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Abstract—Robot navigation in dynamic, human-centered en-
vironments requires socially-compliant decisions grounded in
robust scene understanding, encompassing spatiotemporal aware-
ness, as well as the ability to interpret human intentions.
Recent Vision-Language Models (VLMs) show signs of object
recognition, common-sense reasoning, and contextual under-
standing—capabilities that make them promising for addressing
the nuanced requirements of social robot navigation. However,
it remains unclear whether VLMs can reliably perform the
complex spatiotemporal reasoning and intention inference needed
for safe and socially compliant robot navigation. In this paper, we
introduce the Social Navigation Scene Understanding Benchmark
(SocialNav-SUB), a Visual Question Answering (VQA) dataset
and benchmark designed to evaluate VLMs for scene under-
standing of real-world social robot navigation scenarios. The
benchmark provides a unified framework for evaluating VLMs
against human and rule-based baselines across VQA tasks requir-
ing spatial, spatiotemporal, and social reasoning in social robot
navigation. Through experiments with state-of-the-art VLMs, we
find that while the best-performing VLM achieves an encouraging
probability of agreeing with human answers, it still lags behind a
simpler rule-based approach and human performance, indicating
critical gaps in social scene understanding of current VLMs. Our
benchmark sets the stage for further research on foundation
models for social robot navigation, offering a framework to
explore how VLMs can be tailored to meet real-world social
robot navigation needs.

I. INTRODUCTION

Social robot navigation, defined as the ability for robots
to move effectively and safely within human-populated envi-
ronments while adhering to social norms, is a fundamental
yet challenging task in robotics [20, 9]. As shown in Figure
1, navigating through social navigation scenarios requires
robots to interpret human intentions, adhere to social norms,
and respond to dynamic environments that demand advanced
reasoning capabilities. While promising, existing methods still
fall short in handling the complexity and nuance in dynamic
real-world social navigation scenarios [20, 27].

Recently, the research community has begun to explore
whether advances in large Vision-Language Models (VLMs)
can be leveraged as part of a solution to social robot navi-
gation, as they have demonstrated strong capabilities in con-
textual understanding, commonsense reasoning, and chain-of-
thought reasoning [17, 24, 34]. Trained in diverse large-scale
multimodal datasets that span various real-world scenarios,
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Fig. 1: Examples of social robot navigation scenarios from
SCAND [15] where humans in the scene have to be taken
into consideration. The ability to determine socially compliant
navigation actions requires understanding each dynamic scene by
spatiotemporal reasoning (e.g. the movements of people in the scene),
social reasoning (inferring the navigation intentions of people in the
scene), and complying to implicit social rules.

large VLMs often learn underlying patterns of human be-
havior that may implicitly encode an understanding of social
norms [14]. Recent works like VLM-Social-Nav [32] have
shown that using large VLMs for social robot navigation is
promising, but their evaluations are limited to a small number
of controlled scenarios and offer only preliminary insights.
Moreover, studies such as SPACE [29] indicate that state-of-
the-art large VLMs still lack robust spatial reasoning, raising
questions about whether they can understand complex, realistic
social navigation scenarios at all, let alone propose socially
compliant actions for them.

In light of these limitations, it remains essential to sys-
tematically evaluate whether large VLMs can robustly handle
what we consider as three critical dimensions of social robot
navigation: (1) spatial reasoning, (2) spatiotemporal reasoning,
and (3) the ability to interpret complex social navigation
interactions. Existing evaluations have offered only partial
assessments [32, 29], often focusing on controlled settings or
lacking temporal components, leading to an incomplete picture
of how effectively large VLMs can infer human intentions
and comply with social norms in realistic, dynamic scenarios.
This gap underscores the need for a comprehensive benchmark
that rigorously tests these capabilities and may guide the
development of VLMs specifically tailored to social robot
navigation.

In this paper, we introduce the Social Navigation Scene Un-
derstanding Benchmark (SOCIALNAV-SUB), a novel Visual



Fig. 2: An overview of SOCIALNAV-SUB, which facilitates the systematic evaluation of VLMs in social robot navigation scenarios. Using
SCAND data, human-labeled VQA datasets, and various VLMs, this framework offers the evaluation of VLMs across multiple dimensions of
scene understanding for social robot navigation that can enable advancements in prompt designs, social reasoning, and social robot navigation
research in general.

Question Answering (VQA) benchmark designed to evaluate
VLMs on social robot navigation tasks. Our benchmark (sum-
marized in Figure 2, utilizes data from a human-subject study
conducted using social navigation scenarios from the SCAND
dataset [15, 16], a robot social navigation dataset of socially
compliant navigation demonstrations. We use our compre-
hensive human-labeled VQA dataset to serve as ground-truth
labels for evaluating performance on scene understanding for
social robot navigation. This approach enables the systematic
evaluation of VLMs’ scene understanding in the context of
real-world social robot navigation scenarios, which allows us
to run experiments on state-of-the-art large VLMs. Our exper-
iments reveal notable performance gaps between state-of-the-
art large VLMs and both human and rule-based baselines, par-
ticularly in spatial and spatiotemporal reasoning. Meanwhile,
ablation studies show that chain-of-thought reasoning is crucial
for improving model alignment with human judgments, while
bird’s-eye view prompts improve alignment for some models.

SocialNav-SUB is a first-of-its-kind benchmark that enables
roboticists to systematically evaluate and refine VLMs for real-
world social robot navigation scenarios. By bridging the gap
between VLM capabilities and the challenges of social robot
navigation, our work provides a foundation for advancing the
use of VLMs for social robot navigation. Our contributions
are as follows:

• Social Navigation Scene Understanding Dataset: We
provide a human-labeled VQA dataset of 4968 unique
questions and the accompanied 24840 human responses
as a baseline oracle for social robot navigation tasks.

• Social Navigation VQA Benchmark for VLMs: We
introduce the first VQA benchmark for assessing VLMs’
capabilities in social robot navigation scenarios using 60
unique scenarios from SCAND.

• Experiments using state-of-the-art large VLMs on

our benchmark: We evaluate several large VLMs (e.g.,
Gemini [34], GPT-4o [24], LLaVa-Next-Video [39]) on
our benchmark against human and rule-based baselines.
While Gemini outperforms other large VLMs, all models
remain behind human and rule-based performance.

• Insights into VLM Prompt Designs: We identify and
validate effective prompt strategies, such as bird’s-eye
view prompts and chain-of-thought reasoning, that im-
prove agreement with human answers.

II. RELATED WORK

Our work intersects with several key areas of research. We
organize our discussion of related work into three main cat-
egories: (1) VLMs in Robotics, (2) Social Robot Navigation,
and (3) VQA Benchmarks for VLMs.

A. VLMs in Robotics

In robotics, VLMs have demonstrated considerable potential
for various tasks such as robotic manipulation [22], task plan-
ning [38], and human-robot interaction [1, 2, 8]. The success
of VLMs can be attributed to their ability to associate vision
and language and generalize to unseen data in a zero-shot
manner. For navigation, VLMs have been used for waypoint
specification [22, 30], and instruction following [6, 36, 12].
However, these approaches often struggle in complex real-
world environments, particularly in dynamic environments,
due to limitations in VLMs’ spatial reasoning capabilities
[29, 3, 33]. This gap highlights the need for specialized
evaluations and improvements of VLMs for tasks in dynamic
environments, especially social navigation.

B. Social Robot Navigation

Early social robot navigation approaches relied on model-
based techniques, such as the Social Force Model (SFM)



[10] and proxemics-based methods [21], which used hand-
engineered features to plan paths for robots. Learning-based
techniques for social robot navigation, including Learning
from Demonstration (LfD) [11, 15] and Reinforcement Learn-
ing (RL) [40, 5, 4, 18, 19], have shown promise in enabling
robots to acquire and adapt socially compliant behaviors.
However, trained on small and specialized data or simulations,
these methods often struggle to generalize to complex dynamic
scenarios. To address this, datasets for social robot navigation
[15] [23] have been developed to provide more diverse and re-
alistic social navigation scenarios, which can lead to improved
generalization in social navigation models [13].

More recently, social robot navigation datasets for VLMs
have been explored [25], but are limited to qualitative evalu-
ation and single images, when crucial information, such as a
person’s trajectory, may require a video representation. Fine-
tuned VLMs have been explored for social robot navigation
[32, 25], but are often evaluated in a limited number of
simple, controlled scenarios. These scattered findings suggest
that while VLMs may enhance social robot navigation, the
specific capabilities that drive any observed improvements
have yet to be clearly identified. Our work addresses this by
introducing a specialized benchmark to systematically evaluate
whether VLMs can effectively perform spatial reasoning,
spatiotemporal reasoning, and social reasoning for numerous
social navigation scenarios.

C. VQA Benchmarks for VLMs

Recent years have seen the development of various VQA
benchmarks to evaluate VLMs, assessing capabilities such as
spatial reasoning [29], scene understanding for autonomous
driving [35], and physical world comprehension [7]. While
these benchmarks have advanced our understanding of VLMs’
capabilities, they often lack specific focus on social robot
navigation; which requires not only spatial reasoning, but also
spatiotemporal reasoning, and social reasoning to interpret
complex social navigation interactions. Our work addresses
this gap by introducing a specialized VQA benchmark for
social robot navigation.

III. SOCIALNAV-SUB

To evaluate Vision-Language Models (VLMs) on scene
understanding for social robot navigation, we present
the Social Navigation Scene Understanding Benchmark
(SOCIALNAV-SUB), a VQA benchmark for evaluating VLMs
in socially dense navigation scenarios. Following recent works
that have demonstrated the effectiveness of visual grounding
and object-centric representations [22, 37, 35], we provide
numbered labels within visual markers for objects of relevance
(in our case, pedestrians) for prompting and object-centric
annotations; this provides the benchmarked VLMs clear visual
references and contextually rich instructions. SOCIALNAV-
SUB is built on top of the SCAND dataset’s social navigation
scenarios that provide varying levels of crowd density and
social navigation interactions and features the following:

Fig. 3: The data processing pipeline for VQA prompts in
SOCIALNAV-SUB. We first mine social robot navigation scenarios
from SCAND [15], then use the PHALP algorithm [28] to provide
human tracking and estimations of 3D locations, which are used to
construct BEV representations of the scene and annotated images.
Along with the annotated images and BEV representations, a set
of carefully designed questions that evaluate spatial reasoning, spa-
tiotemporal reasoning, and social reasoning are used to provide VQA
prompts.

(1) Challenging social navigation scenarios that capture the
complexities of crowded and dynamic human environ-
ments;

(2) Object-centric representations combining both the robot’s
visual perspective and a bird’s-eye view (BEV) containing
pedestrian coordinate tracking for a richer object-centric
representation;

(3) A diverse question set probing spatial reasoning, temporal
understanding, and social reasoning; and

(4) A robust human baseline, where multiple annotators pro-
vide ground-truth responses for each scenario.

All above features are expanded in the following subsections
below.

A. Challenging Social Navigation Scenarios

To effectively evaluate VLMs’ scene understanding capa-
bilities in practical social robot navigation settings, we lever-
age the SCAND dataset [15] to construct the SOCIALNAV-
SUB benchmark. SCAND features social robot navigation
data collected by teleoperated mobile robots navigating in
diverse and potentially crowded scenarios. In particular, we
extract segments from SCAND that showcase high crowd
density, close pedestrian proximity, and dynamically changing
human motion. As illustrated in Figure 1, these densely occu-
pied scenarios typically involve pedestrians that obstruct the
robot’s direct path to its goal. Hence, the teleoperated robots
demonstrate complex, socially compliant interactions with the
pedestrians, making these samples valuable for evaluating
VLMs’ scene understanding capabilities in real-world social
navigation environments.



B. Rich and Object-Centric Visual Representations

The samples extracted from the SCAND dataset are in the
form of RGB image sequences captured by the front-view
camera mounted on the robot. While 2D image sequences may
suffice for humans to infer the underlying spatial and social
relations between the robots and pedestrians, state-of-the-art
large VLMs are not necessarily good at extracting spatial
or fine-grained object-level information from the same visual
queries [29]. To mitigate this issue, some recent studies have
shown that augmenting images with additional annotations
(e.g., bounding boxes, color-coded labels) using off-the-shelf
models can improve VLM performance in VQA tasks [22, 37]

Building on these insights, we augment the original data
samples with additional object-centric representations leverag-
ing off-the-shelf vision models. Specifically, as shown in Fig-
ure 3, we annotate the pedestrians in the raw front-view images
with numbered, color-coded circles and generate additional
bird’s-eye-view (BEV) images illustrating the robots’ and
pedestrians’ locations. The resulting images with combined
views preserve the original scene context while providing addi-
tional spatial and object-level information—such as distances
and obstructed paths—in a clear and structured format.

By querying VLMs with these enriched, object-centric vi-
sual inputs, our SOCIALNAV-SUB benchmark could provide
practical insights into how to best leverage and complement
state-of-the-art large VLMs for practical application in social
robot navigation. To ensure fair comparisons between VLMs’
outputs and human responses, the same set of visual inputs
are provided to human annotators.

Figure 3 illustrates our data processing pipeline for aug-
menting the raw front-view images from SCAND. We begin
by employing the human tracking algorithm, PHALP [28],
which tracks pedestrians and provides robust estimations of
their 3D poses relative to the camera frame using monocular
video input. Using the robot odometry data from SCAND, we
transform the relative human poses at future timesteps into
global poses relative to the robot pose in the initial frame,
and apply Kalman smoothing to smooth the human poses.
Afterwards, we use the camera intrinsics and extrinsics pro-
vided by SCAND to project the 3D coordinates of pedestrians
into both front-view and BEV images. Finally, we annotate
human positions and their correspondences in both views with
numbered, color-coded circles.

C. Diverse Scene Understanding Questions

Following the aforementioned data processing pipeline, we
construct a set of samples consisting of multi-view image
sequences with object-centric annotations, each representing
a 2.5 s segment sampled at 4 Hz. To comprehensively evaluate
VLMs’ scene understanding capabilities in social robot nav-
igation, we design a range of multiple-choice questions (see
Table I for more details and Appendix ?? for an example VQA
prompt) that probe across three categories:

• Spatial reasoning: Questions about describing the spa-
tial relations in a single frame.

• Spatiotemporal reasoning: Questions about describing
the motion of the robot and pedestrians over time.

• Social reasoning over time: Questions that infer whether
the robot and pedestrians are interacting and how they
interact.

These three categories map onto what we see as being the
key challenges of social navigation: perceiving spatial relations
among participants (spatial reasoning), tracking their evolution
as people move (spatiotemporal reasoning), and recognizing
how humans and robots interact in the context of social
navigation (social reasoning over time). By evaluating VLM
performance across these dimensions, we gain a fine-grained
understanding of where models excel or struggle in parsing
and interpreting social navigation scenes.

D. Robust Human Baseline from Human-Subject Study

We conducted human-subject studies to collect human re-
sponses as ground-truth labels for these questions under an
IRB-approved protocol. Given the subjective nature of many
questions, particularly those related to social reasoning, we
collected responses from five human participants for each
scenario. Participants were recruited via Prolific [26] and were
asked to complete a questionnaire containing questions for
multiple randomly sampled scenarios. To ensure the quality
of the collected responses, we added attention-check questions
to the questionnaire and manually inspected the participants’
answers to reject low-quality samples.

By gathering this distribution of human responses, we can
measure how closely each VLM output aligns with human
judgments. Specifically, we compute the agreement between
VLM answers and all human answers for a given question,
which indicates the extent to which a model’s performance
approaches human-level responses. Moreover, to establish an
Average Human performance baseline, we also measure how
often one human’s response agrees with all other human
responses for a given question, capturing the natural variability
and consensus levels among human annotators. This baseline
thus provides a robust point of comparison for evaluating VLM
performance on social robot navigation tasks. Additionally,
we also utilize the consensus answers from the human data
to construct a Human Oracle baseline, serving as an upper
bound for performance.

We define two metrics, Probability of Agreement (PA)
and Consensus-Weighted PA, to measure how closely a set
of answers (from a VLM, a particular human, or a rule-based
baseline) aligns with human responses overall.

Notation and Setup.
• NQ: total number of questions.
• NH : number of human respondents per question.
• Aq: the evaluated answer (from a VLM or one human)

to question q.
• Ah

q,i: the i-th human’s answer for question q, where i ∈
{1, . . . , NH}.

We define Probability of Agreement (PA) as:



VLM Capability Qualitative Description of Question # of Questions

Spatial Reasoning

Person Initial Position: The position of the person at the beginning of the video. 399
Person Ending Position: The position of the person at the end of the video. 399
Goal Initial Position: The initial position of the goal with respect to the robot’s view. 60
Goal End Position: The end position of the goal with respect to the robot’s view. 60
Person End Goal Obstruction: Whether the person is obstructing the robot’s path towards the goal at
the end of the video.

399

Spatiotemporal Reasoning

Robot Moving Direction: The direction the robot is moving in the video. 60
Person Distance Change: The relative distance change of the person to the robot from the beginning
of the video to the end.

399

Person Goal Obstruction: Whether the person is obstructing the robot’s path towards the goal during
the video.

399

Social Reasoning

Robot Affected by Person: Whether the robot’s (human operator’s) actions are affected by the person. 399
Robot Action to Person: The high-level relational action of the robot with respect to the person (e.g.,
the robot avoided person 2).

399

Person Affected by Robot: Whether the robot’s (human operator’s) actions are affected by the person. 399
Person Action to Robot: The high-level relational action of the person with respect to the robot (e.g.,
person 2 avoided the robot).

399

Robot Affected by Person at End: Whether the robot’s (human operator’s) actions are affected by the
person at the end of the video.

399

Robot Action to Person at End: The high-level relational action of the robot with respect to the person
at the end of the video.

399

Person Action to Robot at End: The high-level relational action of the person with respect to the robot
at the end of the video.

399

TABLE I: Qualitative descriptions of the text components for questions used in SOCIALNAV-SUB, their pertaining primary reasoning
capability, and the number of unique questions through SOCIALNAV-SUB. All questions are multiple choice, with each VQA prompt
providing the possible answers. An example of a VQA prompt can be found in Figure 2 and a full example can be found in Appendix ??.

PA =
1

NQ

NQ∑
q=1

( 1

NH

NH∑
i=1

I[Aq = Ah
q,i ]

)
, (1)

where I[·] is an indicator function that is 1 if Aq (the evaluated
answer) exactly matches the i-th human’s response Ah

q,i, and
0 otherwise for the corresponding multiple-choice question q.
Summing over all human responses for each question yields
the fraction of total (answer, human answer) pairs that agree. A
higher PA indicates that the evaluated answers coincide more
frequently with the collected human responses.

We empirically found that it was not uncommon for hu-
mans to disagree on answers, indicating there is a degree of
judgement involved for particular questions. This motivates
a metric that can be more forgiving for subjective questions
that humans disagree on and emphasize questions that have a
strong consensus, to which we establish Consensus-Weighted
Probability of Agreement (CW PA). We start by defining

HAq = max
α

{#(humans who answered α for question q)

NH

}
,

i.e., HAq is the fraction of human respondents that chose the
most common answer α for question q. We then define:

CW PA =
1

NQ

NQ∑
q=1

( 1

NH HAq

NH∑
i=1

I[Aq = Ah
q,i ]

)
. (2)

In this formulation, each agreement with a human response
for question q is scaled by 1/HAq . Consequently, questions on
which humans mostly concur (i.e., high HAq) impose a greater
penalty for incorrect answers, while questions where humans
are more divided have a lower penalty. This weighting ensures

that VLM (or human) answers are held to a higher standard
on ”easier” questions where strong human agreement exists.

IV. EXPERIMENTS

A. Research Question

Our central research question examines how well state-
of-the-art large VLMs that support image sequences capture
spatial reasoning, scene understanding, and social reasoning
in social robot navigation scenarios. By focusing on this
question, we aim to rigorously assess the capabilities and
limitations of large VLMs for understanding complex social
robot navigation environments.

B. Experiment Process

Our experiment process begins by presenting survey
prompts alongside their visual and BEV representations to the
VLM, using the data processing pipeline previously shown in
Figure 3. The format given to the VLMs closely resembles
the same visual and text format that was received by human
participants, ensuring fair comparison. Furthermore, we use
chain-of-thought reasoning as a prompting technique to carry
out our experiments, since this is highly similar to the sequen-
tial manner in which humans provided answer labels, allowing
for fair comparison. Specifically, our usage of chain-of-thought
provides the previous answers of the VLM for future questions
which may help it deduce the answer to question; for example,
the pedestrian is at the left in the beginning and the end and the
goal is on the right, so the pedestrian is likely not obstructing
the path to the goal. The responses generated by the VLM
are then compared against human responses from the human



Category Model All Spatial Reasoning Spatiotemporal Reasoning Social Reasoning

Baseline
Human Oracle 0.83 ± 0.00 0.80 ± 0.01 0.82 ± 0.01 0.85 ± 0.01
Rule-Based 0.69 ± 0.00 0.61 ± 0.01 0.67 ± 0.01 0.73 ± 0.01

VLM
Gemini 2.0 0.62 ± 0.01 0.58 ± 0.01 0.46 ± 0.01 0.68 ± 0.01
GPT-4o 0.51 ± 0.01 0.58 ± 0.01 0.51 ± 0.02 0.48 ± 0.01
LLaVa-Next-Video 0.48 ± 0.01 0.34 ± 0.01 0.62 ± 0.01 0.50 ± 0.01

TABLE II: Average Performance Across Question Categories. We compute the Probability of Agreement (PA) for all questions and for
each question category, along with standard error across the unique questions. We separate rows into two broad categories (Baseline and
VLM). All VLMs use chain-of-thought reasoning, since each human provided answers sequentially.

dataset using the previously defined Probability of Agreement
(PA) metric.

Humans can naturally infer the underlying spatial and social
relations between the robots and pedestrian, making them
excellent references for comparing VLM performance to. On
the other hand, are large VLMs truly necessary for analyzing
these social robot navigation scenarios, or can a simpler, rule-
based system suffice? To address both of these, our baselines
are as follows:
(1) Human Oracle Baseline: Selects the most common an-

swer for each question from the human distribution. This
baseline serves as an upper bound for performance when
models may only provide one answer.

(2) Rule-Based Baseline: Uses the position data of pedestrians
in the scene (extracted using the Optical Character Recog-
nition (OCR) algorithm Tesseract [31]) and uses a set of
hand-crafted rules to generate answers to VQA prompts.

C. Results

We run our experiments by querying each VLM model once
per unique question using default hyperparameters for each
VLM. The average results over all questions and question
categories is shown in Table II, which indicate that average
human performance serves as a reliable baseline. Among the
large VLMs evaluated, Gemini achieves the highest overall
performance, but still has a considerable gap compared to the
human oracle and Rule-Based baselines. This performance gap
suggests that state-of-the-art large VLMs are not yet fully
ready for the challenges of scene understanding for social
robot navigation.

When examining performance across the three question cat-
egories, models consistently lag behind the human oracle and
the Rule-Based baseline, though the extent of the gap varies by
category. In spatial reasoning, the consensus among humans
(human oracle) far exceeds that of the best models, indicating
that current large VLMs struggle to accurately interpret static
spatial relationships compared to human observers. A similar
finding is observed in spatiotemporal reasoning, where models
show even greater difficulty at capturing dynamic changes
and interactions over time. In contrast, in social reasoning
tasks, models perform relatively closer to human consensus
levels, suggesting that large VLMs are somewhat more adept
at interpreting social cues and interactions than they are at
understanding spatial relationships, although there remains a
noticeable gap. Empirically, we found many cases of VLMs

failing on questions with high human consensus in all three
reasoning categories, especially in cases of high crowd densi-
ties.

Overall, our evaluation reveals that while state-of-the-art
large VLMs like Gemini show promising advances, they still
fall short of human and rule-based performance across key
reasoning tasks. Although models come closer to human oracle
performance in social reasoning tasks, the results suggest
that significant improvements to large VLM architectures or
refining querying strategies are needed before these large
VLMs can reliably support complex, real-world social robot
navigation.

V. LIMITATIONS AND FUTURE WORK

While SOCIALNAV-SUB advances the evaluation of VLMs
for social robot navigation, it has two major limitations. First,
the benchmark currently relies on scenarios from the SCAND
dataset, which is limited to social navigation in a university
campus setting. Second, while initial experiments provide
valuable insights, they are based on a limited set of models
and scenarios; further exploration with a broader range of
large VLMs, datasets, and refined methodologies is necessary
to overcome these challenges and enhance the benchmark’s
applicability.

Looking ahead, several promising avenues can further en-
hance and leverage the capabilities of SOCIALNAV-SUB.
First, expanding the dataset to include additional social robot
navigation datasets could expand its diversity and robustness,
offering a more comprehensive evaluation of model capabil-
ities. Additionally, fine-tuning VLMs on the human dataset
provided in SOCIALNAV-SUB may lead to VLMs that are
more capable of social robot navigation. Another promising
avenue is expanding upon the VLM models evaluated; some
VLMs of interest include VLMs fine-tuned for spatial reason-
ing and VLMs fine-tuned for social robot navigation. Lastly,
an interesting future direction is evaluating hybrid approaches
that utilize VLMs in specific ways (such as social reasoning)
while having dedicated modules to cover their weaknesses.
By offering a targeted evaluation framework across multiple
reasoning categories, SOCIALNAV-SUB can not only system-
atically evaluate VLM performance and highlight weaknesses
but also guide future improvements in VLMs for both scene
understanding and socially compliant navigation, enabling the
development of more reliable real-world robotics systems.



VI. CONCLUSION

This paper introduced the Social Navigation Scene Un-
derstanding Benchmark (SOCIALNAV-SUB), a novel VQA
benchmark designed to evaluate VLMs within complex so-
cial robot navigation scenarios. Drawing on densely popu-
lated and dynamic environments from the SCAND dataset,
SOCIALNAV-SUB provides object-centric visual represen-
tations, including augmented front-view images and BEV
prompts paired with a diverse set of questions targeting spatial,
spatiotemporal, and social reasoning. By grounding these
evaluations with a robust human-subject study, the benchmark
offers clear, quantifiable metrics that reflect human-like under-
standing and decision-making in social navigation contexts.

SOCIALNAV-SUB advances the state of the art by high-
lighting specific strengths and weaknesses of current VLMs
in handling intricate social scenes, thereby setting a clear
agenda for future research. It enables researchers to sys-
tematically compare models, refine prompting strategies, and
develop new methods to bridge the gap between machine and
human understanding of social robot navigation interactions.
The benchmark’s comprehensive design supports the iterative
improvement of VLMs in real-world applications, ultimately
guiding the development of more socially aware and reliable
robotic systems.
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