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Abstract

Pre-trained Language Models (PLMs) have001
shown remarkable performance when fine-002
tuned for downstream text processing tasks.003
Recently, researchers have effectively guided004
PLMs to perform specific tasks by optimizing005
input prompts (prompt optimization) or adjust-006
ing a small number of model parameters (ef-007
ficient tuning). In this study, we explore the008
impact of altering the input text of the original009
task while fine-tuning language models with010
these recent prompt optimization and efficient011
tuning methods. To most effectively rewrite012
the input text, we apply a learning objective013
based on Maximum-Marginal Likelihood esti-014
mation in a few-shot setting. Experimenting015
with seven few-shot text classification datasets,016
we show that enriching training examples with017
the input text’s paraphrases at train and test018
time significantly enhances the performance of019
recent prompt optimization and efficient tuning020
techniques.021

1 Introduction022

Multiple Pre-trained Language Models (PLMs),023

such as BERT (Devlin et al., 2019), RoBERTa (Liu024

et al., 2019), T5 (Raffel et al., 2019), and025

GPT2 (Radford et al., 2019), have demonstrated026

remarkable performance when fine-tuned for down-027

stream text processing tasks. PLM variants with028

less than 1 billion parameters are easier to train end-029

to-end with commodity hardware. However, very030

recent PLMs have been trained with a few hundred031

billion parameters, including PaLM-2 (540B)(Anil032

et al., 2023), GPT3 (175B)(Brown et al., 2020a),033

OPT (175B)(Zhang et al., 2022a), or Llama-2034

(70B)(Touvron et al., 2023). Training all param-035

eters of these models end-to-end is not straight-036

forward unless done with a dedicated cluster of037

specialized hardware.038

In response, NLP research have developed ef-039

fective techniques to control or alter the behavior040

of PLMs by updating the input context through 041

prompt optimization (Liu et al., 2021a) or adapt- 042

ing a few additional parameters within the network 043

itself (Hu et al., 2021). However, current PLM 044

control techniques have not considered altering the 045

original input text to improve the performance of 046

the model. Here, we investigate this idea by train- 047

ing a secondary smaller PLM to paraphrase the 048

original input at train and test time, thus augment- 049

ing the existing data and improving model perfor- 050

mance. 051

Our inspiration comes from interactions with 052

young children. Determining what a child knows 053

is challenging because they can be sensitive to 054

the wording of the question (Donaldson, 1978). 055

Adults are also influenced by different wordings 056

of a question. For example, opinion polling has 057

been found to be sensitive to the wording of ques- 058

tions (Broughton, 1995). Just like we rephrase 059

questions for humans, we should consider rephras- 060

ing input text while querying a PLM. For instance, 061

while classifying the topic of a sentence, phrases 062

related to time may be irrelevant and could be re- 063

moved to simplify the modeling problem. Slight 064

changes to wording could result in the model pro- 065

ducing a correct prediction. 066

We explore the integration of paraphrased input 067

texts during both the training and testing phases. 068

At training time, augmenting data through para- 069

phrase generation has been shown to enhance per- 070

formance (Wei and Zou, 2019; Feng et al., 2021; 071

Chen et al., 2021). We broaden the scope of pre- 072

vious investigations by using paraphrase augmen- 073

tation in tandem with recent prompt optimization 074

and efficient tuning methods. At test time, recent 075

works have used ensemble predictions with various 076

optimized prompts and tuned weights (Izmailov 077

et al., 2019; Allingham et al., 2023; Li et al., 2023). 078

We further contribute to this line of work by incor- 079

porating ensemble predictions based on input para- 080

phrases, again in concert with prompt optimization 081
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and efficient tuning techniques.082

We start by pre-training a smaller language083

model on noisy paraphrases generated by a large084

language model (i.e., ChatGPT). Subsequently, we085

explore various training objectives for fine-tuning086

this paraphrase generator with feedback from the087

main task’s language model. Our experiments on088

seven text classification datasets demonstrate that089

incorporating paraphrase augmentation during both090

training and testing phases significantly enhances091

the performance of discrete/soft prompt optimiza-092

tion and efficient tuning techniques. In summary,093

our contributions are as follows:094

• We propose an efficient idea for Rephrasing095

Inputs for Few-shot Fine-tuning of language096

models (RIFF) with prompt optimization and097

efficient tuning methods.098

• We conduct a comprehensive study on vari-099

ous learning objectives for fine-tuning a para-100

phrase generator using feedback from the101

main language model.102

• Our augmentation experiments on seven text103

classification datasets reveal that paraphrase104

generation, when combined with prompt opti-105

mization and adaptation techniques, is a sim-106

ple yet effective approach for tuning language107

models on commodity hardware, closing the108

gap with fine-tuning all the parameters.109

2 Problem Formulation110

We focus on classification problems in Natural Lan-111

guage Understanding (NLU) tasks where we have112

access to a mini-batch of supervised training exam-113

ples Bsupp = {(xi, yi)}Ni=1. Our goal is to update114

the parameter set θlm for a language model by max-115

imizing the probability of the class label yi given116

the input xi: Pθlm(yi|xi).117

Here, we augment Bsupp with semi-supervised118

examples. In particular, we generate M para-119

phrases for each xi using the paraphrase generator120

Pθpar(zi,j |xi), where zi,j represents the j-th para-121

phrase for the input xi. In the optimal case, this122

paraphrase will preserve semantic meaning but vary123

syntactic/lexical form.124

We then incorporate the generated paraphrases125

to create a new mini-batch of examples Bs+p =126

Bsupp ∪ Bpara. Using this augmented mini-batch,127

we then optimize the following objective function: 128
129

Jθlm :=
N∑
i=1

{logPθlm(yi|xi)+ 130

1

M

M∑
j=1

logPθlm(yi|zi,j)} (1) 131

2.1 Baseline LM Tuning Techniques 132

To train the language model using Equation 1, we 133

need to update the parameter set θlm. One approach 134

would involve updating every parameter for the 135

language model to optimize the training objective 136

(referred to here as the "All-Finetuning" or AllTune 137

approach). However, this method can be computa- 138

tionally intensive. As a result, we will explore the 139

impact of paraphrase augmentation along with six 140

other efficient baseline tuning techniques (Houlsby 141

et al., 2019a) and prompt optimization (Liu et al., 142

2021b). 143

We assume that each input x or its paraphrase 144

z is preceded by the task instruction p, which is 145

often specified in previous works. The task in- 146

struction, which we represent using the symbol p 147

to be consist with prompt optimization literature, 148

serves as a parameter-free, gradient-free technique 149

for enhancing the performance of the PLM across 150

various downstream tasks (Brown et al., 2020b; 151

Petroni et al., 2019; Deng et al., 2022). When us- 152

ing only the task instructions, no parameters for the 153

language model are updated (θlm = ∅), and zero- 154

shot predictions are made solely on the evaluation 155

data. We further investigate the following language 156

model tuning techniques while incorporating these 157

task instructions into the input or its paraphrases. 158

Gradient-Search (GS): The GS technique is 159

based on the recent AUTOPROMPT (Shin et al., 160

2020) method, which optimizes task instructions 161

without updating any parameters in the model. The 162

search process begins in the vocabulary space, op- 163

timizing the change in label log-likelihood when 164

replacing token pi in the task instruction with an- 165

other token v from the vocabulary set. In our imple- 166

mentation, each search iteration randomly selects 167

one mini-batch of training examples and then ran- 168

domly selects a token from the task instruction 169

to update. The top k candidate tokens are deter- 170

mined based on the approximate change in label 171

log-likelihood: Topv {wT
v .∇wpi

logPlm(y|p, x)}, 172

where wv is the embedding vector of a candidate 173

token v. The resulting k new task instructions are 174

evaluated again using label log-likelihood on the 175
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same training examples1, and the top-performing176

instruction is retained for the next search iteration.177

Prompt optimization always uses the original input178

x when searching new task prompts (Shin et al.,179

2020; Deng et al., 2022). In our work, we investi-180

gate the impact of incorporating paraphrases of x181

during search.182

Input-Finetuning (InTune): As a straightfor-183

ward and efficient tuning technique, we compare184

to updating only the input embedding table in the185

transformer architecture. This method requires gra-186

dient computation similar to All-Finetuning (All-187

Tune) as well as the GS method.188

LM-Head-Finetuning (HTune): The189

transformer-based pre-trained language models190

consist of a language modeling head, which maps191

the hidden vectors to the token logit for each192

token in the vocabulary. For the HTune technique,193

we solely update the parameters of the language194

modeling head.195

Classifier-Finetuning (ClsTune): In ClsTune,196

we first create a feature representation h(x) for the197

input text x using average pooling of the final hid-198

den vectors in the last layer of the language model.199

Here, we assume that the language model (feature200

extractor) remains fixed, and we then construct a201

two-layer feedforward network with the gelu ac-202

tivation function (Hendrycks and Gimpel, 2016)203

as a classification module on top of the language204

model.205

Softprompt-Tuning (SpTune): In SpTune206

(Lester et al., 2021), L prompt tokens are207

prepended to the task instruction. These L tokens208

are associated with L dedicated prompt embedding209

vectors, extending the sequence of vectors derived210

from the task instruction and input text with an211

additional L trainable feature vectors. During train-212

ing, the original embedding table of the transformer213

model remains fixed, while a new prompt embed-214

ding table is trained by backpropagating the label215

log-likelihood into the prompt embedding table. In216

contrast to InTune, here the prompt vectors do not217

need to map to vocabulary words.218

Low-Rank Adaptation (LoRA): LoRA is one219

of the latest efficient-tuning techniques specifically220

designed for PLMs (Hu et al., 2021). It learns low-221

rank adaptation matrices for the query and value222

weight matrices within the transformer model. For223

1The original AUTOPROMPT evaluates the new candidate
instructions on another training mini-batch. For fewshot clas-
sification, we re-use the drawn training mini-batch to evaluate
the complete new candidate instructions.

a pre-trained weight matrix Wq ∈ Rd×k, LoRA 224

learns the necessary adaptation (i.e., modifica- 225

tion) of the weight matrix for a downstream task 226

through a low-rank decomposition, expressed as 227

Wq + △Wq ≈ Wq + BA. Here, B ∈ Rd×r, 228

A ∈ Rr×k, and the rank r ≤ min(d, k). The 229

adaptation matrices A and B are the only param- 230

eters subject to training, while the original matrix 231

Wq does not receive any gradient updates. Stud- 232

ies have shown that LoRA performs on par with, 233

or better than, AllTune across various PLMs (Hu 234

et al., 2021). 235

All language model tuning techniques we have dis- 236

cussed will use the same input format. For example 237

in the sentiment classification task, we use the fol- 238

lowing format: 239

“<s> {instruction} {text} . It was <mask> . </s>”. 240

Except for ClsTune, all of our tuning techniques 241

maximize the probability of the correct label token 242

in place of the <mask> token. In contrast, ClsTune 243

takes the formatted input and classifies it into one 244

of the predefined class labels. 245

2.2 LM-Friendly Paraphrase Search 246

Given a training example (x, y), our objective is 247

to assign the gold label y to the input x by maxi- 248

mizing the log likelihood logP (y|x). We leverage 249

the fact that when x is misclassified, there may 250

exist paraphrases of the input x that lead to the 251

correct class prediction. These paraphrases should 252

retain the semantic meaning of x while exhibiting 253

syntactic differences, akin to the way we rephrase 254

things when we have been misunderstood. Thus, 255

we generate paraphrases zj based on the input x, 256

that enable the downstream language model to pre- 257

dict the correct label y with greater confidence. 258

Consequently, our data log likelihood is factorized 259

into the following marginalization over the space 260

of paraphrases, where θpar and θlm represent the 261

parameters for the paraphrase generator and the 262

downstream language model, respectively: 263

264

Jθpar := logP (y|x) = logEz∼ θpar [P (y, z|x)] 265

= log
∑
z

Pθpar(z|x)× Pθlm(y|z) (2) 266

To train the paraphrase generator and optimize 267

the objective stated in Equation 2, we explore four 268

distinct learning aspects: (a) two methods for gra- 269

dient approximation, (b) a reward normalization 270

technique, (c) three decoding techniques for sam- 271

pling paraphrases, and (d) two approaches to ensure 272
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grammatical integrity during paraphrase generation.273

By combining these elements, we examine various274

learning approaches to refine the paraphrase genera-275

tor with the aid of the downstream language model.276

In the subsequent paragraphs, we will describe our277

suggested options for each aspect.278

Gradient Approximation: Text generation can279

be reformulated as an episodic reinforcement learn-280

ing problem where an agent (i.e. a paraphrase gen-281

erator) generates tokens (i.e. takes actions) one282

step at a time until reaching the end of the episode283

(i.e. selecting the end of sequence token). There-284

fore, for a given training example (x, y) and its285

paraphrase z, we define the terminal reward (i.e.286

goodness) for z as R(z) = logPθlm(y|z). When287

approximating the gradient vector of objective 2288

concerning θpar, we propose two strategies. These289

include: (i) Maximum Marginal Likelihood (MML)290

and (ii) approximating the gradient vector of the291

paraphrase model via the Policy Gradient (PG) the-292

orem. Notably, gradient updates using these two293

methods exhibit a close relationship, with the main294

difference lying in the posterior coefficient utilized295

to score each sample (Guu et al., 2017). We can re-296

cast the main objective presented in equation 2 into297

the following function representing the expected298

reward:299

300

Jθpar := logEz∼Pθpar (.|x)[e
R(z)] (3)301

Given each input x, if we extract paraphrase sam-302

ples from Pθpar(.|x) and approximate the expecta-303

tion in Jθpar via numerical summation, we optimize304

the objective using MML estimation. This process305

results in the following gradient update:306

307

∇JMML
θpar

:= ∇θpar logEz[e
R(z)]308

=

M∑
j=1

ϕMML(zj)×∇θpar logPθpar(zj |x)309

ϕMML(zj) =
Pθpar(zj |x)× eR(zj)∑M

j′=1
Pθpar(zj′ |x)× e

R(z
j
′ )

(4)310

By introducing the log inside the expectation311

(applying Jensen’s inequality), we can optimize a312

surrogate lower bound for the objective presented313

in equation 3, resulting in the following policy314

gradient approximation (Sutton et al., 1999): 315

316

∇JPG
θpar

:= ∇θparEz[R(z)] 317

=
M∑
j=1

ϕPG(zj)×∇θpar logPθpar(zj |x) 318

ϕPG(zj) = Pθpar(zj |x)×R(zj) (5) 319

Reward Normalization: For our secondary 320

learning aspect, we can either utilize the basic re- 321

ward, denoted as R(zj), or normalize the rewards 322

among the paraphrases of a given input x. This pro- 323

cess of normalization is particularly useful because 324

it prevents the training of the paraphrase generator 325

with rewards of varying magnitudes, as different 326

training examples are not equally challenging for 327

the language model. Prior research suggests that 328

such normalization of rewards can significantly en- 329

hance the performance of text generators across a 330

variety of tasks (Guo et al., 2022). The normalized 331

reward Rn is defined as follows: 332

333

Rn(zj) =
R(zj)− µj

σj
, µj =

1

M

M∑
j=1

R(zj) 334

σ2
j =

1

M

M∑
j=1

(R(zj)− µj)
2 (6) 335

Decoding Techniques: To train the paraphrase 336

generator, we use both the MML and PG gradient 337

estimations which necessitates drawing M samples 338

from the paraphrase generator. We implement three 339

decoding techniques for this purpose. Firstly, we 340

utilize diverse beam search decoding (Vijayaku- 341

mar et al., 2018) to gather these M paraphrases. 342

Secondly, in order to thoroughly explore the para- 343

phrase space, we alternatively collect the M para- 344

phrases using nucleus (top-p) sampling (Holtzman 345

et al., 2020). For the top-p sampling, we estab- 346

lish a sampling threshold of p = 0.99, at which 347

we collect the minimal set of tokens from the vo- 348

cabulary with a cumulative probability of at least 349

0.99. We then re-sample tokens from this set. And 350

thirdly, during the training phase we blend diverse 351

beam search and top-p sampling. Here, we initially 352

sample M paraphrases using both methods, then 353

combine the top M/2 samples from each output 354

to construct our final M samples. During the test 355

phase, we only use diverse beam search. 356

Grammatical Integrity: We describe three dis- 357

tinct modeling techniques for both the MML and 358
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PG gradient estimations: On-policy learning, Off-359

policy learning and Proximal Policy Optimization360

(PPO).361

As we are sampling paraphrases from Pθpar(zj |x)362

and updating θpar using these samples, the para-363

phrase generator may start generating ungrammati-364

cal text during this default on-policy learning set-365

ting. Similar instances of degenerate generation366

have been reported in tasks like question genera-367

tion (Najafi and Fyshe, 2023) and program synthe-368

sis (Liang et al., 2018).369

To mitigate degenerate paraphrase generation,370

we experiment with off-policy sampling. Here,371

we maintain a fixed sampling module Pfixed(zj |x)372

for sample selection, then update the main para-373

phrase generator Pθpar(zj |x) within the frameworks374

of objectives 4 and 5. Consequently, with these375

off-policy samples, the posterior coefficients in-376

corporate the importance sampling ratio s(zj) =377
Pθpar (zj |x)
Pfixed(zj |x)378

379

ϕPG
off (zj) = s(zj)×R(zj)380

ϕMML
off (zj) =

s(zj)× eR(zj)∑M
j′=1

s(zj′ )× e
R(z

j
′ )

(7)381

Our next solution for degenerate paraphrases382

involves imposing a penalty in the training objec-383

tive if the samples drawn from the current para-384

phrase generator, Pθpar(z|x), deviate from those of385

the pre-trained paraphrase generator. We can im-386

plement this penalty as a KL-divergence penalty387

between the distributions of paraphrases produced388

by the current model and the pre-trained one. This389

approach resembles the PPO learning with a KL390

penalty (Schulman et al., 2017) and has been used391

in fine-tuning InstructGPT with a reward model392

trained over human feedback (Ouyang et al., 2022).393

In the case of InstructGPT, researchers prevent the394

reward fine-tuned model from diverging from a395

separate language model pre-trained on supervised396

data (Ouyang et al., 2022). To integrate this penalty397

we define the following new objective for θpar:398

399

JPPO
θpar

:= logEz[e
R(z)]− βEz[log s(z)]400

s(z) =
Pθpar(z|x)
Pfixed(z|x)

(8)401

Building upon the previously approximated402

MML and PG gradients, we can now derive the403

following regularized gradient vector with respect404

to θpar. Please note that β is a hyper-parameter in 405

this context: 406
407

∇Jθpar − βEz[(log s(z) + 1)∇ logPθpar(z|x)] 408

z ∼ Pθpar(.|x) (9) 409

Note that the KL penalty can be interpreted 410

as the sum of a grammar reward, denoted by 411

logPfixed(z|x), and an entropy regularization term 412

over Pθpar(z|x). The entropy regularization aids in 413

the diverse exploration of the search space (Mnih 414

et al., 2016), while the grammar reward discour- 415

ages the learning of ungrammatical samples. 416

2.3 Ensemble Inference 417

After optimizing Equation 2 and fine-tuning 418

our paraphrase generator, we generate weakly- 419

supervised examples for inclusion in Equation 1 420

to train our downstream language model. 421

To predict the class label of a test example, we 422

could either use our fine-tuned language model to 423

predict the class label based on the original input x, 424

or adopt an ensemble approach. For the latter, for a 425

given x, we generate M paraphrases using our fine- 426

tuned paraphrase generator. We then average the 427

prediction scores for a potential class label across 428

the M+1 values according to Equation 1 to predict 429

the class label for that input example x. This aligns 430

with our earlier assumption that some paraphrases 431

could be easier for the language model to predict 432

the correct class label. During data augmentation 433

for the language model, we select the validation 434

set’s best model according to this ensemble predic- 435

tion. 436

3 Experiments 437

3.1 Setup 438

Pre-trained Models: 439

For paraphrase generation, we employ a T5-base 440

model (Raffel et al., 2019) which has been trained 441

on paraphrases generated by ChatGPT2. These out- 442

put paraphrases were generated for input texts from 443

various datasets, including Quora paraphrase ques- 444

tions, texts from SQUAD 2.0, and the CNN news 445

dataset3. To create this training data, ChatGPT gen- 446

erated five paraphrases for each input, which were 447

then used as the target for the T5-base model. The 448

2https://openai.com/blog/chatgpt
3You can find detailed dataset information here:

https://huggingface.co/datasets/humarin/
chatgpt-paraphrases
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weights for this model are publicly available4. In449

our experiments, this model was able to generate450

more diverse paraphrases compared to other public451

pre-trained models.452

For our main language model, we use the453

RoBERTa-large model pre-trained with the Masked454

Language Modeling (MLM) objective (Liu et al.,455

2019), which has demonstrated strong performance456

on NLU tasks. Our proposed learning framework457

can be readily extended to other paraphrase genera-458

tors or backbone language models.459

Datasets: Inspired by prior work (Gao et al., 2021;460

Deng et al., 2022), we experiment on seven clas-461

sification tasks in the few-shot setting. These in-462

clude sentiment classification tasks such as the bi-463

nary sentiment datasets SST2 (Socher et al., 2013),464

CR (Hu and Liu, 2004), and MR (Pang and Lee,465

2005). We also experiment on the 5-label senti-466

ment dataset SST5 (Socher et al., 2013), the bi-467

nary subjectivity classification dataset Subj (Pang468

and Lee, 2004), the question type classification469

dataset TREC (Voorhees and Tice, 2000), and the470

topic classification dataset AG’s News (Zhang et al.,471

2015). The number of classes per dataset, as well472

as the used instructions are outlined in Appendix E.473

Instructions and class verbalizers are based on pre-474

vious work (Deng et al., 2022) in prompt optimiza-475

tion. Detailed information about the specific learn-476

ing rates for each LM technique along with other477

hyper-parameters can be found in Appendix B.478

3.2 Few-shot Paraphrase Training479

As discussed in Section 2.2, there are four learn-480

ing aspects to be considered when fine-tuning our481

paraphrase generator for the downstream language482

model. We conduct an extensive set of experiments483

in the 128-shot setting for the SST2 binary senti-484

ment classification task.485

We randomly select 128 training examples for486

each unique label within the dataset. An equal487

number of examples are gathered to form an inter-488

nal validation set. We create five train/validation489

splits using the arbitrarily chosen random seeds490

{11, 42, 1993, 12321, 2023}. We train the models491

for 1120 training steps with the batch size of 8 (i.e.492

35 epochs). As we are training the models, we eval-493

uate the performance of 140 weight checkpoints494

per model on the validation splits (i.e one check-495

point per 8 training steps). We examine the mean496

accuracy, which is averaged over the five validation497

4https://huggingface.co/humarin/chatgpt_
paraphraser_on_T5_base

Figure 1: Average ensemble accuracy over five vali-
dation splits in the 128-shot SST2 classification task.
PG gradient estimation is not robust during the training
trajectory while doing on-policy learning.

splits. Despite the ensembling approach described 498

in Section 2.3, to accurately capture the quality of 499

the generated paraphrases, we exclude the original 500

input x when computing the ensemble accuracy on 501

the validation splits. 502

We assess the impact of reward normalization 503

in the context of on-policy, off-policy, and PPO 504

learning, considering both PG and MML gradient 505

estimations. Table 1 lists the best performance out 506

of all the checkpoints evaluated on the validation 507

splits, which is further averaged over five validation 508

splits. With both PG and MML gradient estima- 509

tions, reward normalization is boosting the perfor- 510

mance across the three text decoding techniques 511

for both on-policy and PPO learning techniques 512

(see ‘AVG’ column in Table 1). Conversely, re- 513

ward normalization is not improving performance 514

with off-policy learning (follow discussion in Ap- 515

pendix A and see Table 3). 516

Table 1 verifies that MML gradient estimation 517

outperforms PG gradient estimation on average 518

across three decoding techniques for both on-policy 519

and PPO learning techniques. The highest accu- 520

racy is acheived by ‘PG + zscoring’ with on-policy 521

learning and top-p decoding, however it is not ro- 522

bust during the entire training trajectory. Figure 1 523

shows that PG gradient estimation is not robust 524

throughout the training trajectory, which causes the 525

paraphrase generator to produce nonsensical para- 526

phrases. This results in downstream classification 527

performance on par with random guessing. In con- 528

trast, off-policy and PPO learning circumvent this 529

divergence. MML gradient estimation maintains 530

robustness throughout the training phase (further 531
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Table 1: The accuracy of the best performing validation checkpoints in the 128-shot SST2 classification task for
both the on-policy and PPO learning techniques. Highest performance per column bolded. Last column reports the
macro-average among each row.

Learning On-Policy PPO AVG
Technique Top-P Beam Mixed Top-P Beam Mixed

No Tuning 67.5 67.5 67.5 67.5 67.5 67.5 67.5

PG 67.9 68.0 67.9 68.5 68.3 69.1 68.3

PG +zscoring 71.3 70.2 71.2 68.9 68.8 69.8 70.0

MML 69.6 69.1 69.8 69.5 69.9 70.5 69.7

MML +zscoring 70.3 70.2 70.2 68.9 70.3 70.6 70.1

discussion in Table 4 of Appendix A).532

Upon investigating various elements of our learn-533

ing objectives for fine-tuning the paraphrase gener-534

ator, the combination that delivers the best per-535

formance across the validation splits, which is536

also robust during the entire training trajectory, in-537

cludes: MML gradient approximation, PPO learn-538

ing, mixed decoding for sample generation, and fi-539

nally applying reward normalization. We name this540

combined approach our proposed RIFF algorithm.541

Table 5 lists an example sentence with its gener-542

ated paraphrases on the SST2 dataset. In the sub-543

sequent experiments, we applied RIFF to generate544

paraphrases that augment the training mini-batches545

while tuning the downstream language model in a546

few-shot setting.547

3.3 Paraphrases for Few-shot LM Tuning548

Our primary hypothesis is that various LM tun-549

ing techniques could benefit from diverse views550

of the original input text. To test this hypothesis,551

we fine-tuned our paraphrase generators in a 16-552

shot classification setup using the RIFF algorithm.553

Subsequently, we fine-tuned the downstream clas-554

sification model in the same 16-shot setting, while555

introducing M = 8 paraphrases as per the objec-556

tive outlined in Equation 1. For evaluation, we used557

the best model from the validation set to make pre-558

dictions on standard evaluation splits, following the559

ensemble approach described in Section 2.3. For560

consistency with prior research, we used the ran-561

dom dataset splits provided by RLPrompt (Deng562

et al., 2022), aligning with the random seeds used563

by LM-BFF (Gao et al., 2021).564

Table 2 illustrates the average accuracy on565

standard test sets across seven text classification566

datasets. The reported scores correspond to four567

distinct LM tuning techniques: GS, SpTune, All-568

Tune, and LoRA. Results for ClsTune, HTune, and569

InTune are presented in Table 8 of Appendix C.570

Notably, recent prompt optimization techniques 571

(i.e. GS and SpTune) exhibit significant benefits 572

from paraphrase augmentation during training. Par- 573

ticularly, SpTune demonstrates the most substan- 574

tial improvement, with a 2.7% increase in accu- 575

racy. Furthermore, LoRA consistently outperforms 576

prompt optimization techniques, aligning with find- 577

ings from prior studies (Hu et al., 2021). Interest- 578

ingly, paraphrase augmentation still aids LoRA in 579

efficiently learning adaptation matrices, resulting in 580

a 0.5% accuracy increase on SST2, a 0.4% accuracy 581

boost on Subj, and a 0.3% accuracy improvement 582

on AGN datasets. Coupled with ensemble predic- 583

tions, denoted in rows labeled ‘+RIFF (train+test)’ 584

all LM tuning techniques benefit from paraphrase 585

augmentation. 586

4 Related Works 587

To improve prompt optimization and efficient tun- 588

ing techniques for LMs, we incorporate the gener- 589

ated paraphrases into the training mini-batches. It 590

is important to note that data augmentation in NLP 591

has been explored through various methods. Para- 592

phrase generation represents just one technique of 593

data augmentation. For a comprehensive overview 594

of diverse data augmentation techniques for NLP 595

tasks, we direct interested readers to a recent survey 596

by Chen et al. (2021). 597

Prompt Optimization & Efficient Tuning: Re- 598

cent research proposes various techniques for 599

prompt optimization and efficient tuning of lan- 600

guage models. In our experiments, we have used 601

successful techniques from each of these areas. Ap- 602

pendix D provides our detailed description of these 603

recent techniques. All of the recent techniques for 604

prompt optimization and efficient tuning of the lan- 605

guage models use the original input task (or the 606

original input context) provided within the dataset. 607

Paraphrase Generation: Our objective is not to 608

7



Table 2: Average accuracy on the standard evaluation sets for the 16-shot single-sentence text classification. The last
column is the micro averaged performance across the datasets. Numbers in parentheses are the deltas compared to
non-RIFF baseline per LM Tuning technique. Highest performance per dataset bolded, second highest underlined.
†: the average 16-shot fine-tuning results with automatically searched templates. ⋆: reported zero-shot results for
GPT3 with in-context learning (Gao et al., 2021).

Tuning Method SST2 SST5 CR MR TREC Subj AGN AVG
(LM = RoBERTa-large)

GPT-3 | In-context Learning⋆ 84.8 30.6 87.4 80.5 26.2 53.6 - 64.4

(Deng et al., 2022) (RLPrompt) 92.5 41.4 89.5 87.1 60.5 81.9 80.2 78.1

(Gao et al., 2021)† 92.3 49.2 89.0 85.5 88.2 91.2 - 80.9

No Tuning + Instructions 84.6 31.0 77.8 81.3 27.6 57.7 51.5 58.5

+GS 85.5 37.0 80.2 83.0 45.3 74.5 82.0 74.9

+RIFF (train) 86.4 37.8 82.7 84.7 51.0 74.4 81.0 75.3 (+0.4)

+RIFF (train+test) 87.3 38.2 85.1 84.7 52.4 77.2 83.3 77.0 (+2.1)

+SpTune 89.7 39.4 82.4 86.1 35.2 72.4 82.0 75.7

+RIFF (train) 91.2 44.5 84.6 86.1 38.4 79.7 84.0 78.5 (+2.7)

+RIFF (train+test) 91.6 45.1 86.2 86.6 38.4 81.6 86.0 79.9 (+4.1)

+AllTune 93.1 48.0 89.2 87.3 87.2 85.8 87.7 83.3

+RIFF (train) 93.6 50.6 90.2 85.8 84.2 85.3 87.2 83.3 (+0.0)

+RIFF (train+test) 93.8 51.2 91.0 85.5 84.4 86.6 87.2 83.6 (+0.3)

+LoRA 92.5 48.1 88.6 86.0 89.3 81.5 87.3 82.5

+RIFF (train) 92.7 48.0 87.5 85.1 84.8 81.9 87.6 82.3 (-0.2)

+RIFF (train+test) 93.1 49.2 89.0 85.4 85.9 84.4 87.9 83.1 (+0.6)

present a state-of-the-art paraphrase generator, but609

rather to examine the impact of incorporating in-610

put paraphrases on the efficient tuning of LMs.611

Recent advancements in generating diverse para-612

phrases (Zhou and Bhat, 2021) could provide better613

pre-trained models, thereby these techniques can614

enhance performance in all our experiments as our615

proposed RIFF technique can be seen as an extra616

fine-tuning step for the paraphrase model. These617

recent techniques encompass various approaches,618

including the use of copy mechanisms, Variational619

Autoencoders, Generative Adversarial Networks,620

and Reinforcement Learning techniques. For a621

comprehensive overview of neural paraphrase gen-622

eration, please refer to a recent survey by Zhou623

and Bhat (Zhou and Bhat, 2021). While previous624

studies have applied RL techniques for paraphrase625

generation, we propose the use of MML gradients626

instead of policy gradients to fine-tune our para-627

phrase model.628

5 Conclusion629

We investigated the impact of incorporating in-630

put paraphrases while fine-tuning PLMs with re-631

cent prompt optimization and efficient tuning tech-632

niques. We also provided extensive experiments for633

reducing noise in a distantly supervised paraphrase 634

generator. 635

Recent study suggests that large PLMs face 636

constraints related to the quantity of unique data 637

points (Muennighoff et al., 2023). A potential av- 638

enue for future research could explore whether the 639

introduction of paraphrased inputs can mitigate 640

these challenges for large PLMs during the pre- 641

training stage. 642

Limitations 643

Our paraphrase generator is pre-trained on semi- 644

supervised paraphrases given by a truly large lan- 645

guage model (i.e. ChatGPT). Although these large 646

models are capable of generating high quality para- 647

phrases for the English language. It is not clear if 648

these semi-supervised paraphrases are available for 649

other languages. 650

Our investigation into the effects of paraphrases 651

on efficient LM tuning techniques relies on lan- 652

guage models that can be trained on commodity 653

hardware. It would be interesting to explore how 654

recent LLMs respond to input paraphrases. Nev- 655

ertheless, it is important to note that tuning larger 656

models, those with more than 30 billion parame- 657

ters, requires access to the gradients, however, the 658

8



gradients for proprietary models are not available.659

Throughout this study, our primary focus has660

been on classification tasks. A potential avenue for661

future research could involve assessing the sensitiv-662

ity of LM tuning techniques to input paraphrases663

in generative tasks.664

To enhance language model tuning with para-665

phrases, we augment the training mini-batches.666

However, this approach does result in increased667

training time. It would be ideal to devise a form of668

regularization for efficient language model tuning,669

one that exposes the model’s parameters to various670

paraphrases of the original input text.671

Ethics Statement672

Many language models show biases in their output673

due to the data used to train them (Liang et al.,674

2021). It is possible that even with few-shot lan-675

guage model tuning, we might continue to detect676

analogous biases in the downstream classification677

task, for instance, resulting in diminished classifi-678

cation accuracy for specific minority groups.679
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Table 3: The accuracy of the best performing validation
checkpoints in the 128-shot SST2 classification task
trained with the off-policy learning technique. Highest
performance per column bolded. Last column reports
the macro-average among each row.

Off-Policy AVG
Learn Tech Top-P Beam Mixed

No Tuning 67.5 67.5 67.5 67.5

PG 68.6 68.4 69.1 68.7

PG +zscoring 68.8 68.7 68.0 68.5

MML 69.2 70.1 70.1 69.8
MML +zscoring 69.2 69.7 70.1 69.7

Susan Zhang, Stephen Roller, Naman Goyal, Mikel1114
Artetxe, Moya Chen, Shuohui Chen, Christopher De-1115
wan, Mona Diab, Xian Li, Xi Victoria Lin, Todor Mi-1116
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Wang, and Luke Zettlemoyer. 2022a. Opt: Open1119
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for Computational Linguistics.1135
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Ba. 2023. Large language models are human-level1138
prompt engineers.1139

A Few-shot Paraphrase Training1140

(Further Results)1141

This section provides additional results that com-1142

pare our training objectives for fine-tuning the para-1143

phrase generator using the feedback from the down-1144

stream language model.1145

The off-policy learning technique improves per-1146

formance when using basic rewards (i.e., 69.1%1147

compared to 67.9% with mixed decoding). How-1148

ever, the combined effect of off-policy learning1149

and reward normalization decreases performance.1150

With mixed decoding, ‘PG + zscoring’ yields an ac-1151

curacy of 71.2% in on-policy learning compared1152

to an accuracy of 68.0% with off-policy learning. 1153

The ‘AVG’ column in Table 3 further verifies this 1154

conclusion that reward normalization is not im- 1155

proving the final performance while training the 1156

model with off-policy learning. We hypothesize 1157

that with the off-policy learning technique, the nor- 1158

malized rewards should be re-weighted properly if 1159

the sampled paraphrases are from the fixed para- 1160

phrase model. 1161

In Table 4, we also report the average accuracy 1162

of all the checkpoints as we are training the models. 1163

The learning technique ‘MML + zscoring’ is more 1164

robust during the training trajectory compared to 1165

‘PG + zscoring’. 1166

B Further Training Details 1167

The learning rate for each LM tuning technique 1168

was separately fine-tuned from the set {0.5, 0.3, 1169

0.1, 0.01, 0.001, 0.0001, 0.00001} using the 1170

train/validation split created for the seed 11 on 1171

the SST2 dataset. The tuned learning rates were 1172

then applied globally across other datasets and ex- 1173

periments. For paraphrase fine-tuning, we train 1174

all the parameters in T5-base with the learning 1175

rate of 0.00001. In Tables 6 and 7, we list the 1176

hyper-parameters and learning rates used across 1177

all datasets. For optimization, we utilized the 1178

AdamW (Loshchilov and Hutter, 2017)5 optimizer 1179

with the AMSGrad variant set to True (Reddi et al., 1180

2019). We implemented the methods using the 1181

HuggingFace6 library and the PyTorch7 machine 1182

learning framework. We report the accuracy met- 1183

ric on these classification datasets. The experi- 1184

ments were conducted using multiple NVIDIA’s 1185

A40 GPU cards. 1186

C Paraphrases for Few-shot LM Tuning 1187

(Further Results) 1188

Due to space limitations, we present the results for 1189

ClsTune, HTune, and InTune in Table 8. 1190

D Extended Related Works 1191

Prompt Optimization & Efficient Tuning: Re- 1192

cent research proposes various techniques for 1193

prompt optimization and efficient tuning of lan- 1194

guage models. In our experiments, we have used 1195

successful techniques from each of these areas. 1196

5https://pytorch.org/docs/stable/generated/
torch.optim.AdamW.html

6https://huggingface.co/
7https://pytorch.org/

13

http://arxiv.org/abs/2205.01068
http://arxiv.org/abs/2205.01068
http://arxiv.org/abs/2205.01068
http://arxiv.org/abs/2211.11890
http://arxiv.org/abs/2211.11890
http://arxiv.org/abs/2211.11890
http://arxiv.org/abs/1509.01626
http://arxiv.org/abs/1509.01626
http://arxiv.org/abs/1509.01626
http://arxiv.org/abs/2210.03493
http://arxiv.org/abs/2210.03493
http://arxiv.org/abs/2210.03493
https://doi.org/10.18653/v1/2021.emnlp-main.414
https://doi.org/10.18653/v1/2021.emnlp-main.414
https://doi.org/10.18653/v1/2021.emnlp-main.414
http://arxiv.org/abs/2211.01910
http://arxiv.org/abs/2211.01910
http://arxiv.org/abs/2211.01910
https://pytorch.org/docs/stable/generated/torch.optim.AdamW.html
https://pytorch.org/docs/stable/generated/torch.optim.AdamW.html
https://huggingface.co/
https://pytorch.org/


Table 4: The average accuracy computed over all the validation checkpoints in the 128-shot SST2 classification task.
Highest performance per column bolded. Last column reports the macro-average among each row.

Learn Tech On-Policy PPO AVG
Top-P Beam Mixed Top-P Beam Mixed

No Tuning + Instructions 67.5 67.5 67.5 67.5 67.5 67.5 67.5

+PG 53.2 52.0 52.4 67.4 67.4 68.2 60.1

+PG +zscoring 63.8 68.6 66.6 67.6 67.9 68.5 67.2

+MML 68.5 67.6 68.6 68.2 69.0 68.9 68.5

+MML +zscoring 69.1 68.9 69.1 67.9 69.0 68.9 68.8

Table 5: Generated paraphrases after fine-tuning the paraphrase model with the RIFF method for the following input
sentence: “It’s difficult to get beyond the overall blandness of American chai, despite its likable performances and
refreshingly naive point of view.”

Paraphrase Text
P1 “Despite its enjoyable performances and refreshingly naive perspective, american chai is

difficult to surpass due to its overall blandness.”
P2 “American chai’s enjoyable performances and refreshing perspective make it difficult to

elevate beyond its blandness.”
P3 “The overall blandness of American chai is difficult to overcome, despite its enjoyable

performances and refreshingly naive perspective.”
P4 “ It’s difficult to surpass the blandness of American chai, even with its enjoyable performances

and refreshingly naive perspective. ”
P5 “Although american chai has decent performances and a refreshingly naive viewpoint, it’s

difficult to elevate its overall blandness. ”
P6 “Americans chai is often bland, but it’s difficult to surpass its enjoyable performances and

refreshingly naive perspective.”
P7 “American Chai’s lack of quality is difficult to overcome, even with enjoyable performances

and a refreshing perspective. ”
P8 “Even with enjoyable performances and a refreshingly simplistic viewpoint, american

chapin’s blandness is difficult to shake off.”

14



Table 6: Shared hyper-parameters used across all exper-
iments and datasets.

Hyper-parameter Value
Top-k candidates in GS k=4

batch size (RoBERTa-large) 8
batch size in GS (RoBERTa-large) 2

Weight decay 0.0001
Max epochs 100
length cutoff 128 tokens

Paraphrase sample size M=8
Checkpointing steps 8

D
′

in ClsTune 128
Prompt len in SpTune L=25

β in MML 0.1
β in PG 0.6
Lora α 32
Lora r 8

Lora dropout 0.1
Diversity penalty for Div beam 3.0
Repetition penalty for Div beam 10.0

Temperature in Div beam 0.7
P value for top-p 0.99

Table 7: Learning rates used per Language Model (LM)
tuning technique.

LM Tuning Technique Learning Rate
GS No rate

AllTune 0.00001
InTune 0.001
HTune 0.001

ClsTune 0.001
SpTune 0.001
LoRA 0.0001

FluentPrompt (Shi et al., 2022) is a recent dis-1197

crete prompting technique based on the projected1198

gradient-descent and Langevin dynamics. Flu-1199

entPrompt introduces a fluency constraint within1200

Langevin dynamics to generate a sample of high-1201

performing prompts for more interpretable analysis1202

of these discrete prompts. The optimized prompts1203

by FluentPrompt performs on-par to the Auto-1204

Prompt, however they have lower perplexity (Shi1205

et al., 2022).1206

Building upon SpTune (Lester et al., 2021) and1207

P-tuning (Li and Liang, 2021), P-tuning V2 (Liu1208

et al., 2022) introduced the concept of deep prompt1209

tuning. This method involves injecting prompt vec-1210

tors into the deeper layers of the transformer model1211

to close the performance gap with AllTuning in1212

medium-sized language models. We have experi- 1213

mented with LoRA (Hu et al., 2021), a recent low- 1214

rank adaptation technique for tuning language mod- 1215

els. Other potential methods include training bottle- 1216

neck adapter modules (Houlsby et al., 2019b; Lin 1217

et al., 2020) added per sub-layer of the transformer 1218

model. LoRA outperforms adapter tuning and P- 1219

Tuning V2 techniques (Hu et al., 2021). The suc- 1220

cessors of LoRA include DyLoRA (Valipour et al., 1221

2023) which dynamically learns a range of adap- 1222

tation ranks, thus eliminating the need to search 1223

the rank of the adaptation matrices as a hyper- 1224

parameter. Similarly, AdaLoRA dynamically al- 1225

locates the parameter budget among the weight 1226

matrices during adaptation, with matrices of higher 1227

priority (i.e., those with greater importance to the 1228

downstream task) receiving higher adaptation ranks 1229

than less important matrices (Zhang et al., 2023). 1230

In scenarios where gradients are absent, Black- 1231

Box Tuning (Sun et al., 2022) applies derivative- 1232

free algorithms for optimizing continuous prompts. 1233

For discrete prompt optimization, RLPrompt (Deng 1234

et al., 2022) employs the on-policy version of soft 1235

Q-learning (Guo et al., 2021) to find the optimal 1236

prompt tokens in a gradient-free setting. Decoder 1237

Tuning (Cui et al., 2023) learns a decoder net- 1238

work over the language model, thus circumventing 1239

the need for gradient computation and input-side 1240

prompt tuning in few-shot classification. In a recent 1241

study, TEMPERA (Zhang et al., 2022b) introduced 1242

a novel approach that involves test-time discrete 1243

prompt editing using a trained RL agent. This agent 1244

is capable of modifying the instruction, in-context 1245

examples, or the verbalizers based on the given task 1246

input. 1247

The use of Language Models (LLMs) in gen- 1248

erating instructions for downstream tasks has in- 1249

volved a two-step process. Initially, LLMs gen- 1250

erate a set of candidate instructions, and subse- 1251

quently, the highest-scoring instruction is utilized 1252

to prompt another LLM to perform the down- 1253

stream task. This approach, known as prompt- 1254

based generation-then-filtering, has been investi- 1255

gated in the recent APE method (Zhou et al., 2023). 1256

APE demonstrates the ability to generate prompts 1257

that achieve performance comparable to human- 1258

designed prompts (Zhou et al., 2023). 1259

To prompt language models for reasoning tasks, 1260

another line of research augment the input context 1261

with demonstration examples outlining the interme- 1262

diate reasoning steps to form the answer. Provid- 1263

ing manually or automatically generated chain-of- 1264
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Table 8: Average accuracy on the standard evaluation sets for the 16-shot single-sentence text classification using
the ClsTune, HTune, and InTune fine-tuning techniques. The last column is the micro averaged performance across
the datasets.

Tuning Method SST2 SST5 CR MR TREC Subj AGN AVG
(LM = RoBERTa-large)

ClsTune 72.6 34.4 71.4 67.3 74.8 87.7 81.7 72.8

+RIFF (train) 72.5 33.9 68.3 70.3 75.8 88.4 84.0 73.8 (+1.0)

+RIFF (train+test) 74.0 35.0 71.1 72.0 76.8 89.4 84.9 75.1 (+2.3)

HTune 87.4 37.4 84.0 83.1 62.4 83.8 81.4 76.9

+RIFF (train) 88.1 40.3 84.5 83.4 70.7 87.3 83.4 78.8 (+2.0)

+RIFF (train+test) 89.1 40.4 86.4 83.2 71.6 87.8 85.2 80.0 (+3.1)

InTune 91.5 42.3 87.3 84.0 67.7 82.7 83.8 79.4

+RIFF (train) 92.6 43.2 87.5 85.9 63.8 82.7 85.6 80.5 (+1.1)

+RIFF (train+test) 93.1 43.9 89.0 85.9 69.6 84.6 86.9 81.7 (+2.3)

thoughts within these demonstrations strikingly im-1265

prove LLMs performance in reasoning tasks (Wei1266

et al., 2022; Zhang et al., 2022c; Kojima et al.,1267

2022).1268

All of the aforementioned techniques for prompt1269

optimization and efficient tuning of the language1270

model use the original task’s input text (or the orig-1271

inal input context) provided within the dataset.1272

RL for Paraphrase Generation: In the following1273

paragraphs, we provide a brief overview of sim-1274

ilar reinforcement learning objectives employed1275

for paraphrase generation. Li et al. (Li et al.,1276

2018) used a deep RL technique, training a pointer-1277

generator network as the paraphrase generator and1278

a decomposable attention model as the evaluator1279

which assigns a paraphrase score to pairs of sen-1280

tences. The generator was trained using the pol-1281

icy gradient objective, with reward shaping and1282

scaling to stabilize the training process (Li et al.,1283

2018). Another approach by Qian et al. (Qian et al.,1284

2019) focused on generating diverse paraphrases1285

by training multiple generators, accompanied by a1286

paraphrase discriminator and a generator discrim-1287

inator. Policy gradient objective and self-critical1288

learning (Rennie et al., 2016) were employed for1289

training the generators, with the baseline reward1290

used in the policy gradient objective being the re-1291

ward obtained from the greedy-decoded sequence.1292

Liu et al. (Liu et al., 2020) also applied the pol-1293

icy gradient objective with self-critical learning,1294

incorporating multiple reward functions such as1295

Rouge score with the reference paraphrase, nega-1296

tive Rouge score with the input sentence to encour-1297

age lexical variations, and semantic similarity score1298

between the paraphrase and the input sentence to1299

ensure semantic fidelity.1300

Another study by Du and Ji (Du and Ji, 2019) 1301

compared the use of imitation learning algorithm 1302

DAGGER with policy gradient REINFORCE for 1303

paraphrase generation. The policy gradient ob- 1304

jective has also been applied in generating para- 1305

phrases while considering multiple objectives 1306

for entailment relation-aware paraphrase genera- 1307

tion (Sancheti et al., 2022). In the context of 1308

chatbot responses, a recent work studies unsuper- 1309

vised paraphrase generation with proximal policy 1310

optimization, aiming to maximize a combination 1311

of rewards such as textual entailment, semantic 1312

similarity, language fluency, and lexical dissimi- 1313

larity (Garg et al., 2021). Similarly, the policy 1314

gradient objective has been employed to optimize 1315

multiple rewards, similar to previous work, for un- 1316

supervised paraphrase generation (Siddique et al., 1317

2020). 1318

While previous studies have applied RL tech- 1319

niques for paraphrase generation, we propose the 1320

use of MML gradients instead of policy gradients 1321

to train our paraphrase model. 1322

E Task Instructions & Input Format 1323

Table 9 provides a summary of the task instructions 1324

that we append before the inputs, as well as the 1325

class verbalizers for classifying the input text. The 1326

instructions and input templates are derived from 1327

prior work in prompt optimization (Deng et al., 1328

2022). 1329
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Table 9: Number of classes C, the input format, and the instruction used per dataset. The label words are provided
within the instructions.

Dataset C Input Format Instruction
SST2 2 “<s> {Instruction}

{Text} . It was
<mask> . </s>”

“In this task, you are given sentences from movie
reviews. The task is to classify a sentence as ‘great’ if
the sentiment of the sentence is positive or as ‘terrible’
if the sentiment of the sentence is negative.”

SST5 5 “<s> {Instruction}
{Text} . It was
<mask> . </s>”

“In this task, you are given sentences from movie
reviews. Based on the given review, classify it to one
of the five classes: (1) terrible, (2) bad, (3) okay, (4)
good, and (5) great.”

CR 2 “<s> {Instruction}
{Text} . It was
<mask> . </s>”

“In this task, you are given sentences from customer
reviews. The task is to classify a sentence as ‘great’ if
the sentiment of the sentence is positive or as ‘terrible’
if the sentiment of the sentence is negative.”

MR 2 “<s> {Instruction}
{Text} . It was
<mask> . </s>”

“In this task, you are given sentences from movie
reviews. The task is to classify a sentence as ‘great’ if
the sentiment of the sentence is positive or as ‘terrible’
if the sentiment of the sentence is negative.”

TREC 6 “<s> {Instruction}
<mask>: {Text} .
</s>”

“You are given a question. You need to detect which
category better describes the question. Answer with
‘Description’, ‘Entity’, ‘Expression’, ‘Human’, ‘Lo-
cation’, and ‘Number’.”

Subj 2 “<s> {Instruction}
{Text} . This is
<mask> . </s>”

“In this task, you are given sentences from reviews.
The task is to classify a sentence as ‘subjective’ if the
opinion of the sentence is subjective or as ‘objective’
if the opinion of the sentence is objective.”

AG’s
News

4 “<s> {Instruction}
<mask> News:
{Text} . </s>”

“In this task, you are given a news article. Your task
is to classify the article to one out of the four topics
‘World’, ‘Sports’, ‘Business’, ‘Tech’ if the article’s
main topic is relevant to the world, sports, business,
and technology, correspondingly. If you are not sure
about the topic, choose the closest option.”
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