1 ADDITIONAL DEFINITIONS AND LEMMAS

De nition A.1 (Ck-diffeomorphism) LetA R" andB R™. Amapf : A! B is saidto be
aCk-diffeomorphism if it is bijectiveC* and has & inverse.

RemarkA.2. The property of being differentiable is usually de ned only for functions with an open
domain ofR". Note that, in the de nition above, both andB might not be open sets in their
respective topologies. For an arbitrary domain R", we say that a functiof is C¥ if it can be
extended to &£* function de ned on an open s&t containingA. More preciselyf : A! B is

CX ifthere exists a functiog : U ! R™ such that 1)J is an open set containirdy, 2) g is C¥, and
3)g(a) = f (a)foralla 2 A. See p.199 of Munkres (1991) for details about such constructions.

De nition A.3 (Regular closed setsA setZgpp RY is regular closed i¥ supp = Zsupp
is equal to the closure of its interior (in the standard topologiR'by.

Lemma A.4(Lachapelle et al. (2023)LetA; B R" and suppose there exists an homeomorphism

f :A! B.IfAisregularclosedirR", we havethaB B .

ie. ifit

The way we de nedC* functions with arbitrary domain is such that a function can be differentiable
without having a uniquely de ned derivative everywhere on its domain. This happens when the
derivative of two distinct extensions differ. The following Lemma states that the derivativ€ bf a
function is uniquely de ned on the closure of the interior of its domain.

Lemma A.5 (Lachapelle et al. (2023))LetA R" andf : A! R™ be aCk function. Then,

itsk rst derivatives are uniquely de ned oA in the sense that they do not depend on the speci ¢
choice ofCk extension.

Notation Forasubsef [d,]and amatrixA 2 R™ ", A will denote the sub-matrix consist-
ing of the columns irA indexed bySi.e.As =[Ai],g. Similarly, for a vectoz, zs will denote

the sub-vector of consisting of components indexed 8y.e.zs :=(z)iz2s.
Lemma A.6. LetA 2 R™ " and letB be a partition of[n]. If
X
rank(A) = rank(As) (A.1)
s2B
Then8z 2 R" s.t.Az =0,Aszs =0, foranyS 2 B.
Proof. Assume for a contradiction that there exist @ R", s.t. Az = 0, and there exis§;, 2 B
S.t.Aslzs1 60.

Now construct the matrix, denoted, s, consisting of all columns i\ except those indexed by
Sl, i.e.

A S1 = [AZ;i ]iZS S2Bn S; (A2)
By using (A.1) and the property that reff ; C]) rankB )+ rankC), we get
X
rankA) = rankAs) + rankAs,) (A.3)
S2Bn'S;
rankA s,)+ rankAs,) (A.4)
rank(A): (A.5)

Consequently, we have that:
rankA) = rankA s,)+ rankAs,) (A.6)

This implies that the column spaces of both matrices denoted (Angg); rangé€A s,) respec-
tively, do not intersect, except at the zero vector.

A simple example of such a situation is the trivial functionfOg ! f 0g which is differentiable ad but
does not have a well de ned derivative becagée) = x andh(x) = x are both differentiable extensions of
f but have different derivatives at=10.
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Now we know that ag

0= Az (A7)
= A 5,z 5, +As, Zs, (A.8)
Consequently,
A 5,2 5, = Ag,Zs, (A.9)
and by our assumed contradiction we know that:at
Aslzsl 60 (A.lO)
This implies that the column spaces Af s,;As, must intersect at a point other than the zero
vector, which is a contradiction. O
LemmaA.7. LetA 2 RY 9 be aninvertible matrixanéiB1;:: :; Bk gbe a partition ofd]. Assume
there areky; ky; k 2 [K] such that:
Ag,B., 806 Ag,8,, (A.11)

Then there exists a subsget [d] with cardinalityjBj that has the following properties:
1. The sub-block g, s is invertible.

2. S 6 Byo, foranyk®2 [K]

Proof. We rst prove that there must exists & satisfying point 1. Sincé\ is invertible, each
subset of rows is linearly independent and thus (A -.) = jByj. This implies that there exist a
setS [d] with cardinalityjBkj such thaBi 2 S;Ag, . are linearly independent, and thus form a

basis ofRIB«],
If S6 Byoforallk®2 [K], we are done.

We consider the case where there exidt8such thaS  Byo. We will show that we can construct
a differentS from S which satis es both conditions.

We know by (A.11) that there exist a second blécké k°such that for somg 2 By ,Ap,; 6
0. Sincef Ag, ;i gi2s forms a basis ORIBKI the)glectorA B;j Can be represented uniquely as

Ag,j = aAB,;i; (A.12)
i2s
wherea; 2 R for all i. BecauséAg,;; 6 0, there existy 2 S such thaia; 6 0. Because this
representation is unique, we know ti#ag, ; is outside the span dfA g, i giosnrjg. This means
that, by takingS := (Snfjg)[f j g, we havethatAg, igi2s is a basis foR/B«l or, in other
words,Ag,.s Iis invertible. Also,S is not included in a single block sin&nfjg Byo and
i 2By withk®6 k . O

A.2 SUFFICIENT INDEPENDENCEASSUMPTIONS

De nition A.8 (Suf cient Independence {0Order)) Letf : R% | RY% be aC* function with d"
order interactions between slots (Def. 3.2). The funcfiois said to havesuf ciently independent
derivatives if8z 2 R%:

X
rank [Dif (2)];,5, K] rank [Dif (2)];,5, (A.13)
k2[K ]

De nition A.9 (Suf cient Independence f1Order)) Letf : R% | R% be aC? function with
at most1sorder interactionsbetween slots (Def. 3.3). The functidnis said to havesuf ciently
independenterivatives if8z 2 RY : |

rank Dif (z) Diz;i of (2) (i 9282
' K Kk2[K]

X h i
= rank [Dif (2)];,5, + rank DZ.f (2)
k2[K]

i2By

(ii 9282
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De nition 4.2 (Suf cient Independence2® Order)) A C3 functionf : R% I R% with at most
2" order interactions across slots is said to hewkciently independenﬂerivativles if8z 2 RY::

rank  Dif (z) ;,g, [DF of (2)]iz&,iio2a,] [DF ojocf (2)] i ojioy282

k .
h 2IKl i

X
= rank [Dif (2)lize, [DF of (2)lizB,io2(0,) + rank [DF ojeof (2)]ii 00028
K2[K ]

A.3 FROMLOCAL TO GLOBAL DISENTANGLEMENT

This section takes care of technical subtleties when one has to go from local to global disentan-
glement. The disentanglement guarantee of this work is proven by rst showin@thate. the

Jacobian of ;= f 1 {", has a block-permutation structure everywhere, and from there showing

Lachapelle et al. (2023) refers to the rst condition Drin aslocal disentanglemerdand the sec-

ond condition orh asglobal disentanglementhe latter of which corresponds to the de nition of
disentanglement employed in the present work. The authors also show that going from local to
global disentanglement requires special care when considering very general sdppgritke we

do in this work, as opposed to the more common assumptiorZihgs := RY which makes this

step more direct (e.g., see Hynnen et al. (2019)). This section reuses de nitions and lemmata
taken from Lachapelle et al. (2023) and introduces a novel suf cient condition on the support of
the latent factors, we namedigned-connectednes® guarantee that the jump from local to global
disentanglement can be made.

f1;:::;dg. A permutation overf 1;:::;dgrespect®8 if, forall B 2 B; .(.B) 2B.

De nition A.11 (B-block permutation matrices)A matrix A 2 RY ¢ is a B-block permutation
matrix if it is invertible and can be written a& = CP whereP is the matrix representing the
B-respecting permutation (De nition A.10), i.e. P g = e (j, andC 2 RY d s such that for all
distinct blocksB;B°2 B, Cgp 0=0.

Proposition A.12. The inverse of 8-block permutation matrix is also B-block permutation ma-
trix.

Proof. First note thalC must be invertible, otherwis& is not. Also,C * must also be such that
(C Yo = 0 for all distinct blocksB; B ° 2 B. This is because, without loss of generality, we
can assume the blocks Bfare contiguous which implies th&t is a block diagonal matrix so that
C 'is also block diagonal. Since preserves, we have thaP> C 1P is also block diagonal
since, for all distincB;B%2 B, (P*C P )ggo=(C 1) (). (80 = 0, where we used the
fact that the blocks (B) and (B9 are inB, because is B-preserving, and are distinct, because
is a bijection. We can thus see that

A t=p>C?
=P>C P P~
=CP”>
=CP 1
whereC := P> C P is block diagonal and 1 is block-preserving. O

De nition A.13 (Local disentanglement; Lachapelle et al. (202#)learned decodeff : RY%: |
R% is said to be locally disentangled w.r.t. the ground-truth decbdehenf” h(z) = f(2)
forall z 2 Z sypp Where the mapping is a diffeomorphism fron¥ ., Onto its image satisfying
the following property: for alz 2 Z s,pp Dh(z) is a block-permutation matrix respectiy:=

Note that, in the above de nition, the permutation of the blocks might change from tmanother
(see Example 5 in Lachapelle et al. (2023)). To prevent this possibility, we will assunigsthgis
path-connected
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De nition A.14 (Path-connected setsp set Zgpp RY is path-connected if for all pairs of
pointsz?%;z1 2 Z gpp there exists a continuous map: [0;1] ! Z gyppsuch that (0) = z° and
(1) = z*. Such a map is called a path betwe®randz?.

The following Lemma from Lachapelle et al. (2023) can be used to show that wiea diffeo-
morphism andZ qpp is path-connected, the block structure cannot change. This is due to the fact
thatDh(z) is invertible everywhere and a continuous functiorz ofVe restate the Lemma without
proof.

Lemma A.15(Lachapelle et al. (2023))Let C be a path-connected topological space andJet:
C ! RY 9 pe a continuous function. Suppose that, foraR C, M (c) is an invertibleB-block
permutation matrix (De nition A.11). Then, there existBaespecting permutation such that for
all c2 C and all distinctB;B°2 B, M (c) (go:g = 0.

It turns out that, in general, having thlth has a constant block-permutation structure across its
supportZ sy is not enough to make the jump to global disentanglement. See Example 7 from
Lachapelle et al. (2023). We now propose a novel condition on the subpgptand will show it is

suf cient to guarantee global disentanglement in Lemma A.18.

De nition A.16 (Aligned-connected sets)A setA  RY is said to bealigned-connectedv.r.t. a
partitionfB1;Bo;:::;Bk gif, forall k 2 [K]and alla®2 A, the seffa 2 Aj ag, = a3, gis
path-connected.

RemarkA.17 (Relation to path-connectednes3here exist sets that are path-connected but not
aligned-connected and vice-versa. Example 7 from Lachapelle et al. (2023) presents a “U-shaped”
support that is path-connected but not aligned-connected. Moreover, the setA® [A @
whereA® = fa 2 R?ja; Lia, 1gandA® = fa2 R?ja 1 a, 1g is
aligned-connected w.r.t. the partitién= ff 1g; f 2gg but not path-connected.

We now show how aligned-connectedness combined with path-connectedness is enough to guaran-
tee global disentanglement from local disentanglement.

Lemma A.18 (Local to global disentanglementBupposeh is a diffeomorphism fronZ s;pp

RY% to its image and suppos@h(z) is a B-block permutation matrix for alg 2 Z supp (local
disentanglement). Bs,ppis path-connected (Defn. A.14) and aligned-connected set (Defn. A.16),

(global disentanglement).

Proof. Sinceh is a diffeomorphismpP h is continuous and h(z) is invertible for allz 2 Z sypp
Since we also have thdty,,,is path-connected, we can apply Lemma A.15 to get that there exists
a permutation : [K]! [K] such that, for alz 2 Z qppand all distinctk; k° 2 [K], we have
Dh(z)e.s o = 0. In other wordsDg ,,he,(z) = 0. We must now show thétg, (z)
depends solely omg ,,. Consider another poit® 2 Z gpp such thatzg o = 29 . We will

now show thahg, (z) = hg, (29, i.e. changinggc(k) does not in uencég, (z).

BecauseZ 5,pp is aligned-connected, there exists a continuous path[0; 1] ! Z g,pp Such that
0=2% (1=1zand g ,(t) = z8 , = 23 «, forallt 2 [0;1]. By the fundamental

This lemma also holds € is connected.
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theorem of calculus, we have that

YA 1
he,(z) he (z9= (hs, )ADdt
0
z 1
= Dhg,( () An)dt
0
0 1
= @Dg he (1) 8,0+ Ds ghe( (1) 8 ,,0Ad
0 0 kog k
Z, X
= @g , hg (()O+ 0§ (A
0 kog k
=0;
where we used the factthag ,, (t) is a constant function dfandDg ,, hg, (z) = O for distinct

k; K.
We conclude that, for ak, we can writeng, (z) = hg, (zs ,), which is the desired result.

Additionally, the functionshg, (zg ,,) are diffeomorphisms because their Jacobians must be in-
vertible otherwise the Jacobianiof(which is block diagonal) would not be invertible (which would
violate the fact that it is a diffeomorphism). O

Contrasting with Lachapelle et al. (2023).Instead of assuming aligned-connectedness, Lachapelle
et al. (2023) assumed that the block-speci ¢ decoders, which would correspondfté (the, ) in

(4.2), are injective which, when combined with path-connectedness, is also enough to go from local
to global disentanglement in the context of additive decoders (). Whether a similar strategy
could be adapted for more general decoders with at mbstrder interactions is left as future work.

A.4 DISENTANGLEMENT (AT MOSTO™ ORDER/NO INTERACTION)

Lemma A.19. LetZg,p, Z be a regular closed set (Defn. A.3). Uet: Z ! X beC? and
h:Zsupp! Z suppbe a diffeomorphism. Lét:= f h. Iff has no interaction (De nition 3.4 with
n =0), then, for allj;j °2 [d,] andz 2 Zp, we have
D;f'(z) DjofYz)= W' (h(z)m"(z:(iij 9); (A.14)
where
W (2) = [W @)k
Wy (2):=[Di,f ()  Di,f (2,282
m"(z; G 9 = [mE G Ve
mE(z;(j;j %) = Djohi, (z)D;j hiz(Z)](il;iz)zsg :

Proof. We have that

f(z)=f h(z); 82 2 Zsupp:
Following the same line of argument as Lachapelle et al. (2023), we can use Lemma A.5 to say that
the functionf'\(z) = f h(z) has well-de ned derivatives O(Z\Sl,pp) . Sinceh ! is a diffeomor-

phism fromZ sypp (Which is regular closed) @supp Lemma A.4 implies thaf'sypp  (Zsupp - This
means that the functioin(z) = f  h(z) has well-de ned derivatives for afl 2 Z‘SUpp

By taking the derivative w.r.iz; on both sides of’\(z) =f h(z),weget

. X X
D; f(z) = Dif (h(2))D; hi(2) (A.15)
k2[K]i2By
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We thus have that
0 1 0 1

X X X X
@ Di.f (h(z))Djhi, (2)A @ Di.f (h(2))Djohi, (2)A

>I(<12[K]>i(12Bk1X kzZ[K]izZBkz

X
= Di.f (h(z)) Di.f (h(z))Djhi,(z)Djohi,(z)
k1>%[K]i1>2(Bkl kz)%[K]izszz
= Di,f (h(z)) Di.f (h(z))Djhi,(z)Djohi,(2);
k12[K]ilsz1 iZZBkl

D; f'(z)Djof'(z)

where the last equality used the fact tfiahas no interaction (De nition 3.2). We conclude by
noticing

X X
D; '(2)D;of(2) = Di,f (1(2))Di.f (h(2))D; hi, (2)Djohi, (2)
ki2[K](ivii2)2B,
=W (h@)m"(z:(:j9):
O

Theorem A.20. Letf : Z ! X be aC! diffeomorphism satisfying interaction asymmetry
(Asm. 3.5) for all equivalent generators (Defn. 4.1) for= 0. LetZs,,, Z be regular
closed (Defn. A.3), path-connected (Defn. A.14) and aligned-connected (Defn. A.16). A model

f*:Z 1 R% disentangleg on ZgppW.rt. f (Defn. 2.1) if itis () a C* diffeomorphism between
Z suppandXsyppWith (ii) at most @ order interactions across slots (Defn. 3.4) Baypp

Proof. As mentioned in Section A.3, the proofs will proceed in two steps: First, we show local
disentanglement (De nition A.13) and then we show (global) disentanglement via Lemma A.18.
We rst show local disentanglement.

Remark: We will use the following notation below:

D f(z):= Djf (z) Dif (z)2R" (A.16)

We rst de ne the functionh : Z\SUpp! Z supprelating the latent spaces of these functions‘f\@urbp'

he=f 1 A.17
(A.17)

The functionf” can then be written in terms 6fandh on Z‘supp'
'=f h (A.18)

Becausd :f" are bothC? diffeomorphism betweed s pp Xsupp andZ‘SUppr Xsupp respectively, we
have thah is aC? diffeomorphism.

By Lemma A.19, for alz 2 Zgpp j;j ©2 [d,], we have:

D;f\(z) Djof(z)= W' (h(2)m"(z: (i ) (A.19)
wherew’ andm" are de ned in Lemma A.109.
De ne the sets [
D:= BZ; D¢:=f1;:::;d,g°nD (A.20)
k2K ]

Becausd" has no interaction (De nition 3.2), we have that, forgllj 9 2 D ¢
0= V;/(f (h@)m"(z; ;i 9)
= Wy (h@)mE@EiGi Y

k2[K ]

24



Published as a conference paper at ICLR 2025

Becausd has no interaction, each rdwli (h(2))n. is non-zero for at most ore2 [K ] (although
thisk can change for different values nfandz). This implies that for alk 2 Z\SUpp' G:i92D¢,

k2[KI
0= Wy (h(2)m{ (2 (i 9) (A.21)
Case 1:jByj = 1 (One-Dimensional Slots)
WhenjBj =1, forallk 2 [d,], the matrixW,I (h(z)) can be written as:
W, (h(z))=[Dif (z) Dif (2)] (A.22)

This matrix has a single column, which must be non-zero singea C* diffeomorphism. Thus,

ka (h(z)) has full column rank and thus has a null space equal tésing Eq. (A.21), we conclude
that for all(j;j 9 2 D¢, k 2 [d,]:

0=my(z: (i 9 (A.23)
Applying the de nition ofm § (z; (j;j 9), this implies that for al(j;j 9 2 D¢, k 2 [d,]:
0= D;oh(2)D; hi(2) (A.24)

This means each row of the Jacobian mairix(z) cannot have more than one nonzero value. Since
the Jacobian is invertible, these nonzero values must all be different for different rows, otherwise
a whole column would be zero. HenbBéh(z) is a permutation-scaling matrix, i.e. we have local
disentanglement.

Case 2:jBkj > 1 (Multi-Dimensional Slots)
Assume for a contradiction thétis not locally disentangled QhgyppW.I.tf . This implies that there
existaz 2 Zsupp k; k% k%2 [K ] for k°6 k% such that:
DBkoth(Z )60, DBkooth(Z )60 (A25)

Becausd ; f" areC! diffeomorphisms, we know thét is also aC? diffeomorphism. Coupling this
with Eq. (A.25), Lemma A.7 tells us that there exist&n [d,] with cardinalityjBg]j such that:

8B 2B; S6 B; and 8i 2 S;D;hg, (z ) are linearly independent. (A.26)
Now choose an8 2 B such thatS; := S\ B 6 ;. Furthermore, de ne the s&, := SnS;.
BecauseS 6 B, we know thatS, is non-empty. Further, by constructi®&= S; [ S,. In other

words,S; andS, are non-empty, form a partition &, and do not contain any indices from the
same slot.

Now construct the matrices, denotég, andA s, as follows:
A51 = Dslth(Z ); ASZ = Dsthk(Z ) (A27)

And the matrix denoted , as:
Ay =[As;;As,] (A.28)

Note that becaus@j 2 S, Dihg, (2 ) are linearly independent (Eq. (A.26)), we know that is
invertible.

Now, de ne the following block diagonal matri& 2 R% 9 as follows:

2A1 0o ::: 03
0 A, ::: 0
A:=§ . . . . é (A.29)
(j 0 i AIK

where8i 2 [K]nfkg;Aj is the identity matrix, and thus invertible, whifey is de ned according
to Eq. (A.28).

Dene Z := A 'Z,thefunctionh : Z ! Z ash(z) := Az and the functiorf :Z ! X as
f :=f h. By construction we have

82227; f Aj'zg,;iin Az, =1(ze,iiiZee): (A.30)
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Because alhA\; 1 are invertible, theri is equivalentof in the sense of Def. (4.1).
We can now apply Lemma A.19 fo= f  h to obtain, for allj;j °2 [d,]:
Dif (z) Djof (z)= W' (h(z))m"(z;(j;j I (A.31)

Choosez 2 Z such thah(z) = h(z ), which is possible becau$€z ) 2 Z andh is a bijection
fromZ to Z). We can then write

Djf (z) Djof ()= W' (h(z )m"(z; (] 9 (A.32)
LetJ;J° By be a partition oBy such that] is the set of columns o0& corresponding td\ s,
andJ %be the set of columns & corresponding té s,. More formally, we have
ABk;J :A81 and ABk;Joz A32
SinceAs, = Ds,hg, (z ) andAs, = Ds,hg, (z ), we have that
ABK;J = Dslth(Z ) and ABk;JOZ Dsthk(Z )

SinceDh(z) = A, we have

DJth(Z)z Dslth(Z ) and DJOth(Z): DSZth(Z ):
Choose som§;j 9 2 J  J% We know there must exi¢s;s) 2 S; S, such that

Djhg,(z) = Dshg,(z ) and Djohg,(z) = Dsohg, (z ):
which implies

mg(z; (i = mi(z (589 : (A.33)

Moreover, since the Jacobiantofis block diagonal, we have that [}o(z; (G:1 9) =0 forallk®6 k
(recall thatj;j 92 By). This means we can rewrite (A.32) as

Dif (z) Djef (2)= W (h(z ))mR(z: (i 9 (A-34)
Plugging (A.33) into the above equation yields
Dif (z) Djof ()= Wy (h(z MR (z i(s:sD): (A.35)
Since(s;s92S; S, D ¢, we canapply (A.21) to get
Djf (z) Djof (z)= W{ (h(z ))m}(z ;(s:s9)=0: (A.36)

In other words, we found a partitiah J © of the blockBy such thaD;f (z) Dj.f (z) = 0 for
all (j;j 9 2 3 JO This means that the blocksandJ®haveno interactionin f atz. This is a
contradiction with Assm. 3.5. Hence, we have local disentanglement.

Local to global disentanglement. We showed thaDh(z) is a block-permutation matrix for

all z 2 Zgpp ie. local disentanglement. Consider the invensev := h *. The Jaco-
bian of v is given byDv(z) = Dh %(z) = Dh(v(z)) !, by the inverse function theorem.
By Proposition A.12, this meanBv(z) is also a block permutation matrix for &l 2 Z sypp
Since Zgpp is aligned-connected (De nition A.16), Lemma A.18 guarantees that we can write

V(z) = (va(ze  )iiiiVk (Ze () forall z 2 Z gypp where thevy are diffeomorphisms. This
implies thath(z) = (v, Y(zg L )i ;vKl(zB " ))) forallz 2 Z\SUpp which concludes the
proof. O

A.5 DISENTANGLEMENT (AT MOST1°" ORDER INTERACTION)

Lemma A.21. LetZgpp, Z be a regular closed set (Defn. A.3). lfet: Z ! X beC?! and
h : Z‘supp! Z supp be a diffeomorphism. Léf ;= f h. If f has at mostst order interaction
(De nition 3.4 withn = 1), then, for allj;j °2 [d,] andz 2 Z‘SL,pp we have

Df of'(2)= W (h(@)m"(z; (G V) (A.37)
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where
W' (@)= [W @ik
W (2) = [Di,f (2)]i,28,:[D%,f @)i,)282
m®(z; (i 9 = [mic (G ey
mR(z; (i 9) = [DF ohi, (2)]is28,: [Djohi, (2)Dj hi, (2)]iy,y282

Proof. The exact same argument as the one presented in Lemma A.19 (based on Lachapelle et al.
(2023)) guarantees thdf,andf  h have equal derivatives df,,, We leverage this fact next.

By taking the derivative w.r.z; on both sides of (z)= f h(z), we get
X X
D; '(z) = Dif (h(z))Djhi(z) (A.38)
k2[K1i2By

Now take another derivative w.rz;o for somej ° 2 [d,] to get
2 3
) X X 5 X X )
D of'(z) = 4Dy, f (h(2))D} ohi,(2) + D2.,,f (h(2))Djohi,(z)Djhi,(z)3
k12[K]i123k1 kzZ[K]izszz
Because we havat most rst order interactiongDef. 3.4 withn = 1), the second sum ovéK ]
drops, and we are left with:

2 3
2 X 2 X 2
Djj of'(z) = 4D, f (h(2))Djj ohi, (z) + D{,.,f (h(2))Djoh;,(z)D; hi,(z)5
k12[K]iéZBk1 i22By, 3
X X 5 X )
= 9 Di,f (h(2))Djj ohi, (2) + D, f (h(z))Djohiz(Z)Dihil(z)%
Ki2[K] i12By, (i1ii2)2BE,
= W' (h@)m"(z;(:j 9 ;
which concludes the proof. O

Theorem A.22. Letf : Z ! X Dbe aC? diffeomorphism satisfying interaction asymme-
try (Asm. 3.5) for all equivalent generators (Defn. 4.1) for= 1 and suf cient independence
(Defn. A.9). LeZsypp Z be regular closed (Defn. A.3), path-connected (Defn. A.14) and aligned-

connected (Defn. A.16). Amodél: Z | R% disentangleg on ZsuppW.rt. f (Defn. 2.1) ifitis
(i) a C? diffeomorphism betweeﬁsuppandxsuppwith (i) at most * order interactions across slots
(Defn. 3.4) orf'sypp

Proof. As mentioned in Section A.3, the proofs will proceed in two steps: First, we show local
disentanglement (De nition A.13) and then we show (global) disentanglement via Lemma A.18.
We rst show local disentanglement.

We rst de ne the functionh : Zsypp! Z  supprelating the latent spaces of these functionams

hi=f * (A.39)

The functionf” can then be written in terms 6f andh on Z‘supp'
'=f h (A.40)
Because :f" are bothC? diffeomorphism betwee# s pp Xsupp andZ‘SUppr Xsupp respectively, we

have thah is aC? diffeomorphism.
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Sincef has at most 1st order interactions, we can apply Lemma A.21 to obtain, far 2all
Zsups 157 °2 [dy],
DF of (2) = W' (h(z))m" (z; (j:j ) :
Sincef” has at most 1st order interaction, we have that, fofjgll%) 2 D ¢
0=W"(h(z)m"(z;(i;j Y- (A.41)
By de ning
Wy "*(z) = [Di,f (2)]is28,
Wy "(z) = [DF, 1, f (2)](i,4,28¢
my"*(z: ;] 9) := [ D ohi, (2)]is28,
mp""(z; (j;§ 9) = [ Djohi, (2)D; hiy (2)](i,i,)287
we can restate the suf ciently ind)zapeﬂdent derivative assumption (Def. A.9)i as, oepall

rank W' (z) = rank W, "(z) + rank w,""(z)
k2[K]
This condition allows us to apply Lemma A.6 to go from (A.41) to, for(@ 9 2D ¢, k 2 [K]:
0= W, ""(h(z)m}""z; () 9 (A.42)

Case 1:jBij = 1 (One-Dimensional Slots) By Assumption 3.5.ii, (wah= B = fig) DZ f (z) 6
0. Note that, "¥"(h(z)) = DZ, f (z). Hence, (A.42) implies than | "*"(z; (j;j 9) = 0 (which

is a scalar). This meamBE;high(z; (4:] 9) = Djohy(z)Djhk(z) = 0. Since this is true for ak and

all distinctj; j © this means each row has at most one nonzero entry. Bin¢e) is invertible, these
nonzero entries must appear on different columns, otherwise a column will be lled with zeros. This
meandD h(z) is a permutation-scaling matrix, i.e. we have local disentanglement (De nition A.13).

Case 2:jByj > 1 (Multi-Dimensional Slots)

Assume for a contradiction thét is not locally disentangled OR g ppW.I.t. T . This implies that
there exist@ 2 Zsypp k; k% k%2 [K ] with k°6 k®such that:
Dg,,he,(z )60; Dg,he,(z )60 (A.43)
Becausé ;f" areC?! diffeomorphisms, we know thdt is also aC? diffeomorphism. Coupling this
with Eq. (A.43), Lemma A.7 tells us that there exist@&n [d,] with cardinalityjBgj such that:
8B 2B; S6 B; and 8i 2 S;D;hg, (z ) are linearly independent. (A.44)

Now choose an8 2 B suchthatS; ;= fS\ Bg#$ ;. Furthermore, de nethe s&, ;= SnS;.
Because5 6 B, we know thatS; is non-empty. Further, by constructi®&= S; [ S,. In other
words,S; andS, are non-empty, form a partition &, and do not contain any indices from the
same slot.

Now construct the matrices, denot&d, andA s, as follows:
ASl = DSlth(Z )l ASz = DSthk(Z ) (A45)
And the matrix denoted ¢ as:
Ak =[As;;As,] (A.46)

Note that becaus&i 2 S, Dihg, (2 ) are linearly independent (Eq. A.44), we know that is
invertible.

Now, de ne the following block diagonal matri& 2 R% 9 as follows:

2A1 o ::: O3
0 A, ::: 0
A::g . . . . é (A.47)
6 0 . A'K
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where8i 2 [K]nfkg;Aj is the identity matrix, and thus invertible, whifey is de ned according
to Eq. (A.46).

Dene Z := A 1Z,thefunctionh : Z ! Z ash(z) := Az and the functiof : Z ! X as
f := f h. By construction we have

8227Z; f AjlzgiinActze, =f(ze,iiizey): (A.48)
Because alh; * are invertible, therfi is equivalentof in the sense of Def. (4.1).
We can now apply Lemma A.21 fo= f h to obtain, for allj;j °2 [d,]:
Df of ()= W' (h@)m"(z; (G Y : (A.49)

Choosez 2 Z such thah(z) = h(z ), which is possible becau$€z ) 2 Z andh is a bijection
fromZ to Z. We can then write

Df of ()= W' (h(z )m"(z;(;j (A.50)
LetJ;J° By be a partition 0B such that] is the set of columns oA corresponding té\ s,
andJ °be the set of columns & corresponding té s,. More formally, we have
Ag,g = As, and Ag,j0= As,:
SinceAs, = Ds,hg, (z ) andAs, = Ds,hg, (z ), we have that
Ag,3 = Dg,hg,(z) and Ag,.0= Ds,hg, ()

SinceDh(z) = A, we have

Djyhg,(z) = Ds,he (z ) and Dyohg,(z) = Ds,hg,(z ):
Forall(j;j 92 J J9there mustexigts;s?) 2 S; S, such that

Djhg,(z) = Dshg,(z ) and Djohg, (z) = Dgohg,(z ):
This implies that, for al(j;j 9 2 J  JO there exist§s;s) 2 S; S, such that

Mz (51 9) = m "z (i) (A51)
Moreover, sincéh is a block-wise function we have that, for gjj 9 2 J J° By andk®2
[K1nfkg, mo(z; (j;j 9) = 0. We can thus write:

D of (2) = W (h(z ))mf(z; (i 9 (A.52)
Sinceh is linear, we have thah ["**(z; (j;j 9) = 0, and thus

D2 of (z)= W, "(h(z ))m""z; (j;j 9) : (A.53)

Plug the (A.51) into the above to obtain that, for@lj 9 2 J J°
D2 of (z) = W, ""(h(z )m "z ;(s;s9)=0; (A.54)
where the very last2 0" is due to (A.42) (recal(s;s% 2S; S, D ©).

In other words, we found a partitial J © of the blockB and a value such thalez;j of(z)=0

forall (j;j 9 2 J J° This means that the blocksandJ® haveno second order interactioim f
atz. This is a contradiction with Assm. 3.5. Hence, we have local disentanglement.

From local to global disentanglement. The same argument as in the proof of Theorem A.20
applies.

O
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A.6 DISENTANGLEMENT (AT M0OST 2P ORDER INTERACTION)

Lemma A.23. LetZgpp Z be a regular closed set (Defn. A.3). lfet: Z ! X beC?! and
h : Z‘SUDp! Z suppbe a diffeomorphism. Léf := f h. Iff has at mose™ order interaction
(De nition 3.4 withn = 2), then, for allj;j °2 [d,] andz 2 Z‘SUpp we have

of (z) = W (h(@)m"(z: (i %% ; (A.55)

Jl %j
where
W (2) = [Wy @Dk
Wy (2):= [Dif (@28,
D7, f (228,201 :
[Dij_;iz;igf (Z)](il;iz;i3)2Bg
m" (z; (i;j %) 1:[mE(Z:(i:J' % Nz
mi (z;(i;j %5%) = [Dj3;j ojooni; (Z)]is2B;
[D; hi, (2)Ds; whi, (z) + Djohi,(z)D5 oohil(z)‘* Djohi, (2)DF ohi, (2)]i,28 i 2[d,]
[DjoohiS(Z)Djohiz(Z)Djhil(z)](il;ig;ig)ZBE

Proof. As argued in Lemma A.21, differentiatif(z) = f h(z) w.r.t. z; andz;. on both sides
yields
2 3

X X
D of'(z) = 4Dy, f (h(2))D} ohi,(2) + f (h(z))Djohi,(z)Dj hi,(z)°

k12[K]i12By, k22[K ]i22Bx,

|1|2

Now take another derivative with respectzeo to computeD” o of (z). For the rst term in the
sum, we have:
2 3
X X X X
4 DY, f n(h(2))Djehi, (2)Df ohi, (z) + Di,f (N (2))Dfj ojhi, (2)°
ki2[K]i12Bk, kp2[K]i22Bx,

And for the second term in the sum (the nested sum), we have:

X X X X X X
D2 i,4,f n(h(2))Djuhi, (z)Djohi,(2)Dj hi, (2) +
k12[K]1i12Bk, ka2[K]i22Bk, ks2[K]i32By, "

h i
f 1 (h(2)) D?jahi,(z)D;hi,(2)+ Djohi,(2)DZ whi,(2)

I]_I2

Because we have at most second order interactions (Def. 3.4with), this term can be rewritten
as:

X X X X
D i,4,f n(h(2))Djehi, (z)Djohi, (2)Ds hiy (2) +
k12[K1i12Bk, i22By, i32By, 4

X X h i
I1I2 f ,(h(z2)) D2100h|2(Z)D hi,(z) + D,oh.z(z)D ohi, (2)

k22[K 1i22Bx,
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Combining the rst and second terms, we get:

X X
of (2) = Di,f (h(z))D?2

k12[K]i12By,
X X

lJ % i oj ohiy (2) +

f (h(z)) Djhi,(z)D?;whi,(z)+ Djohi,(z)DZ whi,(z) + Djwhi,(z)D3 ohi,(z) +

|1 in
k22[K]i22B,

X X

#
f (h(z))Djwhi,(z)Djdhi,(z)Djhi,(z)

I]_ Iz I3
i22By, 13284,
X X
= Di.f (h(z)) D}
k12[K ] ilzak1

i o]oohil(Z)+

f (h(z)) Djhi,(z)D?;whi,(z)+ Djohi,(z)D3 whi,(z) + Djwhi,(2)D3 chi,(z) +

|1 i
i12By, i22[d,]

X

#
D? ..i.f (n(2))Djwhi, (z)Djohi,(z)Dj hi, (2)
(il;iz;i3)28 K1

=W (h@)m"z:(:j %) :

Theorem A.24. Letf : Z ! X Dbe aC?3 diffeomorphism satisfying interaction asymme-
try (Asm. 3.5) for all equivalent generators (Defn. 4.1) for= 2 and suf cient independence
(Defn. 4.2). LeZspp Z be regular closed (Defn. A.3), path-connected (Defn. A.14) and aligned-

connected (Defn. A.16). Amodél: Z ! R% disentangleg on ZgyppW.rt.f (Defn. 2.1) if it is
(i) a C® diffeomorphism betweefippand XsyppWith (ii) at most 29 order interactions across slots
(Defn. 3.4) orf'sypp

Proof. As mentioned in Section A.3, the proofs will proceed in two steps: First, we show local
disentanglement (De nition A.13) and then we show (global) disentanglement via Lemma A.18.
We rst show local disentanglement.

We rst de ne the functionh : Zsypp! Z  supprelating the latent spaces of these functionags

(A.56)

f*=f h (A.57)

Because :f" are bothC? diffeomorphism betweed s pp Xsupp andZ‘supp' Xsupp respectively, we
have thah is aC? diffeomorphism.

Sincef" has at most™® order interaction, we have that, for @ll2 Zs,ps (j;j %j% 2D°  [d,],

0=W"(h@)m"(z;(j%%): (A.58)
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By de ning
ka S(z) ;= [Di,f (2)]i,28,;

[Df.f @iz, is210.)

Wy MNz) = [D3 4,0, F (@ii500)28;

i1ii23i3

MmNz G %i%) = [DF ojwhi, (@28,
[Dj hi, (z)Dfo) whi, (z) + Djohi,(z)DF whi, (z) + Djoohi, (2)DF ohi, (2)]is28,:i221d,]

mp"9z; ;) %) %) = [ Djwhi, (2)Djohi, (2)Dy hiy (2)]iyi5i00)287 5

we can restate the suf ciently independent derivative assumption (Def. 4.2) as, 202 &l

X h . i

rank W' (z) = rank W, ™(z) + rank W, ""(z)

k2[K ]
This condition allows us to apply Lemma A.6 to go from (A.58) to, for(@l] %j° 2 D¢ [d,],
k2 [K]:

0= W, "(h@)m ™"z G %% (A.59)
Case 1: [Bxj = 1 (One-Dimensional Slots) By Assumption 3.5.ii (with = B = fig),
we have thaD3; f (z) 6 0. Note thatw, "*"(h(z)) = Dg, f (z). Hence, (A.42) im-
plies thatm| ""(z; (j;j %j%) = 0 (which is a scalar). This meama | ""(z;(j;j %j%9) =
Djwh(z)Djohk(z)Djhy(z) =0 forall (j;j 4j° 2D° [d,]. In particular, we have
Djohk(Z)sz h(z)=0;

forall (j;j 9 2 D¢. Since this is true for ak and all distinc{; j ©, this means each row &fh(z) has

at most one nonzero entry. Sinbd (z) is invertible, these nonzero entries must appear on different
columns, otherwise a column would be lled with zeros. This mdahgz) is a permutation-scaling
matrix, i.e. we have local disentanglement (De nition A.13).

Case 2:jBkj > 1 (Multi-Dimensional Slots)
Assume for a contradiction thélt does not disentangledon Z s ppw.r.t. f . This implies that there
existaz 2 Zsypp ki k% k2 [K ] with k°6 k®such that:

DBkoth(Z )60, DBkOOth(Z )60 (AGO)

Becausd ;" areC3 diffeomorphisms, we know thét is also aC3 diffeomorphism. Coupling this
with Eq. (A.60), Lemma A.7 tells us that there exist@n [d,] with cardinalityjBj such that:

8B 2B; S6 B; and 8i 2 S;D;hg, (z ) are linearly independent. (A.61)

Now choose any8 2 B such thatS; := fS\ Bg#$ ;. Furthermore, de ne the s& := SnS;.
Because5 6 B, we know thatS; is non-empty. Further, by constructi®&= S; [ S,. In other
words,S; andS; are non-empty, form a partition &, and do not contain any indices from the
same slot.

Now construct the matrices, denotég, andA s, as follows:
A51 = Dslth(Z ); ASZ = Dsthk(Z ) (A62)

And the matrix denoted y as:
Ag =[As;;As,] (A.63)

Note that becaus®j 2 S, Dihg, (2 ) are linearly independent (Eq. (A.61)), we know that is
invertible.
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Now, de ne the following block diagonal matri& 2 R% 9 as follows:

2A1 0o ::: 03
0 A, ::: 0
A::g . . . . é (A.64)
6 0 . A.K

where8i 2 [K]nfkg;Aj is the identity matrix, and thus invertible, whife, is de ned according
to Eq. (A.63).

Dene Z := A 1Z,thefunctionh : Z ! Z ash(z) := Az and the functiof : Z ! X as
f := f h. By construction we have

8222z; f Aj'zg,;iin Az, =1f(ze,iiiZee): (A.65)
Because alf; ! are invertible, therfi is equivalentof in the sense of Def. (4.1).
We can now apply Lemma A.23 fo= f h to obtain, for allj;j j °°2 [d,]:
D ojuf (2) = W' (h(z))m"(z;(;j % %) : (A.66)

Choosez 2 Z such thah(z) = h(z ), which is possible becau$g€z ) 2 Z andh is a bijection
from Z to Z. We can then write

D} ojef (2)= W' (h(z )" (2:(i:j %) (A67)

LetJ;J° By be a partition o8 such that) is the set of columns oA corresponding té\ S,
andJbe the set of columns & corresponding té s,. More formally, we have
ABk;J :Asl and ABk;J°: A32
SinceAs, = Ds,hg, (z ) andAs, = Ds,hg, (z ), we have that
ABk;J = Dslth(Z ) and ABk;JO: DSZth(Z )

SinceDh(z) = A, we have

DJth(Z)z Dslth(Z ) and DJOth(Z): DSZth(Z ):
Forall(j;j %j%92J J° By there mustexists;s%s’§2S; S, Ssuchthat

Djhg,(z) = Dshg,(z ); Djohg,(z) = Dsohg,(z ); andDjwhg, (z) = Dswhg,(z ):

This implies that for al(j;j %j%9 2 J J° By there mustexists;s%s’y 2 S; S, Ssuch
that

my "z G ) = mp "z (sis%s%) (A.68)
Moreover, sincéh is a block-wise function, we have that, for &j %j%9 23 J° By B
and allk®2 [K]nfkg, we havem [lo(z; (j;j %} %) = 0, which allows us to rewrite (A.67) as

D} ojof (2) = Wy (h(z )Ym(z: G %i%) : (A.69)
Sinceh is linear, we have than '""(z; (j;j %j°J) = 0, and thus
DS ojof () = W "h(z )my ™" (z; (j;j %) : (A.70)

Plug (A.68) into the above to obtain that for gtlj %j%° 2 J J° By, there existgs; s s% 2
S; S» Ssuchthat

DE ojof (z) = WM (h(z )mp "z ;(s;s%%9) =0 ; (A.71)
where the very last2 0" is due to (A.59) (recal(s;s%s%92S;, S, S D ¢ [d,]).
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In other words, we found a partitiah J © of the blockB and a value such thanj ojoof (2)=0

forall (j;j 2j°9 2 3 J° By. One can show thdt as no 3rd order interaction across blocks
because it is equivalent fo, which also has no 3rd order interactions across blocks. We thus have
thatD?, o) oof (z) =0 forall (j;j %j°9 23 3% [d,]. This means that the blocksandJ ®have

no third order interactiorin f atz. This is a contradiction with Assm. 3.5.

From local to global disentanglement. The same argument as in the proof of Theorem A.20
applies.

O

B MULTI-INDEX NOTATION

dimensiond is an ordered tuple = ( 1;:::; g¢) 2 N9 We introduce the shorthands
X Y
1= i I= i! (B.1)
i=1 i=1
and we write if i foralli and denotes the element wise sum (difference) of the
entries. We write
@: @
= T B.2
@Zl @5(1 ( )
and
\d
z = z; " (B.3)
i=1
We will need the important property that
« )
Dz = () B.4
0 otherwise. B4
Consider now a partition af, into slotsBy;:::; Bx. We de ne the set of interaction multi-indices
of ordern forn 2 by
ln=f 2N%:j j=n,0i;iss. tis 2 By,,i2 2 By, withk; 6 ko and ,; i, > Og; (B.5)

i.e., the set of all multi-indices such that the non-zero components are contained in at least two
blocks. Clearlyl, depends on the block partition which we do not re ect in the notation. We also
consider

I, = Im: (B.6)
Clearly,if 2 1; jand isany multi-index, then + 21; ;4; j.

C CHARACTERIZATION OF FUNCTIONSWITH AT MoSTn™ ORDER
INTERACTIONS

In this section we characterize functions with interaction of at nmdsorder by proving Theo-
rem C.2. Our characterization relies on the notion of aligned-connectedness introduced in De ni-
tion A.16 and the following topological notion.

De nition C.1. A topological spaceX is contractible if there is a continuous functién: X
[0;1]! X such thatF (x; 0) = x andF (x; 1) = X for a pointxy 2 X . We call a subset dR¢
contractible if it is contractible as a topological space with respect to the induced subspace topology.
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Roughly, contractibility means that we can transform a topological space continuously into a point,
which is possible if the space has no holes. Note that, e.g., all one dimensional connected sets and
all convex sets are contractible. Sets that are not contractible are, e.g., spheres and disconnected
sets. Note that the characterization in the following theorem generalizes Proposition 7 in Lachapelle
et al. (2023) by allowing higher order interactions and showing the result for more general domains.
We denote, similar to (2.3), for R% by ; = fzg, :z2 gthe projections of on the blocks.

Theorem C.2(Characterization of functions with at mast order interactions across slotslet
be an open connected and aligned-connected set such tha contractible. Letf (z) =

f (zg,:ZB,;:5 28, ) be aC"*! function on for an integern 2 Z ;. Then any distinct slots

zg, andzg; have at mosh™ order interaction withinf (Defn. 3.4) if and only if, for some con-

stants ¢ 2 R% and someC"*! functionsf k¥ : ! R% such that for allz 2 Z
21
X X
f(z)= fK(zg,)+ cz : (C.1)
k=1 21 n

RemarkC.3. To avoid unnecessary complications we focus on the case where the grourfd iguth
denedonZ = R%. Then = Z clearly satis es the assumptions and actually the proof is slightly
simpler. The more general result here would allows us to handleza(sB % in Appendix D with
minor changes.

The proof can be essentially decomposed in two steps: We show how to reduce from interaction of
at most orden to interaction of at most order 1 and then we establish the induction base for
n=2.
Lemma C.4. Supposé : ! R% isaC"*! function and open and connected. Assume that
f has interaction of at most order between any two different slots for some 2. Letzg 2 be
any point. Then the function
X D f(z
f (z) #z (C.2)

21q

has interaction of order at most 1.

Proof. First we observe thdt having interaction at most implies thatD f is constantin for

2 |,. Indeed, since 2 |, we conclude + ¢ 2 I,+1 whereg denotes the tuple withth entry
1 and all other entries 0. Then, by de nition of having interaction at mostiim De nition 3.4, we
conclude that

@ f(z)=D *®f(z)=0: (C.3)

This implies that the total derivative & f vanishes on , which implies thaD f is constant

because is connected. Consider now any2 |,. Then we nd using (B.4)
|

D f(2) sz‘))z =D f(2) LEZO) 1=0 (C.4)
21q ’
where we used thdd f isconstantandd z =0 for 6 ifj j = j. This ends the
proof. O

We now establish the functional form for interaction of at most order 1. This is essentially a sim-
ilar statement as in Proposition 7 in Lachapelle et al. (2023) except that we consider more general
domains so that their proof does not apply.

Lemma C.5. Assume is an open connected and aligned-connected set such thas con-
tractible. Iff is a function such that different slots have interaction at most of order 1 then there are
functionsf ¥ such that

X
f(z)= f4zs,): (C.5)
k=1
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Proof. Fixal k K. With slight abuse of notation we write = ( zg, ; Zg¢). Fix now some
valuezg, . We claim that for aIIzBE;ng such tha(zs, ; zg¢); (z8,; zgg) 2

D2y, f ((ze(;28¢)) = Dz, f (28,3 28¢)): (C.6)
By assumption we indeed know that
DZBEDZka((sz;zBE)):O: (C.7)

Moreover, by aligned-connectedness we know that the set = fzge : (zg,;zBg) 2 gis
connected so we conclude that the function

z5e | RIBK Szt Dy f((284528¢)) (C.8)
is indeed constant. This implies that there is a functibrdepending ozg, such that
9“(z8,) = Dz, f (z8,i28¢)) (C.9)

forallz = (zg,;zsg) 2 . Locally g¥ is the gradient of a function, but by assumptiop is

contractible and therefore, by the Poirsdremma, there is a function® such thatDf X = g.
Thenwe nd |

X
Dzo, f((Zs,i%8¢)) = 9(Z8,) = Dzo, f¥(z8,)= Dz, 1¥(z8,0) 1 (C10)
k0=1
P
Thus the differencé Ezl f ¥ has vanishing derivative on and since is connected we
conclude that it is constant. This implies (C.5) after shifting bleby this constant. O

Based on these two lemmas the proof of Theorem C.2 is straightforward.

Proof of Theorem C.2In the rst step we show that if the at mostth order interaction condition
holds thenf can be written as in (C.1), i.e.)) "". Applying inductively Lemma C.4 we conclude
that there are constants 2 R% such that

X X

f(z) c z (C.11)

m=2 2ln
has interaction of order at most Thus, we can apply Lemma C.5 which implies that a represen-
tation as in (C.1) exists on. For the reverse directiorf '* we observe that clearly the functional
form implies for 2 1,4, the relation

D f =0: (C.12)
O

Let us show through examples that the topological conditions on the seé neccessary. The
following examples shows that the condition thatis contractible cannot be dropped.

ExampleC.6. For everyz 2 R? n fOg we denote by (z) 2 [0;2 ) the argument (i.e., the angle

to the positivex-axis in radian) and by(z) = jzj the radius ofz. We consider R* and
B, = f1;2g, B, = f3;4ggiven by
= fz:r(zs,)ir(zs,) 2 (1;2); ( (zs,) (zs,) mod2 )2 (0; )g (C.13)

and the function
f: I' R f(z)= (zs,) (zg,) mod 2: (C.19)
Then is aligned-connected because the sets in questions are annular sectors and in particular path

connected. Moreovef, is smooth becaus€zg,) (zg,) mod 2 2 (0; ) so itdoes not jump
andD, Dz, ,f =0 because itis locally additive. However it is not globally additive as in (C.1).

The necessity of the aligned conncetedness condition can be shown by an example that is similar to
Example 7 in Lachapelle et al. (2023).

ExampleC.7. Consider = ([ 1;0] [ 22D[ ([0;1] [1;2D[ ([0;1] [ 2, 1Dandf : ! R
given by
3 H .
TOR 19

Thenf is C2,f has interaction of order at most 1 Hutcannot be written as in (C.1). Note that
is not aligned-connected becads® : (1=2;z,) 2 g=[ 2; 1][ [1; 2]is not connected.
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D CoOMPOSITIONAL GENERALIZATION PROOFS

In this appendix we prove extrapolation result Theorem 4.4. Based on the functional form derived
in Theorem C.2 we relate two differenent disentangled representations.

LemmaD.1. Letf :Z! RY% be aC? diffeomorphism of the form:

X X
f(z)= fk(zg,)+ c z (D.1)
k=1 21,
for somef ' in C3. Letf" : Z ! R% be a diffeomorphism of the same functional form. Let

h : Zspp! Z besuchthat = * hon Zsupp If h is a slot-wise function, i.e. for ak 2
[K];hk(z) = hk(zs,) andZgyppis regularly closed then for alt 2 Z gypp

X
t5ze )= 1" e+ L) (D.2)
k=1 k=1

for some af ne functior. : R% | R

RemarkD.2. We note that it is not possible to remove the af ne functibnfrom the state-
ment. Indeed if all slots have dimensidnand hi(z1) = z; + 1, hy(z) = 2z, +1 then
hi(z1)hao(z2) z12, = z3 + z, + 1 is an additive function. Moreover, we cannot in general
prove that itself is slotwise af ne because the coef cientxan be zero. In this casecan be any
slot-wise diffeomorphism.

Proof. First we remark that the polynomial part of the functional form in (D.1) contains all terms
z;z; wherei;j are in different slots, thus it can be equivalently written as

X X X
cz =
215 k=1 ko= k+1

ZBk

ZBko A ko (D3)

for some constant matricds o 2 RUBkIIB«) Ng 0,1, where denotes the Kronecker
product (€.9.[z1;22]  [23; 4] = [ 2123; 2124; 2223 Z224]).

We assume that the permutatioris the identity. We know thdt ; f* are diffeomorphisms between
the same spaces and can thus be related by the furrctican

f=f h (D.4)

Inserting the functional forms fdf ; f* and leveraging tha is a slot-wise function and is the
identity, we have foralz 2 Z

. X X
f (ZBk)+ VA ZBko Akko
k=1 k=1 kO=k+1

X XX ,
= ¥(hg, (zs,)) + h¥(zs,) h*(zs,,) Ao

k=1 k=1 kO=k+1
(D.5)
To prove the claim we now consider the expression
k X A
Liz)= % (zs\) £ (he, (z8,))

k=1 k=1
D.6

x X i} 0 XX (D-6)

= h (ZBk) h (ZBko) A\kko ZB, ZBko Akko
i=k k0= k+1 k=1 ko= k+1
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and prove that.(z) is an af ne function. To show this it is suf cient to prove that the second
derivativeD 2L vanishes becausks,ppis path-connected. Thus we consider all partial derivatives.
Consider rstthe case wheie2 By andi®2 Byo for k < k © Then we nd that

!

X X
DiDioL(z) = DiDjo  f*(zs,) ¥ (hs, (z8,)) =0: (D.7)
k=1 k=1

It remains to consider derivatives of the fofnD;o wherei;i® 2 By for some sloti. Then we
clearly have

XX
DiDjo ZB, ZB,o Akk°=0 (D8)
k=1 kO=k+1

because this is a linear expressiorzi) . Next, we want to show that
DiDio h*(zs,) h*(zs,0) Ako=0 (D.9)

for all k < k. To prove this we show the more general statement (that will be used in the proof of
Theorem 4.4 below) that for arky6 k°and any vectov 2 RE«° the functions

zg, ! (h%(zg,) VAo (D.10)
are af ne onZy or equivalently that
DiDio h¥(zg,) V) Ako=0 (D.11)

for everyv 2 RB«°. To prove this we consider afjy2 Byo and apply the derivativ®;Di.D; to
(D.5) to get

0= DiDich*(zs,) D;jh*(zs,0) Akko (D.12)

for everyz 2 Zg,pp. Now we use that by assumptidnis a diffeomorphism. Using the block
structure ofh we nd that alsoh* are diffeomorphisms. In particular, this implies that for any
Z 2 Zgypp the vectorgD; hko(szo))j 2B, are linearly independent vectorsRi®« and they thus
generateRiB«o | Therefore we can nd coef cients; (depending oizg,,) such that

X 0
iDih* (zg,0) = v (D.13)
j2Byo
Then we get using (D.12)
0 0 11
X
DiDio h*(zs,) V) Awo= DiDis@h¥(zg,) @ iD;h ' (ze, )AA Ko
« i2Byo (D.14)
= i DiDish¥(zs,) D;h*(zs,,) Akko=0:

j2Byo

So (D.10) holds and thus also (D.9) (we actually only get this for pant® Z  such that there is

Z 2 Zgypp With z¢ = zg, but by continuity and sinc& syppis regularly closed this actually holds
onZy). The same reasoning shows that this is also trig %2 Bo (instead ofi;i®2 By). We
then nd that fori;i°2 By

X X ) 0
D;Djo h*(zg,) h*(zs,,) Auko=
k=1 k0= k+1

(D.15)
x X 0
= DiDio h*(zg,) h*(zs,,) Awo=0:
k=1 KO= k+1
The last display together with (D.8) and (D.7) imply tiixtL = 0 and thus is af ne. When is
not the identity the proof is similar. O
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We also need the following simple lemma which states that we have unique Cartesian-product ex-
tension of functions with interaction of order at modbetween different slots.

LemmaD.3. Letf : Z! R% be aC? diffeomorphism with interaction at masbetween different
slots such thaZ s,ppis regularly closed and foz 2 Z gpp

X X X
f(z)= fk(zg)+ cz (D.16)
k=1 2 m n 2y

for somef ' in C3. Then this relation holds 0B cpg .

Proof. We know by Theorem C.2 that a representation as in (D.16) hold@ snR% and thus can
be restricted t&@ cpe , however it might not be the same representation but involve fundiibrasd
constants . Taking the difference and settifigd = f¥ f*andc =c¢ e we ndthaton
Z supp

X X X
0= fK(zg,)+ cCz: (D.17)
k=1 2 m n 2y

Butby applyingD for 2 I, form = ndowntom=2we ndc =0forall 21 ,andthus
the polynomial term vanishes. Next, we applyand nd thatf ¥ is constant orZ (because s pp
is regularly closed). This implies that (D.17) holddgpe and thus (D.16) holds OB cpe . O

Using the previous lemmas we can prove Theorem 4.4,

Theorem 4.4 (Compositional Generalization).etn 2 f0;1;2g. Let Zgyp be regular closed
(Defn. A.3). Lef : Z ! X andf":Z! R% beC3 diffeomorphisms with at most"rorder

interactions across slots aa. If f* disentangleg onZgyppw.r.t.f (Defn. 2.1), then it generalizes
compositionally (Defn. 2.2).

Proof of Theorem 4.4Note that Corollary 3 in Lachapelle et al. (2023) already handles the case
n = 0; 1 but the proof below is more general, and also covers the case=d); 1, since functions

with at most & and P! order interactions are special cases of functions with at msor@ler
interactions assuminfy is aC2 diffeomorphism.

We can apply Theorem C.2 fowhich implies thaf can be written oiZ = R% asin (C.1) and as
explained in Lemma D.1 an equivalent representation is

X ) XX
f(z)= f(zg,)+ Zg, ZB,o Axko: (D.18)
k=1 k=1 kO0=k+1
and we have similarly
X XX
f(z)= % (zg,)+ Zs, Zs,, Ao (D.19)
k=1 k=1 ko= k+1
By assumption we have = f* h on Zsupp Whereh(z) == hy zg o iiivhe zg )
and the functionsy : RIB ) 1 RIBKI are diffeomorphisms. Our goal is to show that this

relation actually holds on the Cartesian-product extensiogs= . Let U be the set of points
such thatf (z) = f° h(z) for z 2 U. We claim that ifz = (zg,;:::;ze¢) 2 U then
2% = (zs,;::1;28,;::55z8, ) 2 U foranyz8 2 Z,. Letus denethe mag’ : Z, ! Z

given bye? (z3 ) = z° We know by Lemma D.1 that the function

X X
2t f*@s) Y @e)) = L@) (D.20)
k=1 k=1
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is af ne on Zgypp Applying Lemma D.3 the same holds @rpe . Thus we conclude that

X X
291 T 5@ (e (@d)s,) = LE(23) (D.21)

k=1 k=1
is af ne onZ,. Moreover,

0 )6 >6 0 0
zg, ! e (zg,)e. € (Zg)B0 Akko (D.22)
k=1 kO=k+1
is clearly af ne onZ, and by (D.10) the same holds for
0 X X k 0 k° 0
28, ! h (€ (z8)8,) D (€ (28)B,0) Awke: (D.23)
k=1 ko= k+1

The last three displays together imply that
28,1 T(&(z8)) 1 h(e(z}) (D.24)

is af ne onZ, and since itis zero in a nelghbourhoodzcgf = zg, (becausea 2 U)itis equal to
zero onZ;. Since this is true for any sl@&, we can now conclude that = Z. Indeed, pick any
openrectangl€? Z 2 11 Z 2 Z gpp U . Wetheninferthag, z 9 ::: Z ¢ U
and by inducting over the slots and applying continuity at the boundary we obtain the claiml

E UNIFYING ASSUMPTIONS FROMPRIOR WORK

E.1 AT MosTO™ ORDERINTERACTION ACROSSSLOTS

To prove that the assumptions in Brady et al. (2023) are a special case of our assumptiocn®for
we rst restate their assumptions formally. To this end, we rst de ne the following set:

8S [d;] 1s(z):= f12][d]:Dsf,(z)60g: (E.1)

The assumption afompositionalityin Brady et al. (2023) can now be stated:

De nition E.1 (Compositionality) A differentiable functionf : Z ! X , is said to becomposi-
tional if:
822Z;k;j 6 k2[K]:Ik(2)\ Ij(z)=;: (E.2)

We now state the second assumption in Brady et al. (2023), deieraedcibility.

De nition E.2 (Irreducibility). A differentiable functiorf : Z ! X , is said to barreducibleif for
allz 2 Z andk 2 [K]and any partition(z) = S;[ S, (i.e.,S1\ S, = ; andS;;S; 6 ;), we
have:

rank Df g, (z) + rank Dfs,(z) > rank Df, (z) : (E.3)

We now prove that compositionality and irreducibility are equivaleffit ttaving satisfying interac-
tion asymmetry (3.5) for all equivalent generators (4.1)fer 0.

Theorem E.3. A C! diffeomorphisnf : Z | X satis es compositionality (Def. E.1) and irre-
ducibility (Def. E.2) if and only if has at most ¥) order interaction across slots (Defn. 3.2) and
satis es interaction asymmetry (Assm. 3.5) for all equivalent generators (4.1).

Proof. We start by proving the forward direction, i.e., that compositionality and irreducibility
imply thatf has at most®) order interaction across slots and satis es interaction asymmetry for all
equivalent generators.

The de nitions of compositionality and at most"Oorder interaction across slots are pre-
cisely equivalent, thus we only need to show that compositionality and irreducibility imply that
f satis es interaction asymmetry for all equivalent generators. To show this we will prove the
following contraposition: that if has at most®® order interaction across slots adides nosatisfy
interaction asymmetry for all equivalent generators, theés not irreducible.
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Sincef has at most® order interaction across slots addes nosatisfy interaction asymmetry for
all equivalent generators, this implies that there exists a mat@xR/B« Bxl and a partition 0By,
intoA;B (A[ B = Bg;A\ B = ;) such that within the functioh de ned as:

8z27; f (A1zg,;: Az )= f(zZB,:i0ZB ): (E.4)

where A; such thati 6 k is the identity matrix, the latentga;zg have no interaction.
This implies that undef , 15(z) does not intersect withig (z). Further, becausé is in-
vertible, we know thatDf g, (z) is full column rank. Coupling these two properties, we
conclude that ranfg, (z)) = rankKDfa(z)) + ranKDfg(z)). Furthermore, the Jaco-
bians Df (z) and Df (z) will be related by an invertible linear map by construction. Thus,
Dfs(z) andDf s(z) have equal rank for any subss8t [d,]. Therefore, we conclude that
rankKDf g, (z)) = ranKDf a(z)) + rankKDf g (z)). BecauseA andB form a partition ofBy we
conclude thaf is not irreducible.

We now prove the reverse direction fif has at most © order interaction across slots and
satis es interaction asymmetry for all equivalent generators thesatis es compositionality
and irreducibility. As noted before, the de nitions of compositionality and at mdstofder
interaction across slots are precisely equivalent. Thus, we only need to showfthaasfat most
0" order interaction across slots and satis es interaction asymmetry then this ifiptasis es
irreducibility. To show this, will prove the following contraposition: thatfif does not satisfy
irreducibility, then itdoes notsatisfy interaction asymmetry for all equivalent generators with
n=0.

Sincef is not irreducible, we know that there exiszaa slotk 2 [K], and a partition oBg
into A; B such that rantDf g, (z)) = rankDf a(z)) + ranDf g (z)). Becausef g, (z) is full
column rank this implies that ra(Rf o (z)) = jAj and rankDf g (z)) = jBj. Now take two

matricesM s, 2 R%J Al andM g, 2 R% Bl such that the column space Bf s, is the same
asDf a(z) and the columns space bf s, is the same aBf g (z). Now construct the following

matrixM 2 R% I B« as follows:

M =[Ms,;;Msg,] (E.5)
Note that by construction this matrix has a block structure such that rowd fgrare never non-
zero for the same rows &8 s,. BecauseM andDf g, (z) are both full column rank, then there
exist a matrixA , 2 RiBxii B«i sych that:

M = Dfg, (2)Ak (E.6)
Now de ne the functiorf as follows:

8227: f Aj'ze, i Aze, =1 (zZe,iiZe): (E.7)

such thath; ! is de ned as above whein= k, and otherwise it is the identity matrix.

Writing the derivative oDf g, (z) interms off we getDf g, (z)Ax = M . Becausé/ has a block
structure we conclude that there exist a partitioBgfsuch that these latents have no interaction
withinf atz. Becausé is equivalenttd we conclude that the function does not satisfy interaction
asymmetry fon = 0. O

E.2 AT MosT1°T ORDERINTERACTION ACROSSSLOTS

We now prove that the assumptions in Lachapelle et al. (2023) are a special case of our assumptions
forn = 1. To this end, we rst restate their assumptions. The rst assumption in Lachapelle et al.
(2023) is that the generatbris additive

De nition E.4 (Add)i(tive decoder) A C?2 diffeomorphismf :Z ! X is said to be additive if:
f(z)= fX(z); wheref X : RIBJ 1 R% foranyk 2 [K]andz 2 Z: (E.8)
k2[K ]
De nition E.5 (Suf cient Nonlinearity) Letf : Z ! X be aC? diffeomorphism. For alk 2 [K ],
letBZ := BZ\f (i1;ip)ji i10. f is said to satisfysuf ciently nonlinearityif 82 2 Z the
following matrix has full column-rank:

W (z) = [Dif (2)];,5, DFof (2) (9288 0 (E.9)
K 2[K
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We now state our result.

Theorem E.6. Letf : Z ! X be aC? diffeomorphism. If satis es additivity (Def. E.4) and

suf cient nonlinearity (Def. E.5) theh has at most % order interactions across slots (Defn. 3.3),
satis es suf cient independence (Defn. A.9), and satis es interaction asymmetry (Asm. 3.5) for all
equivalent generators (Defn. 4.1) for= 1.

Proof. We note thaf having at most rst order interactions across slots is equivalent to having a
block-diagonal Hessian for every observed component. Such functions were proven to be equivalent
to additive functions in Lachapelle et al. (2023). Furthermore, suf cient independence is clearly
implied by suf cient nonlinearity as if all columns of the mati%¢ (z) are linearly independent,
then blockdDif (z)];,5, D3 of (2) (i 9282 will have non-intersecting columns spaces for all

! k

k 2 [K] and will thus satisfy suf cient independence (Def. A.9. Consequently, the only thing we
need to show is that suf cient nonlinearity (Def. E.5) implies interaction asymmetry (Assm. 3.5)
for all equivalent generators (4.1).

Assume for a contradiction that suf cient nonlinearity (Def. E.5) did not imply interaction
asymmetry (Assm. 3.5) for all equivalent generators (4.1) with1. This would imply that there
exists an equivalent generatorftalenoted de ned in terms of a slot-wise linear functidn

f=f h (E.10)
such thatf has at most rst order interaction within some sBf. In other words, leveraging
Lemma A.21, there exist@j 9 2 BZandaz 2 Z s.t.

0=Dfof (2)= W' (h(2)m"(z;(:] V) ; (E.11)
Becaus&V f (h(z)) is assumed to be full rank by suf cient nonlinearity (Def. E.5), then in order for
this equation to holan " (z; (j;j 9) must be zero. Note, however, that by constructiois de ned
slot-wise such that; ;z]-0 map to the same sldtg, . By construction, if twag; ;z]-O affect the same
slothg, thenm"(z; (j;j 9), cannot be zero. Thus, we obtain a contradiction. O

F TRANSFORMERS FORNTERACTION REGULARIZATION

Each layer of a Transformer (Vaswani et al., 2017) consist of two main components: an MLP sub-
layer and an attention mechanism. Notably, in the MLP sub-layer, MLPs are applied separately to
each slot or pixel query and their outputs are then concatenated. Further, additional layer normaliza-
tion operations (Ba, 2016) are typically used in Transformers but are also separately applied to each
slot or pixel query. Thus, the only opportunity for interaction between slots in a Transformer oc-
curs through the attention mechanism. Our focus in this work is on the cross-attention mechanism,
opposed to the alternative self-attention. As noted in § 5, cross-attention takes the form:

K =W"[2g, o} V =WVY[2s ek Q=WQodlae,; (F1)
exp Q74K i
Ad;k = p > X Xd = Ad;;V>; R‘d = (Xd)Z (F.2)
2k €XP QK

whereK . ; V. 2 R%, WK ; WV 2 Rdal Bu for query dimensiomly. Furtherog 2 R%, Q. 2
RY, W Q 2 RY do whered, is the dimension of a pixel coordinate vector, andR% | R.

1
Additional Details. In Eqg. (F.2), we do not include the scaling factigr? for A 4, that is typically
used as it does not affect our arguments below. We do, however, include it in our experiments.
Further, wherx is an RGB imagey will not be a scalar but will instead be a vectoiRA since each
pixel has3 color channels. Additionally, in our experiments, multi-head attention is used. In this
case, slot keys and values and pixel queries are partitionedh istdd-vectors. Eqgs. (F.1) and (F.2)
are then applied separately to each resulting sub-latent, and the resulting outputs are concatenated.
When using multiple layers of cross-attention, as we do in our experimeritspnly applied at
the last layer and vectors for a subsequent layer are de ned as the veciqrdrom the prior
layer. Eqgs. (F.1) and (F.2) is then repeated. We discuss how these additional caveats are dealt with
empirically when implementing ineractb€low in Appx. F.2, however, they do not affect our formal
argument regarding regularizing interactions in Appx. F.1.
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F.1 AcoBIAN OF CROSSATTENTION MECHANISM

Our goal is to show that i 4.« in equation i<, then partial derivative of Egs. (F.1) and (F.2) w.r.t

slot?2g, ,i.e, g‘d will also be zero. This would then imply thatAf 4.. is non-zero for at most one

slotk for everyd 2 [dy], and every? 2 Z\supp then slots do not interact in the sense of Defn. 3.2,

since all such derivative produc%(%d for | 6 k are zero. To this end, we are interested in
k |

computing the derivative:

@d _ @ d)|
@s.)r @ M@, ) (F3)

where we here and from now on use the convention that we sum over every index that appears only
on one side. To evaluate this we decompose the terms

(Xa)i = AgxVik = Agx Wy (28,);: (F.4)
We setM ¢.. = o (W ?)” W K so that
Q;>;dK k= My (28,)i: (F.5)
This implies that

@
@?s,)i

where is the Kronecker-Delta (and here no summation dwverd is done). This implies using the
product rule and the chain rule that

exp(Q K k) = Mg km exp(Q 4K :x) (F.6)

@@g:k)i =Mygi kmAdk MagiAdgkAdgm: (F.7)
Plugging this together we get
@d _ @Xd)l
@2, ) =@ K )@23 )r
= AW @ (0+ @ (WY (Pa,), gn ™

AgmWiyr @ (X)+ @ ()WY (28,)i(Mar kmAdk  MarAgkAdgm)

Agm@ X)Wy + WY (28,)iMar) @ ()WY (28,)iM ar AgkAdm
(F.8)

From this, we can see that# 4, = O, then the partial derivativ%, will indeed be zero as
A g.m scales both terms in the last line of Eq. (F.8).

F.2 INTERACTION REGULARIZER

Based on Appx. F.1, we propose to regularize the interaction in a Transformer by minimizing the
sum of all pairwise product& ;; A , wherej 6 k. More speci cally, we minimize the following
loss:
X X X
Linteract:= E Al (2)A 1k (2) (F.9)
12[dx]j2[KTk=]+1

whereA |« (2) is used to indicate the input dependence of attention weights on ldtebtgeractis
a non-negative quantity which will be zero if and only if a matrix has at most one non-zero for each
row (Brady et al., 2023).

Code to computé ineractfor a batch of attention matrices can be seen in Fig. 4. We note that when
using multiple attention heads, we rst sum the attention matrices over all heads to ensure consistent
pixel assignments across different heads.
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When using multiple layers, we also sum the
attention matrices over each layer, for the same
reason.L interactiS then computed on the result-
ing attention matrix.

Regularizing Higher Order Interactions. We

note that while we motivate jeract as a regu- )

larizer for Bt order interactions, we do not ex- Figure 4: PyTorch code to comput@erac

plicitly address regularizing for higher order in-

teractions, i.e., fon 2. We conjecture there

is a relationship between regularizibgeractand higher order interactions but that it is less direct
than the # order case. We leave it to future work to explore these connections further, as well
as alternative, computationally ef cient regularizers which can more directly penalize higher order
interactions.

Computational Ef ciency. We note that regularizing with jneract adds minimal additional com-
putational overhead since attention weights are already computed at each forward pass through the
model, and, moreover can be easily optimized using gradient descent. This is in contrast to Brady

et al. (2023) which required computing the Jacobian of the dedo@eeach forward pass and then
optimizing it using gradient descent. This results in second-order optimization which is computa-
tionally intractable for high-dimensional data such as images (Brady et al., 2023).

G EXTENDED RELATED WORK

G.1 THEORY

Relationship Between Principle 3.1 and Other PrinciplesThe principle of interaction asymme-

try, “parts of the same concept have more complex interactions, than parts of different concepts”
(3.1), is intuitively similar to several prior principles explored for learning concepts. For exam-
ple, the prior works of Baldwin et al. (2008); Reynolds et al. (2007); Schmidhuber (1990); Zacks
et al. (2011) on disentangling events/sub-task (e.g., “making coffee”, “driving to work”), Greff et al.
(2015); Hyvarinen and Perkio (2006) on disentangling objects in an image, and Schmidhuber (1992)
are all essentially based on the principle that parts of same concemioagemutually predictable

than parts of different concepts. Similarly, Hochreiter and Schmidhuber (1999); Jiang et al. (2022)
implicitly use the idea that parts of same conceptramre compressibléhan different concepts.
Research on networks, use the idea that nodes from the same “community” interact more strongly
than nodes from different communities (Fortunato and Hric, 2016), which also resembles ideas from
clustering that points from the same cluster have higher mutual information than from different clus-
ters (Kraskov et al., 2005). This network-based framework was applied by Schapiro et al. (2013) as
a model for grouping temporal events. Lastly, Greff et al. (2020) propose that objects do not interact
much with their surroundings but internally have a strong structure. While these different ideas are
intuitively similar to interaction asymmetry, they take on different formalizations. Moreover, these
principles are generally used as high-level heuristics for designing a learning algorithm, and their
theoretical implications for disentanglement and compositional generalization are not explored.

Connection with Information Bottleneck Principle. Another notable principle for learning repre-
sentations is the Information Bottleneck principle (Alemi et al., 2016; Tishby et al., 2000) which has
also been applied in the context of learning disentangled representations (Meo et al., 2024). In the
context of disentanglement, this principle suggest learning a representation which tries to balance
a trade-off between minimizing the mutual information between a latent vecamd an observa-

tion x, and ensuring that contains suf cient information to predict, i.e., reconstruct From a
theoretical standpoint, the Information Bottleneck principle differs from the principle of interaction
asymmetry as de ned in Asm. 3.5. Speci cally, Asm. 3.5 is an assumption omgéineratorf

and does not place assumptions on the latent distribptiorConsequently, our theory describes a
setting in which disentanglement can be achieved without explicitly enforcing any additional prop-
erties omp, . We note, however, that despite this key difference, our theory does yield insights which
resemble the Information Bottleneck principle. Speci cally, as noted in § 5, our theory suggest that
if a model uses an inferred latent dimensiyngreater than the ground-truth dimensiby then it

should aim to encode using the minimal necessary latent dimension, i.e., the mutual information
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betweenx and unnecessary latent dimensions should be minimized, while ensuring taat be
reconstructed frora.

On the Relationship Between Disentanglement and Compositional GeneralizationA key
premise motivating our theoretical study of compositional generalization is that, from a theoreti-
cal perspective, disentanglement does not directly imply compositional generalization. Speci cally,
this would require that equality betwe&nandf” on Z supp (disentanglement Defn. 2.1) implies that
these functions were also equal on allbf(compositional generalization Defn. 2.2). As noted

by Lachapelle et al. (2023); Wiedemer et al. (2024a), this will not be true for arbitrary functions and
necessitates restrictions on the fornf of* on all of Z. While several works have provided empir-

ical corroboration of this theoretical statement for concepts of objects (Wiedemer et al., 2024a) and
object attributes (Montero et al., 2021; 2022b; Schott et al., 2022), prior works in disentanglement
have suggested that disentanglement can in some cases enable compositional generalization (Es-
maeili et al., 2018; Higgins et al., 2017; Mahon et al., 2023). We hypothesize that the compositional
generalization abilities observed in the latter works are a consequence of only leaving a small num-
ber of novel combinations out of the training set, such that compositional generalization becomes
much easier compared to the more restricted training domains explored in (Montero et al., 2021,
Wiedemer et al., 2024a). With this being said, it is possible that through hidden inductive biases in
a model, disentanglement can directly lead to compositional generalization, which would not be at
odds with our theoretical observation.

Polynomial Decoders.As noted in 8§ 4.2, Asm. 3.5 implies that the cross-partial derivatives of the
generatof consisting of components from different slots will be nite-degree polynomials. This
partially resembles the polynomial constraintsfom Ahuja et al. (2023) for disentanglement. Im-
portantly, however, Ahuja et al. (2023) assume #ihtross-partial derivatives df are polynomial

such that the entire functioih is a nite-degree polynomial. In contrast, Asm. 3.5 constrains the
form of cross-partial derivativeacrossslots to be polynomial, budoes notconstrain the form of
cross-partial derivativewithin the same slot. In other words, Asm. 3.5 only constrains the interac-
tions across slots, while Ahuja et al. (2023) constrains all possible interactions. This is an important
distinction since the former gives rise to much more exible generators than the latter (see Eq. (4.2)).

G.2 METHOD AND EXPERIMENTS

VAE Losses in Object-Centric Models. Prior work in Wang et al. (2023) also apply a VAE loss

to an unsupervised object-centric learning setting. However, while we minimzelirectly on in-

ferred slots ir? given by our Transformer encoder, Wang et al. (2023) minirhigeon an interme-

diate representation which is then further processed to gieklirthermore, the focus of Wang et al.
(2023) is on scene generation an not penalizing the capaciy #idditionally, Kori et al. (2024)
explore a loss for object-centric learning resembling a VAE loss, though their aim is to enforce a
certain probabilistic structure ahimplied by their theoretical disentanglement result, opposed to
penalize latent capacity.

Inductive Bias Through Explicit Supervision. Recently, many works have shown remarkable em-
pirical success in disentangling (Kirillov et al., 2023; Ravi et al., 2024) and composing (Brooks
et al., 2023; Ramesh et al., 2021; 2022; Ruiz et al., 2023; Saharia et al., 2022) visual concepts in
images on web-scale data. These works achieve this through explicit supervision via segmentation
masks or natural language descriptions of each concept, opposed to constraints on the generative pro-
cess in Eq. (2.1). Notably, however, many species in human's evolutionary lineage disentangle and
compose concepts in sensory daithoutusing explicit supervision like natural language (Behrens

et al., 2018; LeCun, 2022; Summer eld, 2022; Tolman, 1948). This suggest the existence of a
self-supervised coding mechanism for disentanglement and compositional generalization that is still
lacking in current machine learning models. The present work aims to make theoretical and empiri-
cal progress towards such a mechanism.

Relation Between a Transformer Regularized withl inieract and Prior Works. Goyal et al. (2021)
proposed RIMs which is a Transformer-style architecture aimed at enforcing a “modular” structure.
Contrary to our work, Goyal et al. (2021) do not regularize for modularity, but posit that it may
emerge from “competition” induced by an attention mechanism. Similarly, Lamb et al. (2021) pro-
pose an alternative Transformer architecture aimed at enforcing modularity, which also tries to en-
force competition using a mechanism similar to Goyal et al. (2021). More recently, Vani et al. (2024)
propose a novel Transformer component which is aimed at yielding disentanglement by processing a
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Transformer embedding into different slots using separate attention heads for each slot. While these

works are similar to ours in that they aim to learn disentangled representations of concepts using a

Transformer-style architecture, they are based on architectural changes to a Transformer, whereas
we use a standard cross-attention Transformer decoder and regularize it explicitly towards having a

“modular” structure using. interact

H EXTENDED DISCUSSION

H.1 THEORETICAL ASSUMPTIONS

Non-Homogeneous InteractionsOne potential limitation of our formulation of interaction asym-
metry (Asm. 3.5) is that the order of interaction,across slots, must be the same for all latent vec-
torsz 2 Z and for any two slotgg, ; zg, . This assumption will potentially be violated in practice.

For example, for concepts of visual objects, it is likely that within each image, only a few objects,
i.e., slots, interact at a time (e.g., see Fig. 1), such that different slots will have different orders of in-
teraction withinz. We conjecture that our theory can be extended to handle such nhon-homogeneous
interactions, however, we leave this for future work. Furthermore, we note that despite this potential
mismatch between theory and practice, our method still achieved robust object-disentanglement on
data in which the order of interaction appears to be non-homogeneous, e.g., CLEVR6.

Requirements on the Observed Dimensior\We note that an implication of suf cientindependence
for n > O (wheren is the order of interaction across slots) is that the observed dimedgiomust

be greater than the latent dimensidn Moreover, the requiredy will scale as a function of the
number of latent slot& , the slot dimensiongBj, and the order of interaction across slétg.

For example, for functions with at most! brder interactions across I§Iots, ensuring that the rank

condition in suf cientindependence (Defn. A.9) is metrequiresthat |, K] W+ d;.
Furthermore, fBr functions with at 'mqs‘ﬁda)rder interactions, satisfying this condition (Defn. 4.2)
requiresdy o) DEUBIUBID) y d(%) 4 g, We note that we are interested in
modelling high-dimensional sensory data, such as images, in which the observed dinagnsgilbn

be much greater than the latent dimensiign Thus, for practical cases of interest, we expect these
requirements ody to be met.

Concepts Potentially not Captured by Interaction Asymmetry. For certain concepts, it is not
obvious if interaction asymmetry will always hold. For example, consider object attributes such as
the x-y-position of an object, which can be modelled by one-dimensional slots. For such concepts,
the interaction within a slot, i.e., the interaction of each latent component w.r.t. itself, should, intu-
itively, be a simple function. It is thus not obvious if the interaction within each slot will necessarily

be more complex than interactions across slots, suchf thatly not satisfy interaction asymme-

try (Asm. 3.5). Additionally, it is not immediately clear how interaction asymmetry can be applied

to more abstract concepts which are not directly grounded in sensory data such as the concept of
“democracy” or the concept of a “function” in mathematics.

Restrictiveness of the Aligned-Connected AssumptionOur theoretical results in § 4 leverage

the assumption that the latent spatg,, is aligned-connected Defn. A.16. To assess whether the
aligned-connectedness assumption is realistic, we believe it is helpful to look at concrete mathemat-
ical examples of supports that satisfy it. For example, the whole sR%cés aligned-connected.

More generally, any convex set is aligned-connected. This include the hypééctle, any closed

ball, and much more. Some aligned-connected sets are not convex. For example, the "L-shaped”
set[0; 2F n[1; 2] is aligned-connected but not convex. This last example is useful to model con-
crete settings where some combinations of latent factors are not observed at training time. This
corresponds to the running example of Lachapelle et al. (2023) consisting of two balls moving up
and down where the con gurations where both balls appear in the top half of the image are never
observed.

H.2 METHOD AND EXPERIMENTS

Self-Attention in Transformer Decoders. Our Transformer decoder in § 5 resembles the models
from Jaegle et al. (2022); Sajjadi et al. (2022a;b) which only rely on a cross-attention mechanism.
However, other works in object-centric learning leverage Transformer decoders which also include
a self-attention mechanism between queries at each layer (Seitzer et al., 2023; Singh et al., 2022a).
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When reconstructing individual pixels, e.g., on Sprites and CLEVRG6 in § 6, applying self-attention
between queries will not scale to high-dimensional images since it requires computinagtention
weights, wheren is the number of pixels. However, when reconstruciimgge patchesas was

done in our experiments on CLEVRTex, using self-attention is scalable since we have a signi cantly
smaller number of queries, e.d6 16 on CLEVRTex. While we found that we could achieve
strong disentanglement using only a cross-attention mechanism on CLEVRTex, it is possible that
using self-attention could be advantageous when reconstructing image patches in even more complex
settings. For such models, however, it is not immediately obvious how to regularize the decoder to
match our theory since adding self-attention between pixels will introduce additional interactions
between slots. We leave it for future work to investigate if our current training objective will still
yield robust object-disentanglement for such a model and, furthermore, if such a model can be
regularized to be in line with our theory.

Trade-Offs with Slot Attention. On Sprites and CLEVRG6 (8 6) as well as CLEVRTex , we found

that our regularized Transformer autoencoder achieved superior disentanglement, based on our met-
rics, to an unregularized variant with a Slot Attention encoder. Despite this, we emphasize that
our goal is not to propose our method as superior to Slot Attention-based methods. Instead, we
highlight that both methods offer different trade-offs. For example, training with our proposed loss
(Eqg. (5.3)) enables using a general Transformer encoder, thus potentially allowing our model to be
applied more generally at scale compared to encoders with more explicit object-centric priors such
as Slot Attention. This, however, comes at the cost of training with regularizers which require hyper-
parameter selection. While our experiments did not require extensive hyperparameter tuning, it is
possible that certain datasets will exhibit increased sensitivity to these hyperparameters. Addition-
ally, our interaction regularizer is based on decoders which only use a cross-attention mechanism.
While this architecture yielded strong disentanglement in our experiments, Slot Attention encoders
have been shown to enable disentanglement using more expressive decoders which also use self-
attention (Seitzer et al., 2023; Singh et al., 2022a).

Latent Prediction-Based Disentanglement Metric<One potential issue with our Jacobian-based
disentanglement metrics is that they may fail to measure whether multiple slots actually encode the
same object. Speci cally, if two slots affect the same object in pixel space, this could be due to
both slots encoding the object in latent space, or it could be due to slot interactions modelled by the
decoder. De nitively resolving this potential ambiguity would require measuring the information
encoded in each slot directly in latent space. Along this line, prior works have considered latent
prediction metrics in which the R2 score is computed from the predictions of a model t between
each inferred slot and the best matching ground-truth slot (Dittadi et al., 2022; Jiang et al., 2023;
Locatello et al., 2020b). While these metrics indicate if an inferred slot contains all information for

a given object, they are insuf cient for resolving the possible ambiguity of our current metrics. This
is because these metrics do not indicate if an inferred slot contains informationrabmithan
oneobject. This issue with latent prediction metrics was pointed out by Brady et al. (2023) who
aimed to address it by measuring the R2 score from an additional predictor t to the second-best
matching ground-truth slot. We found this metric to yield inconsistent results on CLEVR6, which
we hypothesize was due to issues when determining the second-best matching ground-truth slot.
This lead us to focus on decoder-based metrics which are more straightforward to compute. We
leave it for future work to formulate a latent prediction metric which overcomes the aforementioned
issues of prior works.

On Hyperparameter Selection. One potential limitation of using our regularized loss (Eqg. (5.3))

in terms of scalability is that hyperparameter selection is required. In our experiments on Sprites
and CLEVR® (8 6), extensive hyperparameter tuning was not required. Furthermore, we found the
values of = 0:05, = 0:05to work robustly across both datasets, though the reconstruction
loss was weighted by a factor of 5 on Sprites and 1 on CLEVR6. This indicates some level of ro-
bustness of these hyperparameters across datasets which contain varying complexity of interaction.
On CLEVRTex (Appx. I), we found that these exact hyperparameter values did not transfer directly
and a small amount of tuning was required to arrive at our values (.1 for all terms in the loss). We
hypothesize that this is because, in our current implementation of our loss, the magnitude of the
reconstruction loss scales with the dimension of the data. To this end, because the data dimension
increased signi cantly on CLEVRTex (256 encoded image patches, each with 768 dimensions), the
contribution of the reconstruction term to the loss needed to be slightly diminished. With all this
being said, it is possible that more complex dataset could require more extensive hyperparameter
tuning, however, we leave this for future work to investigate.
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Applying our Method to Other Types of Concepts. One important direction for future work

is to apply our method to data consisting of different types of concepts such as object-attributes
or temporal events. For object-attributes, our same empirical framework can be applied, but with
the additional caveat that the Transformer is permutation invariant, while object-attributes do not
posses the same permutation invariance as objects. To this end, methods such as adding a positional
encoding to each slot, must be used to address this. Additionally, as noted by Gopalakrishnan
et al. (2023); Kipf et al. (2019), the problem of disentangling temporal events in image sequences
can also be modelled naturally using a slot-based framework. In this case, the “tokens” that a slot
encoder, e.g., a Transformer or Slot Attention, operates on are not pixels processed by a CNN, as in
our current model. Instead, they would correspond to individual images in the sequence which are
each mapped into representation “tokens”. These tokens can then be mapped into slots by, e.g., a
Transformer, and then decoded back to output space, where the queries for the Transformer decoder
also would not correspond to individual pixels but instead to images in the temporal sequence.

Limitations of Lgsent: One potential issue with (¢ is that for real-world data, reconstructing
every pixel in an image exactly, may not be necessary and could lead to overly prioritizing tasks
irrelevant information ir2 such as the background (Seitzer et al., 2023). It would thus be interesting
to see if our theory and method could be extended to a self-supervised setting, as in Seitzer et al.
(2023), in which exact invertibility is not strictly necessary. Regarding, we rst note that in
addition to a model having inferred latent dimensionatifyequal to ground-truth dimensiaf,

our theory also requires that the inferred slot dimensions equals the ground-truth slot dimensions.
While Lk explicitly regularizes for the former, it does not directly regularize for the latter. More
speci cally, Lg. could, in principle, penalize latent capacity by putting information from all, e.g.,
objects, in one slot (assuming the slot size is large enough), opposed to distributing this information
over components from different slots. Despite this, we found that this failure mode did not occur in
our experiments. Another potential issue witg _is that it aims to enforce statistically independent
latents which could lead to sub-optimal solutions if the ground-truth latents exhibit strong statistical
dependencies. Lastly, regardibgeracs @ Shortcoming of this regularizer is that, while it directly
regularizes I order interactions (Appx. F.1), its connection to regularizing higher order interactions

is not as direct. Future work should thus aim to investigate this point further both theoretically and
empirically.

H.3 ENFORCING THEORETICAL CRITERIA OUT-OF-DOMAIN.

As noted in § 5, enforcing (i) invertibility and (i) at most" order interactions across slots B
out-of-domain, i.e., globally on all & , poses distinct practical challenges. We now discuss this in
detail. To this end, we rst discuss enforcing (ii) globally @n

Restricting Interactions Globally. The easiest way to enforce tHahas at mosh™ order interac-

tions across slots o is to directly parameterizé\ to match the form of such functions for some
n (Eq. (4.2)). This is, for example, how at most drder interactions were enforced in Lachapelle

et al. (2023), i.e., by de ning” to be an additive function (Defn. E.4) on all . We found for

higher order interactions, parameterizifglirectly to match the form of Eq. (4.2) leads to training

dif culties on toy data. Moreover, even if we could easily train such a model, this explicit form
would pose an overly restrictive inductive bias when scaling to more realistic data. This motivated
us to consider how to regularize for (ii) opposed to enforce it explicitly. The issue with this approach

is that we only regularize the derivativesfofin-domain onZ\Supp Yet, enforcing structure on the
derivatives off" on Z,p, does not imply that same structure will be enforced on all ofAs noted

in 8 4.2, however, by knowing the behavior of the derivativef afn Z\SUpp we can infer their be-
havior everywhere o# . Thus, in principle, it should be possible to propagate the correct derivative

structure learned bﬁf\ locally on Z\supp to all of Z. Practically, however, it is not obvious how this
can be done in an effective manner. Thus, properly addressing this challenge would require further
methodological and empirical contributions, which are not within the scope of the present work.

Enforcing Invertibility Globally. Additionally, even iff" satis es (ii) globally, we still must enforce
(i) invertibility, globally. As noted in § 5, it is not feasible to de rfé such that it is an invertible
function fromZ to X by construction. This necessitated parameterizing the inverSevdth an
encoderg which was trained to invert thdecoderf” via a reconstruction loss. Assuming that a
decoderf” satis es (ii) globally, and is invertible o's,pp it is possible to show thaf will be
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invertible on all ofZ and thus generalize compositionally. The issue, however, is that our erfcoder
is only trained to invert” on Z\SUppbut not on unseen data from the rest oZafConsequently, even

if £ generalizes compositionally, an encodewill not invert " out-of-domain, and can thus yield

an arbitrary representatio#son such data. This “encoder-decoder inconsistency” was pointed out
by Wiedemer et al. (2024a), which studied compositional generalization for decoders with at most
0" and F' order interactions. They proposed a loss which addresses this problem by rst generating
out-of-domain samples usirig and then training the encod@to invertf” on this “imagined” data.

The implementation of this loss in Wiedemer et al. (2024a), deetnetpositional consistency

was shown to be ineffective for images consisting of more than 2 objects, however (Wiedemer
et al., 2024a). Consequently, scaling this loss, or exploring alternative losses for encoder-decoder
consistency, remain open research question that require a deeper investigation to properly address.

For these reasons, the empirical aspects of this work focus on enforcing (i) and (ii) in-domain to
achieve disentanglement @y, (Thm. 4.3). As highlighted above, however, our theory elucidates
the core problems that need to be solved empirically to also achieve compositional generalization,
thus giving a clear direction for future work.

| EXPERIMENTS ONCLEVRTEX

In this section, we conduct additional experiments on the CLEVRTex dataset (Karazija et al.,
2021).This dataset constitutes a signi cant step up in complexity from CLEVR6 and has been shown
to be highly challenging for existing object-centric models (Biza et al., 2023; Karazija et al., 2021).
We outline our experimental setup and results below.

1.1 EXPERIMENTAL SETUP

Data. Each image in CLEVRTex consist of between 3 and 10 objects with rich textures, set against
complex backgrounds (see Fig. 7 for example images). The dataset consists of 50,000 images. We
use 40,000 images for training and 5,000 for validation and testing, respectively.

Models. We train 4 models on this data. The rst model is our regularized Transformer autoencoder
from § 5, for which we weight each term in the loss in Eq. (5.3) by a hyperparameter valie of

The second model is an unregularized Transformer autoencoder, and the third model is an unreg-
ularized autoencoder which uses a Slot Attention encoder with both a Transformer and slot-wise
MLP decoder. We train all models using the same setup as in 8 6, however, instead of reconstructing
the original images, we reconstruct a representation of each image given by a Vision Transformer
(ViT) (Dosovitskiy et al., 2021), which is pretrained using the DINO method (Caron et al., 2021).
This approach, deemed DINOSAUR (Seitzer et al., 2023), was shown to help object-centric mod-
els scale to datasets with increased visual complexity. We thus replace the CNN backbone used in
our experiments on Sprites and CLEVR6 with a pretrained ViT which operat@&s o8 patches

of the original images. These patches are mapped to features which are then processed by either a
Transformer or Slot Attention encoder. For all models, we use 11 slots with a slot dimension of 64.

Training and Evaluation Details We train all models across 3 random seeds using batches of 32.

In all cases, we use the Adam optimizer (Kingma and Ba, 2015) with a learning rate 4D *

which we warm-up for the rst 10,000 training iterations and then decay by a factor of 10 throughout
training. We also warm-up the value offor the rst 25,000 training iterations. We report the J-ARI

and JIS for each model after training for 300,000 iterations. To compute these scores, we bilinearly
interpolate our normalized Jacobian maps to match the shape of the original image, since we are
reconstructing image patches. When computing J-ARI and JIS for the slot-wise MLP decoder, we
rely on the alpha-mask of the decoder opposed to its Jacobian due to computational issues when
computing the Jacobian for this model.

1.2 RESULTS

We report our results in Tab. 2. As we can see, similar to on Sprites and CLEVR®S, our regular-
ized Transformer achieves strong object-disentanglement, outperforming both unregularized base-
line methods in terms of J-ARI. Our model also a achieve superior JIS compared to all baseline
models with the exception being the slot-wise MLP decoder. This is not unexpected, however, as
this decoder explicitly constrains interactions in the same way as the Spatial Broadcast Decdoer used

49



Published as a conference paper at ICLR 2025

Table 2:Empirical Results. We show the mean std. dev. for J-ARI and JIS (in %) over 3 seeds for different
choices of encoders and weights of the loss terms in Eqg. (5.3) on CLEVRTex.

Encoder Decoder Loss J-ARI(") JIS (")

Transformer Transformer =0; =0 81:4 3.7 509 28
Slot Attention  Transformer =0; =0 94:2 02 544 0.3
Slot Attention  Slot-wise MLP =0; =0 92:8 0:2 84:3 0:4
Transformer Transformer =0:1;, =0:1(Ours) 95:9 0:06 654 056

in other experiments. We also visually corroborate these results by plotting normalized slot-wise Ja-
cobians for each model which can be seen in Fig. 7.

J EXPERIMENTAL DETAILS

J.1 DaTA, MODEL, AND TRAINING DETAILS

Data. The Sprites dataset used in § 6 was generated using the Spriteworld renderer (Watters et al.,
2019a) and consist of 100,000 images of dide 64 3 each with between 2 and 4 objects. The
CLEVRG6 dataset (Johnson et al., 2017; Locatello et al., 2020b) consist of 53,483 images of size
128 128 3each with between 2 and 6 objects. For Sprites, we use 5,000 images for validation,
5,000 for testing, and the rest for training, while for CLEVR6, we use 2,000 images for validation
and 2,000 for testing.

Encoders. All models use encoders which rst process images using the same CNN of Locatello
et al. (2020b). When using a Transformer encoder, these CNN features are fed to a 5 layer Trans-
former which uses both self- and cross-attention with 4 attention heads. When using a Slot Attention
encoder, we us8 Slot Attention iterations, and use the improved implicit differentiation proposed

in Chang et al. (2022). Both the Transformer and Slot Attention encoders use learned query vectors
opposed to randomly sample queries, which was shown by Biza et al. (2023) to yield improved
performance for Slot Attention. On Sprites, all models histots, each witt82 dimensions, while

on CLEVRS, all models use slots, each witt64 dimensions. When using a VAE loss, this slot
dimension doubles since we must model the mean and variance of each latent dimension.

Decoders.When using a Spatial Broadcast decoder (Watters et al., 2019b), we use the same archi-
tecture as (Locatello et al., 2020b) across all experiments, using a channel dimer&2dardioth
datasets. When using a Transformer decoder, we rst upscale slots to 516 dimensions by processing
them separately using a 2 layer MLP, with a hidden dimension of 2064. We then apply a 2 layer
cross-attention Transformer to these features which uses 12 attention heads. To obtain the vectors
o, in Eq. (5.1), we apply a 2D positional encoding to each pixel coordinate. This vector is then
mapped by a 2 layer MLP with a hidden dimension of 360 to yi®ldwhich has dimension 180.

The function in Eq. (5.2) is implemented by a 3 layer MLP with a hidden dimension of 180, which
outputs a 3 dimensional pixed, for each pixell. We additionally note that this architecture does

not rely on auto-regressive masking as in Singh et al. (2022a).

Training Details. We train all models on Spriteworld across 3 random seeds using batches of 64 for
500,000 iterations. For CLEVR®6, we use batches of 32 and train for 400,000 iterations. In all cases,
we use the Adam optimizer (Kingma and Ba, 2015) with a learning rde a0 4 which we warm-

up for the rst 30,000 training iterations and then decay by a factor of 10 throughout training. When
training with Ly and Lineracs We Uuse hyperparameter weights of 0.05, which we found to work
well across both datasets. We found much larger values could lead to more training instability and,
in some cases, insuf cient optimization bfe., while smaller values often did not lead to suf cient
optimization of the regularizers. We warm-up the value dbr the rst 30,000 training iterations.
Additionally, when training with or , we drop the value of the learning rate after 30,000 training
iterations tol 10 4, which improved training stability. Lastly, on Sprites, we weidiii. by a

factor of 5, when training with or
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J.2 METRICS AND EVALUATION

Computing ARI with Attention Scores. To compute the Adjusted Rand Index (ARI), each pixel
must first be assigned to a unique model slot. To this end, prior works typically choose the slot
with the largest attention score from either Slot Attention or the alpha mask of a Spatial Broadcast
decoder (Locatello et al., 2020b; Seitzer et al., 2023). This approach can be problematic since
the attention scores used are model-dependent, making a direct comparison of ARI across models
challenging. Further, the relationship between attention scores and the pixels encoded in a model
slot is somewhat indirect. As noted in § 6, we consider an alternative and compute the ARI using the
Jacobian of a decoder (J-ARI). Specifically, we assign a pixel [ to the slot with the largest L; norm

for the slot-wise Jacobian Dp, f;(Z). This can be done for any autoencoder and provides a more
principled metric for object disentanglement since a decoder’s Jacobian directly describes the pixels

each slot encodes (assuming f, g invert each other).

Evaluation. We select models for testing which had the highest average values for J-ARI and JIS
(each of which take values from O to 1) on the validation set. These models were then evaluated on
the test set yielding the scores reported in Tab. 1.

J.3 ADDITIONAL FIGURES

In this subsection, we include 3 additional experimental figures. In Fig. 5, we compare the value
of Lingeract throughout training for a model with a Transformer encoder and decoder, trained using
a our regularized loss Eq. (5.3), the VAE loss and a standard autoencoder loss on both Sprites and
CLEVR6. We plot values over 3 random seeds; the shaded regions in the plots indicate one standard
deviation from the mean. We find on Sprites (A) and CLEVRG6 (B) that the VAE loss achieves
much lower Liyeraer than the unregularized model. This provides a possible explanation for the solid
object disentanglement often achieved by the VAE loss in Tab. 1. We also observe, however, that
using a > 0 leads to much lower values for Liyerace compared to the implicit regularization from the
VAE loss.

In Fig. 6, we compare slot-wise Jacobians for our model versus baseline models across both Sprites
(A) and CLEVRG6 (B). To create these plots, we normalize the partial derivatives across slots such
that they only take values between 0 and 1. The colors associated with partial derivative values
can be interpreted using the color bar at the bottom of (A). We only compute partial derivatives
on the foreground pixels and set the derivatives of background pixels w.r.t each slot to 0. We see
that when regularizing interactions via our model, slots rarely affect the same pixels (i.e., interact)
unnecessarily, while for unregularized models, multiple slots often affect the same pixels even when
no interactions should occur, e.g., for images in Sprites (A).

In Fig. 7, we compare slot-wise Jacobians on CLEVRTex as was done in Fig. 6 and also observe
here that the regularized Transformer achieves cleaner object decompositions compared to baseline
models.

In Fig. 8, we compare decoder attention maps w.r.t. each slot for our model versus baseline models
from § 6,which also use a Transformer decoder. These maps, which indicate the slots each pixel
attends to, are plotted for both Sprites (A) and CLEVR6 (B). We compute these values by taking
the mean attention weight over decoder layers. Similar to Fig. 6, we see that, in our model, pixels
rarely unnecessarily attend to multiple slots. On the other hand, for unregularized models, pixels
often attend to multiple slots in cases where no interactions between slots should occur.
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Figure 5: Analysis of Lj,teract When using a VAE loss. We plot Liperac for the first 400,000 training
iterations for a Transformer autoencoder trained without regularization (o =0, 5 = 0), with a VAE

loss which does not explicitly optimize Ljperact (v = 0, 8 = 0.05), and with the loss in Eq. (5.3)
which regularizes both losses («=0.05, 5=0.05).
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Figure 6: Normalized Slot-wise Jacobians. We plot the Jacobians w.r.t. each slot (columns) for
5 random test images (rows) from (A) Sprites and (B) CLEVR6 for our regularized Transformer
model and the baseline models used in our experiments in § 6.
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Figure 7: Normalized Slot-wise Jacobians (CLEVRTex). We plot the Jacobians w.r.t. each slot
(columns) for 5 random test images (rows) from CLEVRTex for our regularized Transformer model
and the baseline models used in our experiments in Appx. I.
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Figure 8: Slot-wise Transformer Decoder Attention Maps. We plot decoder attention maps w.r.t.
each slot (columns) for 5 random test images (rows) from (A) Sprites and (B) CLEVR®6 for our reg-
ularized Transformer decoder and the baseline models in § 6 which also use a Transformer decoder.
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