INTERACTION ASYMMETRY: A GENERAL PRINCIPLE FOR LEARNING COMPOSABLE ABSTRACTIONS Jack Brady*1,2 Julius von Kügelgen³ Sébastien Lachapelle⁴ Simon Buchholz^{1,2} Thomas Kipf^{†5} Wieland Brendel^{†1,2,6} Max Planck Institute for Intelligent Systems, Tübingen Tübingen AI Center ETH Zürich Samsung - SAIT AI Lab, Montreal Google DeepMind ELLIS Institute, Tübingen #### **ABSTRACT** Learning disentangled representations of concepts and re-composing them in unseen ways is crucial for generalizing to out-of-domain situations. However, the underlying properties of concepts that enable such disentanglement and compositional generalization remain poorly understood. In this work, we propose the principle of interaction asymmetry which states: "Parts of the same concept have more complex interactions than parts of different concepts". We formalize this via block diagonality conditions on the $(n+1)^{th}$ order derivatives of the generator mapping concepts to observed data, where different orders of "complexity" correspond to different n. Using this formalism, we prove that interaction asymmetry enables both disentanglement and compositional generalization. Our results unify recent theoretical results for learning concepts of objects, which we show are recovered as special cases with n=0 or 1. We provide results for up to n=2, thus extending these prior works to more flexible generator functions, and conjecture that the same proof strategies generalize to larger n. Practically, our theory suggests that, to disentangle concepts, an autoencoder should penalize its latent capacity and the interactions between concepts during decoding. We propose an implementation of these criteria using a flexible Transformer-based VAE, with a novel regularizer on the attention weights of the decoder. On synthetic image datasets consisting of objects, we provide evidence that this model can achieve comparable object disentanglement to existing models that use more explicit object-centric priors. #### 1 Introduction A core feature of human cognition is the ability to use abstract conceptual knowledge to generalize far beyond direct experience (Behrens et al., 2018; Mitchell, 2021; Murphy, 2004; Tenenbaum et al., 2011). For example, by applying abstract knowledge of the concept "chair", we can easily infer how to use a "chair on a beach", even if we have not yet observed this combination of concepts. This feat is non-trivial and requires solving two key problems. Firstly, one must acquire an abstract, internal model of different concepts in the world. This implies learning a *separate* internal representation of each concept from sensory observations. Secondly, these representations must remain valid when observations consist of novel compositions of concepts, e.g., "chair" and "beach". In machine learning, these two problems are commonly referred to as learning *disentangled representations* (Bengio et al., 2013; Higgins et al., 2018; Schölkopf et al., 2021) and *compositional generalization* (Fodor and Pylyshyn, 1988; Goyal and Bengio, 2022; Greff et al., 2020; Lake et al., 2017). Both problems are known to be challenging due to the issue of *non-identifiability* (Hyvärinen et al., 2023). Namely, many models can explain the same data equally well, but only some will learn representations of concepts which are disentangled and generalize compositionally. To guarantee *identifiability* with respect to (w.r.t.) these criteria, it is necessary to incorporate suitable inductive biases into a model (Hyvärinen and Pajunen, 1999; Lachapelle et al., 2023; Locatello et al., 2019). These inductive biases, in turn, must reflect some underlying properties of the concepts which give rise to observed data. This raises a fundamental question: What properties of concepts enable learning models which provably achieve disentanglement and compositional generalization? ^{*}Correspondence to: jack.brady@tue.mpg.de. †Joint senior author. Code available at: github.com/JackBrady/interaction-asymmetry Figure 1: **Illustration of Interaction Asymmetry.** (*Left*) Observations x result from a generator f applied to latent slots z_{B_k} that represent separate concepts. As indicated by the reflection of the cylinder upon the cube, slots can interact during generation. Our key assumption, interaction asymmetry, states that these interactions across slots must be less complex than interactions within the same slot. (*Right*) This is formalized by assuming block-diagonality *across* but not *within* slots for the $(n+1)^{th}$ order derivatives of the generator, i.e., $D^{n+1}f$. Many works aim to answer this question by studying properties enabling either disentanglement or compositional generalization *in isolation*. This is insufficient, however, as disentanglement alone does not imply compositional generalization (Montero et al., 2022a; 2021; Schott et al., 2022), while compositional generalization requires first disentangling the concepts to be composed. Only a few studies investigate properties enabling *both* disentanglement and compositional generalization (Brady et al., 2023; Lachapelle et al., 2023; Wiedemer et al., 2024a). Yet, the properties proposed in these works are rather restrictive and specific to objects in simple visual scenes. There is growing evidence, however, that the principles humans use to learn conceptual knowledge are not concept-specific, but shared across different concepts (objects, attributes, events, etc.) (Behrens et al., 2018; Constantinescu et al., 2016; Hawkins et al., 2018). This suggests there exist some *general* properties of concepts which enable both disentanglement and compositional generalization. In this work, we seek to formulate such a general property for disentangling and composing concepts. We begin by aiming to deduce, from first principles, properties which are fundamental to concepts (§ 3). From this, we arrive at the guiding principle of *interaction asymmetry* (Principle 3.1) stating: "Parts of the same concept have more complex interactions than parts of different concepts". As illustrated in Fig. 1 (left), we define concepts as distinct groups, or *slots*, of latent variables which generate the observed data (§ 2). Interaction asymmetry is then formalized as a block-diagonality condition *across* but *not within* slots of $D^{n+1} f$, the tensor of $(n+1)^{th}$ order partial derivatives of the generator function (Asm. 3.5), where n determines the complexity of interactions, see Fig. 1 (right). **Theory.** Using this formulation, we prove that interaction asymmetry dually enables *both* disentanglement (Thm. 4.3) *and* compositional generalization (Thm. 4.4). We also show that our formalism provides a unifying framework for prior results of Brady et al. (2023) and Lachapelle et al. (2023), by proving that the properties studied in these works for visual objects are special cases of our assumptions for n = 0 and 1, respectively. We provide results for up to n = 2, thereby extending these prior works to more general function classes, and conjecture that our results generalize to arbitrary n = 0. **Method.** Our theory suggests that to disentangle concepts, a model should (i) enforce invertibility, without using more latent dimensions than necessary, and (ii) penalize interactions across slots during decoding. To translate these insights into a practical method, we leverage a VAE loss (Kingma and Welling, 2014) for (i), and observe that the Transformer architecture (Vaswani et al., 2017) offers an approximate means to achieve (ii) since interactions are determined by the attention weights of the model. To this end, we introduce an inexpensive interaction regularizer for a cross-attention mechanism, which we incorporate, with the VAE loss, into a flexible Transformer-based model (§ 5). **Empirical Results.** We test this model's ability to disentangle concepts of visual objects on a Sprites dataset (Watters et al., 2019a) and on CLEVR6 (Johnson et al., 2017). We find that the model reliably learns disentangled representations of objects, improving performance over an unregularized Transformer (§ 6). Furthermore, we provide preliminary evidence that our regularized Transformer can achieve comparable performance to models with more explicit object-centric priors such as Slot Attention (Locatello et al., 2020b) and Spatial Broadcast Decoders (Watters et al., 2019b). **Notation.** We write scalars in lowercase (z), vectors in lowercase bold (\mathbf{Z}) , and matrices in capital bold (\mathbf{M}) . [K] stands for f1, 2, ..., Kg. D_i and $D_{i,j}^2$ stand for the first- and second-order partial derivatives with respect to (w.r.t.) z_i and (z_i, z_j) , respectively. If B [n] and $\mathbf{Z} \supseteq \mathbb{R}^n$, \mathbf{Z}_B denotes the subvector $(z_i)_{i \in B}$ indexed by B. A function is C^n if it is n-times continuously differentiable. #### 2 BACKGROUND We begin with formalizing the core ideas of concepts, disentanglement, and compositional generalization, mostly following the setup of Lachapelle et al. (2023). To begin, we assume that the observed data: $2 \times R^{d_x}$ results from applying a diffeomorphic generator: $Z ! \times to$ latent vectors: $2 \times R^{d_z}$, sampled from some distribution. Concepts underlying (objects, attributes, events, etc.) are then modelled as lisjoint groups or slots of latents z_{B_k} such that $z = (z_{B_1}; :::; z_{B_k})$, where $z_{B_k} = (z_{B_k})$. We assume that $z_{B_k} = z_{B_k} = z_{B_k}$ which gives rise to observed data $z_{B_k} = z_{B_k} = z_{B_k}$. This generative process can be summarized as: $$x = f(z);$$ $z p_z;$ $supp(p_z) = Z_{supp}$: (2.1) Next, consider a model : Z! R^{d_x} trained to be invertible from X_{supp} to Z_{supp}^{h} := f^{h} (X_{supp}) , whose inversel maps to a representation of 2 Z_{supp}^{h} Z. This model is said to learn a disentangle depresentation of 2 Z_{supp}^{h} if each model sloth captures exactly one
concept. De nition 2.1 (Disentanglement) Let f:Z!X be a diffeomorphism an $\mathbb{Z} Z$. A model f^{Λ} disentangles on Z w.r.t. f if there exist a permutation of [K] and slot-wise diffeomorphism $h = (h_1; \dots; h_K)$ with $h_k : R^{jB}_{(k)}^{j}! R^{jB_k j}$ and $jB_{(k)}^{j} = jB_k j$ such that for all $k \in \mathbb{Z}$: $$f^{\Lambda} h_1 z_{B_{(1)}} ; \dots ; h_K z_{B_{(K)}} = f(z) :$$ (2.2) In other words, a representation is disentangled if the model inverts the generator up to permutation and reparametrization of the slots. From positional generalization we would like this to hold not only on Z_{supp} but also for arbitrary combinations of the slots therein. Namely, also on the set $$Z_{CPE} := Z_1 \quad Z_2 \qquad \qquad Z_K \; ; \qquad \text{with} \qquad Z_k := f_{Z_{B_k}} \; j \; z \; 2 \; Z_{supp} g \qquad \qquad (2.3)$$ where Z_k denote the marginal supportspot and Z_{CPE} the Cartesian-product extension bachapelle et al., 2023) of Z_{supp} . In general Z_{supp} is a subset of Z_{CPE} . Thus, to generalize compositionally, a model must also achieve disentanglement "out-of-domain" on novel compositions of Z_{CPE} . De nition 2.2 (Compositional Generalization)Let f:Z!X be a diffeomorphism. A modél that disentangles on Z_{supp} w.r.t. f (Defn. 2.1)generalizes compositionally also disentangles on Z_{CPE} w.r.t. f. On the Necessity of Inductive Biases.It is well known that only a small subset of invertible models achieve disentanglement \mathbb{Z}_{Supp} (Hyvärinen and Pajunen, 1999; Locatello et al., 2019) or generalize compositionally \mathbb{Z}_{CPE} (Lachapelle et al., 2023). To provably achieve these goals (without explicit supervision), we thus need to further restrict the space of permissible models, i.e., place additional assumptions on the generative process in Eq. (2.1). Such assumptions then translate into inductive biases on a model. To this end, the core challenge is formulating assumptions on or f which faithfully re ect properties of concepts, while suf ciently restricting the problem. Assumptions onp_z. To guarantee disentanglement, several assumptions bave been proposed, such as conditional independence of latents given an auxiliary variable (Hen et al., 2019; Khemakhem et al., 2020); particular temporal (He and Hyvarinen, 2020; Hyarinen and Morioka, 2016; 2017; Klindt et al., 2021), spatial (He at al., 2021; 2024), or other latent structures (Kivva et al., 2022; Kori et al., 2024); multiple views (Ahuja et al., 2022; Brehmer et al., 2022; Gresele et al., 2020; Locatello et al., 2020a; vorülgelgen et al., 2021; Yao et al., 2024; Zimmermann et al., 2021); or interventional information (Buchholz et al., 2023; Lachapelle et al., 2022; 2024; Lippe et al., 2022; 2023; Varici et al., 2024; vonülgelgen et al., 2023). While suf cient for disentanglement, such assumptions do not guarantee compositional generalization. The latter requires that the behavior of the generator or case, where the values of each plotare seen only once supp (see Defn. 2.2). In the most extreme case, where the values of each plotare seen only once unifold embedded while Z_{CPE} is alwaysd_z-dimensional. This highlights that generalizing from supp to Z_{CPE} is only possible if the form of the generations restricted. Assumptions onf. Restrictions orf which enable compositional generalization have been proposed by Dong and Ma (2022); Lippl and Stachenfeld (2024); Wiedemer et al. (2024b). Yet, these results rely on quite limited function classes and do not address disentanglement, assuming it to be solved a priori. Conversely, several works explore restriction forsuch as orthogonality (Buchholz et al., 2022; Gresele et al., 2021; Horan et al., 2021) or sparsity (Leemann et al., 2023; Moran et al., 2022; Zheng and Zhang, 2023) which address disentanglement but not compositional generalization. More recently, Brady et al. (2023) and Lachapelle et al. (2023) proposed assumptions on which enable both disentanglement and compositional generalization (Wiedemer et al., 2024a). Yet, these assumptions are overly restrictive such that only model limited types of concepts, e.g., non-interacting objects, and not more general concepts. We discuss these two works further in § 4.3. #### 3 THE INTERACTION ASYMMETRY PRINCIPLE In this section, we attempt to formulate assumptions that enable disentanglement and compositional generalization, while capturing more general properties of concepts. To approach this, we take a step back and try to understand what are the de ning properties of concepts. Speci cally, we consider the question. Why are some structures in the world recognized as different concepts (e.g., apple vs. dog) and others as part of the same concept propose an answer to this for concepts grounded in sensory data, such as objects (e.g., "car"), events (e.g., "making coffee"), or attributes (e.g., "color"). Sensory-grounded concepts correspond to reoccurring visual or temporal patterns that follow an abstract template. They tend to be modular, such that independently changing one concept generally leaves the structure of other concepts intact (Greff et al., 2015, § 4.1.1; Peters et al., 2017). For example, a car can change position without affecting the structure of the street, buildings, or people around it. Thus, different concepts appear, in some senset total On the other hand, parts of the same concept do not seem to possess this modularity. Namely, arbitrarily changing one part of a concept without adjusting other parts is generally not possible without destroying its inherent structure. For example, it is not possible to change the position of the front half of a car, while maintaining something we would still consider a car, without also changing the back half's position. Thus, parts of the same concept seintettact This may then lead us to answer our initial question with: Parts of the same concept interact, while different concepts do not. However, this is an oversimpli ed view, as parts of different concepts can, in fact, interact. For example, in Fig. 1 we see the purple cylinder re ects upon and thus interacts with the golden cube. However, such interactions across concepts appear somehow simpler than interactions within a concept: whereas the latter can alter the concept's structure, the former generally will not. In other words, the complexity of interaction within and across concepts appears to be asymmetric. We formulate this as the following principle (see Appx. G.1 for related principles). Principle 3.1 (Interaction Asymmetry) Parts of the same concept have more complex interactions than parts of different concepts. To investigate the implications of Principle 3.1 for disentanglement and compositional generalization, we must rst give it a precise formalization. To this end, we need a mathematical de nition of the "complexity of interaction" between parts of concepts, i.e., groups of latents from the same or different slots. This can be formalized either through assumptions on the latent distribution on the generator. Since the latter are essential for compositional generalization, this is our focus. Let us start by imagining what it would mean if two groups of latent compore \mathtt{ntandz}_B interact with no complexity i.e., haveno interaction within f . A natural way to formalize this is that \mathtt{ntandz}_B and \mathtt{ntandz}_B affect distinct output components. Mathematically, this is captured as follows. De nition 3.2 (At most 0^{th} order/No interaction) Let f:Z!X be C^1 , and letA; B $[d_z]$ be non-empty z_A and z_B have no interaction within f if for all z 2 Z, and all i 2 A; i 2 B: $$D_i f(z) D_i f(z) = 0$$: (3.1) To de ne the next order of interaction complexity, we assume zh_a and z_B do interact i.e., they affect the same output such that $D_i f_1(z)$ and $D_j f_1(z)$ are non-zero for somie2 A, $j \in B$. This interaction, however, should have the lowest possible complexity. A natural way to capture this is to say that z_i can affect the same output as z_j but cannot affect way in which f_1 depends on f_2 . Since the latter is captured by $f_1(z)$, this amounts to a question about f_2 order derivative f_1 . We thus arrive at the following de nition for the next order of interaction complexity. De nition 3.3 (At most 1st order interaction) Let f:Z!X be C^2 , and letA; B $[d_z]$ be non-empty. z_A and z_B haveat most 1st order interaction within f if for all z 2 Z, and all z 3 Z. $$D_{i;j}^2 f(z) = 0$$: (3.2) Using the same line of reasoning, we can continue to de ne interactions at increasing orders of complexity. For example, foat most 2^{nd} order interaction z_i can affect the derivative $j_i f_i$, such that $D_{i;j}^2 f_i(z) \in 0$, but cannot affect the way in which $j_i f_i$ depends on any other, i.e., $D_{i;j;k}^3 f_i(z) = 0$. This leads to a general de nition of interactions waithmost $j_i f_i$ order complexity. De nition 3.4 (At most n^{th} order interaction) Let n=1 be an integer. Left :Z:X be C^{n+1} . Let $A;B=[d_z]$ be non-empty. z_A and z_B have at most n^{th} order interaction within f if for all z:Z:X, all i:Z:X, all i:Z:X, and all multi-indices i:Z:X with i:Z:X be i:Z:X. D $$f(z) = 0$$: (3.3) In other words z_A and z_B have at moshth order interaction withirf if all higher-thannth order cross partial derivatives w.r.t. at least one compone z_A of and of z_B are zero everywhere. Otherwise, if the statement in Defn. 3.4 does not hold for some z_A , i 2 A, and j 2 B, we say that z_A and z_B have z_A and z_B have z_A order interaction at z_B (and similarly for z_B). With these de nitions, we can now provide a precise formalization of Principle 3.1. Assumption 3.5(Interaction asymmetry (formal)) There exists 2 N_0 such that (i) any two distinct slots z_{B_i} and z_{B_j} have at mostnth order interaction within f; and (ii) for all z 2 Z, all slots z_{B_k} and
all non-empty A; B with $B_k = A[B, z_A]$ and z_B have We emphasize that Asm. 3.5 (ii) does not state **thlat**subsets of latents within a slot must have $(n+1)^{th}$ order interaction, but only that a slot cannot spelt into two parts with at most the order interaction, see Fig. 1 (right). We also note that condition (ii) must broken latents introduced by which resembles the notion of "uniform statistical dependence" among latents introduced by and Morioka (2017, Defn. 1). For further discussions of Asm. 3.5, see Appx. H.1. #### 4 THEORETICAL RESULTS We now explore the theoretical implications of Asm. 3.5 for disentanglement oppositional generalization to the provide our results for up to at most order interaction across slots. All results—i.e., at most (no interaction), at most and at most order interaction—use a uni ed proof strategy. Thus, we conjecture this strategy can also be used to obtain results for This, however, would require taking + 1) 4 derivatives of compositions of multivariate functions, which becomes very tedious agrows. General theorem of the provided results are thus left for future work. #### 4.1 DISENTANGLEMENT We start by proving disentanglement \mathbf{Z}_{gupp} for which we will need two additional assumptions. Basis-Invariant Interactions. First, one issue we must address is that our formalization of interaction asymmetry (Asm. 3.5) is notation invariant Speci cally, it is possible that all splits of a slot z_{B_k} have(n+1) th order interactions while fold $_k z_{B_k}$, with M $_k$ a slot-wise change of basis matrix, they have at most order interactions. Sindel $_k$ need not affect interactions across slots, interaction asymmetry may no longer hold in the new basis. This makes it ambiguous whether interaction asymmetry is truly satis ed, as_{B_k} and M $_k z_{B_k}$ contain the same information. To address this, we assume interaction asymmetry holds for all slot-wise basis changes unvalent generators De nition 4.1 (Equivalent Generators)A function $f:R^{d_z}!R^{d_x}$ is said to be equivalent to a generato f if for all $k \in [K]$ there exists an invertible matr $M_k \in R^{jB_k jj}$ such that 8z 2 $$R^{d_z}$$: $f(M_1z_{B_1};...;M_Kz_{B_K}) = f(z_{B_1};...;z_{B_K})$: (4.1) Suf cient Independence. We require one additional assumption forwhich we callsuf cient independenceThis assumption amounts to a linear independence condition on blocks of higher-order derivatives of . Its main purpose is to remove redundancy in the derivativescores slots, which can be interpreted as further constraining the interaction across slots during generation. In the case A multi-indexis an ordered tuple = ($_1; _2; ...; _d$) of non-negative integers $_i$ 2 N_0 , with operations j $j := _1 + _2 + ... + _d$, z $:= z_1^{-1} z_2^{-2} ... z_d^{-d}$, and D $:= \frac{@}{@} \frac{1}{z_1} \frac{@}{@} \frac{2}{z_2}^{-2} ... \frac{@}{@} \frac{d}{z_1^{-d}}$, see Appx. B for details. of n = 0 (i.e., no interaction across slots), sufficient independence reduces to linear independence between slot-wise Jacobiansfo (Defn. A.8). This is satis ed automatically since a diffeomorphism. Whem > 0, we require an analogous linear independence condition on higher order derivatives off. Below, we present this for the case 2, while for n = 1, it is presented in Defn. A.9. De nition 4.2 (Suf cient Independence of Order)). A C³ function f: R^{d_z}! R^{d_x} with at most 2nd order interactions across slots is said to have eciently independent erivatives if 8z 2 R^{dz}: With Defns. 4.1 and 4.2, we can now state our theoretical results; see Appx. A for complete proofs. Theorem 4.3 (Disentanglement or supply). Let n 2 f 0; 1; 2g. Let f : Z ! X be a Cⁿ⁺¹ diffeomorphism satisfying interaction asymmetry (Asm. 3.5) for all equivalent generators (Defn. 4.1) and sufficient independence (Appx. A.2). Letup be regular closed (Defn. A.3), path-connected (Defn. A.14) and aligned-connected (Defn. A.16). A model ! Rdx disentangles on Z_{supp} w.r.t. f (Defn. 2.1) if it is(i) a Cⁿ⁺¹ diffeomorphism between and X_{supp} with (ii) at most th order interactions across slots (Defn. 3.4) Zapp Intuition. Assume for a contradiction that := f^{1} f entangles ground-truth sloz_{B_k}, i.e., $D_{B_k}h(z)$ has multiple non-zero blocks. Becauseandf are invertible, h must encode all Δt_{B_k} in $\hat{z} := h(z)$. Further, because satis es interaction asymmetry_{Bk} cannot be split into two parts with less thar(n+1) th order interaction. Taken together, this implies that interaction then the start in there exist parts_A and z_B of z_{B_k} , with $(n+1)^{th}$ order interaction, encoded in different model slots. Since the moder is constrained to have at most order interaction across lots, it cannot capture this interaction. Thus, the only way thatcan satisfy (i) and (ii) without achieving disentanglement is if reparametrizing via h removed the interaction between andz_B. This situation is prevented by assuming suf cient independence and that Asm. 3.5 holds for all equivalent generators. Conditions on Z_{supp}. The regular closed condition on Thus, 4.3 ensures that equality between two functions od suppimplies equality of their derivatives, while the path-connectedness condition prevents the one-to-one correspondence between the stotsmooth those of from changing across different (Lachapelle et al., 2023). The aligned-connectedness condition is novel and allows one to take integrals to go frotocal to global disentanglement (see Appx. A.3 for more details). #### 4.2 COMPOSITIONAL GENERALIZATION We now show how Asm. 3.5 also enables learning a model that generalizes compositionally (Defn. 2.2), i.e., that equality off and f^{Λ} h on Z_{supp} also implies their equality of \mathbb{Z}_{CPE} . As discussed in § 2, such generalization is non-trivial and requires speci c restrictions on a function class. A key restriction imposed by interaction asymmetry is that interactions across slots are limited to at mostnth order. In Thm. 4.3, this prevents h from modelling interactions between parts of the same ground-truth slot in different model slots. We now aim to show that limiting the interactions across slots serves the dual role of malkingndf h "predictable", such that their behavior on Z_{CPE} can be determined from \overline{Z}_{supp} . To do this, we will require a characterization of the form of functions with at most the order interactions across slots, which we prove in Thm. C.2 to be: $f(z) = \bigcap_{k=1}^{K} f^k(z_{B_k}) + \bigcap_{j=1}^{K} f^j(z_{B_k}) = f(z)$ $$f(z) = \bigcap_{k=1}^{K} f^{k}(z_{B_{k}}) + \bigcap_{i \in [n]} c z :$$ (4.2) wherec 2 R^d_x. In the rst sum, slots are processed paratelyby functionsf k, while in the second, they can interact more explicitly via polynomial functions of components from different slots, with degree determined by the order of interaction (Vith this, we can now state our result. Theorem 4.4 (Compositional Generalization)Let n 2 f 0; 1; 2g. Let Z_{supp} be regular closed (Defn. A.3). Let : Z ! X and $f^{\Lambda} : Z ! R^{d_{\chi}}$ be C^3 diffeomorphisms with at most horder interactions across slots od. If f disentangles on Z_{supp} w.r.t. f (Defn. 2.1), then it generalizes compositionally (Defn. 2.2). Intuition. Consider the red dotted line in Fig. 2 (left) corresponding to z 2 R² j z₁ = z₁g. To generalize compositionally, the behavior of the partial derivative $\frac{@}{@}\frac{1}{4}(z₁;z₂)$ on this line must be predictable from the behavior fofon Z_{supp} and similarly forf h. Because and, as we show, f h have at most order interactions across slots or R², the form of this derivative is constrained to be a xed-degree polynomial, Figure 2: See intuition for Theorem 4.4. see Eq. (4.2) and Fig. 2 (right). Thus, its global behavior on the dotted IRe in an be determined from its derivative locally in a region $\operatorname{id}_{\operatorname{supp}}$. Applying this reasoning to all such line segments intersecting $\operatorname{Z}_{\operatorname{supp}}$ we can show that the behavior for $\operatorname{and}_{\operatorname{CPE}}$ can be determined from $\operatorname{Z}_{\operatorname{Supp}}$. #### 4.3 UNIFYING AND EXTENDING PRIOR RESULTS We now show that our theory also recovers the results of Brady et al. (2023) and Lachapelle et al. (2023) as special cases for = 0 and = 1, and extends them to more exible generative processes. At most 0th Order Interaction. Brady et al. (2023) proposed two properties fon which enable disentanglement and compositional generalization (Wiedemer et al., 2024th) ositionality (Defn. E.1) andreducibility (Defn. E.2). Compositionality states that different slots affect distinct output components such that (z) has a block-like structure. This is equivalent thaving at most 0th order interaction across slots (Defn. 3.2). Irreducibility is a rank condition of (z) which Brady et al. (2023) interpreted as parts of the same object sharing information. In Thm. E.3, we show that irreducibility is equivalent to having ft order interaction within slots for all equivalent generators. Thus, the assumptions in Brady et al. (2023) are equivalent to interaction asymmetry for all equivalent generators when= 0. Further, we recover their disentanglement result using a novel proof strategy, uni ed with proofs for at most 2nd order interaction across slots (Thm. A.20). At most 1st Order Interaction. Lachapelle et al. (2023) also proposed two assumptions on for disentanglement and compositional generalization ditivity (Defn. E.4) and sufficient nonlinearity (Defn. E.5). Additivity is equivalent to having a block-diagonal Hessian for all 1 2 [d_x] (Lachapelle et al., 2023). This is the same assaving at most order interaction across slots (Defn. 3.4). Sufficient nonlinearity is a linear independence condition on columnism derivatives of . In Thm. E.6, we show that sufficient nonlinearity implies that is essufficient independence for = 1 and has 2^d order
interaction within slots for all equivalent generators. Further, we conjecture that the reverse implication does not hold. Thus, the assumptions of Lachapelle et al. (2023) imply, and are conjectured to be stronger than, our assumptions when We also recover their same disentanglement result using a uni ed proof strategy (Thm. A.22). Allowing More Complex Interactions. Our theory not only uni es but also extends these prior results to more general function classes. This is clear from considering the form of functions with at mostnth order interactions across slots in Eq. (4.2). For at robs(Brady et al., 2023) of order interactions (Lachapelle et al., 2023), the sum of polynomials on the RHS of (4.2) vanishes. Consequently, for reduces to an additive function. Such generators can only model concepts with trivial interactions such as non-occluding objects. In contrast, we are able to go beyond additive interactions via the polynomial terms in (4.2). This formally corroborates the "generality" of interaction asymmetry, in that it enables more exible generative processes where concepts can explicitly interact. #### 5 Method: Attention-Regularized Transformer-VAE We now explore how our theoretical results in § 4 can inform the design of a practical estimation method. Our theory puts forth two key properties that a model should satisfy: (i) invertibility and (ii) limited interactions across slots of at most order. To achieve disentanglement to and (ii) must hold only "in-domain" or to achieve disentanglement to achieve disentanglement to and (ii) must hold only "in-domain" or to achieve disentanglement to achieve disentanglement to and (ii) and (ii) and (iii) and to achieve disentanglement disentanglemen On Scalability. Approaches that enforce (i) and (exactlywill generally only be computationally tractable in low-dimensional settings. Such computational issues are typical when translating a disentanglement result into an empirical method, often resulting in methods which directly adhere to theory but cannot scale beyond toy data (e.g., Brady et al., 2023; Gresele et al., 2021). Our core motivation, however, is learning representations of concepts under high gdimensional bensory data, such as images. Thus, to formulate a method which scales to such settings, we do not restrict ourselves to approaches which exactly enforce (i) and (ii) and also exampreximate approaches. - (i) Invertibility. Our theory requires invertibility between R^{d_x} and R^{d_x} and R^{d_z} . For most settings of interest, the observed dimension R^{d_x} are invertible by construction such as normalizing ows (Papamakarios et al., 2021). An alternative is to usauatoencode in which f^{^1} and f^{^a}are parameterized separately by emcoder : Rdx ! Rdx and adecoder Rdx ! Rdx , which are trained to invert each other (at supp and X supp) by minimizing a reconstruction loss rec := Ekx $f'(g(x))k^2$. Minimizing L_{rec}alone, however, does not suf ce unless the inferred latent dimedsion equals the ground-trutth. Yet, in practiced, is unknown. Moreover, choosing $> d_7$ is important for scalability (Sajjadi et al., 2022a). A viable alternative is thus to employ a soft constraint where $d_z > d_z$, but the model is encouraged to encodesing minimal latent dimensions. To achieve this, we leverage the well known VAE loss (Kingma and Welling, 2014), which coupleswith a KL-digergence loss obstruction a factorized posteriq($\rlap/$ z)x) and prior distribution ($\rlap/$ z), i.e., $_{i2[d_*]} D_{KL} (q(2;jx)kp(2;))$. This loss encourages eachto be insensitive to changes xsuch that unnecessary dimensions should contain no information at Buttinek et al., 2019). - (ii) At Most nth Order Interactions. One approach to enforce at most order interactions across slots would be to parameterize the decorder match the form of such functions (see Thm. C.2) for some xedn. However, this can result in an overly restrictive inductive bias and limit scalability. Moreover, n is generally unknown. Thus, a more promising approach is dularize interactions to beminimal. Doing this naively though using gradient descent would require computing gradients of high-order derivatives, which is intractable beyond toy data. This leads to the question: Is there a scalable architecture which permits ef cient regularization of the interactions across slots? Transformers for Interaction Regularization. We make the observation that the ansformer architecture (Vaswani et al., 2017) provides an ef cient means to approximately regularize interactions. In a Transformer, slots are only permitted to interact viatteention mechanismWe will focus on across-attentionmechanism, which maps a latent vector output (e.g., a pixel) via: $$K = W^{K} [\rlap/\!\!\! Z_{B_{1}} \qquad \rlap/\!\!\! Z_{B_{K}}]; \qquad V = W^{V} [\rlap/\!\!\! Z_{B_{1}} \qquad \rlap/\!\!\! Z_{B_{K}}]; \quad Q = W^{Q} [o_{1} \quad o_{d_{x}}]; \quad (5.1)$$ $$K = W^{K} [\rlap{/}{z}_{B_{1}} \quad \rlap{/}{z}_{B_{K}}]; \qquad V = W^{V} [\rlap{/}{z}_{B_{1}} \quad \rlap{/}{z}_{B_{K}}]; \qquad Q = W^{Q} [o_{1} \quad o_{d_{x}}]; \qquad (5.1)$$ $$A_{I;k} = \frac{\exp Q_{:;I}^{>} K_{::k}}{i_{2}[K] \exp Q_{:;I}^{>} K_{::i}}; \qquad x_{I} = A_{I;:}V^{>}; \qquad x_{I} = (x_{I}): \qquad (5.2)$$ In Eq. (5.1), all slots are assumed to have equal size, and keyand value v:k vectors are computed for each slott 2 [K]. Query vectors are computed for output dimensilo2s[dx] (e.g., pixel coordinates) and eachs assigned a xed vector. In Eq. (5.2), queries and keys are used to compute attention weight A | k . These weights determine the slots pik that tends" to when generating pixel tokenx₁, which is mapped to a pixel by nonlinear function; see Appx. F for further details. Within cross-attention, interactions across slots occur if the query vector for alphatelnds to multiple slots, i.e., ifA :k is non-zero for more than one Conversely, ifA :k is non-zero for only onek, then, intuitively, no interactions should occur. This intuition can be corroborated formally by computing the Jacobian of cross-attention w.r.t. each slot (see Appx. F.1). Thus, an approximate means to minimize interactions across slots is to regulatizewards having only one non-zero entry for each rowA 1::. To this end, we propose to minimize the sum of all pairwise products A Lij A Lik, wherej & k (see Fig. 4). This quantity is non-negative and will only be zero when each row of A has exactly one non-zero entry. This resembles: threpositional contrast f Brady et al. (2023), but computed oA, which can be ef ciently optimized, as opposed to the Jacobiat of of which is intractable to optimize. We refer to this regularize as see Eq. (F.9). Model. Combining these different objectives leads us to the following weighted three-part-loss: $$L_{disen}(f^{\wedge}; \mathfrak{g}; x) = L_{rec} + L_{interact} + L_{KL}; \tag{5.3}$$ Figure 3:(A) Sprites Normalized slot-wise Jacobians for an unregularized (); = 0) and a regularized (> 0; > 0) Transformer and a Spatial Broadcast Decoder (SBD). The unregularized model encodes objects across multiple slots, while the regularized model matches the disentanglement of the \$\mathbb{B}\mathbb{B}\mathbb{D}\mathbb{E}\mathbb{R}\mathbb{G}\mathbb{E}\mathbb{N}\mathbb{G}\mathbb{O}\mathbb{E}\mathbb{N}\mathbb{G}\mathbb{O}\mathbb{E}\mathbb{N}\mathbb{G}\mathbb{O}\mathbb{E}\mathbb{N}\mathbb{G}\mathbb{O}\mathbb{E}\mathbb{N}\mathbb{G}\mathbb{O}\mathbb We apply this loss to a exible Transformer-based autoencoder, similar to the models of Jabri et al. (2023); Jaegle et al. (2022); Sajjadi et al. (2022b). For the encoder rst map datax to features using the CNN of Locatello et al. (2020b). These features are processed by a Transformer, which has both self- and cross-attention at every layer, yielding a representation decoder then maps to an output using a cross-attention Transformer regularized witheract see Appx. J for details. Relationship to Models In Object-Centric Learning. Existing models for learning disentangled representations of concepts, particularly for disentangling objects without supervision, typically rely on architectural priors rather than regularization (Greff et al., 2019; Locatello et al., 2020b; Seitzer et al., 2023; Singh et al., 2022a). While such priors promote disentanglement, they are often too restrictive. For example, Spatial Broadcast Decoders (Watters et al., 2019b) decode slots separately and only allow for weak interaction through a softmax function, which prevents modelling real-world
data where objects exhibit more complex interactions (Singh et al., 2022a). While some works have shown success in disentangling objects using more powerful Transformer decoders (Sajjadi et al., 2022a; Singh et al., 2022a;b), they rely on encoders that use Slot Attention (Locatello et al., 2020b) as an architectural component, which differs from current large-scale models, typically based on Transformers (Anil et al., 2023). In contrast, we explore the more exible approach of starting with a very general Transformer-based model and regularizing it towards a more constrained model. #### 6 EXPERIMENTS We now apply our attention-regularized Transformer-VAE (§ 5) for learning representations of concepts. Since this model is designed to enforce the criteria outlined in Thm. 4.3 for disentanglement on Z_{supp} we focus on evaluating disentanglement, as opposed to compositional generalization. To this end, we focus on disentangling objects in visual scenes, and leave an empirical study of a wider range of concepts (e.g., attributes, object-parts, events) for future work (see Appx. J for details). Data. We consider two multi-object datasets in our experiments. The rst, which we refer to as Sprites (Brady et al., 2023; Watters et al., 2019a; Wiedemer et al., 2024b), consist of images with 4 objects set against a black background. The second is the dataset (Johnson et al., 2017), consisting of images with2–6 objects. In Sprites, objects do not have re ections and rarely occlude such that slots have essentially have no interaction. In CLEVR6, however, objects can cast shadows and re ect upon each other (see Fig. 1 for an example), introducing more complex interactions. Metrics. A common metric for object disentanglement is the Adjusted-Rand Index (ARI; Hubert and Arabie, 1985). The ARI measures the similarity between the set of pixels encoded by a model slot, and the set of ground-truth pixels for a given object in a scene, yielding an optimal score if each slot corresponds to exactly one object. To assign a pixel to a unique model slot, prior works typically choose the slot with the largest attention score (from, e.g., Slot Attention) for that pixel (Seitzer et al., 2023). However, using attention scores can make model comparisons challenging and is also somewhat unprincipled (see Appx. J.2). We thus consider an alternative and compute the ARI using the Jacobian of a decoder (J-ARI). Speci cally, we assign a pixel he slot with the largest L_1 norm for the slot-wise Jacobia D_{B_k} $f_1^{\wedge}(2)$ (see Fig. 3 for a visualization of these Jacobians). While J-ARI indicates which slots are most responsible for encoding each object, it does not indicate if additional slots affect the same object, i.leD_{B_k} $\mathbf{f}'_1(\mathbf{z})\mathbf{k}_1 \in \mathbf{0}$ for more than onex. To measure Table 1:Empirical Results. We show the mean std. dev. for J-ARI and JIS (in %) over 3 seeds for different choices of encoders and decoders and weights of the loss terms in Eq. (5.3) on Sprites and CLEVR6. | Model | | | Sprites | | | | CLEVR6 | | | | |----------------|-------------------|-----------------------|---------|-------|------|-----|--------|-------|---------|-----| | Encoder | Decoder | Loss | J-Al | RI(") | JIS | (") | J-AR | l (") | JIS (") | | | Slot Attention | Spatial-Broadcast | = 0; = 0 | 89:3 | 1:5 | 91:4 | 0:8 | 97:0 | 0:2 | 95:3 | 0:7 | | Slot Attention | Transformer | = 0; = 0 | 90:1 | 1:4 | 73:6 | 1:5 | 95:5 | 1:0 | 63:1 | 1:0 | | Transformer | Transformer | = 0; = 0 | 80:5 | 4:1 | 57:0 | 8:0 | 92:7 | 3:3 | 54:8 | 3:5 | | Transformer | Transformer | = 0:05; = 0 | 82:8 | 3:6 | 73:8 | 4:0 | 79:2 | 12:8 | 51:6 | 5:9 | | Transformer | Transformer | = 0; = 0:05 | 926 | 2:0 | 92:8 | 0:9 | 96:6 | 0:3 | 80:3 | 0:4 | | Transformer | Transformer | = 0:05; = 0:05 (Ours) | 93:7 | 0:6 | 95:0 | 1:7 | 96:5 | 0:4 | 83:8 | 1:1 | this, we also introduce the Jacobian Interaction Score (JIS). JIS is computed by taking the maximum of $kD_{B_k}f_1^{\wedge}(z)k_1$ across slots after normalization, averaged over all pixels. If each pixel is affected by only one slot, JIS id. For datasets where objects essentially do not interact like Sprites, JIS should be close tol, whereas for CLEVR6, it should be as high as possible while maintaining invertibility. #### 6.1 RESULTS L_{disent} Enables Object Disentanglement.In Tab. 1, we compare the J-ARI and JIS of our regularized Transformer-based model (0; > 0) trained withL_{disent} (Eq. (5.3)) to the same model trained without regularization (=0; =0), i.e., with onlyL_{rec}. On Sprites, the regularized model achieves notably higher scores for both J-ARI and JIS. This is corroborated by visualizing the slotwise Jacobians in Fig. 3A, where we see the regularized model cleanly disentangles objects, whereas the unregularized model often encodes objects across multiple slots. Similarly, on CLEVR6, the regularized model achieves superior disentanglement, as indicated by the higher values for both metrics. Comparison to Existing Object-Centric Autoencoders. In Tab. 1, we also compare our model to existing models using encoders with Slot Attention and Spatial Broadcast Decoders (SBDs). On Sprites, our model achieves higher J-ARI and JIS than these models, despite using a weaker architectural prior. On CLEVR6, our model outperforms Slot Attention with a Transformer decoder in terms of J-ARI and JIS. Models using a SBD, however, achieve a higher and nearly perfect JIS, i.e., the learned slots essentially never affect the same pixel. In Fig 3B, we see this comes at the cost of SBDs failing to model re ections between objects, while our model captures this interaction. This highlights that regularizing a exible architecture with bisent can enable a better balance between restricting interactions and model expressivity. Ablation Over Losses. Lastly, in Tab. 1, we ablate the impact of the regularizers i_{Rent} Training without L_{KL} (>0; =0) can in some cases give improvements in J-ARI and JIS over an unregularized model (=0; =0). However, across datasets this loss yields worse disentanglement than L_{disent} (>0; >0). This highlights that penalizing latent capacity v_{ia_L} is important for object disentanglement. Training with $v_{interac}$ (=0; >0) generally yields a drop across both metrics compared to v_{isent} though on CLEVR6 this loss achieves a comparable J-ARI. We found that training with $v_{interac}$ (Fig. 5). More Complex Data. Tab. 2 in Appx. I presents additional results for the visually complex CLEVR-Tex dataset (Karazija et al., 2021). For these experiments, we follow Seitzer et al. (2023) and reconstruct image representations based on a pre-trained encoder rather than the original images. We not our model to achieve superior J-ARI compared to an unregularized Transformer and a Slot Attention baseline, but slot-wise MLP decoders yield higher JIS. For further details, see Appx. I. #### 7 CONCLUSION In this work, we proposed interaction asymmetry as a general principle for learning disentangled and composable representations. Formalizing this idea led to a constraint on the partial derivatives of the generator function, which uni es assumptions from prior efforts and extends their results to a more exible class of generators that allow for non-trivial interactions. These theoretical insights inspired the development of a exible estimation method based on the Transformer architecture with a novel cross-attention regularizer, which can be ef ciently implemented at scale, and which shows promising results on object-centric learning datasets. Future work should seek to further extend our theoretical results, address the empirical challenges for achieving compositional generalization, and test our method on more large-scale data involving not only objects but also other types of concepts. #### **ACKNOWLEDGEMENTS** JB would like to thank Nicod Zottino for providing the initial idea (expressed in Fig. 2) that compositional generalization could be extended to functions with at mbsorder interactions. The authors thank Luigi Gresele and the Robust Machine Learning Group for helpful discussions. This work was supported by the German Federal Ministry of Education and Research (BMBF): Tübingen Al Center, FKZ: 01IS18039A, 01IS18039B. WB acknowledges nancial support via an Emmy Noether Grant funded by the German Research Foundation (DFG) under grant no. BR 6382/1-1 and via the Open Philantropy Foundation funded by the Good Ventures Foundation. WB is a member of the Machine Learning Cluster of Excellence, EXC number 2064/1 – Project number 390727645. This work utilized compute resources at tibleirigen Machine Learning Cloud, DFG FKZ INST 37/1057-1 FUGG. Part of this work was done while JvK was af liated with the Max Planck Institute for Intelligent Systemsübingen. #### **AUTHOR CONTRIBUTIONS** JB initiated and led the project. JB wrote the manuscript in close collaboration with JvK, and with feedback from all authors. JB conceived of the framework of interaction asymmetry and then formalized it together with SL and JvK. JB proved the disentanglement results in Appx. A in collaboration with SL, who improved the clarity of several results and simplified some arguments. SL extended these results from local to global disentanglement in Appx. A.3. SB proved the characterization of functions with at most order interactions in Appx. C, based on an earlier weaker result for analytic functions by JvK. SB proved the compositional generalization results in Appx. D after discussions with JB. JB proved the results for unifying prior works in Appx. E. SB carried out the Jacobian computation in Appx. F.1. JB conceived of the regularizers and method in § 5 and implemented and executed all experiments in § 6 with advising from TK. WB created Fig. 1 and Fig. 3 with insight from JB and feedback from JvK. SL created Fig. 2 based on an outline provided by JB. #### REFERENCES - K. Ahuja, J. S. Hartford, and
Y. Bengio. Weakly supervised representation learning with sparse perturbations. In Advances in Neural Information Processing Systems 35, pages 15516–15528, 2022. [Cited on p. 3.] - K. Ahuja, D. Mahajan, Y. Wang, and Y. Bengio. Interventional causal representation learning. In International Conference on Machine Learningages 372–407. PMLR, 2023. [Cited on p. 45.] - A. A. Alemi, I. Fischer, J. V. Dillon, and K. Murphy. Deep variational information bottlenerkiv preprint arXiv:1612.0041,02016. [Cited on p. 44.] - R. Anil, S. Borgeaud, Y. Wu, J.-B. Alayrac, J. Yu, R. Soricut, J. Schalkwyk, A. M. Dai, A. Hauth, et al. Gemini: a family of highly capable multimodal models Xiv preprint arXiv:2312.1180,5 2023. [Cited on p. 9.] - J. L. Ba. Layer normalizatiorarXiv preprint arXiv:1607.0645,02016. [Cited on p. 42.] - D. Baldwin, A. Andersson, J. Saffran, and M. Meyer. Segmenting dynamic human action via statistical structure.Cognition 106(3):1382–1407, 2008. [Cited on p. 44.] - T. E. J. Behrens, T. H. Muller, J. C. R. Whittington, S. Mark, A. Baram, K. L. Stachenfeld, and Z. Kurth-Nelson. What is a cognitive map? organizing knowledge for exible beha**Meu**ron, 100:490–509, 2018. [Cited on p. 1, 2, and 45.] - Y. Bengio, A. Courville, and P. Vincent. Representation learning: A review and new perspectives. IEEE Transactions on Pattern Analysis and Machine Intellige65(8):1798–1828, 2013. [Cited on p. 1.] - O. Biza, S. Van Steenkiste, M. S. Sajjadi, G. F. Elsayed, A. Mahendran, and T. Kipf. Invariant slot attention: Object discovery with slot-centric reference framæxiv preprint arXiv:2302.0497,3 2023. [Cited on p. 49 and 50.] - J. Brady, R. S. Zimmermann, Y. Sharma, B. **Sklo**pf, J. von Kügelgen, and W. Brendel. Provably learning object-centric representations. International Conference on Machine Learningages 3038–3062. PMLR, 2023. [Cited on p. 2, 4, 7, 8, 9, 40, 43, 44, and 47.] - J. Brehmer, P. De Haan, P. Lippe, and T. Cohen. Weakly supervised causal representation learning. In Advances in Neural Information Processing Systemsume 35, pages 38319–38331, 2022. [Cited on p. 3.] - T. Brooks, A. Holynski, and A. A. Efros. Instructpix2pix: Learning to follow image editing instructions. InProceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition pages 18392–18402, 2023. [Cited on p. 45.] - S. Buchholz, M. Besserve, and B. Stokkopf. Function classes for identiable nonlinear independent component analysis. IAdvances in Neural Information Processing Systemologue 35, pages 16946–16961, 2022. [Cited on p. 3.] - S. Buchholz, G. Rajendran, E. Rosenfeld, B. Aragam, Bößkdpf, and P. Ravikumar. Learning linear causal representations from interventions under general nonlinear mixiAgvalnces in Neural Information Processing System 23. [Cited on p. 3.] - M. Caron, H. Touvron, I. Misra, H. égou, J. Mairal, P. Bojanowski, and A. Joulin. Emerging properties in self-supervised vision transformersPtaceedings of the IEEE/CVF international conference on computer visiopages 9650–9660, 2021. [Cited on p. 49.] - M. Chang, T. Grif ths, and S. Levine. Object representations as xed points: Training iterative re nement algorithms with implicit differentiationAdvances in Neural Information Processing Systems35:32694–32708, 2022. [Cited on p. 50.] - A. O. Constantinescu, J. X. O'Reilly, and T. E. Behrens. Organizing conceptual knowledge in humans with a gridlike cod&cience352(6292):1464–1468, 2016. [Cited on p. 2.] - A. Dittadi, S. S. Papa, M. De Vita, B. Sölkopf, O. Winther, and F. Locatello. Generalization and robustness implications in object-centric learningInternational Conference on Machine Learning pages 5221–5285. PMLR, 2022. [Cited on p. 47.] - K. Dong and T. Ma. First steps toward understanding the extrapolation of nonlinear models to unseen domains. In International Conference on Learning Representation 22. [Cited on p. 3.] - A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly, J. Uszkoreit, and N. Houlsby. An image is worth 16x16 words: Transformers for image recognition at scale.Inhernational Conference on Learning Representation, 2021. [Cited on p. 49.] - B. Esmaeili, H. Wu, S. Jain, A. Bozkurt, N. Siddharth, B. Paige, D. H. Brooks, J. G. Dy, and J.-W. van de Meent. Structured disentangled representational Conference on Arti cial Intelligence and Statistic 2018. [Cited on p. 45.] - J. A. Fodor and Z. W. Pylyshyn. Connectionism and cognitive architecture: A critical analysis. Cognition 28(1):3–71, 1988. [Cited on p. 1.] - S. Fortunato and D. Hric. Community detection in networks: A user gulitheysics reports659: 1–44, 2016. [Cited on p. 44.] - A. Gopalakrishnan, K. Irie, J. Schmidhuber, and S. van Steenkiste. Unsupervised learning of temporal abstractions with slot-based transformed computation 35(4):593–626, 2023. [Cited on p. 48.] - A. Goyal and Y. Bengio. Inductive biases for deep learning of higher-level cogn#Romceedings of the Royal Society, A478(2266):20210068, 2022. [Cited on p. 1.] - A. Goyal, A. Lamb, J. Hoffmann, S. Sodhani, S. Levine, Y. Bengio, and Bößkoþf. Recurrent independent mechanisms.Ihternational Conference on Learning Representational 21. [Cited on p. 45.] - K. Greff, R. K. Srivastava, and J. Schmidhuber. Binding via reconstruction clusterixity.preprint arXiv:1511.064182015. [Cited on p. 4 and 44.] - K. Greff, R. L. Kaufman, R. Kabra, N. Watters, C. Burgess, D. Zoran, L. Matthey, M. Botvinick, and A. Lerchner. Multi-object representation learning with iterative variational inference. In International Conference on Machine Learningages 2424–2433. PMLR, 2019. [Cited on p. 9.] - K. Greff, S. Van Steenkiste, and J. Schmidhuber. On the binding problem in arti cial neural networks. arXiv preprint arXiv:2012.0520,82020. [Cited on p. 1 and 44.] - L. Gresele, P. K. Rubenstein, A. Mehrjou, F. Locatello, and B.ößchpf. The incomplete rosetta stone problem: Identi ability results for multi-view nonlinear ICA. Uncertainty in Arti cial Intelligence pages 217–227. PMLR, 2020. [Cited on p. 3.] - L. Gresele, J. von Kigelgen, V. Stimper, B. Scittkopf, and M. Besserve. Independent mechanism analysis, a new concept? Andvances in Neural Information Processing Systemosume 34, pages 28233–28248, 2021. [Cited on p. 3 and 8.] - H. Hälvä and A. Hyvarinen. Hidden markov nonlinear ICA: Unsupervised learning from nonstationary time series. In Conference on Uncertainty in Arti cial Intelligence ages 939–948. PMLR, 2020. [Cited on p. 3.] - H. Hälvä, S. Le Corff, L. Leléricy, J. So, Y. Zhu, E. Gassiat, and A. Hyvarinen. Disentangling identi able features from noisy data with structured nonlinear ICAdvances in Neural Information Processing System34:1624–1633, 2021. [Cited on p. 3.] - H. Hälvä, J. So, R. E. Turner, and A. Häminen. Identi able feature learning for spatial data with nonlinear ICA. InInternational Conference on Arti cial Intelligence and Statistipages 3331–3339. PMLR, 2024. [Cited on p. 3.] - J. Hawkins, M. Lewis, M. Klukas, S. Purdy, and S. Ahmad. A framework for intelligence and cortical function based on grid cells in the neocortexontiers in Neural Circuits 12, 2018. [Cited on p. 2.] - I. Higgins, L. Matthey, A. Pal, C. Burgess, X. Glorot, M. Botvinick, S. Mohamed, and A. Lerchner. beta-VAE: Learning basic visual concepts with a constrained variational framework. In International Conference on Learning Representational 7. [Cited on p. 45.] - I. Higgins, D. Amos, D. Pfau, S. Racæme, L. Matthey, D. J. Rezende, and A. Lerchner. Towards a de nition of disentangled representationarXiv preprint arXiv:1812.0223,02018. [Cited on p. 1.] - S. Hochreiter and J. Schmidhuber. Feature extraction through locobbeleral Computation11 (3):679–714, 1999. [Cited on p. 44.] - D. Horan, E. Richardson, and Y. Weiss. When is unsupervised disentanglement possible? In Advances in Neural Information Processing Systems 34, 2021. [Cited on p. 3.] - L. J. Hubert and P. Arabie. Comparing partitiodournal of Classi cation 2:193–218, 1985. [Cited on p. 9.] - A. Hyvärinen and H. Morioka. Unsupervised feature extraction by time-contrastive learning and nonlinear ICA. InAdvances in Neural Information Processing Systemages 3765–3773, 2016. [Cited on p. 3.] - A. Hyvärinen and H. Morioka. Nonlinear ICA of temporally dependent stationary sources. In Arti cial Intelligence and Statisticspages 460–469. PMLR, 2017. [Cited on p. 3 and 5.] - A. Hyvärinen and P. Pajunen. Nonlinear independent component analysis: Existence and uniqueness results. Neural networks12(3):429–439, 1999. [Cited on p. 1 and 3.] - A. Hyvarinen and J. Perkio. Learning to segment any random vectdEBE International Joint Conference on Neural Network Proceedings 4167–4172. IEEE, 2006. [Cited on p. 44.] - A. Hyvärinen, H. Sasaki, and R. Turner. Nonlinear ICA using auxiliary variables and generalized contrastive learning. In the 22nd International Conference on Arti cial Intelligence and Statistics, pages 859–868. PMLR, 2019. [Cited on p. 3 and 21.] - A. Hyvärinen, I. Khemakhem, and H. Morioka. Nonlinear independent component analysis for principled disentanglement in unsupervised deep learmatterns 4(10), 2023. [Cited on p. 1.] - A. Jabri, D. J. Fleet, and T. Chen. Scalable adaptive computation for iterative generation national Conference on Machine Learningages 14569–14589. PMLR, 2023. [Cited on p. 9.] - A. Jaegle, S. Borgeaud, J.-B. Alayrac, C. Doersch, C. Ionescu, D. Ding, S. Koppula, D. Zoran, A. Brock, E. Shelhamer, et al. Perceiver IO: A general architecture for structured inputs & outputs. In International Conference on Learning Representation 2022. [Cited on p. 9 and 46.] - J. Jiang, F. Deng, G. Singh, and S. Ahn. Object-centric slot diffusion hirty-seventh Conference on Neural Information Processing System 2623. [Cited on p. 47.] - Y. Jiang, E. Liu, B. Eysenbach, J. Z. Kolter, and C. Finn. Learning options via compression. vances in Neural Information Processing Systems21184–21199, 2022. [Cited on p. 44.] - J.
Johnson, B. Hariharan, L. Van Der Maaten, L. Fei-Fei, C. Lawrence Zitnick, and R. Girshick. Clevr: A diagnostic dataset for compositional language and elementary visual reasoning. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognitions 2901–2910, 2017. [Cited on p. 2, 9, and 50.] - L. Karazija, I. Laina, and C. Rupprecht. ClevrTex: A Texture-Rich Benchmark for UnsupervisedMulti-Object Segmentation. Thirty- fth Conference on Neural Information Processing Systems Datasets and Benchmarks, T2924. [Cited on p. 10 and 49.] - I. Khemakhem, D. Kingma, R. Monti, and A. Härinen. Variational autoencoders and nonlinear ICA: A unifying framework. InInternational Conference on Arti cial Intelligence and Statistics pages 2207–2217. PMLR, 2020. [Cited on p. 3.] - D. P. Kingma and J. Ba. Adam: A method for stochastic optimization international Conference on Learning Representation 2015. [Cited on p. 49 and 50.] - D. P. Kingma and M. Welling. Auto-encoding variational bayes.Irlternational Conference on Learning Representation 2014. [Cited on p. 2 and 8.] - T. Kipf, Y. Li, H. Dai, V. Zambaldi, A. Sanchez-Gonzalez, E. Grefenstette, P. Kohli, and P. Battaglia. Compile: Compositional imitation learning and execution.Irlternational Conference on Machine Learningpages 3418–3428. PMLR, 2019. [Cited on p. 48.] - A. Kirillov, E. Mintun, N. Ravi, H. Mao, C. Rolland, L. Gustafson, T. Xiao, S. Whitehead, A. C. Berg, W.-Y. Lo, et al. Segment anything. Proceedings of the IEEE/CVF International Conference on Computer Visiopages 4015–4026, 2023. [Cited on p. 45.] - B. Kivva, G. Rajendran, P. Ravikumar, and B. Aragam. Identi ability of deep generative models without auxiliary information. Advances in Neural Information Processing Systems 15687–15701, 2022. [Cited on p. 3.] - D. A. Klindt, L. Schott, Y. Sharma, I. Ustyuzhaninov, W. Brendel, M. Bethge, and D. Paiton. Towards nonlinear disentanglement in natural data with temporal sparse codimeter imational Conference on Learning Representation 2012. [Cited on p. 3.] - A. Kori, F. Locatello, A. Santhirasekaram, F. Toni, B. Glocker, and F. D. S. Ribeiro. Identi able object-centric representation learning via probabilistic slot attention attention arXiv:2406.0714,12024. [Cited on p. 3 and 45.] - A. Kraskov, H. Sögbauer, R. G. Andrzejak, and P. Grassberger. Hierarchical clustering using mutual information. Europhysics Letters 0(2):278, 2005. [Cited on p. 44.] - S. Lachapelle, P. Rodriguez, Y. Sharma, K. E. Everett, R. Le Priol, A. Lacoste, and S. Lacoste-Julien. Disentanglement via mechanism sparsity regularization: A new principle for nonlinear ICA. In Conference on Causal Learning and Reasonipages 428–484. PMLR, 2022. [Cited on p. 3.] - S. Lachapelle, D. Mahajan, I. Mitliagkas, and S. Lacoste-Julien. Additive decoders for latent variables identi cation and cartesian-product extrapolation Advances in Neural Information Processing System solume 36, 2023. [Cited on p. 1, 2, 3, 4, 6, 7, 19, 21, 22, 23, 27, 35, 36, 39, 41, 42, 45, 46, and 48.] - S. Lachapelle, P. R. dipez, Y. Sharma, K. Everett, R. L. Priol, A. Lacoste, and S. Lacoste-Julien. Nonparametric partial disentanglement via mechanism sparsity: Sparse actions, interventions and sparse temporal dependenciesXiv preprint arXiv:2401.0489,02024. [Cited on p. 3.] - B. M. Lake, T. D. Ullman, J. B. Tenenbaum, and S. J. Gershman. Building machines that learn and think like people.Behavioral and brain science 40:e253, 2017. [Cited on p. 1.] - A. Lamb, D. He, A. Goyal, G. Ke, C.-F. Liao, M. Ravanelli, and Y. Bengio. Transformers with competitive ensembles of independent mechanisanxiv preprint arXiv:2103.0033,62021. [Cited on p. 45.] - Y. LeCun. A path towards autonomous machine intelligence version 0.9.2, 2022-06p27Review, pages 1–62, 2022. [Cited on p. 45.] - T. Leemann, M. Kirchhof, Y. Rong, E. Kasneci, and G. Kasneci. When are post-hoc conceptual explanations identiable? In Intelligence pages 1207–1218. PMLR, 2023. [Cited on p. 3.] - P. Lippe, S. Magliacane, S.ölwe, Y. M. Asano, T. Cohen, and S. Gavves. Citris: Causal identiability from temporal intervened sequences.International Conference on Machine Learning pages 13557–13603. PMLR, 2022. [Cited on p. 3.] - P. Lippe, S. Magliacane, S.ölwe, Y. M. Asano, T. Cohen, and E. Gavves. Causal representation learning for instantaneous and temporal effects in interactive systellnse Inational Conference on Learning Representation 2023. [Cited on p. 3.] - S. Lippl and K. Stachenfeld. When does compositional structure yield compositional generalization? a kernel theoryarXiv preprint arXiv:2405.1639,12024. [Cited on p. 3.] - F. Locatello, S. Bauer, M. Lucic, G. Raetsch, S. Gelly, B. Skoopf, and O. Bachem. Challenging common assumptions in the unsupervised learning of disentangled representational conference on Machine Learningages 4114–4124. PMLR, 2019. [Cited on p. 1 and 3.] - F. Locatello, B. Poole, G. Risch, B. Schlkopf, O. Bachem, and M. Tschannen. Weakly-supervised disentanglement without compromises. Inhernational Conference on Machine Learn, pages 6348–6359. PMLR, 2020a. [Cited on p. 3.] - F. Locatello, D. Weissenborn, T. Unterthiner, A. Mahendran, G. Heigold, J. Uszkoreit, A. Dosovitskiy, and T. Kipf. Object-centric learning with slot attention. Advances in Neural Information Processing Systemsolume 33, pages 11525–11538, 2020b. [Cited on p. 2, 9, 47, 50, and 51.] - L. Mahon, L. Shah, and T. Lukasiewicz. Correcting aws in common disentanglement metrics. arXiv preprint arXiv:2304.023352023. [Cited on p. 45.] - C. Meo, L. Mahon, A. Goyal, and J. Dauwelsnaspha\$TC-VAE: On the relationship between disentanglement and diversity. In the Twelfth International Conference on Learning Representations 2024. [Cited on p. 44.] - M. Mitchell. Abstraction and analogy-making in arti cial intelligence Annals of the New York Academy of Science \$505(1):79−101, 2021. [Cited on p. 1.] - M. Montero, J. Bowers, R. Ponte Costa, C. Ludwig, and G. Malhotra. Lost in latent space: Examining failures of disentangled models at combinatorial generalisatio Advances in Neural Information Processing Systems lume 35, pages 10136–10149, 2022a. [Cited on p. 2.] - M. L. Montero, C. J. Ludwig, R. P. Costa, G. Malhotra, and J. Bowers. The role of disentanglement in generalisation. International Conference on Learning Representation 2021. [Cited on p. 2 and 45.] - M. L. Montero, J. Bowers, R. P. Costa, C. J. Ludwig, and G. Malhotra. Lost in latent space: Examining failures of disentangled models at combinatorial generalisation. In A. H. Oh, A. Agarwal, D. Belgrave, and K. Cho, editors, dvances in Neural Information Processing System 2082b. [Cited on p. 45.] - G. E. Moran, D. Sridhar, Y. Wang, and D. Blei. Identi able deep generative models via sparse decoding. Transactions on Machine Learning Reseat 2022. [Cited on p. 3.] - J. Munkres. Analysis On Manifolds Basic Books, 1991. [Cited on p. 19.] - G. Murphy. The big book of concepts he MIT Press, 2004. [Cited on p. 1.] - G. Papamakarios, E. Nalisnick, D. J. Rezende, S. Mohamed, and B. Lakshminarayanan. Normalizing ows for probabilistic modeling and inferenceournal of Machine Learning Researce (57):1–64, 2021. [Cited on p. 8.] - J. Peters, D. Janzing, and B. Solkopf. Elements of causal inference: foundations and learning algorithms The MIT Press, 2017. [Cited on p. 4.] - A. Ramesh, M. Pavlov, G. Goh, S. Gray, C. Voss, A. Radford, M. Chen, and I. Sutskever. Zero-shot text-to-image generation. Imternational Conference on Machine Learningages 8821–8831. Pmlr, 2021. [Cited on p. 45.] - A. Ramesh, P. Dhariwal, A. Nichol, C. Chu, and M. Chen. Hierarchical text-conditional image generation with clip latentsarXiv preprint arXiv:2204.061251(2):3, 2022. [Cited on p. 45.] - N. Ravi, V. Gabeur, Y.-T. Hu, R. Hu, C. Ryali, T. Ma, H. Khedr, RäcRe, C. Rolland, L. Gustafson, et al. Sam 2: Segment anything in images and videoxiv preprint arXiv:2408.0071,42024. [Cited on p. 45.] - J. R. Reynolds, J. M. Zacks, and T. S. Braver. A computational model of event segmentation from perceptual predictionCognitive science31(4):613–643, 2007. [Cited on p. 44.] - M. Rolinek, D. Zietlow, and G. Martius. Variational autoencoders pursue pca directions (by accident). InProceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition pages 12406–12415, 2019. [Cited on p. 8.] - N. Ruiz, Y. Li, V. Jampani, Y. Pritch, M. Rubinstein, and K. Aberman. Dreambooth: Fine tuning text-to-image diffusion models for subject-driven generation Placeedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition 22500–22510, 2023. [Cited on p. 45.] - C. Saharia, W. Chan, S. Saxena, L. Li, J. Whang, E. L. Denton, K. Ghasemipour, R. Gontijo Lopes, B. Karagol Ayan, T. Salimans, et al. Photorealistic text-to-image diffusion models with deep language understanding. *N*advances in Neural Information Processing Systemosume 35, pages 36479–36494, 2022. [Cited on p. 45.] - M. S. Sajjadi, D. Duckworth, A. Mahendran, S. Van Steenkiste, F. Pavetic, M. Lucic, L. J. Guibas, K. Greff, and T. Kipf. Object scene representation transformetal vances in Neural Information Processing Systemsolume 35, pages 9512–9524, 2022a. [Cited on p. 8, 9, and 46.] - M. S. Sajjadi, H. Meyer, E. Pot, U. Bergmann, K. Greff, N. Radwan, S. Vora, Mcid, D. Duckworth, A. Dosovitskiy, et al. Scene representation transformer: Geometry-free novel view synthesis through set-latent scene representation Producedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognitionages 6229–6238, 2022b. [Cited on p. 9 and 46.] - A. C. Schapiro, T. T. Rogers, N. I. Cordova, N. B. Turk-Browne, and M. M. Botvinick. Neural representations of events arise from temporal community structure neuroscience 6(4): 486–492, 2013. [Cited on p. 44.] - J. Schmidhuber. Towards compositional learning in dynamic netwo Teschnical University of Munich (Technical Report FKI-129-90) 990. [Cited on p. 44.] - J. Schmidhuber. Learning factorial codes by
predictability minimiza Merural computation 4(6): 863–879, 1992. [Cited on p. 44.] - B. Schölkopf, F. Locatello, S. Bauer, N. R. Ke, N. Kalchbrenner, A. Goyal, and Y. Bengio. Toward causal representation learning ceedings of the IEE 09(5):612–634, 2021. [Cited on p. 1.] - L. Schott, J. von Kügelgen, F. Täuble, P. V. Gehler, C. Russell, M. Bethge, B. Sikbpf, F. Locatello, and W. Brendel. Visual representation learning does not generalize strongly within the same domain. Inherenational Conference on Learning Representation 2022. [Cited on p. 2 and 45.] - M. Seitzer, M. Horn, A. Zadaianchuk, D. Zietlow, T. Xiao, C.-J. Simon-Gabriel, T. He, Z. Zhang, B. Schölkopf, T. Brox, and F. Locatello. Bridging the gap to real-world object-centric learning. In International Conference on Learning Representation 2023. [Cited on p. 9, 10, 46, 47, 48, 49, and 51.] - G. Singh, F. Deng, and S. Ahn. Illiterate DALL-E learns to composenternational Conference on Learning Representation 2022a. [Cited on p. 9, 46, 47, and 50.] - G. Singh, Y.-F. Wu, and S. Ahn. Simple unsupervised object-centric learning for complex and naturalistic videos. InAdvances in Neural Information Processing Systemstume 35, pages 18181–18196, 2022b. [Cited on p. 9.] - C. Summer eld. Natural General Intelligence: How understanding the brain can help us build Al Oxford university press, 2022. [Cited on p. 45.] - J. B. Tenenbaum, C. Kemp, T. L. Grif ths, and N. D. Goodman. How to grow a mind: Statistics, structure, and abstractio&cience331(6022):1279–1285, 2011. [Cited on p. 1.] - N. Tishby, F. C. Pereira, and W. Bialek. The information bottleneck methackiv preprint physics/00040572000. [Cited on p. 44.] - E. C. Tolman. Cognitive maps in rats and mersychological review55 4:189–208, 1948. [Cited on p. 45.] - A. Vani, B. Nguyen, S. Lavoie, R. Krishna, and A. Courville. Sparo: Selective attention for robust and compositional transformer encodings for visioarxiv preprint arXiv:2404.157212024. [Cited on p. 45.] - B. Varici, E. Acartirk, K. Shanmugam, and A. Tajer. General identi ability and achievability for causal representation learning. International Conference on Arti cial Intelligence and Statistics, pages 2314–2322. PMLR, 2024. [Cited on p. 3.] - A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, . Kaiser, and I. Polosukhin. Attention is all you need. IAdvances in Neural Information Processing Systems ume 30, 2017. [Cited on p. 2, 8, and 42.] - J. von Kügelgen, Y. Sharma, L. Gresele, W. Brendel, B. Skoppf, M. Besserve, and F. Locatello. Self-supervised learning with data augmentations provably isolates content from styled- In vances in Neural Information Processing Systewolume 34, pages 16451–16467, 2021. [Cited on p. 3.] - J. von Kügelgen, M. Besserve, L. Wendong, L. Gresele, A. Kek. Bareinboim, D. M. Blei, and B. Schölkopf. Nonparametric identi ability of causal representations from unknown interventions. InAdvances in Neural Information Processing System 33. [Cited on p. 3.] - Y. Wang, L. Liu, and J. Dauwels. Slot-vae: Object-centric scene generation with slot attention. In International Conference on Machine Learningages 36020–36035. PMLR, 2023. [Cited on p. 45.] - N. Watters, L. Matthey, S. Borgeaud, R. Kabra, and A. Lerchner. Spriteworld: A exible, con gurable reinforcement learning environment, 2019a. [Cited on p. 2, 9, and 50.] - N. Watters, L. Matthey, C. P. Burgess, and A. Lerchner. Spatial broadcast decoder: A simple architecture for learning disentangled representations in VAETXiv preprint arXiv:1901.0701,7 2019b. [Cited on p. 2, 9, and 50.] - T. Wiedemer, J. Brady, A. Pan lov, A. Juhos, M. Bethge, and W. Brendel. Provable compositional generalization for object-centric learning. International Conference on Learning Representations, 2024a. [Cited on p. 2, 4, 45, and 49.] - T. Wiedemer, P. Mayilvahanan, M. Bethge, and W. Brendel. Compositional generalization from rst principles. InAdvances in Neural Information Processing Systemsume 36, 2024b. [Cited on p. 3, 7, and 9.] - D. Yao, D. Xu, S. Lachapelle, S. Magliacane, P. Taslakian, G. Martius, J. ügelgen, and F. Locatello. Multi-view causal representation learning with partial observability. International Conference on Learning Representation [22]. [Cited on p. 3.] - J. M. Zacks, C. A. Kurby, M. L. Eisenberg, and N. Haroutunian. Prediction error associated with the perceptual segmentation of naturalistic every distinct of Cognitive Neuroscience 3:4057–4066, 2011. [Cited on p. 44.] - Y. Zheng and K. Zhang. Generalizing nonlinear ICA beyond structural sparsityAdvances in Neural Information Processing Systemslume 36, pages 13326–13355, 2023. [Cited on p. 4.] - R. S. Zimmermann, Y. Sharma, S. Schneider, M. Bethge, and W. Brendel. Contrastive learning inverts the data generating process. International Conference on Machine Learning ages 12979–12990. PMLR, 2021. [Cited on p. 3.] ## **Appendices** ### Table of Contents | Α | Disentanglement Proofs A.1 Additional De nitions and Lemmas A.2 Suf cient Independence Assumptions A.3 From Local to Global Disentanglement A.4 Disentanglement (At Most Order/No Interaction) A.5 Disentanglement (At Most Order Interaction) A.6 Disentanglement (At Most Order Interaction) | | 19
20
21
23
26 | |---|--|----|----------------------------| | В | Multi-Index Notation | 34 | | | С | Characterization of Functions With At Most nth Order Interactions | 34 | | | D | Compositional Generalization Proofs | 37 | , | | Е | Unifying Assumptions from Prior Work E.1 At Most0 th Order Interaction Across Slots | | 40
41 | | F | Transformers for Interaction Regularization F.1 Jacobian of Cross-Attention Mechanism | | 43
43 | | G | Extended Related Work G.1 Theory | | 44
45 | | Н | Extended Discussion H.1 Theoretical Assumptions | | 46
46
46
48 | | I | Experiments on CLEVRTex I.1 Experimental Setup | | 49
49 | | J | Experimental Details J.1 Data, Model, and Training Details | | 50
51
51 | #### A DISENTANGLEMENT PROOFS #### A.1 ADDITIONAL DEFINITIONS AND LEMMAS De nition A.1 (C^k -diffeomorphism) Let A R^n and B R^m . A mapf : A! B is said to be a C^k -diffeomorphism if it is bijective C^k and has C^k inverse. RemarkA.2. The property of being differentiable is usually de ned only for functions with an open domain of \mathbb{R}^n . Note that, in the de nition above, both and B might not be open sets in their respective topologies. For an arbitrary domain \mathbb{R}^n , we say that a function is \mathbb{C}^k if it can be extended to \mathfrak{C}^k function de ned on an open set containing A. More precisely f: A ! B is \mathbb{C}^k if there exists a function $f: C^k : B$ is $f: C^k : B$ is $f: C^k : B$ in $f: C^k : B$ is $f: C^k : B$ in $f: C^k : B$ in $f: C^k : B$ is $f: C^k : B$ in De nition A.3 (Regular closed sets) A set Z_{supp} R^{d_z} is regular closed if $Z_{supp} = \overline{Z_{supp}}$ i.e. if it is equal to the closure of its interior (in the standard topology b). Lemma A.4 (Lachapelle et al. (2023))Let A; B \mathbb{R}^n and suppose there exists an homeomorphism f:A! B. If A is regular closed irRⁿ, we have tha $\overline{\mathbb{B}}$. The way we de net functions with arbitrary domain is such that a function can be differentiable without having a uniquely de ned derivative everywhere on its domain. This happens when the derivative of two distinct extensions differ. The following Lemma states that the derivative of a function is uniquely de ned on the closure of the interior of its domain. Lemma A.5 (Lachapelle et al. (2023))Let $\underline{A} = R^n$ and $\underline{f} : A ! = R^m$ be a C^k function. Then, its \underline{k} rst derivatives are uniquely de ned $\underline{o}\overline{\underline{A}}$ in the sense that they do not depend on the speci c choice of \underline{C}^k extension. Notation For a subset $[d_z]$ and a matrix 2 R^m , A_S will denote the sub-matrix consisting of the columns in indexed by i.e. $A_S = [A_{::i}]_{i_2S}$. Similarly, for a vector, z_S will denote the sub-vector of consisting of components indexed by i.e. $z_S := (z_i)_{i_2S}$. Lemma A.6. Let A 2 R^{m n} and let B be a partition of[n]. If $$rank(A) = X rank(A_S)$$ (A.1) Then8z 2 R^n s.t. Az = 0, $A_S z_S = 0$, for any S 2 B. Proof. Assume for a contradiction that there exist 2 \mathbb{R}^n , s.t. Az = 0, and there exist 2 B s.t. A \mathbb{S}_1 z \mathbb{S}_1 6 0. Now construct the matrix, denote A, S_1 consisting of all columns in except those indexed by S_1 , i.e. $$A S_1 := [A_{:;i}]_{i \ge S S \ge Bn S_1}$$ (A.2) By using (A.1) and the property that ra(B ; C) rank(B) + rank(C), we get $$rank(A) = xank(AS) + rank(AS1)$$ (A.3) $$rank(A_{S_1}) + rank(A_{S_1})$$ (A.4) $$rank(A)$$: (A.5) Consequently, we have that: $$rank(A) = rank(A_{S_1}) + rank(A_{S_1})$$ (A.6) This implies that the column spaces of both matrices denoted (range); range(A_{S1}) respectively, do not intersect, except at the zero vector. A simple example of such a situation is the trivial function f 0g ! f 0g which is differentiable at 0 but does not have a well de ned derivative becag(se) = x and h(x) = x are both differentiable extensions of f but have different derivatives at = 0. Now we know that at $$0 = Az \tag{A.7}$$ $$= A _{S_1} Z _{S_1} + A_{S_1} Z_{S_1}$$ (A.8) Consequently, $$A_{S_1} z_{S_1} = A_{S_1} z_{S_1} \tag{A.9}$$ and by our assumed contradiction we know that:at $$A_{S_1}Z_{S_1} \in 0$$ (A.10) This implies that the column spaces As f S1; A S1 must intersect at a point other than the zero vector, which is a contradiction. Lemma A.7. Let A 2 Rd d be an invertible matrix ant B1;:::; BK g be a partition of d]. Assume there arek₁; k₂; k 2
[K] such that: $$A_{B_k;B_{k_1}} \in 0 \in A_{B_k;B_{k_2}}$$ (A.11) Then there exists a subset [d] with cardinality jBkj that has the following properties: - 1. The sub-block Bk; S is invertible. - 2. S 6 B_{k0} , for any k^0 2 [K] Proof. We rst prove that there must exists an satisfying point 1. Since is invertible, each subset of rows is linearly independent and thus $(Ank_{::}) = jB_k j$. This implies that there exist a setS [d] with cardinalityjBkj such that8i 2 S;ABk;i are linearly independent, and thus form a basis ofR^{jB_kj}. If S 6 B_{k^0} for all k^0 2 [K], we are done. We consider the case where there exists such that B_{k^0} . We will show that we can construct a differentS from S which satis es both conditions. We know by (A.11) that there exist a second blocks k^0 such that for some $2 B_k$, $A_{B_k;j} \in 0$. Since $A_{B_k;i} g_{i2S}$ forms a basis on R^{jB_kj} , the vector $A_{B_k;j}$ can be represented uniquely as $A_{B_k;j} = a_i A_{B_k;j}$; (A.12) $$A_{B_k;j} = X_{a_i A_{B_k;i}};$$ (A.12) wherea; 2 R for all i. Because $A_{B_k;j} \in 0$, there exists 2 S such that $a_j \in 0$. Because this representation is unique, we know that is outside the span of $A_{B_k;j} = A_k = A_k$. This means that, by taking $S:=(S \, n \, f \, j \, g) \, [f \, j \, g$, we have that $A_{B_k;i} \, g_{i2S}$ is a basis for R^{jB_kj} or, in other words, $A_{B_k;S}$ is invertible. Also, S is not included in a single block sing B_k and j 2 B_k with k⁰ € k . #### A.2 SUFFICIENT INDEPENDENCE ASSUMPTIONS De nition A.8 (Suf cient Independence (Order)). Let $f: \mathbb{R}^{d_z} ! \mathbb{R}^{d_x}$ be a \mathbb{C}^1 function with \mathbb{C}^n order interactions between slots (Def. 3.2). The functions said to havesuf ciently independent derivatives if8z 2 Rdz: rank $$[D_i f(z)]_{i_{2B_k}} = X_{k_2[K]} = x_{k_2[K]} = x_{k_2[K]}$$ (A.13) De nition A.9 (Suf cient Independence (Norder)) Let f: Rdz ! Rdx be aC2 function with at most1storder interactions between slots (Def. 3.3). The function is said to have sufficiently independenderivatives if8z 2 Rdz: $$\begin{array}{lll} \text{rank} & D_{i}f\left(z\right)_{i2B_{k}} \ D_{i;i}^{2} \, {}_{0}f\left(z\right)_{(i;i} \, {}_{0}){}_{2B_{k}^{2}} \\ & & X \quad h \\ & = & \text{rank} \left[D_{i}f\left(z\right)\right]_{i2B_{k}} \ + \text{rank} \ D_{i;i}^{2} \, {}_{0}f\left(z\right)_{(i;i} \, {}_{0}){}_{2B_{k}^{2}} \end{array} \right] i$$ De nition 4.2 (Suf cient Independence 2^{nd} Order)). A C^3 function $f: R^{d_z} ! R^{d_x}$ with at most 2^{nd} order interactions across slots is said to have ciently independent erivatives if 8z 2 R^{d_z} : #### A.3 FROM LOCAL TO GLOBAL DISENTANGLEMENT This section takes care of technical subtleties when one has to go from local to global disentanglement. The disentanglement guarantee of this work is proven by rst showing that e. the Jacobian of $:= f^{-1} f^{\wedge}$, has a block-permutation structure everywhere, and from there showing that h can be written $ash(z) = (h_1(z_{B_{(1)}}); h_2(z_{B_{(2)}}); \dots; h_K(z_{B_{(K)}}))$ (see De ntion 2.1). Lachapelle et al. (2023) refers to the rst condition Dh as local disentanglement of the second condition or asglobal disentanglementhe latter of which corresponds to the de nition of disentanglement employed in the present work. The authors also show that going from local to global disentanglement requires special care when considering very general supportisks we do in this work, as opposed to the more common assumption that $z \in \mathbb{R}^{d_2}$ which makes this step more direct (e.g., see Harine et al. (2019)). This section reuses de nitions and lemmata taken from Lachapelle et al. (2023) and introduces a novel sufficient condition on the support of the latent factors, we namedigned-connectedness guarantee that the jump from local to global disentanglement can be made. De nition A.10 (Partition-respecting permutations) et $B := f B_1; B_2; \dots; B_K g$ be a partition of $f : \dots; dg$. A permutation over $f : \dots; dg$ respects if, for all B 2 B; (B) 2 B. De nition A.11 (B-block permutation matrices)A matrix A 2 R^{d d} is a B-block permutation matrix if it is invertible and can be written at = CP whereP is the matrix representing the B-respecting permutation (De nition A.10), i.e. P = e_i = e_(i), andC 2 R^{d d} is such that for all distinct blocksB; B = 2 B, C_{B:B} = 0. Proposition A.12. The inverse of &-block permutation matrix is also &-block permutation matrix Proof. First note that C must be invertible, otherwist is not. Also, C 1 must also be such that $(C ^1)_{B;B} \circ = 0$ for all distinct blocksB; B 0 2 B. This is because, without loss of generality, we can assume the blocks B fare contiguous which implies that is a block diagonal matrix so that C 1 is also block diagonal. Since preservesB, we have that P $^>$ C 1 P is also block diagonal since, for all distincB; B 0 2 B, (P $^>$ C 1 P)_{B;B} $^\circ$ = (C 1) (B); (B $^\circ$) = 0, where we used the fact that the blocks (B) and (B $^\circ$) are inB, because is B-preserving, and are distinct, because is a bijection. We can thus see that $$A^{1} = P^{c} C^{1}$$ $= P^{c} C^{1} P^{c}$ $= CP^{c}$ $= CP^{c}$ where $C := P \cdot C^{-1}P$ is block diagonal and $^{-1}$ is block-preserving. De nition A.13 (Local disentanglement; Lachapelle et al. (2023A))learned decodef $: R^{d_z} : R^{d_x}$ is said to be locally disentangled w.r.t. the ground-truth decodement h(z) = f(z) for all $z : 2 : Z_{supp}$ where the mapping is a diffeomorphism from Z_{supp} onto its image satisfying the following property: for all $z : Z_{supp} : Dh(z)$ is a block-permutation matrix respecting $E_z : E_z E_z$ Note that, in the above de nition, the permutation of the blocks might change from tonenother (see Example 5 in Lachapelle et al. (2023)). To prevent this possibility, we will assum assume path-connected De nition A.14 (Path-connected sets) a set Z_{supp} R^{d_z} is path-connected if for all pairs of points z^0 ; z^1 2 Z_{supp} there exists a continuous map: [0; 1]! Z_{supp} such that (0) = z^0 and (1) = z^1 . Such a map is called a path between and z^1 . The following Lemma from Lachapelle et al. (2023) can be used to show that **lwlinea** diffeomorphism and \mathbb{Z}_{supp} is path-connected, the block structure cannot change. This is due to the fact that Dh(z) is invertible everywhere and a continuous function of the Lemma without proof. Lemma A.15 (Lachapelle et al. (2023))Let C be a path-connected topological space and Met: C! R^{d-d} be a continuous function. Suppose that, for R^{d-d} C, M (c) is an invertible B-block permutation matrix (De nition A.11). Then, there exist B are specting permutation such that for all c 2 C and all distinct B; R^{d-d} B, M (c) R^{d-d} B = 0. It turns out that, in general, having that has a constant block-permutation structure across its support Z_{supp} is not enough to make the jump to global disentanglement. See Example 7 from Lachapelle et al. (2023). We now propose a novel condition on the suppoptand will show it is sufficient to guarantee global disentanglement in Lemma A.18. De nition A.16 (Aligned-connected sets)A set A \mathbb{R}^d is said to be aligned-connected v.r.t. a partition $f B_1; B_2; \ldots; B_K g$ if, for all k 2 [K] and all $a^0 2 A$, the set $a 2 A j a_{B_k} = a_{B_k}^0 g$ is path-connected. RemarkA.17 (Relation to path-connectedness) here exist sets that are path-connected but not aligned-connected and vice-versa. Example 7 from Lachapelle et al. (2023) presents a "U-shaped" support that is path-connected but not aligned-connected. Moreover, the set $A^{(1)}$ [$A^{(2)}$ where $A^{(1)}$:= fa 2 $A^{(1)}$ is a 1; $A^{(2)}$ is aligned-connected w.r.t. the partition ff 1g; f 2gg but not path-connected. We now show how aligned-connectedness combined with path-connectedness is enough to guarantee global disentanglement from local disentanglement. Lemma A.18 (Local to global disentanglement) Suppose is a diffeomorphism from \mathbb{Z}_{supp} \mathbb{R}^{d_z} to its image and suppose h(z) is a B-block permutation matrix for alz 2 \mathbb{Z}_{supp} (local disentanglement). \mathbb{Z}_{supp} is path-connected (Defn. A.14) and aligned-connected set (Defn. A.16), then $h(z) = (h_1(z_{B_{(1)}}); \ldots; h_1(z_{B_{(K)}}))$ for all $z \in \mathbb{Z}_{supp}$ where then h_k are diffeomorphisms (global disentanglement). Proof. Since h is a diffeomorphism Dh is continuous and Dh(z) is invertible for all z 2 Z supp. Since we also have th $\overline{z}t_{supp}$ is path-connected, we can apply Lemma A.15 to get that there exists a permutation : [K]! [K] such that, for all z 2 Z supp and all distinctl; k^0 2 [K], we have Dh(z)_{Bk;B(k0)} = 0. In other words, D_{B(k0)} h_{Bk}(z) = 0. We must now show that $t_{Bk}(z)$ depends solely o $t_{Bk}(z)$. Consider another point $t_{Bk}(z)$ 2 Z supp such that $t_{Bk}(z)$ = $t_{Bk}(z)$ we will now show that $t_{Bk}(z)$ = $t_{Bk}(z)$, i.e. changing $t_{Bk}(z)$ does not in uence $t_{Bk}(z)$. Because Z_{supp} is aligned-connected, there exists a continuous path[0; 1] ! Z _{supp} such that $(0) = z^0$, (1) = z and $_{B_{(k)}}(t) = z_{B_{(k)}} = z_{B_{(k)}}^0$ for all t 2 [0; 1]. By the fundamental This lemma also holds £ is connected. theorem of calculus, we have that $$\begin{array}{lll} h_{B_k}(z) & h_{B_k}(z^0) = & (h_{B_k} \quad)^0(t) dt \\ & Z^0_1 \\ & = & Dh_{B_k}(\ (t)) \quad ^0(t) dt \\ & Z^0_1 \\ & = & @D_{B_{(k)}} h_{B_k}(\ (t)) \quad ^0_{B_{(k)}}(t) + \displaystyle \frac{X}{k^0 \in k} D_{B_{(k^0)}} h_{B_k}(\ (t)) \quad ^0_{B_{(k^0)}}(t) A \ dt \\ & = & 0 \\ & Z_1 \\ & = & @D_{B_{(k)}} h_{B_k}(\ (t)) 0 + \displaystyle \frac{X}{k^0 \in k} 0 \quad ^0_{B_{(k^0)}}(t) A \ dt \\ & = & 0 \end{array}$$ where we used the fact that $_{(k)}(t)$ is a constant function $dfandD_{B_{(k^0)}}h_{B_k}(z)=0$ for distinct $k; k^0$. We conclude that, for all, we can write $h_{B_k}(z) = h_{B_k}(z_{B_{(k)}})$
, which is the desired result. Additionally, the functions $h_{B_k}(z_{B_{(k)}})$ are diffeomorphisms because their Jacobians must be invertible otherwise the Jacobian of (which is block diagonal) would not be invertible (which would violate the fact that it is a diffeomorphism). Contrasting with Lachapelle et al. (2023).Instead of assuming aligned-connectedness, Lachapelle et al. (2023) assumed that the block-speci c decoders, which would correspondit (the,) in (4.2), are injective which, when combined with path-connectedness, is also enough to go from local to global disentanglement in the context of additive decoders (1). Whether a similar strategy could be adapted for more general decoders with at midstrater interactions is left as future work. #### A.4 DISENTANGLEMENT (AT MOST 0TH ORDER/NO INTERACTION) Lemma A.19. Let Z_{supp} Z be a regular closed set (Defn. A.3). Let $Z: X \to C^1$ and $h: \hat{Z}_{supp}: Z_{supp}$ be a diffeomorphism. Let $: = f \to C^1$ h. If $: = f \to C^1$ has no interaction (De nition 3.4 with $: = f \to C^1$), then, for all $: = f \to C^1$ and $: = f \to C^1$ we have $$D_i f'(z)$$ $D_i \circ f'(z) = W^f (h(z)) m^h (z; (j; j^0));$ (A.14) where $$\begin{split} W^{\,f}\,(z) &:= [\,W_{\,k}^{\,f}\,(z)]_{k2[K\,]} \\ W^{\,f}_{\,k}\,(z) &:= [\,D_{i_{\,1}}f\,(z) \quad D_{i_{\,2}}f\,(z)]_{(i_{\,1};i_{\,2})2\,B_{\,k}^{\,2}} \\ m^{\,h}\,(z;(j;j^{\,0})) &:= [\,m_{\,k}^{\,h}\,(z;(j;j^{\,0}))]_{k2[K\,]} \\ m^{\,h}_{\,k}\,(z;(j;j^{\,0})) &:= [\,D_{j\,^{\,0}}h_{i_{\,1}}(z)D_{j}\,h_{i_{\,2}}(z)]_{(i_{\,1};i_{\,2})2\,B_{\,k}^{\,2}} \,. \end{split}$$ Proof. We have that $$f'(z) = f h(z); 8z 2 Z_{supp}^{*}$$: Following the same line of argument as Lachapelle et al. ($\underline{2023}$), we can use Lemma A.5 to say that the function f'(z) = f - h(z) has well-de ned derivatives of \overline{Z}_{supp} . Since f'(z) = f - h(z) has well-de ned derivatives that f'(z) = f - h(z) has well-de ned derivatives for all f'(z) = f - h(z) has well-derivatives for all f'(z) = f - h(z) has well-derivatives for all f'(z) = f - h(z) has well-derivatives for all f'(z) = f - h(z) has well-derivatives for all f'(z) = f - h(z) has well-derivatives for all f'(z) = f - h(z) has wel By taking the derivative w.r.tz_i on both sides of (z) = f h(z), we get $$D_{j} f'(z) = X X D_{i} f(h(z)) D_{j} h_{i}(z)$$ (A.15) where the last equality used the fact that as no interaction (De nition 3.2). We conclude by noticing $$\begin{split} D_{j}f^{\prime}(z)D_{j}\circ f^{\prime}(z) &= \underset{k_{1}2[K](i_{1};i_{2})2B_{k_{1}}^{2}}{X} D_{i_{1}}f(h(z))D_{i_{2}}f(h(z))D_{j}h_{i_{1}}(z)D_{j}\circ h_{i_{2}}(z) \\ &= W^{f}(h(z))m^{h}(z;(j;j^{0})): \end{split}$$ Theorem A.20. Let f:Z!X be a C^1 diffeomorphism satisfying interaction asymmetry (Asm. 3.5) for all equivalent generators (Defn. 4.1) for = 0. Let Z_{supp} Z be regular closed (Defn. A.3), path-connected (Defn. A.14) and aligned-connected (Defn. A.16). A model $f^*:Z!$ R^{d_x} disentangles on Z_{supp} w.r.t. f (Defn. 2.1) if it is () a C^1 diffeomorphism between Z_{supp}^* and Z_{supp}^* with (ii) at most C^* order interactions across slots (Defn. 3.4) Z_{supp}^* Proof. As mentioned in Section A.3, the proofs will proceed in two steps: First, we show local disentanglement (De nition A.13) and then we show (global) disentanglement via Lemma A.18. We rst show local disentanglement. Remark: We will use the following notation below: $$D_{ij}^{1} f(z) := D_{j} f(z) \quad D_{i} f(z) 2 R^{m}$$ (A.16) We rst de ne the functionh: $\hat{Z}_{supp}!Z_{supp}$ relating the latent spaces of these functions \hat{Z}_{supp} . $$h := f^{-1} f^{\Lambda}$$ (A.17) The function f can then be written in terms of and f and on f supp $$f^{\Lambda} = f \quad h \tag{A.18}$$ Because ; f^{Λ} are both C^1 diffeomorphism betwee \mathbb{Z}_{supp} ; X_{supp} and Z^{Λ}_{supp} ; X_{supp} respectively, we have that f^{Λ} is a f^{Λ} diffeomorphism. By Lemma A.19, for alz 2 \mathbb{Z}_{supp}^{s} j; j 0 2 [d_z], we have: $$D_{j} f'(z) \quad D_{j} \circ f'(z) = W^{f} (h(z)) m^{h} (z; (j; j^{0}))$$ (A.19) wherew andm h are de ned in Lemma A.19. De ne the sets $$D := \int_{k_2[K]}^{[K]} B_k^2; \qquad D^c := f 1; \dots; d_z g^2 n D$$ (A.20) Because has no interaction (De nition 3.2), we have that, for (all) 0 2 D c $$0 = \underset{X}{W_{f}^{f}(h(z))m^{h}(z;(j;j^{0}))} = \underset{k2[K]}{W_{k}^{f}(h(z))m_{k}^{h}(z;(j;j^{0}))}:$$ Because has no interaction, each $rdW_k^f(h(z))_n$; is non-zero for at most orle2 [K] (although this k can change for different values **p**fandz). This implies that for alk $2 \ Z_{supp}^c(j;j^0) \ 2 \ D^c$, k 2 [K]: $$0 = W_k^f(h(z)) m_k^h(z; (j; j^0))$$ (A.21) Case $1:jB_k j = 1$ (One-Dimensional Slots) When $jB_k j = 1$, for all $k 2 [d_z]$, the matrix $W_k^f (h(z))$ can be written as: $$W_k^f(h(z)) = [D_k f(z) D_k f(z)]$$ (A.22) This matrix has a single column, which must be non-zero $\sin \csc C^1$ diffeomorphism. Thus, $W_k^f(h(z))$ has full column rank and thus has a null space equal $\cos C^1$ diffeomorphism. Thus, we conclude that for all $(j;j^0)$ 2 D c, k 2 $[d_z]$: $$0 = m_k^h(z;(j;j^0))$$ (A.23) Applying the de nition of $m_k^h(z; (j; j^0))$, this implies that for al(j; j^0) 2 D c, k 2 [dz]: $$0 = D_i \circ h_k(z) D_i h_k(z) \tag{A.24}$$ This means each row of the Jacobian $ma\mathbf{D}\mathbf{h}\mathbf{x}(z)$ cannot have more than one nonzero value. Since the Jacobian is invertible, these nonzero values must all be different for different rows, otherwise a whole column would be zero. Hen $\mathbf{D}\mathbf{c}\mathbf{h}(z)$ is a permutation-scaling matrix, i.e. we have local disentanglement. Case $2:iB_ki > 1$ (Multi-Dimensional Slots) $$D_{B_{k}0}h_{B_{k}}(z) \in 0; \quad D_{B_{k}00}h_{B_{k}}(z) \in 0$$ (A.25) Because ; f^{Λ} are C^1 diffeomorphisms, we know that is also a C^1 diffeomorphism. Coupling this with Eq. (A.25), Lemma A.7 tells us that there exist a [dz] with cardinality a such that: 8B 2B; S 6B; and 8i 2S; $$D_i h_{B_k}(z)$$ are linearly independent. (A.26) Now choose an $B \ 2 \ B$ such that $S_1 := S \setminus B \in$;. Furthermore, de ne the set $S_2 := S \cap S_1$. Because $S_2 \in S_1 \cap S_2$. In other words, $S_1 \cap S_2$ are non-empty, form a partition $S_1 \cap S_3$, and do not contain any indices from the same slot. Now construct the matrices, denoted, and A S₂ as follows: $$A_{S_1} := D_{S_1} h_{B_k}(z); \quad A_{S_2} := D_{S_2} h_{B_k}(z)$$ (A.27) And the matrix denote **A**_k as: $$A_k := [A_{S_1}; A_{S_2}]$$ (A.28) Note that becaus & 2 S, $D_i h_{B_k}$ (* 2) are linearly independent (Eq. (A.26)), we know that is invertible. Now, de ne the following block diagonal matrix 2 Rdz dz as follows: A := $$\begin{cases} A_1 & 0 & \cdots & 0 \\ 6 & 0 & A_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & A_K \end{cases}$$ (A.29) where8i 2 [K] n f kg; A_i is the identity matrix, and thus invertible, whiRe_k is de ned according to Eq. (A.28). De ne Z := A 1 Z, the functionh : Z ! Z ash(z) := Az and the functionf : Z ! X as f := f h. By construction we have 8z 2 Z; $$f A_1^1 z_{B_1}; ...; A_K^1 z_{B_K} = f(z_{B_1}; ...; z_{B_K})$$: (A.30) Because alA; ¹ are invertible, then is equivalent of in the sense of Def. (4.1). We can now apply Lemma A.19 fo = f h to obtain, for allj; j 0 2 [d_z]: $$D_i f(z) \quad D_i \circ f(z) = W^f(h(z)) m^h(z; (j; j^0)) :$$ (A.31) Choosez 2 Z such that h(z) = h(z), which is possible because(z) 2 Z and h is a bijection from Z to Z). We can then write $$D_i f(z) \quad D_i \circ f(z) = W^f(h(z)) m^h(z; (j; j^0)) :$$ (A.32) Let J; $J^0 = B_k$ be a partition of B_k such that J is the set of columns of corresponding to A_{S_1} and J^0 be the set of columns of corresponding to A_{S_2} . More formally, we have $$A_{B_k;J} = A_{S_1}$$ and $A_{B_k;J} \circ = A_{S_2}$ Since $A_{S_1} = D_{S_1} h_{B_k}(z)$ and $A_{S_2} = D_{S_2} h_{B_k}(z)$, we have that $$A_{B_k;J} = D_{S_1}h_{B_k}(z)$$ and $A_{B_k;J^0} = D_{S_2}h_{B_k}(z)$ SinceDh(z) = A, we have $$D_J h_{B_k}(z) = D_{S_1} h_{B_k}(z)$$ and $D_{J_0} h_{B_k}(z) = D_{S_2} h_{B_k}(z)$: Choose som $(j; j^0)$ 2 J J⁰. We know there must exi $(s; s^0)$ 2 S₁ S₂ such that $$D_{i}h_{B_{k}}(z) = D_{s}h_{B_{k}}(z)$$ and $D_{i}\circ h_{B_{k}}(z) = D_{s}\circ h_{B_{k}}(z)$: which implies $$m_k^h(z;(j;j^0)) = m_k^h(z;(s;s^0))$$: (A.33) Moreover, since the Jacobian losis block diagonal, we have that $_{k^0}^h(z;(j;j^0)) = 0$ for all $k^0 \in k$ (recall that $_{j}^{i};j^0 \ge B_k$). This means we
can rewrite (A.32) as $$D_{j} f(z) \quad D_{j} \circ f(z) = W_{k}^{f}(h(z)) m_{k}^{h}(z;(j;j^{0})):$$ (A.34) Plugging (A.33) into the above equation yields $$D_{j} f(z) \quad D_{j} \circ f(z) = W_{k}^{f}(h(z)) m_{k}^{h}(z;(s;s^{0})):$$ (A.35) Since(s; s^0) 2 S₁ S₂ D °, we can apply (A.21) to get $$D_{j}f(z)$$ $D_{j}\circ f(z) = W_{k}^{f}(h(z))m_{k}^{h}(z;(s;s^{0})) = 0$: (A.36) In other words, we found a partition J^0 of the block B_k such that D_j f(z) = 0 for all $(j; j^0)$ 2 J^0 . This means that the blocks and J^0 have no interaction in f at z. This is a contradiction with Assm. 3.5. Hence, we have local disentanglement. Local to global disentanglement. We showed that Dh(z) is a block-permutation matrix for all z 2 \hat{Z}_{supp} i.e. local disentanglement. Consider the inverse $:= h^{-1}$. The Jacobian of v is given by $Dv(z) = Dh^{-1}(z) = Dh(v(z))^{-1}$, by the inverse function theorem. By Proposition A.12, this means v(z) is also a block permutation matrix for all 2 z_{supp} Since z_{supp} is aligned-connected (De nition A.16), Lemma A.18 guarantees that we can write $v(z) = (v_1(z_{B_{-(1)}}); \ldots; v_K(z_{B_{-(K)}}))$ for all z 2 z_{supp} where the v_k are diffeomorphisms. This implies that $v_k = v_k v_k$ #### A.5 DISENTANGLEMENT (AT MOST 1ST ORDER INTERACTION) Lemma A.21. Let Z_{supp} Z be a regular closed set (Defn. A.3). Let: $Z \mid X$ be C^1 and $h : \hat{Z}_{supp} \mid Z$ supp be a diffeomorphism. Let := f h. If f has at most order interaction (De nition 3.4 with n = 1), then, for all j; j 0 2 [d_z] and z 2 \hat{Z}_{supp} we have $$D_{j;j}^{2} \circ f^{\prime}(z) = W^{f}(h(z))m^{h}(z;(j;j^{0})); \qquad (A.37)$$ where $$\begin{split} W^{\,f}\,(z) &:= [W^{\,f}_{\,k}\,(z))]_{k2[K\,]} & i \\ W^{\,f}_{\,k}\,(z) &:= & [D_{i_1}f\,(z)]_{i_12B_k}; [D^2_{i_1;i_2}f\,(z)]_{(i_1;i_2)2B_k^2} \\ m^{\,h}\,(z;(j;j^{\,0})) &:= [m^{\,h}_{\,k}\,(z;(j;j^{\,0}))]_{k2[K\,]} & i \\ m^{\,h}_{\,k}\,(z;(j;j^{\,0})) &:= & [D^2_{j;j^{\,0}}h_{i_1}(z)]_{i_12B_k}; [D_{j^{\,0}}h_{i_2}(z)D_{j}\,h_{i_1}(z)]_{(i_1;i_2)2B_k^2} & \vdots \end{split}$$ Proof. The exact same argument as the one presented in Lemma A.19 (based on Lachapelle et al. (2023)) guarantees that, and f have equal derivatives of supp. We leverage this fact next. By taking the derivative w.r.tz_j on both sides of f(z) = f(z), we get $$D_{j} f'(z) = X X X D_{i} f(h(z)) D_{j} h_{i}(z)$$ (A.38) Now take another derivative w.rz_i o for somej ⁰2 [d_z] to get Because we havet most rst order interactions [Def. 3.4 with n = 1], the second sum ov [K] drops, and we are left with: $$\begin{split} D_{j;j}^2 \circ f^{\wedge}(z) &= \frac{X}{4} \frac{X}{4} \sum_{\substack{k_1 2 [K] i_1 2 B_{k_1} \\ 2}} \frac{4}{4} D_{i_1} f \left(h(z)\right) D_{j;j}^2 \circ h_{i_1}(z) + \frac{X}{i_2 2 B_{k_1}} D_{i_1;i_2}^2 f \left(h(z)\right) D_j \circ h_{i_2}(z) D_j h_{i_1}(z)^5 \\ &= \frac{X}{k_1 2 [K]} \frac{X}{i_1 2 B_{k_1}} D_{i_1} f \left(h(z)\right) D_{j;j}^2 \circ h_{i_1}(z) + \frac{X}{(i_1;i_2) 2 B_{k_1}^2} D_{i_1;i_2}^2 f \left(h(z)\right) D_j \circ h_{i_2}(z) D_j h_{i_1}(z)^5 \\ &= W^f \left(h(z)\right) m^h \left(z; \left(j; j^{\circ}\right)\right); \end{split}$$ which concludes the proof. Theorem A.22. Let f:Z!X be a C^2 diffeomorphism satisfying interaction asymmetry (Asm. 3.5) for all equivalent generators (Defn. 4.1) for= 1 and sufficient independence (Defn. A.9). Le \mathbb{Z}_{supp} Z be regular closed (Defn. A.3), path-connected (Defn. A.14) and aligned-connected (Defn. A.16). A model: Z! \mathbb{R}^{d_x} disentangles on \mathbb{Z}_{supp} w.r.t. f (Defn. 2.1) if it is (i) a \mathbb{C}^2 diffeomorphism between \mathbb{Z}_{supp} and \mathbb{X}_{supp} with (ii) at most \mathbb{T}^t order interactions across slots (Defn. 3.4) on \mathbb{Z}_{supp} Proof. As mentioned in Section A.3, the proofs will proceed in two steps: First, we show local disentanglement (De nition A.13) and then we show (global) disentanglement via Lemma A.18. We rst show local disentanglement. We rst de ne the functionh: Ž_{supp}! Z supp relating the latent spaces of these functions Žgupp: $$h := f^{-1} f^{\wedge} \tag{A.39}$$ The function f can then be written in terms of and non Z supp $$f^{\prime} = f \quad h \tag{A.40}$$ Because ; f^{Λ} are both C^2 diffeomorphism betwee \mathbb{Z}_{supp} ; X_{supp} and Z_{supp} ; X_{supp} respectively, we have that is a C^2 diffeomorphism. Sincef has at most 1st order interactions, we can apply Lemma A.21 to obtain, for all Z_{supp}^{h} ; j; j ⁰2 [d_z], $$D_{i;i}^{2} \circ f^{(z)} = W^{f}(h(z))m^{h}(z;(j;j^{0})):$$ Sincef has at most 1st order interaction, we have that, fo(jaill) 2 D c $$0 = W^{f}(h(z))m^{h}(z;(j;j^{0})): (A.41)$$ By de ning $$\begin{split} W_k^{f\;;rest}\!(z) &\coloneqq [\;D_{i_1}f\;(z)]_{i_12B_k} \\ W_k^{f\;;high}\!(z) &\coloneqq [\;D_{i_1;i_2}^2f\;(z)]_{(i_1;i_2)2B_k^2} \\ m_k^{h\;;rest}\!(z;(j;j^0)) &\coloneqq [\;D_{j;j}^2\,_{0}h_{i_1}(z)]_{i_12B_k} \\ m_k^{h\;;high}\!(z;(j;j^0)) &\coloneqq [\;D_{j}\,_{0}h_{i_2}(z)D_j\,_{h}i_1(z)]_{(i_1;i_2)2B_k^2} \end{split}$$ we can restate the suf ciently independent derivative assumption (Def. A.9) as, for all rank W $$_{k}^{f}$$ (z) = rank W $_{k}^{f}$; rest(z) + rank W $_{k}^{f}$; high(z) This condition allows us to apply Lemma A.6 to go from (A.41) to, for(all 0) 2 D c, k 2 [K]: $$0 = W_k^{f;high}(h(z)) m_k^{h;high}(z;(j;j^0))$$ (A.42) Case 1: $jB_k j = 1$ (One-Dimensional Slots) By Assumption 3.5.ii, (with B = fig) $D_{ij}^2 f(z) \in A$ $0. \ \text{Note that} \\ W_k^{\ f\ ; high}(h(z)) = \ D_{k;k}^2 f\ (z). \ \text{Hence, (A.42) implies that} \\ h_k^{\ h\, ; high}(z\, ; (j;j\ ^0)) = 0 \ \ \text{(which is the property of th$ is a scalar). This meams $_k^{h\,;high}(z\,;(j;j^0))=D_j\,\circ h_k(z)D_j\,h_k(z)=0$. Since this is true for all and all distinctj; j ⁰, this mean's each row has at most one nonzero entry. Sih(₺) is invertible, these nonzero entries must appear on different columns, otherwise a column will be lled with zeros. This mean \mathfrak{D} h(z) is a permutation-scaling matrix, i.e. we have local disentanglement (De nition A.13). Case 2: $jB_k j > 1$ (Multi-Dimensional Slots) Assume for a contradiction that is not locally disentangled on supply w.r.t. f. This implies that there exist $\mathbf{z} = 2 \sum_{\text{supp.}}^{6} \mathbf{k}; \mathbf{k}^{0}, \mathbf{k}^{00} \mathbf{2}$ [K] with $\mathbf{k}^{0} \mathbf{6} = \mathbf{k}^{00} \mathbf{such}$ that: $$D_{B_{k}0}h_{B_{k}}(z) \in 0; \quad D_{B_{k}00}h_{B_{k}}(z) \in 0$$ (A.43) Because ; f are C diffeomorphisms, we know that is also a C diffeomorphism. Coupling this with Eq. (A.43), Lemma A.7 tells us that there exist $a_1 = a_2 = a_3$ with cardinality $a_2 = a_3 = a_3$ such that: 8B 2B; S 6 B; and 8i 2 S; $$D_i h_{B_k}(z)$$ are linearly independent. (A.44) Now choose an \mathbb{B} 2 B such tha $\mathbb{S}_1 := f \mathbb{S} \setminus \mathbb{B} g \in \mathbb{F}$. Furthermore, de ne the s $\mathbb{S}_2 := \mathbb{S} n \mathbb{S}_1$. Because 6 B, we know that S_2 is non-empty. Further, by construction = S_1 [S_2 . In other words, S_1 and S_2 are non-empty, form a partition \mathcal{S} , and do not contain any indices from the same slot. Now construct the matrices, denoted, and A S₂ as follows: $$A_{S_1} := D_{S_1} h_{B_k}(z); \quad A_{S_2} := D_{S_2} h_{B_k}(z)$$ (A.45) And the matrix denote (A) k as: $$A_k := [A_{S_1}; A_{S_2}]$$ (A.46) Note that because i 2 S, D_ih_{Bk} (♣) are linearly independent (Eq. A.44), we know that is invertible. Now, de ne the following block diagonal matrix 2 Rdz dz as follows: where8i 2 [K] n f kg; A_i is the identity matrix, and thus invertible, whike is de ned according to Eq. (A.46). De ne Z := A 1 Z, the functionh : Z ! Z ash(z) := Az and the functiorf : Z ! X as f := f h. By construction we have 8z 2 Z; $$f A_1^1 z_{B_1}; ...; A_K^1 z_{B_K} = f(z_{B_1}; ...; z_{B_K})$$: (A.48) Because alA; ¹ are invertible, then is equivalent of in the sense of Def. (4.1). We can now apply Lemma A.21 fo = f h to obtain, for allj; j ${}^{0}2$ [d_z]: $$D_{ij}^{2} \circ f(z) = W^{f}(h(z))m^{h}(z;(j;j^{0})):$$ (A.49) Choosez 2 Z such that h(z) = h(z), which is possible because(z) 2 Z and h is a bijection from Z to Z. We can then write $$D_{ii}^{2} \circ f(z) = W^{f}(h(z))m^{h}(z;(j;j^{0})):$$ (A.50) Let $J; J^0 \to B_k$ be a partition of B_k such that J is the set of columns of corresponding to A_{S_1} and J^0 be the set of columns of corresponding to A_{S_2} . More formally, we have $$A_{B_k;J} = A_{S_1}$$ and $A_{B_k;J} \circ = A_{S_2}$: Since $A_{S_1} = D_{S_1} h_{B_k}(z)$ and $A_{S_2} = D_{S_2} h_{B_k}(z)$, we have that $$A_{B_k;J} = D_{S_1}h_{B_k}(z)$$ and $A_{B_k;J^0} = D_{S_2}h_{B_k}(z)$ SinceDh(z) = A, we have $$D_J h_{B_k}(z) = D_{S_1} h_{B_k}(z)$$ and $D_J \circ h_{B_k}(z) = D_{S_2} h_{B_k}(z)$: For all (j; j 0) 2 J J 0 , there must exists; s 0) 2 S₁ S₂ such that $$D_{i}h_{B_{k}}(z) = D_{s}h_{B_{k}}(z)$$ and $D_{i}\circ h_{B_{k}}(z) = D_{s}\circ h_{B_{k}}(z)$: This implies that, for al(j; j 0) 2 J J 0 , there exist(s; s 0) 2 S₁ S₂ such that $$m_k^{h;high}(z;(j;j^0)) = m_k^{h;high}(z;(s;s^0))$$: (A.51) Moreover, since is a block-wise function we have that, for $\{j\}_j^0$ 2 J J⁰ B_k and k⁰ 2 [K] n f kg, m $_{k^0}^h$ (z; (j; j⁰)) = 0. We can thus write: $$D_{jj}^{2} \circ f(z) = W_{k}^{f}(h(z))m_{k}^{h}(z;(j;j^{0})):$$ (A.52) Sinceh is linear, we have that $_{k}^{h;rest}(z;(j;j^{0}))=0$, and thus $$D_{i;i}^{2} \circ f(z) = W_{k}^{f;high}(h(z)) m_{k}^{h;high}(z;(j;j^{0})) :$$ (A.53) Plug the (A.51) into the above to obtain that, for (\dot{q}) \dot{q} 2 J J⁰, $$D_{ii}^{2} \circ f(z) = W_{k}^{f;high}(h(z)) m_{k}^{h;high}(z;(s;s^{0})) = 0;$$ (A.54) where the very last $\stackrel{\text{d}}{=}$ 0" is due to (A.42) (recal(s; s⁰) 2 S₁ S₂ D °). In other words, we found a partition J^0 of the blockB_k and a valuez such that $D^2_{j;j}$ of (z) = 0 for all $(j;j^0)$ 2 J^0 . This means that the blocks and
J^0 haveno second order interaction fatz. This is a contradiction with Assm. 3.5. Hence, we have local disentanglement. From local to global disentanglement. The same argument as in the proof of Theorem A.20 applies. #### A.6 DISENTANGLEMENT (AT MOST 2ND ORDER INTERACTION) Lemma A.23. Let Z_{supp} Z be a regular closed set (Defn. A.3). Let: Z : X be C^1 and $h : \hat{Z}_{supp} : Z_{supp}$ be a diffeomorphism. Let : = f + h. If : = f + h. If : = f + h as at most : = f + h order interaction (De nition 3.4 with : = f + h), then, for all : = f + h and : = f + h. If : = f + h are the property : = f + h. If : = f + h are the property : = f + h and : = f + h. If : = f + h are the property : = f + h and : = f + h are the property : = f + h. If : = f + h are the property : = f + h are the property : = f + h. If : = f + h are the property : = f + h and : = f + h are the property : = f + h. If : = f + h are the property : = f + h are the property : = f + h. If : = f + h are the property : = f + h are the property : = f + h are the property : = f + h. If : = f + h are the property : = f + h are the property : = f + h and : = f + h are the property : = f + h. If : = f + h are the property : = f + h are the property : = f + h. If : = f + h are the property : = f + h are the property : = f + h are the property : = f + h. If : = f + h are the property : = f + h are the property : = f + h and : = f + h are the property a $$D_{i;i}^{3} \circ_{i;i} \circ_{i} \circ_{i} (z) = W^{f}(h(z)) m^{h}(z; (j; j^{0}, j^{0})); \qquad (A.55)$$ where $$\begin{split} W_k^f(z) &\coloneqq [{}_h^W{}_k^f(z))]_{k2[K]} \\ W_k^f(z) &\coloneqq [D_{i_1}f(z)]_{i_12B_k}; \\ & [D_{i_1,i_2}^2f(z)]_{i_12B_k;i_22[d_z]}; \\ & [D_{i_1,i_2;i_3}^3f(z)]_{(i_1;i_2;i_3)2B_k^3} \\ m^h(z;(j;j\overset{0}{,}j\overset{0}{,}j\overset{0}{,})) &\coloneqq [{}_h^m{}_k^h(z;(j;j\overset{0}{,}j\overset{0}{,})\overset{0}{,})]_{k2[K]} \\ m^h_k(z;(j;j\overset{0}{,}j\overset{0}{,}j\overset{0}{,})) &\coloneqq [D_{j;j\overset{0}{,}j\overset{0}{,}j\overset{0}{,}j\overset{0}{,}h_{i_1}}(z)]_{i_12B_k}; \\ & [D_jh_{i_1}(z)D_j^2o_j\omega h_{i_2}(z) + D_j\circ h_{i_2}(z)D_{j;j\overset{0}{,}j\overset{0}{,}l_1}(z) + D_j\omega h_{i_2}(z)D_{j;j\overset{0}{,}j\overset{0}{,}l_1}(z)]_{i_12B_k;i_22[d_z]} \\ & [D_j\omega h_{i_3}(z)D_j\circ h_{i_2}(z)D_jh_{i_1}(z)]_{(i_1;i_2;i_3)2B_k^3} & \vdots \end{split}$$ Proof. As argued in Lemma A.21, differentiatirf $\hat{g}(z) = f h(z)$ w.r.t. z_j and z_j on both sides yields $$D_{j;j}^{2} \circ f'(z) = \begin{array}{c} X & X \\ X & 4D_{i_{1}}f(h(z))D_{j;j}^{2} \circ h_{i_{1}}(z) + \\ K_{12}[K]_{i_{1}2}B_{k_{1}} & D_{i_{1}1}^{2}(z)D_{j}h_{i_{1}}(z)^{5} \end{array}$$ Now take another derivative with respectzto to compute $D^3_{j;j}$ of (z). For the rst term in the sum, we have: And for the second term in the sum (the nested sum), we have: Because we have at most second order interactions (Def. 3.4 with), this term can be rewritten as: Combining the rst and second terms, we get: $$\begin{split} D^3_{j;j} \circ_{ij} \circ f^{A}(z) &= & X \\ X \\ X \\ D^2_{i_1;i_2} f \left(h(z) \right) D^3_{j_1} \circ_{i_j} \circ h_{i_1}(z) + \\ X \\ X \\ D^2_{i_1;i_2} f \left(h(z) \right) D_{j} h_{i_1}(z) D^2_{j^0;j} \circ h_{i_2}(z) + D_{j} \circ h_{i_2}(z) D^2_{j^0;j} \circ h_{i_1}(z) + D_{j} \circ h_{i_2}(z) D^2_{j^0;j} \circ h_{i_1}(z) + \\ k_{2} 2 [K] i_{2} 2 B_{k_2} \\ X \\ X \\ X \\ D^3_{i_1;i_2;i_3} f \left(h(z) \right) D_{j} \circ h_{i_3}(z) D_{j} \circ h_{i_2}(z) D_{j} h_{i_1}(z) \\ & + X \\ X \\ = & D_{i_1} f \left(h(z) \right) D^3_{j^0;j} \circ h_{i_1}(z) + \\ X \\ X \\ X \\ D^2_{i_1;i_2} f \left(h(z) \right) D_{j} h_{i_1}(z) D^2_{j^0;j} \circ h_{i_2}(z) + D_{j} \circ h_{i_2}(z) D^2_{j^0;j} \circ h_{i_1}(z) + D_{j} \circ h_{i_2}(z) D^2_{j^0;j} \circ h_{i_1}(z) + \\ X \\ X \\ D^3_{i_1;i_2;i_3} f \left(h(z) \right) D_{j} \circ h_{i_1}(z) D^2_{j^0;j} \circ h_{i_2}(z) D_{j} h_{i_1}(z) \\ & + i_{1} 2 B_{k_1} i_{2} 2 [d_2] \\ X \\ D^3_{i_1;i_2;i_3} f \left(h(z) \right) D_{j} \circ h_{i_3}(z) D_{j} \circ h_{i_2}(z) D_{j} h_{i_1}(z) \\ & = W^f \left(h(z) \right) m^h \left(z; (j;j \stackrel{0}{\circ}, j \stackrel{0}{\circ}) \right) : \end{split}$$ Theorem A.24. Let f: Z ! X be a C^3 diffeomorphism satisfying interaction asymmetry (Asm. 3.5) for all equivalent generators (Defn. 4.1) for= 2 and sufficient independence (Defn. 4.2). LeZ_{supp} Z be regular closed (Defn. A.3), path-connected (Defn. A.14) and aligned-connected (Defn. A.16). A model: $Z! R^{d_x}$ disentangles on Z_{supp} w.r.t. f (Defn. 2.1) if it is (i) a C^3 diffeomorphism between and X_{supp} with (ii) at most Z^d order interactions across slots (Defn. 3.4) on Z^d supp Proof. As mentioned in Section A.3, the proofs will proceed in two steps: First, we show local disentanglement (De nition A.13) and then we show (global) disentanglement via Lemma A.18. We rst show local disentanglement. We rst de ne the functionh: $\hat{Z}_{supp}!Z_{supp}$ relating the latent spaces of these functions \hat{Z}_{supp} . $$h := f^{-1} f^{\Lambda} \tag{A.56}$$ The function f^can then be written in terms of and on Z supp $$f^{\prime} = f \quad h \tag{A.57}$$ Because ; f^{\wedge} are both C^2 diffeomorphism betwee \mathbb{Z}_{supp} ; X_{supp} and \mathbb{Z}_{supp} ; X_{supp} respectively, we have that is a C^2 diffeomorphism. Sincef has at most order interaction, we have that, for all 2 \$\mathbb{Z}_{\text{supp}} \cdot (j; j^0, j^0) 2 D^c [d_z], $$0 = W^{f}(h(z))m^{h}(z;(j;j^{0},j^{0})):$$ (A.58) By de ning $$\begin{split} W_k^{f;rest}\!(z) &\coloneqq \ [D_{i_1}f(z)]_{i_1 2B_k}; \\ & \ [D_{i_1;i_2}^2f(z)]_{i_1 2B_k;i_2 2[d_z]} \\ W_k^{f;high}\!(z) &\coloneqq [D_{i_1;i_2;i_3}^3f(z)]_{(i_1;i_2;i_3) 2B_k^3} \end{split}$$ $$m_k^{h;rest}(z;(j;j^{0},j^{0})) := [D_{i;j^{0};j^{0}}^3 \cap h_{i_1}(z)]_{i_12B_k};$$ $$[D_{j}h_{i_{1}}(z)D_{j}^{2}{}_{0;j}{}_{00}h_{i_{2}}(z) + D_{j}{}_{0}h_{i_{2}}(z)D_{j;j}^{2}{}_{00}h_{i_{1}}(z) + D_{j}{}_{00}h_{i_{2}}(z)D_{j;j}^{2}{}_{00}h_{i_{1}}(z)]_{i_{1}2B_{k};j_{2}2[d_{z}]}$$ $$m_k^{h;high}(z;(j;j^{0},j^{00})) := [D_j \circ h_{i_3}(z)D_j \circ h_{i_2}(z)D_j h_{i_1}(z)]_{(i_1;i_2;i_3)2B_k^3};$$ we can restate the suf ciently independent derivative assumption (Def. 4.2) as, 202 all rank W^f(z) = $$X h$$ rank W_k^{f;rest}(z) + rank W_k^{f;high}(z) This condition allows us to apply Lemma A.6 to go from (A.58) to, for $(a,b)^0$, b^0 $$0 = W_{k}^{f;high}(h(z)) m_{k}^{h;high}(z;(j;j^{0},j^{0}))$$ (A.59) Case 1: $jB_kj=1$ (One-Dimensional Slots) By Assumption 3.5.ii (with = B = fig), we have that $D^3_{i;i;i}$ f (z) \in 0. Note that $W_k^{f;high}(h(z))=D^3_{k;k;k}$ f (z). Hence, (A.42) implies that $W_k^{h;high}(z;(j;j\overset{0}{,}j\overset{0}{,}j\overset{0}{,}))=0$ (which is a scalar). This meams $W_k^{h;high}(z;(j;j\overset{0}{,}j\overset{0}{,}j\overset{0}{,}))=D_j\overset{0}{,}oh_k(z)D_j\overset{0}{,}h_k(z)=0$ for all $(j;j\overset{0}{,}j\overset{0}{,}j\overset{0}{,})$ 2 D^c [dz]. In particular, we have $$D_{i} \circ h_{k}(z)^{2} D_{i} h_{k}(z) = 0$$; for all (j; j 0) 2 D c . Since this is true for all and all distinc \mathbf{j} ; j 0 , this means each row $\mathbf{0}$ th (z) has at most one nonzero entry. Sin \mathbf{D} eh (z) is invertible, these nonzero entries must appear on different columns, otherwise a column would be lled with zeros. This meah \mathbf{z}) is a permutation-scaling matrix, i.e. we have local disentanglement (De nition A.13). Case $2:jB_kj > 1$ (Multi-Dimensional Slots) Assume for a contradiction that does not disentangled on Z_{supp} w.r.t. f. This implies that there exist az $2 \, \hat{Z}_{supp}$ k; k^0 , $k^{00}2$ [K] with $k^0 \, \hat{e} \, k^{00}$ such that: $$D_{B_{k}0}h_{B_{k}}(z) \in 0; \quad D_{B_{k}00}h_{B_{k}}(z) \in 0$$ (A.60) Because ; f^{Λ} are C^3 diffeomorphisms, we know that is also a C^3 diffeomorphism. Coupling this with Eq. (A.60), Lemma A.7 tells us that there exist $a = c^3$ with cardinality $a = c^3$ with cardinality $a = c^3$ with 8B 2B; S 6 B; and 8i 2 S; $$D_i h_{B_k}(z)$$ are linearly independent. (A.61 Now choose an $B \ 2 \ B$ such tha $S_1 := f \ S \ B g \ S$;. Furthermore, de ne the s $S_2 := S \ n \ S_1$. Because $S_1 = S_1 \ S_2 = S \ n \ S_3$. Because $S_1 = S_1 \ S_2 = S \ n \ S_3$. In other words, $S_1 = S_1 \ S_2 = S \ n \ S_3$. In other words, $S_1 = S_2 = S \ n \ S_3$. In other words, $S_1 = S_2 = S \ n \ S_3$. In other words, $S_1 = S_2 = S \ n \ S_3$. In other words, $S_1 = S_2 = S \ n \ S_3$. In other words, $S_1 = S_2 = S \ n \ S_3$. In other words, $S_1 = S_2 = S \ n \ S_3$. Now construct the matrices, denoted, and A S2 as follows: $$A_{S_1} := D_{S_1} h_{B_k}(z); \quad A_{S_2} := D_{S_2} h_{B_k}(z)$$ (A.62) And the matrix denoted k as: $$A_k := [A_{S_4}; A_{S_2}]$$ (A.63) Note that becaus & 2 S, D_i h_{B_k} (* 2) are linearly independent (Eq. (A.61)), we know that is invertible. Now, de ne the following block diagonal matrix 2 Rdz dz as follows: $$A := \begin{cases} 2 & A_1 & 0 & \cdots & 0 & 3 \\ 6 & 0 & A_2 & \cdots & 0 & 7 \\ \vdots & \vdots & \ddots & \vdots & 5 \\ 0 & 0 & \cdots & A_K \end{cases}$$ (A.64) where8i 2 [K] n f kg; A_i is the identity matrix, and thus invertible, whiRe_k is de ned according to Eq. (A.63). De ne $Z := A^{-1}Z$, the functionh : Z ! Z ash(z) := Az and the functionf : Z ! X as f := f h. By construction we have 8z 2 Z; $$f A_1^1 z_{B_1}; ...; A_K^1 z_{B_K} = f(z_{B_1}; ...; z_{B_K})$$: (A.65) Because alA_i 1 are invertible, then is equivalent of in the sense of Def. (4.1). We can now apply Lemma A.23 fo = f h to obtain, for all; j = 0.5 [d_z]: $$D_{i;i}^{3} \circ_{i;i} \circ_{0} f(z) = W^{f}(h(z)) m^{h}(z;(j;j^{0},j^{0})) :$$ (A.66) Choosez 2 Z such that h(z) = h(z), which is possible because(z) 2 Z and h is a bijection from Z to Z. We can then write $$D_{jj}^{3} \circ_{j} \circ_{j} \circ_{j} (z) = W^{f}(h(z)) m^{h}(z; (j; j^{0}, j^{0})) :$$ (A.67) Let $J; J^0 \to B_k$ be a partition of B_k such that J is the set of columns
of corresponding to A_{S_1} and J^0 be the set of columns of corresponding to A_{S_2} . More formally, we have $$A_{B_k;J} = A_{S_1}$$ and $A_{B_k;J} \circ = A_{S_2}$ Since $A_{S_1} = D_{S_1} h_{B_k}(z)$ and $A_{S_2} = D_{S_2} h_{B_k}(z)$, we have that $$A_{B_k;J} = D_{S_1}h_{B_k}(z)$$ and $A_{B_k;J} = D_{S_2}h_{B_k}(z)$ SinceDh(z) = A, we have $$D_J h_{B_k}(z) = D_{S_1} h_{B_k}(z)$$ and $D_{J_0} h_{B_k}(z) = D_{S_2} h_{B_k}(z)$: For all (i: i 0: i 00) 2 J J D Bk there must exists: s0: s00) 2 S1 S2 S such that $$D_{i}h_{B_{k}}(z) = D_{s}h_{B_{k}}(z); \quad D_{i}\circ h_{B_{k}}(z) = D_{s}\circ h_{B_{k}}(z); \text{ and } D_{i}\circ h_{B_{k}}(z) = D_{s}\circ h_{B_{k}}(z):$$ This implies that for all(j; j 0 , j 0) 2 J J 0 B_k there must exis(ts; s 0 , s 0) 2 S₁ S₂ S such that $$m_k^{h;high}(z;(j;j^{0},j^{0})) = m_k^{h;high}(z;(s;s^{0},s^{0}))$$: (A.68) Moreover, since is a block-wise function, we have that, for $\{j, j^0\}$ 2 J J⁰ B_k B_k and all $\{k^0\}$ 2 [K] $\{j^0\}$ 3 which allows us to rewrite (A.67) as $$D_{jj}^{3} \circ_{j} \circ_{j} \circ_{j} (z) = W_{k}^{f} (h(z)) m_{k}^{h} (z; (j; j^{0}; j^{0})) :$$ (A.69) Since is linear, we have that $_{k}^{h;rest}(z;(j;j^{0};j^{0}))=0$, and thus $$D_{j;j}^{3} \circ_{j} \circ f(z) = W_{k}^{f;high}(h(z)) m_{k}^{h;high}(z;(j;j^{0},j^{0})) :$$ (A.70) Plug (A.68) into the above to obtain that for (i) j^0 , $$D^{3}_{j;j} \circ_{j;j} \circ f(z) = W^{f;high}(h(z)) m_{k}^{h;high}(z;(s;s^{0},s^{0})) = 0; \qquad (A.71)$$ where the very last="0" is due to (A.59) (recal(s; s^0 , s^{00}) 2 S₁ S₂ S D ^c [d_z]). From local to global disentanglement. The same argument as in the proof of Theorem A.20 applies. #### #### **B** Multi-Index Notation Multi-index notation is a convenient shorthand to denote higher order derivatives. A multi-index of dimensiond is an ordered tuple = $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$:::; ::::; $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$:::::; $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$:::::; $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$:::::; $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$::::::; $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$::::::; $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$::::::; $\begin{pmatrix} 1$ $$j \quad j = X^{d} \qquad {}_{i}; \qquad ! = {}_{i=1} \qquad {}_{i}!$$ (B.1) and we write if i for all i and denotes the element wise sum (difference) of the entries. We write $$D = \frac{@^{1}}{@z^{1}} \cdots \frac{@^{d}}{@z^{d}}$$ (B.2) and $$z = \sum_{i=1}^{\mathsf{Y}^{\mathsf{d}}} z_i^{i} : \tag{B.3}$$ We will need the important property that $$D z = \begin{cases} \frac{!}{(-)!}z & \text{if } \\ 0 & \text{otherwise.} \end{cases}$$ (B.4) Consider now a partition cd_z into slotsB₁;:::; B_k. We de ne the set of interaction multi-indices of ordern for n 2 by $$I_n = f + 2 N^{d_z}$$; $j = n, 9i_1; i_2 \text{ s. t.} i_1 + 2 B_{k_1}, i_2 + 2 B_{k_2}$ with $k_1 \in k_2$ and $i_1; i_2 > 0g$; (B.5) i.e., the set of all multi-indices such that the non-zero components are contained in at least two blocks. Clearly $_{\rm n}$ depends on the block partition which we do not re ect in the notation. We also consider $$I_{n} = \begin{bmatrix} I_{m} : \\ I_{m} : \end{bmatrix}$$ (B.6) Clearly, if $2 I_{i,j}$ and is any multi-index, then + $2 I_{i,j+1,j}$. ### C CHARACTERIZATION OF FUNCTIONS WITH AT MOST nTH ORDER INTERACTIONS In this section we characterize functions with interaction of at nmdstorder by proving Theorem C.2. Our characterization relies on the notion of aligned-connectedness introduced in De nition A.16 and the following topological notion. De nition C.1. A topological spaceX is contractible if there is a continuous function: X [0; 1]! X such thatF(x; 0) = x and F(x; 1) = x_0 for a point x_0 2 X. We call a subset on the contractible if it is contractible as a topological space with respect to the induced subspace topology. Roughly, contractibility means that we can transform a topological space continuously into a point, which is possible if the space has no holes. Note that, e.g., all one dimensional connected sets and all convex sets are contractible. Sets that are not contractible are, e.g., spheres and disconnected sets. Note that the characterization in the following theorem generalizes Proposition 7 in Lachapelle et al. (2023) by allowing higher order interactions and showing the result for more general domains. We denote, similar to (2.3), for R^{d_x} by $r_i = f_{Z_{B_i}}$: z 2 gthe projections of on the blocks. Theorem C.2(Characterization of functions with at most order interactions across slotsL)et be an open connected and aligned-connected set such that contractible. Letf (z) = f (z_{B₁}; z_{B₂}; ...; z_{B_k}) be a Cⁿ⁺¹ function on for an integern 2 Z ₁. Then any distinct slots z_{B₁} and z_{B₁} have at most order interaction withinf (Defn. 3.4) if and only if, for some constants c 2 R^{d_x} and some Cⁿ⁺¹ functions f k : k! R^{d_x} such that for all z 2 Z $$f(z) = X^{K} f^{K}(z_{B_{K}}) + C z :$$ (C.1) RemarkC.3. To avoid unnecessary complications we focus on the case where the ground is suth de ned on $Z = R^{d_z}$. Then = Z clearly satis es the assumptions and actually the proof is slightly simpler. The more general result here would allows us to handle $Za(sR) \stackrel{d_z}{=} in Appendix D$ with minor changes. The proof can be essentially decomposed in two steps: We show how to reduce from interaction of at most orden to interaction of at most orden 1 and then we establish the induction base for n = 2. Lemma C.4. Suppose : $! R^{d_x}$ is a C^{n+1} function and open and connected. Assume that f has interaction of at most order between any two different slots for some 2. Let z_0 2 be any point. Then the function $$f(z) = \frac{X}{210} \frac{D f(z_0)}{!} z$$ (C.2) has interaction of order at most 1. Proof. First we observe that having interaction at most implies that D f is constant in for $2 I_n$. Indeed, since $2 I_n$ we conclude $+ e_i 2 I_{n+1}$ where denotes the tuple with the ntry 1 and all other entries 0. Then, by de nition of having interaction at most im D e nition 3.4, we conclude that $$\text{@D} f(z) = D^{+e_i} f(z) = 0$$: (C.3) This implies that the total derivative $\mathbf{\Phi}$ f vanishes on , which implies that \mathbf{D} f is constant because is connected. Consider now any \mathbf{I}_n . Then we not using (B.4) D f(z) $$\frac{X}{z_{10}} = \frac{D f(z_0)}{z} = D f(z) = \frac{D f(z_0)}{z} = 0$$ (C.4) where we used that f is constant and f z = 0 for f if f f f is ends the proof. We now establish the functional form for interaction of at most order 1. This is essentially a similar statement as in Proposition 7 in Lachapelle et al. (2023) except that we consider more general domains so that their proof does not apply. Lemma C.5. Assume $\,$ is an open connected and aligned-connected set such that contractible. If f is a function such that different slots have interaction at most of order 1 then there are functions f such that $$f(z) = X^{K} \atop k=1$$ $f^{K}(z_{B_{k}})$: (C.5) Proof. Fix a 1 k K . With slight abuse of notation we write = $(z_{B_k}; z_{B_k^c})$. Fix now some value z_{B_k} . We claim that for alz $z_{B_k^c}; z_{B_k^c}$ such that $(z_{B_k}; z_{B_k^c}); (z_{B_k}; z_{B_k^c})$ 2 $$D_{z_{B_k}}f((z_{B_k};z_{B_k^c})) = D_{z_{B_k}}f((z_{B_k};z_{B_k^c}^0)):$$ (C.6) By assumption we indeed know that $$D_{z_{B_k^c}}D_{z_{B_k}}f((z_{B_k};z_{B_k^c})) = 0:$$ (C.7) Moreover, by aligned-connectedness we know that the $\S e^t_k = f z_{B_k^c} : (z_{B_k}; z_{B_k^c}) \ 2$ g is connected so we conclude that the function $$z_{B_k^c} ! R^{jB_k j d_x}; z_{B_k^c} ! D_{z_{B_k}} f((z_{B_k}; z_{B_k^c}))$$ (C.8) is indeed constant. This implies that there is a function bridge ending on Br. such that $$g^{k}(z_{B_{k}}) = D_{z_{B_{k}}} f((z_{B_{k}}; z_{B_{k}^{c}}))$$ (C.9) for all $z=(z_{B_k};z_{B_k^c})$ 2 . Locally g^k is the gradient of a function, but by assumption is contractible and therefore, by the Poinée aremma, there is a function g^k such that g^k . Then we nd $$D_{z_{B_k}} f((z_{B_k}; z_{B_k^c})) = g(z_{B_k}) = D_{z_{B_k}} f^k(z_{B_k}) = D_{z_{B_k}} f^{k^0}(z_{B_k^0}) : \qquad (C.10)$$ Thus the difference $P_{k=1}^{K}$ f k has vanishing derivative on and since is connected we conclude that it is constant. This implies (C.5) after shifting bhéby this constant. Based on these two lemmas the proof of Theorem C.2 is straightforward. Proof of Theorem C.2In the rst step we show that if the at moseth order interaction condition holds then can be written as in (C.1), i.e., ''. Applying inductively Lemma C.4 we conclude that there are constants 2 R^dx such that $$f(z)$$ $X^h X$ $C z$ $m=2 21_m$ (C.11) has interaction of order at most Thus, we can apply Lemma C.5 which implies that a representation as in (C.1) exists on. For the reverse direction '' we observe that clearly the functional form implies for $2 I_{n+1}$ the relation D $$f = 0$$: (C.12) Let us show through examples that the topological conditions on the set neccessary. The following examples shows that the condition that is contractible cannot be dropped. Example C.6. For every 2 R^2 n f 0g we denote by (z) 2 [0;2) the argument (i.e., the angle to the positivex-axis in radian) and by (z) = jzj the radius of z. We consider R^4 and $B_1 = f 1; 2g, B_2 = f 3; 4g$ given by = $$fz : r(z_{B_1}); r(z_{B_2}) 2 (1; 2); ((z_{B_1}) (z_{B_2}) \mod 2) 2 (0;)g$$ (C.13) and the function $$f: P; f(z) = (z_{B_1}) (z_{B_2}) \mod 2:$$ (C.14) Then is aligned-connected because the sets in questions are annular sectors and in particular path connected. Moreover, is smooth because (z_{B_1}) (z_{B_2}) mod 2 2 (0;) so it does not jump and $D_{z_{B_1}}D_{z_{B_2}}$ f = 0 because it is locally additive. However it is not globally additive as in (C.1). The necessity of the aligned conncetedness condition can be shown by an example that is similar to Example 7 in Lachapelle et al. (2023). ExampleC.7. Consider = ([1; 0] [2; 2])[([0; 1] [1; 2])[([0;
1] [2; 1]) and f : P given by $$f(z) = \begin{cases} z_1^3 & \text{if } z_1; z_2 > 0 \\ 0 & \text{otherwise} \end{cases}$$ (C.15) Then f is C^2 , f has interaction of order at most 1 butcannot be written as in (C.1). Note that is not aligned-connected because: $(1=2; z_2) 2 g = [2; 1][1; 2]$ is not connected. # D COMPOSITIONAL GENERALIZATION PROOFS In this appendix we prove extrapolation result Theorem 4.4. Based on the functional form derived in Theorem C.2 we relate two differenent disentangled representations. Lemma D.1. Let $f: Z! R^{d_x}$ be a C^3 diffeomorphism of the form: $$f(z) = \begin{cases} X^{K} & X \\ f^{K}(z_{B_{K}}) + C & Z \end{cases}$$ (D.1) for somef i in C^3 . Let $f^{\wedge}:Z!\ R^{d_x}$ be a diffeomorphism of the same functional form. Let $h:Z_{supp}\:!\:Z\:$ be such that $f=f^{\wedge}\:$ h on $Z_{supp}\:$ If h is a slot-wise function, i.e. for alk 2 [K]; $h_k(z)=h_k(z_{B_k})$ and Z_{supp} is regularly closed then for alk 2 Z_{supp} for some af ne function $L: R^{d_z} ! R^{d_x}$. Remark D.2. We note that it is not possible to remove the af ne function from the statement. Indeed if all slots have dimension and $h_1(z_1) = z_1 + 1$, $h_2(z_2) = z_2 + 1$ then $h_1(z_1)h_2(z_2) = z_1 + z_2 + 1$ is an additive function. Moreover, we cannot in general prove that itself is slotwise af ne because the coef cients an be zero. In this cast any slot-wise diffeomorphism. Proof. First we remark that the polynomial part of the functional form in (D.1) contains all terms $z_i z_i$ wherei; j are in different slots, thus it can be equivalently written as for some constant matric $\{g_k\}_{kk^0}$ 2 $R^{(jB_kjjB_koj)}$ $R^{(jB_kjjB_koj)}$ $R^{(jB_kjjB_koj)}$ $R^{(jB_kjjB_koj)}$ where denotes the Kronecker product (e.g.[z_1 ; z_2] $R^{(jB_kjjB_koj)}$ $R^{(jB_kjjB_koj)}$ $R^{(jB_kjjB_koj)}$ $R^{(jB_kjjB_koj)}$ $R^{(jB_kjjB_koj)}$ denotes the Kronecker product (e.g.[z_1 ; z_2] $R^{(jB_kjjB_koj)}$ $R^{(jB_kjB_koj)}$ $R^{(jB_kjB_koj)}$ $R^{(jB_kjB_koj)}$ $R^{(jB_kjB_koj)}$ $R^{(jB_kjB_koj)}$ $R^{(jB_kjB_koj)}$ $R^{(jB_kjB_koj)}$ $R^{(jB_koj)}$ We assume that the permutation the identity. We know that; f^{Λ} are diffeomorphisms between the same spaces and can thus be related by the further than the contract of th $$f = f^{\wedge} h$$ (D.4) Inserting the functional forms for; f^{Λ} and leveraging that is a slot-wise function and is the identity, we have for alz 2 Z To prove the claim we now consider the expression and prove that (z) is an af ne function. To show this it is sufficient to prove that the second derivative D 2 L vanishes becaus \mathbf{E}_{supp} is path-connected. Thus we consider all partial derivatives. Consider rst the case where $\mathbf{E}_{\mathbf{k}}$ and i 0 2 B $_{\mathbf{k}}$ 0 for k < k 0 . Then we not that $$D_{i}D_{i}\circ L(z) = D_{i}D_{i}\circ X f^{k}(z_{B_{k}}) X_{k=1} f^{k}(h_{B_{k}}(z_{B_{k}})) = 0:$$ (D.7) It remains to consider derivatives of the foliop D_{i0} where $i; i^0 2 B_k$ for some sloti. Then we clearly have $$X X X$$ $$D_i D_{i0} \qquad z_{B_k} \qquad z_{B_{k0}} \quad A_{kk0} = 0$$ (D.8) because this is a linear expressionzin . Next, we want to show that $$D_i D_{i0} h^k (z_{B_k}) h^{k0} (z_{B_{k0}}) A^k_{kk0} = 0$$ (D.9) for all k < k . To prove this we show the more general statement (that will be used in the proof of Theorem 4.4 below) that for any 6 k⁰ and any vector 2 R^{Bk0} the functions $$z_{B_k}$$! $(h^k(z_{B_k}) \quad v)A^k_{kk^0}$ (D.10) are af ne onZk or equivalently that $$D_i D_{i0} h^k (z_{B_k}) \quad v) A_{kk0} = 0$$ (D.11) for every 2 RBko. To prove this we consider any 2 Bko and apply the derivative it is (D.5) to get $$0 = D_{i}D_{i} \circ h^{k}(z_{B_{k}}) \quad D_{i}h^{k} \circ (z_{B_{k}} \circ) \quad A_{kk} \circ$$ (D.12) for every z 2 Z_{supp}. Now we use that by assumption is a diffeomorphism. Using the block structure ofh we nd that alsohk are diffeomorphisms. In particular, this implies that for any z 2 Z_{supp} the vectors $(D_j h^{k^0}(z_{B_{k^0}}))_{j \geq B_{k^0}}$ are linearly independent vectors $\mathbb{R}^{h^0 k^0 j}$ and they thus generate $\mathbb{R}^{jB_k \circ j}$. Therefore we can indicoef cients j (depending on $\mathbb{R}_{g_k \circ j}$) such that $$\begin{array}{ccc} X & & & \\ & & & \\ j D_j h^{k^0}(z_{B_{k^0}}) = v \end{array} \tag{D.13}$$ Then we get using (D.12) So (D.10) holds and thus also (D.9) (we actually only get this for point Z_k such that there is z 2 Z_{supp} with $z_k = z_{B_k}$ but by continuity and $sinc\mathbf{Z}_{supp}$ is regularly closed this actually holds on Z_k). The same reasoning shows that this is also trige $^{\circ}$ f2 B_k $^{\circ}$ (instead of; i $^{\circ}$ 2 B_k). We then nd that fori; i 02 B_k The last display together with (D.8) and (D.7) imply that L = 0 and thus is af ne. When is not the identity the proof is similar. We also need the following simple lemma which states that we have unique Cartesian-product extension of functions with interaction of order at most between different slots. Lemma D.3. Let $f: Z! R^{d_x}$ be a $fine C^3$ diffeomorphism with interaction at most between different slots such tha fine Z supp is regularly closed and for fine Z supp $$f(z) = \int_{k=1}^{X} f^{k}(z_{B_{k}}) + \int_{2 \text{ m n } 2l_{m}}^{X} c z$$ (D.16) for somef i in C3. Then this relation holds o ₹_{CPE}. Proof. We know by Theorem C.2 that a representation as in (D.16) holds \bullet nR^{d_z} and thus can be restricted tdZ_{CPE}, however it might not be the same representation but involve funditional constants. Taking the difference and settifig = f k f and c = c \bullet we not that on Z_{supp} $$0 = \int_{k=1}^{X^{k}} f^{k}(z_{B_{k}}) + \int_{2 \text{ m n } 2l_{m}}^{X} c z :$$ (D.17) But by applying D for $2 I_m$ for m = n down tom = 2 we nd c = 0 for all $2 I_n$ and thus the polynomial term vanishes. Next, we applyand nd that f^k is constant on \mathbb{Z}_k (because \mathbb{Z}_{supp} is regularly closed). This implies that (D.17) holds \mathbb{Z}_{PE} and thus (D.16) holds \mathbb{Z}_{CPE} . Using the previous lemmas we can prove Theorem 4.4. Theorem 4.4 (Compositional Generalization)Let n 2 f 0; 1; 2g. Let Z_{supp} be regular closed (Defn. A.3). Let f: Z ! X and $f^{\Lambda}: Z ! R^{d_{\chi}}$ be C^3 diffeomorphisms with at most norder interactions across slots αZ . If f^{Λ} disentangles on Z_{supp} w.r.t. f (Defn. 2.1), then it generalizes compositionally (Defn. 2.2). Proof of Theorem 4.4Note that Corollary 3 in Lachapelle et al. (2023) already handles the case n = 0; 1 but the proof below is more general, and also covers the case of; 1, since functions with at most 0° and 1° order interactions are special cases of functions with at most odder interactions assuming is a 0° diffeomorphism. We can apply Theorem C.2 to which implies that can be written on $\mathbb{Z} = \mathbb{R}^{d_z}$ as in (C.1) and as explained in Lemma D.1 an equivalent representation is $$f(z) = X^{k} + (z_{B_{k}}) + X^{k} + (z_{B_{k}}) + \sum_{k=1}^{k} z_{B_{k}} + z_{B_{k}0} + A_{kk0}$$ (D.18) and we have similarly $$f'(z) = \sum_{k=1}^{X'} f'^{k}(z_{B_{k}}) + \sum_{k=1}^{X'} \sum_{k^{0}=k+1}^{X'} z_{B_{k}} z_{B_{k^{0}}} A^{k}_{kk^{0}}$$ (D.19) By assumption we havfe = f^{Λ} h on Z_{supp} where $h(z) := h_1 z_{B_{(1)}}$;:::; $h_K z_{B_{(K)}}$ and the functions $h_k : R^{jB_{(k)}j} ! R^{jB_kj}$ are diffeomorphisms. Our goal is to show that this relation actually holds on the Cartesian-product extens $D_{D_k} = L$. Let U be the set of points such that $f(z) = f^{\Lambda} h(z)$ for z 2 U. We claim that if $f(z) = (z_{B_1}, \ldots, z_{B_k}) = (z_{B_1}, \ldots, z_{B_k}) = z^0$. We know by Lemma D.1 that the function $$z ! \int_{k=1}^{K} f^{k}(z_{B_{k}}) \int_{k=1}^{K} f^{(k)}(h_{k}(z)_{B_{k}}) = L(z)$$ (D.20) is af ne on Z_{supp}. Applying Lemma D.3 the same holds More . Thus we conclude that $$z_{B_1}^0$$! $f^k(e^z(z_{B_1}^0)_{B_k})$ $f^{(k)}(h_k(e^z(z_{B_1}^0)_{B_k})) = L(e^z(z_{B_1}^0))$ (D.21) is af ne on Z_1 . Moreover, $$z_{B_1}^0$$! $e^z(z_{B_1}^0)_{B_k} = e^z(z_{B_1}^0)_{B_{k^0}} A_{kk^0}$ (D.22) is clearly af ne onZ₁ and by (D.10) the same holds for $$z_{B_{1}}^{0} \stackrel{X}{!} \underset{k=1}{\overset{}} k^{0}=k+1}{\overset{}} h^{k}(e^{z}(z_{B_{1}}^{0})_{B_{k}}) \quad h^{k^{0}}(e^{z}(z_{B_{1}}^{0})_{B_{k^{0}}}) \quad A_{kk^{0}} \stackrel{\cdot}{:} \tag{D.23}$$ The last three displays together imply that $$z_{B_1}^0$$! $f(e^z(z_{B_1}^0))$ $f^{\wedge} h(e^z(z_{B_1}^0))$ (D.24) is af ne on Z_1 and since it is zero in a neighbourhoodz $x_1^0 = z_{B_1}$ (because $z) (because $z = z_{B_1}$ (because $z = z_{B_1}$)) (because $z = z_{B_1}$ (because $z = z_{B_1}$)) (because $z = z_{B_1}$ (because $z = z_{B_1}$)) (because $z = z_{B_1}$) (because $z = z_{B_1}$) (because $z = z_{B_1}$)) (because $z = z_{B_1}$) (because $z = z_{B_1}$)) (because $z = z_{B_1}$) (because $z = z_{B_1}$)) (because $z = z_{B_1}$) (because $z = z_{B_1}$)) (because $z = z_{B_1}$) (because $z = z_{B_1}$)) (because $z = z_{B_1}$) (because $z = z_{B_1}$)) (because $z = z_{B_1}$) (because $z = z_{B_1}$)) (because $z = z_{B_1}$) (because $z = z_{B_1}$)) (because $z = z_{B_1}$)) (because $z = z_{B_1}$) (because $z = z_{B_1}$)) (because $z = z_{B_1}$) (because $z = z_{B_1}$)) (because $z = z_{B_1}$) (because $z = z_{B_1}$)) (bec ### E Unifying Assumptions from Prior Work ### E.1 AT MOST 0TH ORDER INTERACTION ACROSS SLOTS To prove that the assumptions in Brady et al. (2023) are a special case of our assumptions of we rst restate their assumptions formally. To this end, we rst de ne the following set: 8S $$[d_7]$$ $I_S(z) := f I 2 [d_x] : D_S f_1(z) \in 0 g$: (E.1) The assumption of ompositionality in Brady et al. (2023) can now be stated: De nition E.1 (Compositionality) A differentiable function f: Z!X, is said to becompositional if: 8z 2 Z; k; j $$\in$$ k 2 [K]: $I_k(z) \setminus I_j(z) = ;$:
(E.2) We now state the second assumption in Brady et al. (2023), deieraedacibility. De nition E.2 (Irreducibility). A differentiable functior : Z ! X, is said to be reducible if for all z 2 Z and k 2 [K] and any partition $k(z) = S_1 [S_2 (i.e., S_1 \setminus S_2 = ; and S_1; S_2 \in ;)$, we have: rank Df $$S_1(z)$$ + rank Df $S_2(z)$ > rank Df $I_k(z)$: (E.3) We now prove that compositionality and irreducibility are equivalent to two satisfying interaction asymmetry (3.5) for all equivalent generators (4.1) rfor 0. Theorem E.3. A C¹ diffeomorphismf: Z! X satis es compositionality (Def. E.1) and irreducibility (Def. E.2) if and only if has at most 0 order interaction across slots (Defn. 3.2) and satis es interaction asymmetry (Assm. 3.5) for all equivalent generators (4.1). Proof. We start by proving the forward direction, i.e., that compositionality and irreducibility imply that f has at most order interaction across slots and satis es interaction asymmetry for all equivalent generators. The de nitions of compositionality and at mostth Oorder interaction across slots are precisely equivalent, thus we only need to show that compositionality and irreducibility imply that f satis es interaction asymmetry for all equivalent generators. To show this we will prove the following contraposition: that if has at most th order interaction across slots addes not attisfy interaction asymmetry for all equivalent generators, these not irreducible. Sincef has at most ${}^{\circ}\!\!0$ order interaction across slots addes notatisfy interaction asymmetry for all equivalent generators, this implies that there exists a matr $2xR^{jB_k}$ B_kj and a partition oB_k, into A; B (A [B = B_k; A \ B = ;) such that within the function de ned as: 8z 2 Z; $$f(A_1z_{B_1};...;A_Kz_{B_K}) = f(z_{B_1};...;z_{B_K})$$: (E.4) where A_i such that G_i k is the identity matrix, the latent G_i ; G_i have no interaction. This implies that under , G_i does not intersect with G_i (z). Further, because is invertible, we know that G_i is full column rank. Coupling these two properties, we conclude that G_i and G_i (z) = G_i rank G_i (z) + G_i rank G_i (z). Furthermore, the Jacobians G_i and G_i and G_i will be related by an invertible linear map by construction. Thus, G_i and G_i and G_i have equal rank for any subset G_i . Therefore, we conclude that G_i rank G_i (z) = G_i rank G_i (z) + G_i rank G_i (z). Because and B form a partition of G_i we conclude that is not irreducible. We now prove the reverse direction fif has at most $^{\mbox{$^{\circ}$}}$ 0 order interaction across slots and satis es interaction asymmetry for all equivalent generators the satis es compositionality and irreducibility. As noted before, the de nitions of compositionality and at $\mbox{$^{\circ}$}$ 1 most $\mbox{$^{\circ}$}$ 2 order interaction across slots are precisely equivalent. Thus, we only need to showfth as at most $\mbox{$^{\circ}$}$ 3 order interaction across slots and satis es interaction asymmetry then this in the side is es irreducibility. To show this, will prove the following contraposition: that if does not satisfy irreducibility, then it does not satisfy interaction asymmetry for all equivalent generators with $\mbox{$n$}=0$. Since f is not irreducible, we know that there exists a slot k 2 [K], and a partition of B_k into A; B such that rank(Df_B_k(z)) = rank(Df_A(z)) + rank(Df_B(z)). Because Df_B_k(z) is full column rank this implies that rank(Df_A(z)) = jAj and rank(Df_B(z)) = jBj. Now take two matrices M_S_1 2 R^{d_x j} A^j and M_S_2 2 R^{d_x j} B^j such that the column space of Mf_S_1 is the same as Df_A(z) and the columns space of S_2 is the same as Df_B(z). Now construct the following matrix M_2 R^{d_x j} B_k j as follows: $$M := [M_{S_1}; M_{S_2}]$$ (E.5) Note that by construction this matrix has a block structure such that rows for an ever non-zero for the same rows $a_k s_2$. Because and Df $_{B_k}(z)$ are both full column rank, then there exist a matrix $A_k 2 R^{jB_k j j B_k j}$ such that: $$M := Df_{B_k}(z)A_k \tag{E.6}$$ Now de ne the function as follows: 8z 2 Z; $$f A_1^1 z_{B_1}; ...; A_{\kappa}^1 z_{B_{\kappa}} = f(z_{B_1}; ...; z_{B_{\kappa}})$$: (E.7) such that A; 1 is de ned as above when = k, and otherwise it is the identity matrix. Writing the derivative oDf $B_k(z)$ in terms off we getDf $B_k(z)A_k = M$. Becaus A has a block structure we conclude that there exist a partition of such that these latents have no interaction within f at z. Becaus is equivalent to we conclude that the function does not satisfy interaction asymmetry for D = 0. ## E.2 AT MOST 1ST ORDER INTERACTION ACROSS SLOTS We now prove that the assumptions in Lachapelle et al. (2023) are a special case of our assumptions for n=1. To this end, we rst restate their assumptions. The rst assumption in Lachapelle et al. (2023) is that the generatoris additive De nition E.4 (Additive decoder.) A C^2 diffeomorphism : $Z \ ! \ X$ is said to be additive if: $$f(z) = \int_{k2[K]}^{\infty} f^{k}(z);$$ where $f^{k}: R^{jB_{k}j}!$ $R^{d_{x}}$ for any $k \in [K]$ and $k \in [K]$ De nition E.5 (Suf cient Nonlinearity) Let f:Z!X be aC^2 diffeomorphism. For alk 2 [K], let $B_k^2:=B_k^2\setminus f$ ($i_1;i_2$) ji_2 i_1g . f is said to satisfysuf ciently nonlinearity f 8z 2 Z the following matrix has full column-rank: $$W(z) := [D_i f(z)]_{i2B_k} D_{i;i}^2 f(z)_{(i;i}^{0})_{2B_k}^2$$ (E.9) We now state our result. Theorem E.6. Let f:Z:X be a C^2 diffeomorphism. If satis es additivity (Def. E.4) and suf cient nonlinearity (Def. E.5) then has at most \P order interactions across slots (Defn. 3.3), satis es suf cient independence (Defn. A.9), and satis es interaction asymmetry (Asm. 3.5) for all equivalent generators (Defn. 4.1) for= 1. Proof. We note that having at most rst order interactions across slots is equivalent to having a block-diagonal Hessian for every observed component. Such functions were proven to be equivalent to additive functions in Lachapelle et al. (2023). Furthermore, sufficient independence is clearly implied by sufficient nonlinearity as if all columns of the matrix (z) are linearly independent, then blocks[D_if(z)]_{i2B_k} D_{i;i}^2 of(z) will have non-intersecting columns spaces for all k 2 [K] and will thus satisfy suf cient independence (Def. A.9. Consequently, the only thing we need to show is that suf cient nonlinearity (Def. E.5) implies interaction asymmetry (Assm. 3.5) for all equivalent generators (4.1). Assume for a contradiction that sufficient nonlinearity (Def. E.5) did not imply interaction asymmetry (Assm. 3.5) for all equivalent generators (4.1) with 1. This would imply that there exists an equivalent generatorftodenoted definition definition of a slot-wise linear function. $$f = f h (E.10)$$ such that f has at most rst order interaction within some s B_k . In other words, leveraging Lemma A.21, there exist $(i; j^0)$ 2 B_k^2 and az 2 Z s.t. $$0 = D_{i;j}^{2} \circ f(z) = W^{f}(h(z))m^{h}(z;(j;j^{0})); \qquad (E.11)$$ Because W f (h(z)) is assumed to be full rank by sufficient nonlinearity (Def. E.5), then in order for this equation to hold h (z; (j; j o)) must be zero. Note, however, that by constructions defined slot-wise such that $_j$; z_j^0 map to the same slot $_B_k$. By construction, if twoz $_j$; z_j^0 affect the same slot $_B_k$ then $_B^h$ (z; (j; j $_B^0$)), cannot be zero. Thus, we obtain a contradiction. ## F TRANSFORMERS FOR INTERACTION REGULARIZATION Each layer of a Transformer (Vaswani et al., 2017) consist of two main components: an MLP sublayer and an attention mechanism. Notably, in the MLP sub-layer, MLPs are applied separately to each slot or pixel query and their outputs are then concatenated. Further, additional layer normalization operations (Ba, 2016) are typically used in Transformers but are also separately applied to each slot or pixel query. Thus, the only opportunity for interaction between slots in a Transformer occurs through the attention mechanism. Our focus in this work is on the cross-attention mechanism, opposed to the alternative self-attention. As noted in § 5, cross-attention takes the form: $$K = W^{K} [\rlap{/}{z}_{B_{k}}]_{k2[K]}; \qquad V = W^{V} [\rlap{/}{z}_{B_{k}}]_{k2[K]}; \qquad Q = W^{Q} [o_{d}]_{d2[d_{x}]}; \quad (F.1)$$ $$A_{d;k} = \frac{\exp Q_{:;d}^{>}K_{:;k}}{P_{12[K]} \exp Q_{:;d}^{>}K_{:;l}}; \quad x_{d} = A_{d;:}V^{>}; \quad \bigstar_{d} = (x_{d}):$$ (F.2) Additional Details. In Eq. (F.2), we do not include the scaling facttor of factor t # F.1 ACOBIAN OF CROSSATTENTION MECHANISM $$\frac{@k_d}{@(k_{B_m})_r} = @(x) \frac{@(x_d)_i}{@(k_{B_m})_r}$$ (F.3) where we here and from now on use the convention that we sum over every index that appears only on one side. To evaluate this we decompose the terms $$(x_d)_i = A_{d;k} V_{i;k} = A_{d;k} W_{i;i}^{\ \ \ } (\mathcal{Z}_{B_k})_i :$$ (F.4) We setM $_{d::} = o_d^> (W^Q)^> W^K$ so that $$Q_{:d}^{>}K_{::k} = M_{d:i}(\mathbb{Z}_{B_{k}})_{i}$$: (F.5) This implies that $$\frac{@}{@(\mathbb{Z}_{B_m})_i} \exp(Q_{:;d}^{>} K_{:;k}) = M_{d;i} \exp(Q_{:;d}^{>} K_{:;k})$$ (F.6) where is the Kronecker-Delta (and here no summation &ver d is done). This implies using the product rule and the chain rule that $$\frac{@A_{d;k}}{@(\rlap/2_{B_m})_i} = M_{d;i} _{k;m} A_{d;k} M_{d;i} A_{d;k} A_{d;m} :$$ (F.7) Plugging this together we get From this, we can see that $\Re f_{d;m} = 0$, then the partial derivative, will indeed be zero as A $_{d;m}$ scales both terms in the last line of Eq. (F.8). #### F.2 Interaction Regularizer Based on Appx. F.1, we propose to regularize the interaction in a Transformer by minimizing the sum of all pairwise product $A_{l;j}$ $A_{l;k}$, wherej $A_{l;k}$ $A_{l;k}$ wherej $A_{l;k}$ $A_{l;$ $$L_{interact} := E \begin{pmatrix} X & X & X \\ & & & \\ & 12[d_x]j2[K]^{k=j+1} \end{pmatrix} A_{l;j} (\cancel{z}) A_{l;k} (\cancel{z})$$ (F.9) where A_{I;k} (2) is used
to indicate the input dependence of attention weights on latehts a non-negative quantity which will be zero if and only if a matrix has at most one non-zero for each row (Brady et al., 2023). Code to compute interact for a batch of attention matrices can be seen in Fig. 4. We note that when using multiple attention heads, we rst sum the attention matrices over all heads to ensure consistent pixel assignments across different heads. When using multiple layers, we also sum the attention matrices over each layer, for the same reason.L_{interact} is then computed on the resulting attention matrix. Regularizing Higher Order Interactions. We note that while we motivat $\mathbf{e}_{interact}$ as a regularizer for \mathbf{f}^t order interactions, we do not explicitly address regularizing for higher order interactions, i.e., fon 2. We conjecture there Figure 4: PyTorch code to computenteract is a relationship between regularizing tender and higher order interactions but that it is less direct than the ft order case. We leave it to future work to explore these connections further, as well as alternative, computationally ef cient regularizers which can more directly penalize higher order interactions. Computational Ef ciency. We note that regularizing with interact adds minimal additional computational overhead since attention weights are already computed at each forward pass through the model, and, moreover can be easily optimized using gradient descent. This is in contrast to Brady et al. (2023) which required computing the Jacobian of the defoateach forward pass and then optimizing it using gradient descent. This results in second-order optimization which is computationally intractable for high-dimensional data such as images (Brady et al., 2023). ### G EXTENDED RELATED WORK ### G.1 THEORY Relationship Between Principle 3.1 and Other Principles. The principle of interaction asymmetry, "parts of the same concept have more complex interactions, than parts of different concepts" (3.1), is intuitively similar to several prior principles explored for learning concepts. For example, the prior works of Baldwin et al. (2008); Reynolds et al. (2007); Schmidhuber (1990); Zacks et al. (2011) on disentangling events/sub-task (e.g., "making coffee", "driving to work"), Greff et al. (2015); Hyvarinen and Perkio (2006) on disentangling objects in an image, and Schmidhuber (1992) are all essentially based on the principle that parts of same concernmentually predictable than parts of different concepts. Similarly, Hochreiter and Schmidhuber (1999); Jiang et al. (2022) implicitly use the idea that parts of same concept race compressible an different concepts. Research on networks, use the idea that nodes from the same "community" interact more strongly than nodes from different communities (Fortunato and Hric, 2016), which also resembles ideas from clustering that points from the same cluster have higher mutual information than from different clusters (Kraskov et al., 2005). This network-based framework was applied by Schapiro et al. (2013) as a model for grouping temporal events. Lastly, Greff et al. (2020) propose that objects do not interact much with their surroundings but internally have a strong structure. While these different ideas are intuitively similar to interaction asymmetry, they take on different formalizations. Moreover, these principles are generally used as high-level heuristics for designing a learning algorithm, and their theoretical implications for disentanglement and compositional generalization are not explored. Connection with Information Bottleneck Principle. Another notable principle for learning representations is the Information Bottleneck principle (Alemi et al., 2016; Tishby et al., 2000) which has also been applied in the context of learning disentangled representations (Meo et al., 2024). In the context of disentanglement, this principle suggest learning a representation which tries to balance a trade-off between minimizing the mutual information between a latent vacator and ensuring that contains sufficient information to predict, i.e., reconstruct From a theoretical standpoint, the Information Bottleneck principle differs from the principle of interaction asymmetry as dened in Asm. 3.5. Specifically, Asm. 3.5 is an assumption orgenerator and does not place assumptions on the latent distribution consequently, our theory describes a setting in which disentanglement can be achieved without explicitly enforcing any additional properties orp_z. We note, however, that despite this key difference, our theory does yield insights which resemble the Information Bottleneck principle. Specifically, as noted in § 5, our theory suggest that if a model uses an inferred latent dimension and information information. betweenx and unnecessary latent dimensions should be minimized, while ensuring data be reconstructed from. On the Relationship Between Disentanglement and Compositional Generalization A key premise motivating our theoretical study of compositional generalization is that, from a theoretical perspective, disentanglement does not directly imply compositional generalization. Speci cally, this would require that equality betweenandf on Z_{SUDD} (disentanglement Defn. 2.1) implies that these functions were also equal on all of (compositional generalization Defn. 2.2). As noted by Lachapelle et al. (2023); Wiedemer et al. (2024a), this will not be true for arbitrary functions and necessitates restrictions on the form of of on all of Z. While several works have provided empirical corroboration of this theoretical statement for concepts of objects (Wiedemer et al., 2024a) and obiect attributes (Montero et al., 2021; 2022b; Schott et al., 2022), prior works in disentanglement have suggested that disentanglement can in some cases enable compositional generalization (Esmaeili et al., 2018; Higgins et al., 2017; Mahon et al., 2023). We hypothesize that the compositional generalization abilities observed in the latter works are a consequence of only leaving a small number of novel combinations out of the training set, such that compositional generalization becomes much easier compared to the more restricted training domains explored in (Montero et al., 2021; Wiedemer et al., 2024a). With this being said, it is possible that through hidden inductive biases in a model, disentanglement can directly lead to compositional generalization, which would not be at odds with our theoretical observation. Polynomial Decoders.As noted in § 4.2, Asm. 3.5 implies that the cross-partial derivatives of the generator consisting of components from different slots will be nite-degree polynomials. This partially resembles the polynomial constraints on Ahuja et al. (2023) for disentanglement. Importantly, however, Ahuja et al. (2023) assume that the entire function is a nite-degree polynomial. In contrast, Asm. 3.5 constrains the form of cross-partial derivatives crossslots to be polynomial, butloes notconstrain the form of cross-partial derivatives within the same slot. In other words, Asm. 3.5 only constrains the interactions across slots, while Ahuja et al. (2023) constrains all possible interactions. This is an important distinction since the former gives rise to much more exible generators than the latter (see Eq. (4.2)). ### G.2 METHOD AND EXPERIMENTS VAE Losses in Object-Centric Models. Prior work in Wang et al. (2023) also apply a VAE loss to an unsupervised object-centric learning setting. However, while we minimizedirectly on inferred slots in given by our Transformer encoder, Wang et al. (2023) minimize on an intermediate representation which is then further processed to piefurthermore, the focus of Wang et al. (2023) is on scene generation an not penalizing the capacity Additionally, Kori et al. (2024) explore a loss for object-centric learning resembling a VAE loss, though their aim is to enforce a certain probabilistic structure on implied by their theoretical disentanglement result, opposed to penalize latent capacity. Inductive Bias Through Explicit Supervision. Recently, many works have shown remarkable empirical success in disentangling (Kirillov et al., 2023; Ravi et al., 2024) and composing (Brooks et al., 2023; Ramesh et al., 2021; 2022; Ruiz et al., 2023; Saharia et al., 2022) visual concepts in images on web-scale data. These works achieve this through explicit supervision via segmentation masks or natural language descriptions of each concept, opposed to constraints on the generative process in Eq. (2.1). Notably, however, many species in human's evolutionary lineage disentangle and compose concepts in sensory data distinct supervision like natural language (Behrens et al., 2018; LeCun, 2022; Summer eld, 2022; Tolman, 1948). This suggest the existence of a self-supervised coding mechanism for disentanglement and compositional generalization that is still lacking in current machine learning models. The present work aims to make theoretical and empirical progress towards such a mechanism. Relation Between a Transformer Regularized with Linteract and Prior Works. Goyal et al. (2021) proposed RIMs which is a Transformer-style architecture aimed at enforcing a "modular" structure. Contrary to our work, Goyal et al. (2021) do not regularize for modularity, but posit that it may emerge from "competition" induced by an attention mechanism. Similarly, Lamb et al. (2021) propose an alternative Transformer architecture aimed at enforcing modularity, which also tries to enforce competition using a mechanism similar to Goyal et al. (2021). More recently, Vani et al. (2024) propose a novel Transformer component which is aimed at yielding disentanglement by processing a Transformer embedding into different slots using separate attention heads for each slot. While these works are similar to ours in that they aim to learn disentangled representations of concepts using a Transformer-style architecture, they are based on
architectural changes to a Transformer, whereas we use a standard cross-attention Transformer decoder and regularize it explicitly towards having a "modular" structure usin \$________\integrates interact ### H EXTENDED DISCUSSION #### H.1 THEORETICAL ASSUMPTIONS Non-Homogeneous InteractionsOne potential limitation of our formulation of interaction asymmetry (Asm. 3.5) is that the order of interaction, across slots, must be the same for all latent vectors $z \in Z$ and for any two slots, z_{B_i} ; z_{B_i} . This assumption will potentially be violated in practice. For example, for concepts of visual objects, it is likely that within each image, only a few objects, i.e., slots, interact at a time (e.g., see Fig. 1), such that different slots will have different orders of interaction withinz. We conjecture that our theory can be extended to handle such non-homogeneous interactions, however, we leave this for future work. Furthermore, we note that despite this potential mismatch between theory and practice, our method still achieved robust object-disentanglement on data in which the order of interaction appears to be non-homogeneous, e.g., CLEVR6. Requirements on the Observed DimensionWe note that an implication of suf cient independence for n > 0 (wheren is the order of interaction across slots) is that the observed dimedsionust be greater than the latent dimension Moreover, the required will scale as a function of the number of latent slots, the slot dimension $B_k j$, and the order of interaction across slots. For example, for functions with at most brder interactions across slots, ensuring that the rank condition in sufficient independence (Defn. A.9) is met requires that $\frac{|B_k|(|B_k|+1)|}{2} + d_z$. Furthermore, for functions with at most order interactions, satisfying this condition (Defn. 4.2) requires $\frac{|B_k|(|B_k|+1)|}{2} + \frac{|B_k|(|B_k|+1)|}{6} + \frac{|B_k|(|B_k|+1)|}{2} + d_z$. We note that we are interested in modelling high-dimensional sensory data, such as images, in which the observed dimension be much greater than the latent dimension Thus, for practical cases of interest, we expect these requirements only to be met. Concepts Potentially not Captured by Interaction Asymmetry. For certain concepts, it is not obvious if interaction asymmetry will always hold. For example, consider object attributes such as the x-y-position of an object, which can be modelled by one-dimensional slots. For such concepts, the interaction within a slot, i.e., the interaction of each latent component w.r.t. itself, should, intuitively, be a simple function. It is thus not obvious if the interaction within each slot will necessarily be more complex than interactions across slots, such that y not satisfy interaction asymmetry (Asm. 3.5). Additionally, it is not immediately clear how interaction asymmetry can be applied to more abstract concepts which are not directly grounded in sensory data such as the concept of "democracy" or the concept of a "function" in mathematics. Restrictiveness of the Aligned-Connected AssumptionOur theoretical results in § 4 leverage the assumption that the latent spacepp is aligned-connected Defn. A.16. To assess whether the aligned-connectedness assumption is realistic, we believe it is helpful to look at concrete mathematical examples of supports that satisfy it. For example, the whole spaces aligned-connected. More generally, any convex set is aligned-connected. This include the hypeoclipe, any closed ball, and much more. Some aligned-connected sets are not convex. For example, the "L-shaped" set[0; 2]² n [1; 2]² is aligned-connected but not convex. This last example is useful to model concrete settings where some combinations of latent factors are not observed at training time. This corresponds to the running example of Lachapelle et al. (2023) consisting of two balls moving up and down where the con gurations where both balls appear in the top half of the image are never observed. ### H.2 METHOD AND EXPERIMENTS Self-Attention in Transformer Decoders. Our Transformer decoder in § 5 resembles the models from Jaegle et al. (2022); Sajjadi et al. (2022a;b) which only rely on a cross-attention mechanism. However, other works in object-centric learning leverage Transformer decoders which also include a self-attention mechanism between queries at each layer (Seitzer et al., 2023; Singh et al., 2022a). When reconstructing individual pixels, e.g., on Sprites and CLEVR6 in § 6, applying self-attention between queries will not scale to high-dimensional images since it requires computingtention weights, where is the number of pixels. However, when reconstructing pe patchesas was done in our experiments on CLEVRTex, using self-attention is scalable since we have a signi cantly smaller number of queries, e.g.6 16 on CLEVRTex. While we found that we could achieve strong disentanglement using only a cross-attention mechanism on CLEVRTex, it is possible that using self-attention could be advantageous when reconstructing image patches in even more complex settings. For such models, however, it is not immediately obvious how to regularize the decoder to match our theory since adding self-attention between pixels will introduce additional interactions between slots. We leave it for future work to investigate if our current training objective will still yield robust object-disentanglement for such a model and, furthermore, if such a model can be regularized to be in line with our theory. Trade-Offs with Slot Attention. On Sprites and CLEVR6 (§ 6) as well as CLEVRTex, we found that our regularized Transformer autoencoder achieved superior disentanglement, based on our metrics, to an unregularized variant with a Slot Attention encoder. Despite this, we emphasize that our goal is not to propose our method as superior to Slot Attention-based methods. Instead, we highlight that both methods offer different trade-offs. For example, training with our proposed loss (Eq. (5.3)) enables using a general Transformer encoder, thus potentially allowing our model to be applied more generally at scale compared to encoders with more explicit object-centric priors such as Slot Attention. This, however, comes at the cost of training with regularizers which require hyperparameter selection. While our experiments did not require extensive hyperparameter tuning, it is possible that certain datasets will exhibit increased sensitivity to these hyperparameters. Additionally, our interaction regularizer is based on decoders which only use a cross-attention mechanism. While this architecture yielded strong disentanglement in our experiments, Slot Attention encoders have been shown to enable disentanglement using more expressive decoders which also use self-attention (Seitzer et al., 2023; Singh et al., 2022a). Latent Prediction-Based Disentanglement MetricsOne potential issue with our Jacobian-based disentanglement metrics is that they may fail to measure whether multiple slots actually encode the same object. Speci cally, if two slots affect the same object in pixel space, this could be due to both slots encoding the object in latent space, or it could be due to slot interactions modelled by the decoder. De nitively resolving this potential ambiguity would require measuring the information encoded in each slot directly in latent space. Along this line, prior works have considered latent prediction metrics in which the R2 score is computed from the predictions of a model t between each inferred slot and the best matching ground-truth slot (Dittadi et al., 2022; Jiang et al., 2023; Locatello et al., 2020b). While these metrics indicate if an inferred slot contains all information for a given object, they are insuf cient for resolving the possible ambiguity of our current metrics. This is because these metrics do not indicate if an inferred slot contains information rabouthan one object. This issue with latent prediction metrics was pointed out by Brady et al. (2023) who aimed to address it by measuring the R2 score from an additional predictor t to the second-best matching ground-truth slot. We found this metric to yield inconsistent results on CLEVR6, which we hypothesize was due to issues when determining the second-best matching ground-truth slot. This lead us to focus on decoder-based metrics which are more straightforward to compute. We leave it for future work to formulate a latent prediction metric which overcomes the aforementioned issues of prior works. On Hyperparameter Selection. One potential limitation of using our regularized loss (Eq. (5.3)) in terms of scalability is that hyperparameter selection is required. In our experiments on Sprites and CLEVR6 (§ 6), extensive hyperparameter tuning was not required. Furthermore, we found the values of = 0:05, = 0:05 to work robustly across both datasets, though the reconstruction loss was weighted by a factor of 5 on Sprites and 1 on CLEVR6. This indicates some level of robustness of these hyperparameters across datasets which contain varying complexity of interaction. On CLEVRTex (Appx. I), we found that these exact hyperparameter values did not transfer directly and a small amount of tuning was required to arrive at our values (.1 for all terms in the loss). We hypothesize that this is because, in our current implementation of our loss, the magnitude of the reconstruction loss scales with the dimension of the data. To this end, because the data dimension increased signi cantly on CLEVRTex (256 encoded image patches, each with 768 dimensions), the contribution of the reconstruction term to the loss needed to be slightly diminished. With all this being said, it is possible that more complex dataset could require more extensive hyperparameter tuning, however, we leave this for future work to investigate. Applying our Method to Other Types of Concepts. One important direction for future work is to apply our method to data consisting of different types of
concepts such as object-attributes or temporal events. For object-attributes, our same empirical framework can be applied, but with the additional caveat that the Transformer is permutation invariant, while object-attributes do not posses the same permutation invariance as objects. To this end, methods such as adding a positional encoding to each slot, must be used to address this. Additionally, as noted by Gopalakrishnan et al. (2023); Kipf et al. (2019), the problem of disentangling temporal events in image sequences can also be modelled naturally using a slot-based framework. In this case, the "tokens" that a slot encoder, e.g., a Transformer or Slot Attention, operates on are not pixels processed by a CNN, as in our current model. Instead, they would correspond to individual images in the sequence which are each mapped into representation "tokens". These tokens can then be mapped into slots by, e.g., a Transformer, and then decoded back to output space, where the queries for the Transformer decoder also would not correspond to individual pixels but instead to images in the temporal sequence. Limitations of L_{disent}. One potential issue with rec is that for real-world data, reconstructing every pixel in an image exactly, may not be necessary and could lead to overly prioritizing tasks irrelevant information in such as the background (Seitzer et al., 2023). It would thus be interesting to see if our theory and method could be extended to a self-supervised setting, as in Seitzer et al. (2023), in which exact invertibility is not strictly necessary. Regarding, we rst note that in addition to a model having inferred latent dimensionally equal to ground-truth dimensions, our theory also requires that the inferred slot dimensions equals the ground-truth slot dimensions. While L_{KI} explicitly regularizes for the former, it does not directly regularize for the latter. More speci cally, L_{KL} could, in principle, penalize latent capacity by putting information from all, e.g., objects, in one slot (assuming the slot size is large enough), opposed to distributing this information over components from different slots. Despite this, we found that this failure mode did not occur in our experiments. Another potential issue with is that it aims to enforce statistically independent latents which could lead to sub-optimal solutions if the ground-truth latents exhibit strong statistical dependencies. Lastly, regarding a shortcoming of this regularizer is that, while it directly regularizes ^{at} order interactions (Appx. F.1), its connection to regularizing higher order interactions is not as direct. Future work should thus aim to investigate this point further both theoretically and empirically. #### H.3 ENFORCING THEORETICAL CRITERIA OUT-OF-DOMAIN. As noted in § 5, enforcing (i) invertibility and (ii) at most^h order interactions across slots \mathfrak{S}_n out-of-domain, i.e., globally on all $\overline{\mathfrak{A}}$, poses distinct practical challenges. We now discuss this in detail. To this end, we rst discuss enforcing (ii) globally $\overline{\mathfrak{A}}$ n Restricting Interactions Globally. The easiest way to enforce that has at most the order interactions across slots on is to directly parameterize to match the form of such functions for some n (Eq. (4.2)). This is, for example, how at most order interactions were enforced in Lachapelle et al. (2023), i.e., by de ning to be an additive function (Defn. E.4) on all of. We found for higher order interactions, parameterizin directly to match the form of Eq. (4.2) leads to training difficulties on toy data. Moreover, even if we could easily train such a model, this explicit form would pose an overly restrictive inductive bias when scaling to more realistic data. This motivated us to consider how to regularize for (ii) opposed to enforce it explicitly. The issue with this approach is that we only regularize the derivatives of fin-domain on \mathbb{Z}_{supp} Yet, enforcing structure on the derivatives off on \mathbb{Z}_{supp} does not imply that same structure will be enforced on all of As noted in § 4.2, however, by knowing the behavior of the derivatives of \mathbb{Z}_{supp} we can infer their behavior everywhere of \mathbb{Z} . Thus, in principle, it should be possible to propagate the correct derivative structure learned by locally on \mathbb{Z}_{supp} to all of \mathbb{Z} . Practically, however, it is not obvious how this can be done in an effective manner. Thus, properly addressing this challenge would require further methodological and empirical contributions, which are not within the scope of the present work. Enforcing Invertibility Globally. Additionally, even iff satis es (ii) globally, we still must enforce (i) invertibility, globally. As noted in § 5, it is not feasible to de rie such that it is an invertible function from Z to X by construction. This necessitated parameterizing the inverse with an encoder which was trained to invert the ecoder via a reconstruction loss. Assuming that a decoder satis es (ii) globally, and is invertible of supposition in specific process. invertible on all ofZ and thus generalize compositionally. The issue, however, is that our encoder is only trained to invert on Z supp but not on unseen data from the rest of Consequently, even if f generalizes compositionally, an encode will not invert f out-of-domain, and can thus yield an arbitrary representation such data. This "encoder-decoder inconsistency" was pointed out by Wiedemer et al. (2024a), which studied compositional generalization for decoders with at most 0th and ft order interactions. They proposed a loss which addresses this problem by rst generating out-of-domain samples using and then training the encode to invert on this "imagined" data. The implementation of this loss in Wiedemer et al. (2024a), decode positional consistency was shown to be ineffective for images consisting of more than 2 objects, however (Wiedemer et al., 2024a). Consequently, scaling this loss, or exploring alternative losses for encoder-decoder consistency, remain open research question that require a deeper investigation to properly address. For these reasons, the empirical aspects of this work focus on enforcing (i) and (ii) in-domain to achieve disentanglement a_{supp} (Thm. 4.3). As highlighted above, however, our theory elucidates the core problems that need to be solved empirically to also achieve compositional generalization, thus giving a clear direction for future work. ### I EXPERIMENTS ON CLEVRTEX In this section, we conduct additional experiments on the CLEVRTex dataset (Karazija et al., 2021). This dataset constitutes a signi cant step up in complexity from CLEVR6 and has been shown to be highly challenging for existing object-centric models (Biza et al., 2023; Karazija et al., 2021). We outline our experimental setup and results below. #### I.1 EXPERIMENTAL SETUP Data. Each image in CLEVRTex consist of between 3 and 10 objects with rich textures, set against complex backgrounds (see Fig. 7 for example images). The dataset consists of 50,000 images. We use 40,000 images for training and 5,000 for validation and testing, respectively. Models. We train 4 models on this data. The rst model is our regularized Transformer autoencoder from § 5, for which we weight each term in the loss in Eq. (5.3) by a hyperparameter value of The second model is an unregularized Transformer autoencoder, and the third model is an unregularized autoencoder which uses a Slot Attention encoder with both a Transformer and slot-wise MLP decoder. We train all models using the same setup as in § 6, however, instead of reconstructing the original images, we reconstruct a representation of each image given by a Vision Transformer (ViT) (Dosovitskiy et al., 2021), which is pretrained using the DINO method (Caron et al., 2021). This approach, deemed DINOSAUR (Seitzer et al., 2023), was shown to help object-centric models scale to datasets with increased visual complexity. We thus replace the CNN backbone used in our experiments on Sprites and CLEVR6 with a pretrained ViT which operates of patches of the original images. These patches are mapped to features which are then processed by either a Transformer or Slot Attention encoder. For all models, we use 11 slots with a slot dimension of 64. Training and Evaluation Details We train all models across 3 random seeds using batches of 32. In all cases, we use the Adam optimizer (Kingma and Ba, 2015) with a learning rate of 4 which we warm-up for the rst 10,000 training iterations and then decay by a factor of 10 throughout training. We also warm-up the value offor the rst 25,000 training iterations. We report the J-ARI and JIS for each model after training for 300,000 iterations. To compute these scores, we bilinearly interpolate our normalized Jacobian maps to match the shape of the original image, since we are reconstructing image patches. When computing J-ARI and JIS for the slot-wise MLP decoder, we rely on the alpha-mask of the decoder opposed to its Jacobian due to computational issues when computing the Jacobian for this model. #### I.2 RESULTS We report our results in Tab. 2. As we can see, similar to on Sprites and CLEVR6, our regularized Transformer achieves strong object-disentanglement, outperforming both unregularized baseline methods in terms of J-ARI. Our model also a achieve superior JIS compared to all baseline models with the exception being the slot-wise MLP decoder. This is not unexpected, however, as this decoder explicitly constrains interactions in the same way as the Spatial Broadcast Decdoer used Table 2:Empirical Results. We show the mean std. dev. for J-ARI and JIS (in %) over 3 seeds for different choices of encoders and weights of the loss terms in Eq. (5.3) on CLEVRTex. | Encoder | Decoder | Loss | J-ARI(") | JIS (") | |----------------|---------------|---------------------|-----------
----------| | Transformer | Transformer | = 0; = 0 | 81:4 3:7 | 50.9 2:8 | | Slot Attention | Transformer | = 0; = 0 | 94:2 0:2 | 54:4 0:3 | | Slot Attention | Slot-wise MLP | = 0; = 0 | 92:8 0:2 | 84:3 0:4 | | Transformer | Transformer | = 0:1; = 0:1 (Ours) | 95:9 0:06 | 65:4 0:6 | in other experiments. We also visually corroborate these results by plotting normalized slot-wise Jacobians for each model which can be seen in Fig. 7. ## J EXPERIMENTAL DETAILS ### J.1 DATA, MODEL, AND TRAINING DETAILS Data. The Sprites dataset used in § 6 was generated using the Spriteworld renderer (Watters et al., 2019a) and consist of 100,000 images of \$\frac{4}{2}e 64 3 each with between 2 and 4 objects. The CLEVR6 dataset (Johnson et al., 2017; Locatello et al., 2020b) consist of 53,483 images of size 128 3 each with between 2 and 6 objects. For Sprites, we use 5,000 images for validation, 5,000 for testing, and the rest for training, while for CLEVR6, we use 2,000 images for validation and 2,000 for testing. Encoders. All models use encoders which rst process images using the same CNN of Locatello et al. (2020b). When using a Transformer encoder, these CNN features are fed to a 5 layer Transformer which uses both self- and cross-attention with 4 attention heads. When using a Slot Attention encoder, we use Slot Attention iterations, and use the improved implicit differentiation proposed in Chang et al. (2022). Both the Transformer and Slot Attention encoders use learned query vectors opposed to randomly sample queries, which was shown by Biza et al. (2023) to yield improved performance for Slot Attention. On Sprites, all models tisetots, each with dimensions, while on CLEVR6, all models use slots, each with dimensions. When using a VAE loss, this slot dimension doubles since we must model the mean and variance of each latent dimension. Decoders.When using a Spatial Broadcast decoder (Watters et al., 2019b), we use the same architecture as (Locatello et al., 2020b) across all experiments, using a channel dimer&2dordfoth datasets. When using a Transformer decoder, we rst upscale slots to 516 dimensions by processing them separately using a 2 layer MLP, with a hidden dimension of 2064. We then apply a 2 layer cross-attention Transformer to these features which uses 12 attention heads. To obtain the vectors o_l in Eq. (5.1), we apply a 2D positional encoding to each pixel coordinate. This vector is then mapped by a 2 layer MLP with a hidden dimension of 360 to yieldwhich has dimension 180. The function in Eq. (5.2) is implemented by a 3 layer MLP with a hidden dimension of 180, which outputs a 3 dimensional pixel for each pixel. We additionally note that this architecture does not rely on auto-regressive masking as in Singh et al. (2022a). Training Details. We train all models on Spriteworld across 3 random seeds using batches of 64 for 500,000 iterations. For CLEVR6, we use batches of 32 and train for 400,000 iterations. In all cases, we use the Adam optimizer (Kingma and Ba, 2015) with a learning rate of 0^4 which we warm-up for the rst 30,000 training iterations and then decay by a factor of 10 throughout training. When training with L_{KL} and $L_{interact}$ we use hyperparameter weights of 0.05, which we found to work well across both datasets. We found much larger values could lead to more training instability and, in some cases, insufficient optimization bfec, while smaller values often did not lead to sufficient optimization of the regularizers. We warm-up the value of the rst 30,000 training iterations. Additionally, when training with or , we drop the value of the learning rate after 30,000 training iterations to 1^4 , which improved training stability. Lastly, on Sprites, we weighted by a factor of 5, when training with or . #### J.2 METRICS AND EVALUATION Computing ARI with Attention Scores. To compute the Adjusted Rand Index (ARI), each pixel must first be assigned to a unique model slot. To this end, prior works typically choose the slot with the largest attention score from either Slot Attention or the alpha mask of a Spatial Broadcast decoder (Locatello et al., 2020b; Seitzer et al., 2023). This approach can be problematic since the attention scores used are model-dependent, making a direct comparison of ARI across models challenging. Further, the relationship between attention scores and the pixels encoded in a model slot is somewhat indirect. As noted in § 6, we consider an alternative and compute the ARI using the Jacobian of a decoder (J-ARI). Specifically, we assign a pixel l to the slot with the largest L_1 norm for the slot-wise Jacobian $D_{B_k} \hat{f}_l(\hat{z})$. This can be done for any autoencoder and provides a more principled metric for object disentanglement since a decoder's Jacobian directly describes the pixels each slot encodes (assuming \hat{f} , \hat{g} invert each other). **Evaluation.** We select models for testing which had the highest average values for J-ARI and JIS (each of which take values from 0 to 1) on the validation set. These models were then evaluated on the test set yielding the scores reported in Tab. 1. #### J.3 ADDITIONAL FIGURES In this subsection, we include 3 additional experimental figures. In Fig. 5, we compare the value of $L_{\rm interact}$ throughout training for a model with a Transformer encoder and decoder, trained using a our regularized loss Eq. (5.3), the VAE loss and a standard autoencoder loss on both Sprites and CLEVR6. We plot values over 3 random seeds; the shaded regions in the plots indicate one standard deviation from the mean. We find on Sprites (A) and CLEVR6 (B) that the VAE loss achieves much lower $L_{\rm interact}$ than the unregularized model. This provides a possible explanation for the solid object disentanglement often achieved by the VAE loss in Tab. 1. We also observe, however, that using $\alpha > 0$ leads to much lower values for $L_{\rm interact}$ compared to the implicit regularization from the VAE loss. In Fig. 6, we compare slot-wise Jacobians for our model versus baseline models across both Sprites (A) and CLEVR6 (B). To create these plots, we normalize the partial derivatives across slots such that they only take values between 0 and 1. The colors associated with partial derivative values can be interpreted using the color bar at the bottom of (A). We only compute partial derivatives on the foreground pixels and set the derivatives of background pixels w.r.t each slot to 0. We see that when regularizing interactions via our model, slots rarely affect the same pixels (i.e., interact) unnecessarily, while for unregularized models, multiple slots often affect the same pixels even when no interactions should occur, e.g., for images in Sprites (A). In Fig. 7, we compare slot-wise Jacobians on CLEVRTex as was done in Fig. 6 and also observe here that the regularized Transformer achieves cleaner object decompositions compared to baseline models. In Fig. 8, we compare decoder attention maps w.r.t. each slot for our model versus baseline models from § 6, which also use a Transformer decoder. These maps, which indicate the slots each pixel attends to, are plotted for both Sprites (A) and CLEVR6 (B). We compute these values by taking the mean attention weight over decoder layers. Similar to Fig. 6, we see that, in our model, pixels rarely unnecessarily attend to multiple slots. On the other hand, for unregularized models, pixels often attend to multiple slots in cases where no interactions between slots should occur. Figure 5: **Analysis of** L_{interact} when using a VAE loss. We plot L_{interact} for the first 400,000 training iterations for a Transformer autoencoder trained without regularization ($\alpha=0,\beta=0$), with a VAE loss which does not explicitly optimize L_{interact} ($\alpha=0,\beta=0.05$), and with the loss in Eq. (5.3) which regularizes both losses ($\alpha=0.05,\beta=0.05$). Figure 6: **Normalized Slot-wise Jacobians.** We plot the Jacobians w.r.t. each slot (columns) for 5 random test images (rows) from (**A**) Sprites and (**B**) CLEVR6 for our regularized Transformer model and the baseline models used in our experiments in § 6. Figure 7: **Normalized Slot-wise Jacobians (CLEVRTex).** We plot the Jacobians w.r.t. each slot (columns) for 5 random test images (rows) from CLEVRTex for our regularized Transformer model and the baseline models used in our experiments in Appx. I. Figure 8: **Slot-wise Transformer Decoder Attention Maps.** We plot decoder attention maps w.r.t. each slot (columns) for 5 random test images (rows) from (A) Sprites and (B) CLEVR6 for our regularized Transformer decoder and the baseline models in § 6 which also use a Transformer decoder.