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A B S T R A C T   

A crucial part of image classification consists of capturing non-local spatial semantics of image content. This 
paper describes the multi-scale hybrid vision transformer (MSHViT), an extension of the classical convolutional 
neural network (CNN) backbone, for multi-label sewer defect classification. To better model spatial semantics in 
the images, features are aggregated at different scales non-locally through the use of a lightweight vision 
transformer, and a smaller set of tokens was produced through a novel Sinkhorn clustering-based tokenizer using 
distinct cluster centers. The proposed MSHViT and Sinkhorn tokenizer were evaluated on the Sewer-ML multi- 
label sewer defect classification dataset, showing consistent performance improvements of up to 2.53 percentage 
points.   

1. Introduction 

The sewerage infrastructure is one of a few critical infrastructures in 
modern society. If the infrastructure does not function properly, it can 
lead to dramatic environmental damage and pose a risk to the public 
health [1]. Therefore, the sewer pipes require regular inspections in 
order to determine when a pipe has to be replaced or rehabilitated. 
However, with more than 1.2 million kilometers of public sewerage 
infrastructure in just the U.S. [1], this becomes an unimaginable task to 
perform manually on a regular basis, as each inspection has to be per-
formed by a professional sewer inspector. Therefore, the task of auto-
mating the sewer inspection process has been researched for more than 
three decades, through the development and application of sensors and 
computer vision algorithms [2–5]. 

Since its adoption in 2017, the Convolutional Neural Network (CNN) 
has been the method of choice within the automated sewer inspection 
domain [2]. A key component of the CNN is the convolutional layers, 
which efficiently model local spatial semantics within the image. 
However, for tasks such as multi-label image classification, object 
detection, and object segmentation, it is essential to model non-local 
spatial semantics [7]. For example, a displaced joint and intruding 
roots could be simultaneously in an image but in opposite corners. This 
represents a case where multi-scale non-local spatial semantics are 

helpful, as knowing the presence of the displaced joint is a strong signal 
for inferring the presence of the roots. 

Two different approaches have been adopted for vision tasks – either 
replacing convolutions within the CNN with non-local operations 
[8,7,9,10] or appending CNNs with non-local operations [11–15], 
denoted Hybrid Vision Transformer (HViT)-like methods in this paper. 
However, none of these methods explicitly model non-local spatial se-
mantics across scales for image classification, even though it is used as a 
common approach in object detection and segmentation. We therefore 
propose the Multi-Scale Hybrid Vision Transformer (MSHViT), where a 
Vision Transformer (ViT) [13] is appended at different stages of a CNN 
backbone for non-local aggregation of features and cross-scale propa-
gation of features. We also introduce the Sinkhorn tokenizer, a 
clustering-based tokenizer to replace the simple patch based tokenizer in 
ViTs and act as another source of non-local spatial semantics. Further-
more, we demonstrate that the Sinkhorn tokenizer successfully cluster 
the CNN features, which are expected to have a high amount of redun-
dant information due to successively applying overlapping convolu-
tional filters and pooling layers. We find that introducing these multi- 
scale and non-local spatial semantics operations leads to a relative 
improvement compared to using just the CNN backbone. 

In this work we focus on the challenging task of multi-label sewer 
defect classification, which has been shown by Haurum and Moeslund to 
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be an unsolved problem [2,16], highlighting the difficulties of dis-
tinguishing visually similar defect classes and poor classification rates of 
sewer defects with the highest economic impact. Furthermore, 
improving sewer defect classification performance is crucial for 
advancing sewer defect detection and segmentation, as such models 
build upon pre-trained classification models [17]. 

Our main contributions are as follows:  

• We present the Multi-Scale Hybrid Vision Transformer (MSHViT), a 
novel multi-scale extension of the Hybrid Vision Transformer model 
for capturing non-local spatial semantics across scales. 

• We present the Sinkhorn tokenizer, a novel clustering-based token-
izer using Sinkhorn distances, which reduces the number of tokens 
and improves metric performance. We visually verify the cross-scale 
non-local interactions.  

• We demonstrate that the MSHViT model outperforms the baseline 
CNN approaches and other HViT-like approaches on the Sewer-ML 
multi-label sewer classification dataset, when only considering the 
defect classification task.  

• We demonstrate the applicability of MSHViT and the Sinkhorn 
tokenizer across the backbones in the ResNet and TResNet CNN ar-
chitecture families, and thoroughly investigate the impact of each 
introduced hyperparameter. 

The paper is structured as follows. In Section 2, we review the related 
works within automated sewer inspections, Vision Transformers, non- 
local CNN blocks, and tokenizers. In Section 3, we introduce MSHViT 
and the Sinkhorn tokenizer. In Section 4, we determine the improvement 
obtained by introducing the MSHViT and Sinkhorn tokenizer and 
compare to other HViT-like approaches. In Section 5 we conduct an 
extensive ablation study of the proposed methods. In Section 6 we 
qualitatively investigate the clustering assignment made by the Sink-
horn tokenizer, and in Section 7 we discuss the limitations and practical 
use of the proposed method. Finally, in Section 8, we conclude the 
paper. 

2. Related works 

In this section we review the literature within the automated sewer 
inspection domain, as well as recent progress within Vision Trans-
formers, non-local CNN blocks, and tokenization approaches. 

2.1. Automated sewer inspections 

The automated sewer inspection research field has been active for 
more than three decades, developing domain-specific computer vision 
algorithms to handle the unique environment that is the sewerage 
infrastructure [2]. However, Haruum and Moeslund [2] found that the 
research field has been hindered by the lack of open source code and 
data, which in combination with differing evaluation protocols, has 
made it extremely difficult to compare the proposed methods in the 
literature and caused the field to lag behind the general computer vision 
domain. This has been rectified for the classification tasks with the 
introduction of the public Sewer-ML dataset [16], enabling fair and open 
comparisons of multi-label classification approaches. Using the Sewer- 
ML dataset Haurum and Moeslund showed that the sewer defect clas-
sification tasks are far from solved, comparing the leading sewer defect 
classification methods from Kumar et al. [18], Meijer et al. [19], Xie 
et al. [20], Chen et al. [21], Hassan et al. [22], and Myrans et al. [23]. 
Concurrent research directions in the sewer defect classification sub- 
field have focused on the usage of StyleGAN-based approaches to in-
crease the effective size of small training dataset [24,25], developing 
and deploying networks on embedded devices [26,27], and providing 
defect localization information without explicit localization labels 
[28,29]. 

However, the main focus of the field within recent years has been on 

the defect detection and segmentation tasks [30–32,17,33–36], where 
no public datasets are available. The field has, however, become more 
transparent as many have started to directly compare different methods 
on the same datasets, in an effort to offset the lack of public detection 
and segmentation datasets [17,36,34]. Recently, the field has also 
started investigating other parts of the sewer inspection process 
[30,32,17,37–41], such as Haurum et al. [37] proposing a multi-task 
classification approach for simultaneously classifying defects, water 
level, pipe material, and pipe shape, and Wang et al. [30] proposed a 
framework to accurately determine the severity of defects related to the 
operation and maintenance of the pipes. The field has also adopted 
recent trends from the general computer vision field such as self- 
supervised learning [39], synthetic data generation [25,24,42–44], 
neural architecture search [45], and usage of the Transformer archi-
tecture [17,46], indicating that the automated sewer inspection field is 
catching up to the general computer vision domain. 

2.2. Vision transformers 

Transformers were originally developed for Natural Language Pro-
cessing (NLP) [47]. Dosovitskiy et al. [13] demonstrated how a pure 
Transformer based architecture, denoted Vision Transformer (ViT), led 
to competitive performance on several vision classification tasks. The 
ViT architecture has led to an increased research focus on adapting 
Transformers for vision tasks [48–58]. A general trend has been intro-
ducing components from CNNs into the ViTs, such as limited region of 
interests and hierarchical representations [53,50,54,55] or extending 
CNNs with Transformers in a hybrid approach [13,15,48,12]. However, 
unlike CNNs the ViT only processes the input image on a single scale due 
to the initial tokenization step and the absence of pooling operations. 
This problem has been approached in two ways, by introducing either 
hierarchical representations inspired by classical CNN architecture 
design [53–56] or multi-scale representations by applying different ViTs 
sequentially [59] or working on variations of the input in parallel 
[60,58]. Our proposed method differs fundamentally from the prior 
work as we introduce multi scale features by combining CNNs and ViTs, 
instead of adapting a purely ViT-based model. 

2.3. Non-local CNN blocks 

Combining non-local blocks and operations with classical CNNs have 
been of great interest as a way of capturing global spatial semantics. The 
Non-Local Network (NLN) [8] was proposed as an extension of the 
ResNet architecture family, where non-local aggregation operations 
were inserted into the last blocks of the architecture. The NLN archi-
tecture was extended by Srinivas et al. [7] who introduced the Bottle-
neck Transformer, where Multi-Head Self-Attention was inserted 
directly into the ResNet bottleneck blocks. Both of these approaches lead 
to direct improvements on several vision tasks. Appending CNNs with 
non-local operations have similarly lead to improvements in image 
classification as shown by Dai et al. [14] who investigated how to design 
Hybrid Vision Transformers (HViTs), i.e. CNNs appended with a ViT, and 
in tasks such as object detection with the DETR model [11] and enabling 
image-caption pair based training [15]. In contrast to the previous 
application of non-local blocks, we append the CNN at several stages in 
order to explicitly introduce multi-scale interactions through the pro-
posed MSHViT architecture. 

2.4. Tokenizers 

An essential part of the Transformer architecture is the choice of how 
to generate the token embeddings. In NLP several embedding methods 
have been utilized through the years in order to represent sentences and 
words [61,62]. However, for image data this has not been the case. 
Dosovitskiy et al. [13] proposed simply extracting non-overlapping 
patches of the input image and linearly map the patches to an 

J.B. Haurum et al.                                                                                                                                                                                                                              



Automation in Construction 144 (2022) 104614

3

embedding space. This approach has since been iterated upon, by 
instead extracting overlapping patches [57], learning to select the patch 
size of the conventional patch tokenizer [63], as well as replacing the 
initial layer of the Transformer with a convolutional stem similar to 
those found in CNNs [49]. In parallel, different token downsampling 
approaches have been investigated in order to reduce token redundancy. 
Goyal et al. [64] and Rao et al. [65] propose score-based token down-
sampling methods, where each token is assigned a score based on the 
incoming attention from other tokens or a predictive subnetwork, 
respectively. In contrast, this work and the concurrent work by Marin 
et al. [66] propose clustering based approaches for reducing the number 
of tokens. The method by Marin et al. utilizes a K-means/medoids based 
approach, whereas our proposed Sinkhorn tokenizer utilizes Sinkhorn 
distances [6] in order to softly assign the input tokens to a set of cluster 
centers. All of the prior approaches [64–66] are focused on pure ViT 
architectures and inserted in between each encoder block progressively 
decimating the number of tokens present. Comparatively, the proposed 
Sinkhorn tokenizer is applied on HViTs in order to reduce redundancy in 
the CNN feature-based tokens. 

3. Methodology 

In this section we first review the Vision Transformer and its hybrid 
variant originally proposed by Dosovitskiy et al. [13]. Then we present 
our novel clustering-based Sinkhorn tokenizer, designed to reduce the 
number of redundant tokens in ViTs. Lastly, we present our MSHViT 
architecture, designed to non-locally combine CNN features at the ith 
scale and progressively combine features across scales, as illustrated in 
Fig. 1. An overview of the introduced symbols and notations can be 
found in Appendix A. 

3.1. Vision transformers 

The Vision Transformer [13] demonstrated that the original Trans-
former architecture [47] can be used with little modifications for image 
classification, and without the image-related inductive biases found in 
CNNs. 

3.1.1. Tokenization 
The Transformer takes a series of 1D token embeddings as input, and 

process the series in parallel. In order to convert image data to a series of 
1D tokens the input image X ∈ RC×H×W is convolved with D different P ×

P kernels with a stride of P and flattend to a 1D vector per patch, 

producing N = HW/P2 linearly embedded tokens Tp ∈ RD×N. 
Furthermore, a special class (CLS) token xCLS ∈ RD is appended to Tp. 

The CLS token is randomly initialized and used to generate an image- 
level feature representation. In order to encode a spatial ordering into 
the tokens a learnable positional embedding Epos ∈ RD×N+1 is added, 
leading to the final token representations: 

Z0 = [xCLS ‖ Tp] +Epos, (1)  

where ‖ denotes concatenation. 

3.1.2. ViT model 
The Transformer consists of L stacked encoder blocks, each consist-

ing of a token-aggregation step, such as Multi-Head Self-Attention 
(MHSA), followed by an inverted bottleneck projecting each token into 
an intermediate RD⋅r space, where r is an adjustable hyperparameter, 
followed by a down projection to the D-dimensional feature space. Layer 
normalization (LN) [67] is applied before both actions and residual 
connections are inserted around each action. The final feature repre-
sentation is the CLS token after L blocks and a final layer normalization 
step, y = LN(ZL,0). 

3.1.3. Hybrid ViT 
Unlike CNNs, ViTs have very little image-specific inductive biases 

[13]. Therefore, ViTs often require large amount of training data in 
order to learn relevant relations, which are encoded directly into CNN 
architectures. However, this lack of inductive biases similarly allows 
ViTs to learn relations within images, which are not viable with CNNs, 
such as capturing non-local spatial semantics. The HViT aims at 
combining these two architectures, by first using a CNN to encode local 
features, and then compute non-local spatial semantics using a ViT. This 
is realized by extracting the tokens Tp from a CNN feature map with a 
kernel size P = 1, typically at the last feature map before the commonly 
used global pooling step. This is in contrast to the ViT model where the 
tokens are extracted directly from the input image X. 

3.2. Sinkhorn tokenizer 

The original ViTs generate the token representations of the image 
through a non-overlapping patch based method [13]. Several methods 
have been proposed to improve the tokenizer either by reducing the 
stride of the convolutional layer such that the patches overlap [57], or 
instead use a convolutional stem which aggressively downsamples the 

Fig. 1. System overview. (Top) A CNN backbone 
returns feature maps from a subset of the internal 
scales in the CNN. The feature maps from each scale 
are first tokenized and then processed by a weight- 
shared ViT. The information from previous scales 
are propagated forward to the next scale, shown in the 
figure by forwarding the Sinkhorn tokenizer output to 
the next scale as per Eq. (9). (Bottom) The Sinkhorn 
tokenizer reduces the number of tokens by first 
measuring the cosine similarity, V, between all input 
tokens Tp and cluster centers C. The Sinkhorn dis-
tances [6] are then computed by applying Sinkhorn- 
Knopp for tSK iterations, resulting in the soft assign-
ment matrix, Q*⊤. Using Q*⊤ the input features are 
clustered into the smaller set of tokens, TS.   
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spatial dimensions of the input [49]. However, these methods do not 
consider the redundancy of features stemming from encoding similar 
patches in the image and therefore lead to disproportionately repre-
senting these in the generated tokens. While this may be implicitly 
handled by the attention mechanisms in the ViT, it introduces an un-
necessary processing overhead and requires the model to learn these 
relations. 

To deal with the redundant features we introduce a clustering-based 
tokenizer using Sinkhorn distances [6], inspired by clustering-based self- 
supervised learning [68,69]. The approach builds upon the original 
patch tokenizer with P = 1. The N patch tokens Tp are compared to K 
cluster centers C ∈ RD×K which are initialized from a D-dimensional 
Normal distribution with zero-mean and unit variance. We assume both 
Tp and C are ℓ2 normalized and measure similarity using the cosine 
similarity V = C⊤Tp ∈ RK×N. Based on the similarity scores V we 
compute the soft assignment matrix Q ∈ RK×N

+ , which belongs to the set 
of valid assignment matrices Q, such that the similarity between the 
cluster centers and features is maximized: 

max
Q∈Q

Tr(Q⊤V)+ ∊H(Q), (2)  

where H is the matrix entropy function and ∊ controls the weighting of 
the entropy loss and thereby the smoothness of the assignment scores. 

Similar to [68,69] we constrain Q to be in the transportation poly-
tope under an equipartition constraint of the input and cluster centers i. 
e. the features should on average be uniformly assigned to the cluster 
centers. However, instead of applying the constraint on the full dataset 
[68] or mini-batches [69], we apply the constraint on the N features 
from a single input, see Eq. (3). We apply the constraint on the N features 
such that there is no cross-information between input images, enabling 
single image evaluation. 

Q = {Q ∈ RK×N
+ |Q1N =

1
K

1K ,Q⊤1K =
1
N

1N}, (3)  

where 1K and 1N are K and N-dimensional vectors filled with ones, 
respectively. 

The solution to Eq. (2) can then be formulated as follows: 

Q* = diag(u)exp
(

V
∊

)

diag(v) ∈ RK×N
+ , (4)  

where the renormalization vectors u and v are computed using the 
iterative Sinkhorn-Knopp algorithm [6] through tSK iterations. 

Using the soft assignments between input features Tp and cluster 
centers C stored in Q* we transform the input features into K new tokens: 

TS = TpQ*⊤ ∈ RD×K (5)  

3.3. Multi-scale hybrid vision transformers 

Based on prior work on combining non-local operations with clas-
sical CNNs, such as HViTs, we propose the Multi-Scale Hybrid Vision 
Transformer. Whereas the original HViT simply extends the backbone 
CNN with a ViT, we propose applying ViTs at different scales of the 
backbone CNN. Furthermore, we also introduce cross-scale connections 
between the ViTs in order to encode non-local spatial semantics in the 
image at different scales, see Fig. 1. 

CNNs such as ResNets [70] and Inception networks [71,72] have a 
set of natural scales within them due to the periodic pooling operations. 
The representative feature map of each scale is defined to be the last 
feature map before each pooling operation and denoted Xi for the ith 
scale. At every scale each feature in Xi is linearly embedded into a 
common D-dimensional space as tokens Ti

p. These tokens are processed 
using a tokenization function ψ i, representing either the Sinkhorn 
tokenizer (Eq. (5)) or an identity function for the standard patch 

tokenizer, with the output denoted Ti. The tokens can then be processed 
by a scale-specific ViT of depth L, denoted as ϕi, producing the scale 
features: 

Zi
L = ϕi(Ti) (6)  

3.3.1. Cross-scale connections 
In order to share information between different scales, we introduce 

cross-scale connections. For scale i > 1, all previous scale features, or a 
subset of the features, are included, denoted Si, in addition to the ith 
scale features Ti

p, see Eq. (7). 

Ti = ψi(Ti
p ‖ Si) (7)  

This cross-scale connection can occur using features from three different 
stages: the linearly embedded CNN features Tp, see Eq. (8), the Sinkhorn 
tokens TS, see Eq. (9), or the final token embeddings ZL, see Eq. (10). j 
denotes the initial scale which we consider for scale i. For example, if j =
1 all features from scale 1 to scale i − 1 are aggregated, while if j = i − 1 
only the features from scale i − 1 are aggregated. 

Si = ‖
i− 1
j Tj

p (8)  

Si = ‖
i− 1
j Tj

S (9)  

Si = ‖
i− 1
j Zj

L (10) 

Lastly, the overall image representation is defined to be y =

LN(ZI
L,0), where I denotes the last scale of the backbone. 

4. Experimental results 

In this section we investigate the performance of the MSHViT ar-
chitecture and Sinkhorn tokenizer on the Sewer-ML dataset, a multi- 
label sewer defect classification dataset [16]. Sewer-ML is the world’s 
only public multi-label sewer defect dataset, consisting of 1.3 million 
images, 17 defect classes, and the implicit normal class. The dataset is 
split into three distinct training, validation, and testing splits, each 
containing 1 million, 130 k and 130 k images, respectively. We refer to 
the Supplementary material of Haurum and Moeslund [16] for example 
images. Defect predictions are evaluated using the class F2-scores 
weighted by the class importance weights (CIW), F2CIW, which indicates 
the economic importance of the classes, and the normal pipes are 
evaluated by the F1-score, F1Normal[16]. An abbreviated introduction to 
the Sewer-ML dataset and the evaluation metrics can be found in Ap-
pendix B. Code and model weights can be found at the project webpage: 
https://vap.aau.dk/mshvit/. 

Table 1 
Detailed training procedures. We follow the training procedures of 
Haurum et al. [37] with the addition of utilizing model EMA.  

Variable Value 

Image Size 224 
Epochs 40 
Batch Size 256 
Learning Rate (LR) 0.1 
Weight Decay 0.0001 
LR Scheduler Step @ 20, 30 epochs 
LR Decay Factor 0.01 
Optimizer SGD w/ momentum 
Loss function Binary Cross-Entropy 
Class Weighting Effective samples [74] 

β = 0.9999 
Model EMA 0.9997 
Augmentations Horizontal flip (p = 0.5) 

Color Jitter (±0.1)  
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4.1. Training procedure 

We follow the training procedure of Haurum et al. [37] with the 
addition of using the Exponential Moving Average (EMA) technique on 
the model weights, see Table 1. We utilize the Fourier Network (FNet) 
based attention mechanism [73] in the HViT as an efficient alternative 
to the conventional MHSA based attention mechanism. 

We define the ResNet architecture to have five natural scales: the 
convolutional stem followed by four ResNet blocks, numbered from 1 to 
5. These stages are chosen as they act on feature maps with different 
spatial dimensions. 

4.2. Hyperparameter search 

The hyperparameter search for the MSHViT and Sinkhorn tokenizer 
is conducted in a sequential manner in order to reduce the search space 
due to the number of hyperparameters and the investigated value 
ranges. The investigated hyperparameter values as well as the initial and 
final values are shown in Table 2. The initial Sinkhorn Tokenizer values 
were set as in Caron et al. [69], except for the number of clusters K, 
where we chose 64 centers as the initial value to ensure a large average 
assignment probability per cluster in each scale. For the MSHViT ar-
chitecture we initialized the model by appending the last two layers, 
where higher-order features are available. The hyperparameters of the 
ViTs were chosen such that only a moderate parameter increase was 
introduced. After each step in the sequential search we used the 
configuration which performed the best for the next step. The steps of 
the sequential search were ordered such that the Sinkhorn Tokenizer 
cluster and MSHViT cross-scale hyperparameters were determined, and 
lastly the structure of the ViTs. The entire hyperparameter search was 
conducted with the ResNet-50 backbone. The order of the search was as 
follows:  

1. Search over the entropic regularization ∊ in the Sinkhorn tokenizer.  
2. Search over the number of iterations tSK in the Sinkhorn tokenizer.  
3. Search over the number of clusters K in the Sinkhorn tokenizer.  
4. Search over which scales to be used and selection of j in the MSHViT 

extension.  
5. Search over the multi-scale method, S.  
6. Search over token dimensionality D.  
7. Search over the MLP ratio r.  
8. Search over ViT depth L. 

We find that the initial hyperparameters perform well, with only the 
entropic regularization and number of iterations in the Sinkhorn-Knopp 
algorithm being adapted. 

4.3. Comparative models 

We investigate the performance increase incurred when applying 
MSHViT to the ResNet-{18, 34, 50, 101}, a commonly used backbone 
architecture in the image classification literature [7,12,76], as well as 

TResNet backbone [75], an adaption of the ResNet backbone using 
concepts such as anti-aliased downsampling and Squeeze and Excitation 
(SE) [77] layers. The same MSHViT hyperparameters are used for all 
backbones. Furthermore, we compare performance against the HViT- 
like models BoTNet-50-S1 [7] and CoAtNet-{0, 1} [14], as well as the 
original HViT structure [13]. BotNet and CoAtNet were trained with the 
model structure described in the original papers, while the HViT model 
uses the same ViT parameters described in Table 2 with the exception of 
the attention mechanism where we use the classical MHSA-based token 
mixing. We compare using both the conventional patch based tokenizer 
and the proposed Sinkhorn tokenizer. Lastly, we compare to the previ-
ously published results on Sewer-ML [16,37]. We run all experiments 
within the same codebase, using the torchvision [78], Pytorch Lightning 
[79] and timm [80] libraries. All models were trained using a single 
Nvidia V100 GPU except for the CoAtNet models which required two 
V100 GPUs due to a higher VRAM consumption. 

4.4. Results 

We find that introducing the MSHViT and Sinkhorn Tokenizer leads 
to a noticeable improvement on all tested backbones, see Table 3. On the 
F2CIW metric we observe an increase between 0.7 and 2.5 percentage 
points, with the largest increase observed on the ResNet-50, where the 
performance is improved by 2.4–2.5 percentage points on both the 
validation and testing splits. This is significantly better than the 
benchmark algorithm from Haurum and Moeslund [16], and a compa-
rable performance to the previous best performing model on Sewer-ML, 
the multi-task classification method CT-GAT [37], while only using the 
sewer defect labels during training. This demonstrates that it is possible 
to significantly increase the sewer defect classification performance 
without needing auxiliary data such as water level, pipe shape, and pipe 
material. For the non-defective pipes we observe a more moderate in-
crease of up to 0.24 percentage points in the F1Normal metric. However, 
we observe a higher baseline performance compared to previous 
methods. 

Interestingly, we observe that the ResNet-34 backbone perform 

Table 2 
Hyperparameters. Overview of all searched hyperparameters, with the inves-
tigated values as well as the initial and final values.  

HP Range Initial Final 

∊ [0.05, 0.25, 0.5, 0.75, 1.00, 1.25] 0.05 0.25 
tSK [1, 3, 5, 7, 9] 3 5 
K [32, 64, 128, 64/32, 128/64] 64 64 
Scales [{2,3,4,5}, {3,4,5}, {4,5}, {5}] {4,5} {4,5} 
S [Tp ,TS,ZL] TS TS 

j [i − 1,min(Scales)] i − 1 i − 1 
D [512, 1024, 2048] 512 512 
r [1, 2, 3, 4] 4 4 
L [1, 2, 3] 2 2  

Table 3 
Results on Sewer-ML. Comparison using the investigated CNN backbones. We 
compare each backbone with and without the MSHViT and Sinkhorn tokenizer 
extension (denoted MSHViT) using the F2CIW and F1Normal metrics [16]. Best 
performance per column is denoted in bold. We also include the previous 
published results on Sewer-ML [16,37], and HViT-like models [7,13,14]. *de-
notes that the method was trained in a multi-task classification framework.   

Validation Split Test Split 

Model MSHViT F2CIW F1Normal F2CIW F1Normal 

Benchmark[16] - 55.36 91.32 55.11 90.94 
CT-GAT* [37] - 61.70 91.94 60.57 91.61  

ResNet-50-HViT-Patch [13] - 59.87 92.41 57.58 91.99 
ResNet-50-HViT-Sinkhorn 

[13] 
- 60.42 92.41 58.74 92.07 

BotNet-50-S1 [7] - 61.62 92.92 59.69 92.49 
CoAtNet-0 [14] - 57.82 92.28 56.53 91.94 
CoAtNet-1 [14] - 59.37 92.50 57.42 91.11  

ResNet-18 [70] × 58.60 92.34 56.62 91.88 
✓ 59.87 92.42 58.18 92.12 

ResNet-34 [70] × 60.98 92.72 59.18 92.30 
✓ 61.65 92.76 59.91 92.30 

ResNet-50 [70] × 59.28 92.44 57.58 92.03 
✓ 61.68 92.44 60.11 92.11 

ResNet-101 [70] × 60.06 92.48 58.01 92.13 
✓ 61.25 92.50 59.93 92.19 

TResNet-M [75] × 58.04 92.22 56.08 91.90 
✓ 58.68 92.25 56.93 91.84 

TResNet-L [75] × 59.17 92.36 56.97 92.00 
✓ 59.19 92.27 57.16 91.87  
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surprisingly well for both the baseline and MSHViT extension. Not only 
does the ResNet-34 baseline achieve the best performance out of the 
ResNet networks, it also either outperforms or matches the ResNet-101 
backbone when applying the MSHViT extension. For the TResNet ar-
chitectures we observe that the improvement gained by adding MSHViT 
extension is smaller than that for the ResNet backbones. This is most 
likely due to the SE layers in the TResNet model, which means the 
TResNet already includes some attention-based mechanisms. However, 
it is clear that the MSHViT extension is still beneficial. 

When comparing to other HViT-like models we see that the MSHViT 
extension outperforms the original HViT structure, as well as all models 
where the Transformer structure is incorporated directly into the 
backbone. It should be noted that on the validation split the BotNet-50- 
S1 model nearly matches the ResNet-50-MSHViT’s F2CIW score and 
achieves the highest F1Normal performance. However, on the test split the 
F2CIW performance is significantly lower compared to the ResNet-50- 
MSHViT, indicating the model does not generalize as well as the 
ResNet-50-MSHViT model. 

From these results we can conclude that the proposed MSHViT 
extension led to improvements without tuning the hyperparameters for 

the backbone. We hypothesize that if hyperparameters were tuned for 
each backbone, the performance gain would further increase. 

4.5. Per-class analysis 

In order to better understand how the compared models work, we 
investigate how the baseline and MSHViT extended models differ in 
their class predictions on the validation split. In Fig. 2a we present the 
per-class F2-scores for all MSHViT models, and in Fig. 2b we determine 
the difference in per-class F2-scores when comparing the MSHViT var-
iants with the baseline models, see Eq. (11). 

δc = cMSHViT − cBaseline, (11)  

where δc is the difference in F2-scores for class c, and cMSHViT and cBaseline 

are F2-scores for class c for the MSHViT and Baseline models, 
respectively. 

When analyzing the absolute per-class performance in Fig. 2, we see 
that the ResNet-34, ResNet-50, and ResNet-101 all perform similarly 
well on nearly all classes, with the ResNet-34 and ResNet-50 achieving 
noticeable performances in the highest weighted classes, whereas the 

Fig. 2. Per-Class F2-scores analysis. We present the per-class F2-scores on the validation split for all MSHViT-based models as well as the difference between the 
MSHViT variants and the baseline models, δc. The classes are sorted in ascending order by their class-importance weight [16]. Class names and abbreviations are 
described in Appendix B. 
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TResNet models and ResNet-18 have a noticeably lower score on several 
classes. We also observe that for all models the performance is low on 
intruding sealing material (IS), the obstacles (FO), cracks, breaks, and 
collapses (RB). This can be explained by the fact that the IS and FO 
classes are some of the most rare classes in the Sewer-ML dataset, with 
less than 10,000 examples per class. Additionally, all three classes have a 
large variation in their visual appearance within the class, while being 
less visually distinct from other classes. For example, the FO class is 
defined such that it encompasses any possible foreign objects that can 
block the pipes. In Fig. 2b we observe that when using MSHViT together 
with the ResNet backbones performance increases on nearly all classes, 
except for consistent decreases on the attached deposits (BE) class and 
on the connection with construction changes (OK) class. For the ResNet- 
34 backbone we also observe a significant decrease in performance on 
the deformation (DE) class. However, there is a noticeable increase in 
performance on both the lateral reinstatement cuts (OS) and cracks, 
breaks, and collapses (RB), the two highest weighted classes, across all 
ResNet backbones. On the other hand we see that the TResNet back-
bones behaves very poorly on the OS class, which drags down the overall 
score, even though it performs well on nearly all other classes. 

4.6. Qualitative examples 

In addition to quantiative per-class comparison, we also look into 
specific cases where the predictions of the compared models differ. 
Focusing on the ResNet-50 backbone we compare cases where the 
MSHViT extensions match all classes correctly while the baseline mis-
classifies some or all classes and vice versa, see Fig. 3. Four examples are 

shown where the MSHViT model correctly predicts all classes. In the top 
left image, the MSHVIT correctly predicts the pipe to be normal, whereas 
the baseline predicts surface damage (OB). This is most likely due to the 
missing top half of the pipe, as the image is taken from within the sewer 
well. In the top middle and bottom left cases the baseline misses the 
cracks, breaks, and collapses (RB) and lateral reinstatement cuts (OS) 
classes, the two highest weighted classes by CIW. Missing these classes 
could lead to significant economic repercussions. The RB class is most 
likely missed due to its visual similarity to the displaced joint (FS) 
deeper in the pipe, whereas the OS is similarly missed as the baseline 
misses the fact that a lining has been inserted and the low severity of the 
class. In the bottom middle example, the baseline simply misses the 
intruding sealing material (IS) class, instead only classifying the dis-
placed joint (FS). In the top right and bottom right, the MSHViT variant 
misses the displaced joint (FS) and roots (RO), respectively. It is not clear 
why the MSHViT missed the displaced joint, however, we hypothesize it 
might be due to the co-occurring connection with construction changes 
(OK) class, where the material of the pipe changes. For the bottom right 
case, the MSHVIT misses the small fine roots in the joint, most likely due 
to focusing on the much more prevalent displaced joint (FS) and surface 
damage (OB). 

4.7. Efficiency analysis 

In order to determine the efficiency of the MSHViT extension and 
verify that the increased metric performance is not simply due to an 
increase in learnable parameters, we compare the validation F2CIW 

against the number of trainable parameters in the models as well as the 

Fig. 3. Examples of classifications with MSHViT. Example cases where the MSHViT model correctly classifies all classes as well as misclassifies some classes. The 
class codes are described in the original Sewer-ML paper [16]. Incorrect predictions are shown in red. 
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throughput measured in images processed per second (img/s) during 
both training and inference, as recommended by Dehghani et al. [81]. 
The throughput performance is computed over 200 batches of 256 im-
ages with an initial 10 warmup batches, and averaged over five separate 
runs. As the method from Haurum and Moeslund [16] is a two-stage 
approach and the method from Haurum et al. [37] is designed for the 
multi-task classification task, we do not include these in the throughput 
comparison. The results are shown in Fig. 4. From these results it is clear 
that the increased performance obtained with the MSHViT extension is 
not only due to the increase number of parameters, as the extended 
models consistently outperform baseline variants with a higher number 
of parameters. When looking at the throughput of the models, we see 
that the MSHViT does lead to a slower processing speed, however, for 
the larger models such as ResNet-50 and ResNet-101 this slowdown is 
marginal at best. 

5. Ablation studies 

We conduct a series of ablation studies in order to determine the 
sensitivity to the hyperparameter settings in the Sinkhorn tokenizer and 
MSHViT architecture. All tests are conducted on the Sewer-ML valida-
tion set using a ResNet-50 backbone, with the hyperparameter values 
stated in Tables 1 and 2 unless otherwise stated. 

5.1. Sinkhorn-Knopp hyperparameters 

At the heart of the Sinkhorn tokenizer is the iterative Sinkhorn- 
Knopp algorithm, which is controlled by two hyperparameters: tSK and 
∊. We investigate these hyperparameters’ effect on the metric 

performance one at a time. 
First, we investigate the strength of the entropic regularization term 

in Eq. (2) comparing values of ∊ = {0.05,0.25,0.50,0.75,1.00,1.25}, see 
Table 4. We observe that the highest F2CIW and F1Normal are achieved 
using ∊ = 0.25, a slightly higher entropic regularization term than what 
has previously been used in the self-supervised training domain [69]. In 
general, we see that a too high or low entropic regularization negatively 
affects the F2CIW performance. 

Secondly, we investigate the effect of the number of iterations con-
ducted tSK. We compare the performance when setting tSK = {1,3,5,7,
9}, see Table 5, as well as the effect on efficiency by measuring training 
and inference img/s, see Fig. 5. We observe that peak performance on 
both F2CIW and F1Normal is achieved when tSK is set to 5, while too few or 
too many iterations led to degradation in performance. We also observe 
a monotonic decrease in throughput when tSK is increased, as expected. 
When compared to the conventional patch tokenizer we observe that the 
training throughput and the inference throughput of the Sinkhorn 
tokenizer beats that of the patch tokenizer at all settings of tSK. 

5.2. Number of cluster centers K 

A key part of the Sinkhorn tokenizer is the number of clusters K. We 
investigate the effect of setting K = {32,64,128,64/64,128/64}, where 
x/y denotes x clusters for the 4th scale and y clusters for the 5th scale, 
see Table 6. We find that increasing or decreasing the number of cluster 
centers slightly reduced the classification performance, whereas having 
more clusters for earlier scales dramatically decreased performance. 
This is hypothesized to be due to the earlier clusters capturing similar 
semantics, as the larger number of cluster centers allow a less aggressive 
clustering process. 

Fig. 4. Comparison of metric performance and efficiency. We compare the performance of the models in Table 3 against the parameter count of each model as 
well as the throughput of the models in images per second (img/s) during training and inference. MSHViT variants are linked to their baseline variant by a 
dotted line. 

Table 4 
Effect of ∊. Comparison of different entropic regularization values in the 
Sinkhorn tokenizer.  

∊ F2CIW F1Normal 

0.05 60.80 92.56 
0.25 61.68 92.44 
0.50 61.33 92.47 
0.75 60.85 92.35 
1.00 60.86 92.51 
1.25 60.46 92.36  

Table 5 
Effect of tSK. Comparison of number of iterations in the Sinkhorn 
tokenizer.  

tSK F2CIW F1Normal 

1 61.16 92.58 
3 61.24 92.47 
5 61.68 92.44 
7 61.13 92.50 
9 61.45 92.47  
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5.3. Tokenizer efficiency at different image resolutions 

A key benefit of the Sinkhorn Tokenizer is the constant efficiency 
when the image resolution is increased. To demonstrate this we compare 
the training and inference throughput of the MSHViT model (excluding 
the backbone, which would simply be an offset) at different image res-
olutions, when using the conventional patch tokenizer and the proposed 
Sinkhorn tokenizer, see Fig. 6. From this it is clear that the throughput of 
the Sinkhorn tokenizer better handles the changes in image resolutions, 
whereas the throughput of the conventional patch tokenizer suffers 
greatly when the resolution is increased. 

5.4. Effect of ℓ2 normalization 

Within the Sinkhorn-Knopp algorithm is the calculation of the cosine 
similarities between cluster centers and input features, V. This step re-
quires an ℓ2 normalization of all cluster centers and input features in 
order to yield output values between − 1 and 1. We investigate the effect 
of skipping this normalization step, see Table 7. We see that the metric 
performance clearly drops when the features are not normalized onto 
the unit D-sphere. We can therefore conclude the normalization step is 
crucial for the Sinkhorn tokenizer. 

5.5. Effect of shared Sinkhorn tokenizer 

Inspired by the Perceiver papers [82,83] we investigate the perfor-
mance when sharing the tokenizer cluster centers and linear projection 
weights, see Table 8. We find that when sharing the tokenizer parame-
ters, the performance decreases by nearly a half percentage point. This is 
expected as the same cluster centers have to meaningfully represent 
CNN features from all considered scales, even though the CNN features 
are hierarchical in nature. 

5.6. Comparison of attention mechanisms and tokenizers 

We investigate whether the Sinkhorn tokenizer leads to improve-
ments compared to the standard non-overlapping tokenizer from Dos-
ovitskiy et al. [13], as well as the effect of attention mechanism, see 
Table 9. Fourier and MHSA refers to the blocks used in the FNet and 
Transformer models without the per token MLPs, respectively. The 

Fig. 5. Effect oftSKon throughput. Comparison of the training and inference 
throughput at different number of iterations in the Sinkhorn tokenizer, tSK. 
Training and inference throughput are also shown for the conventional patch 
tokenizer. Note that the reported throughput differs from Fig. 4, as only the 
processing time of the MSHViT extension is reported. The backbone processing 
time has been excluded, as it is simply a constant offset along the y-axis. 

Table 6 
Effect of number of cluster centers. Comparison of metric performance 
when varying the number of cluster centers K in the Sinkhorn tokenizer.  

K F2CIW F1Normal 

32 61.33 92.47 
64 61.68 92.44 
128 61.33 92.34 
64/32 60.56 92.46 
128/64 60.73 92.54  

Fig. 6. Effect of image resolution on throughput. We compare the training 
and inference throughput for the Sinkhorn and patch tokenizers across 
commonly used image resolutions. The Sinkhorn tokenizer consistently ach-
ieves a higher throughput than the conventional patch tokenizer. Throughput is 
measured only for the MSHViT extension, as the backbone processing time is 
simply an offset. 

Table 7 
Effect of ℓ2 normalization. Comparison of performance when ℓ2 normalizing 
the cluster centers C and input features Tp, before computing the similarity 
scores V.  

ℓ2 normalized F2CIW F1Normal 

× 60.40 92.40 
✓ 61.68 92.44  

Table 8 
Effect of sharing tokenizer. Comparison of metric performance when sharing 
tokenizer cluster centers.  

Shared Tokenizer F2CIW F1Normal 

× 61.68 92.44 
✓ 61.22 92.53  
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patch based tokenizer uses a kernel size and stride of P = 1 for both 
scales. We observe that the Sinkhorn tokenizer outperforms the con-
ventional patch tokenizer on all attention mechanisms, and that the 
inverted bottleneck yields little benefit in all cases but the Sinkhorn 
tokenizer combined with FNet. This shows a clear benefit from the 
clustering-based Sinkhorn tokenizer. 

5.7. Effect of multi-scale approach 

In order to determine the effect of the multi-scale approach, we 
compare the performance when using different scales and the range of 
the cross-scale connections j. Specifically, we compare using subsets of 
the scales 2–5 of the ResNet architecture i.e. all but the convolutional 
stem scale, as well as cross-scale connections with j = i − 1 where only 
the previous scale is relevant, or j set equal to the initial scale. The 
comparison is listed in Table 10, where it is clear that a multi-scale 
approach outperforms the classic single-scale HViT architecture, and 
that using too many scales diminish the performance. 

5.8. Comparison of cross-scale connections 

A key part of the MSHViT architecture is the multi-scale connections 
which enable information sharing across scales. Three variations are 
presented in Eqs. (8)–(10), and compared in Table 11. We also compare 
against a scenario with no cross-scale information sharing between the 
ViTs, instead using a late-stage scale-fusion step. The late-stage fusion 
step combines the CLS tokens from each scale together with a learnable 
cross-scale CLS token, using a MHSA operation with 8 heads. We find 
that all cross-scale connections outperform the late-stage scale-fusion 
variation and that using the ViT or linearly embedded CNN features led 
to a decrease in metric performance. Instead the best performance is 
achieved by sharing the clustered tokens from the Sinkhorn tokenizer 
across scales, indicating that the clustering process is crucial for per-
formance. We also compare sharing weights for the ViTs when appli-
cable, and find that sharing ViT weights results in a clear performance 
benefit, unlike when sharing weights and cluster centers in the tokenizer 
(See Section 5.5). 

5.9. Effect of ViT hyperparameters 

Lastly, we investigate the effect of varying the hyperparameters of 
the ViT. Specifically, we investigate the effect of the token dimension-
ality, D, the MLP ratio, r, in the inverted bottleneck, and the depth of the 
ViT, L. The effect on the metrics are reported in Tables 12–14, as well as 
the number of trainable parameters in the MSHViT extension, #P. From 
these results we observe a clear decrease in metric performance when 
increasing the token dimensionality D, as well as when the ViT is too 
shallow or deep. For the MLP ratio we observe that best performance is 
achieved when r = 4, with performance in general decreasing when 
lowering r as the inverted bottleneck becomes narrower. 

6. Sinkhorn tokenizer cluster visualizations 

We visualize the cluster assignments within the Sinkhorn Tokenizer 
of the ResNet-50-MSHViT model to get a better understanding of how 
the non-local features are combined. For each cluster k we get the 

Table 9 
Effect of tokenizer and attention mechanism. Comparison of metric perfor-
mance when using the standard non-overlapping patch tokenizer and the 
Sinkhorn tokenizer. #P indicates the number of trainable parameters in the 
MSHViT head in millions.  

Attention Tokenizer #P F2CIW F1Normal 

Fourier Patch 1.72 59.61 92.46 
Sinkhorn 61.03 92.41  

MHSA Patch 3.82 58.95 92.24 
Sinkhorn 61.09 92.49  

FNet Patch 5.92 59.46 92.37 
Sinkhorn 61.68 92.44  

Transformer Patch 8.02 59.20 92.38 
Sinkhorn 61.11 92.41  

Table 10 
Effect of using different scales. Comparison of metric performance when using 
different scales and different cross-scale sharing range j.  

Scales j F2CIW F1Normal 

2, 3, 4, 5 i − 1 61.36 92.49 
3, 4, 5 i − 1 60.92 92.44 
4, 5 i − 1 61.68 92.44  

2, 3, 4, 5 2 60.45 92.49 
3, 4, 5 3 60.86 92.37  

5 - 61.03 92.52  

Table 11 
Comparison of cross-scale mechanisms Comparison of metric performance 
when using a late-stage scale fusion step or cross-scale mechanism S (Eq. (7)) 
using either CNN (Eq. (8)), Sinkhorn (Eq. (9)), or ViT (Eq. (10)) features.  

S Shared ViT F2CIW F1Normal 

- × 59.88 92.31 
- ✓ 60.06 92.40 
Tp - 60.25 92.38 
TS - 61.68 92.44 
ZL × 60.75 92.49 
ZL ✓ 61.37 92.48  

Table 12 
Effect of token dimensionality D. We see that increasing the token dimen-
sionality leads to poorer performance.  

D #P F2CIW F1Normal 

512 5.92 61.68 92.44 
1024 20.23 61.34 92.49 
2048 74.01 60.36 92.44  

Table 13 
Effect of MLP ratio r. We see that increasing the MLP ratio in general leads to 
better performance.  

r #P F2CIW F1Normal 

1 2.77 60.98 92.45 
2 3.82 61.31 92.48 
3 4.87 61.02 92.50 
4 5.92 61.68 92.44  

Table 14 
Effect of depth of the ViTs L. We observe that increasing or decreasing the 
depth of the ViTs leads to poorer performance, with the best performance ob-
tained when L = 2.  

L #P F2CIW F1Normal 

1 3.82 61.05 92.51 
2 5.92 61.68 92.44 
3 8.02 60.53 92.55  
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probability for each pixel that the pixel belongs to cluster k. We then 
visualize this map using a “PARULA” color mapping, where the mapping 
ranges from the minimum to maximum probability assignment. The 
PARULA color mapping maps the lowest value to blue and the largest 
value to yellow, with teal as the intermediate color. 

In tokenizers where information from previous scales is included, we 
visualize the clusters by first determining the assignment probability per 
pixel for the scale in focus. Then, for each cluster center from the pre-
vious scales we normalize the cluster assignments such that the 
maximum value is one. The cluster assignments are then multiplied by 
the assignment probability from the current scale cluster center and 
added to the overall assignment map. Lastly, the combined probability 
map is colored with a PARULA color mapping as before. 

Examples are shown in Fig. 7. From these examples it is clear that not 
only does the Sinkhorn Tokenizer lead to non-local interactions, but it 
also captures the different scales of the defects. This is exemplified by 
the highlight of the multi-scale cracks as shown in the top example of 
Fig. 7 and the displaced pipe in the bottom example of Fig. 7. We observe 
that the clusters capture parts of the same regions, but in different 
context such as one cluster center capturing a crack running along the 
pipe wall while another cluster center captures a cross section of the 
pipe. 

7. Limitations and practical use 

We have demonstrated that the proposed MSHViT framework im-
proves the sewer defect classification performance, while needing less 
information in the training process compared to the previously best 
method, the CT-GAT [37]. However, the proposed method is not yet in a 
state where it can be used to fully automate sewer inspections, due to 
poor performance on defect classes such as the very important cracks, 
breaks, and collapses (RB) class as shown in Fig. 2a. This is, however, 
true for the entire sewer defect classification field, as demonstrated by 
the low performance of all methods compared by Haurum and Moeslund 
[16]. Instead, it is more plausible that the MSHViT framework can be 
used as an assistive tool during the inspection process, providing defect 

predictions to the sewer inspectors, who can then choose to use, adapt, 
or reject the proposed classifications. Furthermore, similar to prior work 
from Yang et al. [28] and Dang et al. [29], the MSHViT framework has 
an extra benefit in that the cluster assignment maps can be used to relate 
the output predictions to the input image, as demonstrated in Section 6. 
This makes the automatic classification process less opaque to the sewer 
inspector, and may help reduce variability in sewer inspections [84,85]. 
The proposed framework is also limited in that it has only been evalu-
ated for frame-level recognition of sewer defects, and not dense recog-
nition tasks such as object- and instance-level recognition of sewer 
defects. This choice has primarily been motivated by the lack of publicly 
available data sewer inspection data with object, semantic, or instance 
annotations. However, it would be possible to extend the MSHViT 
framework for dense sewer defect recognition by utilizing an upsam-
pling framework [86,87], where the soft assignment scores Q* can be 
used to reverse the Sinkhorn-Knopp clustering step. This is, however, left 
for future work. 

8. Conclusions 

Vision Transformers (ViTs) have taken the computer vision domain 
by storm, and led a surge in Transformer focused research. A large part 
of this research focuses on exclusively using a Transformer based ar-
chitecture, while in comparison little attention has been given to the 
fusion of CNNs and Transformers. 

In this paper, we presented the Multi-Scale Hybrid Vision Trans-
former (MSHViT) for image classification, a natural extension of the 
Hybrid Vision Transformer (HViT) which combines CNNs and ViTs, and 
the Sinkhorn Tokenizer, a clustering-based tokenizer based on Sinkhorn 
distances. The MSHViT extension enables the model to learn multi-scale 
non-local spatial semantics in the input, while the Sinkhorn tokenizer 
produces a smaller set of tokens that captures non-local spatial 
semantics. 

We investigated the relative performance difference when extending 
ResNets with MSHViT and Sinkhorn tokenizer on the Sewer-ML multi- 
label sewer defect classification dataset, demonstrating a relative 

Fig. 7. Visualization of the Sinkhorn Tokenizer clusters. We show a subset of the cluster assignments for two images using the ResNet-50-MSHViT model. The 
first image contains the classes cracks, breaks, and collapses (RB), displaced joint (FS), and branch pipe (GR), and the second image contains the classes surface 
damage (OB), displaced joint (FS), and connection with construction changes (OK). For each image, two rows of cluster assignment map examples are shown 
along the columns. The top row shows six examples from the 4th scale clusters, whereas the bottom row shows six examples from the 5th scale clusters. See the 
description of the computation of the cluster assignment maps in Section 6. 
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improvement of up to 2.53 percentage points. Through an extensive 
ablation study, we provided insights into the sensitivity of the intro-
duced hyperparameters, verifying that the multi-scale extension out-
performs regular HViTs, as well as qualitatively showing how the 
Sinkhorn tokenizer cluster centers captures distinct spatial semantics 
from one another. 

While the focus of this work has been on the sewer defect classifi-
cation task, the MSHViT framework can in the future be extended to 
more dense recognition tasks such as defect detection and segmentation, 
by following commonly used upsampling-based approaches. However, 
this has been left for future work, due to the lack of publicly available 
datasets for sewer defect detection and segmentation. We hope that this 
work will inspire future work in the sewer defect classification area. 
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Appendix A. Symbol and notation guide 

An overview of the introduced symbols and relevant notation is presented in Table A.15, with headers indicating in which part of the methodology 
the notation and symbols are used. 

Table A.15 
Symbols and notation. Overview of key symbols and notations used in this paper.  

Symbols and Notation 

Vision Transformer (ViT) 
L Number of layers in the ViT. 
P Patch size of the linear embedding tokenizer. 
N Number of linearly embedded tokens. 
D Dimensionality of the linear embeddings. 
r Inverted bottleneck ratio in MLPs. 
X Input image/feature map. 
Tp Linearly embedded feature tokens. 
xCLS Class token appended to Tp. 
Epos Positional embedding of Tp and xCLS. 
Z0 The embedded input tokens of the ViT. 
ZL The tokens after L ViT layers. 
ZL,0 The CLS token after L ViT layers. 
y The final ViT feature representation.  

Sinkhorn Tokenizer 
K Number of cluster centers. 
tSK Iterations of the Sinkhorn-Knopp algorithm. 
∊ Entropy regularization hyperparameter. 
C Cluster centers. 
V Cosine similarity between Tp and C. 
1K K-dimensional vector filled with ones. 
Q* Soft assignment matrix for clustering of Tp. 
TS Set of clustered tokens.  

Cross-scale Connections 
S Set of features from previous scales. 
j Initial scale for cross-scale connections. 
ψ Tokenization function (Sinkhorn or identity). 
ϕ ViT of depth L. 
Ti Output tokens of ψ  

Functions and Notation 
‖ Concatenation of two or more inputs. 
[⋅]i Scale indicator, e.g.Xi is the input at scale i.  
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Appendix B. Sewer-ML dataset overview 

The Sewer-ML is the world’s first and only publicly available sewer defect image recognition dataset, presented by Harum and Moeslund [16]. The 
dataset was constructed from 75,618 annotated sewer inspection videos obtained over 9 years from three different Danish water utilities. Each video 
was annotated by a professionally licensed sewer inspector following the Danish sewer inspection standard [88]. We refer to Haurum [89] for an 
introduction to this standard. The sewer inspectors annotated the videos by assigning a frame-level annotation of a specific defect at a specific time. 
Using a set of heuristic rules 1.3 million images were extracted, all text redacted using an automated pipeline, and multi-label ground truth labels 
constructed based on spatial proximity of the annotations. A comprehensive breakdown of the sewer and data properties can be found in the Sup-
plementary materials of the Sewer-ML paper [16]. 

Classes and Class Importance Weighting. Following the Danish sewer inspection standard [88] there is a total of 18 named defect classes, each 
with a score representing the economic consequence of the class [90], see Table B.16. Haurum and Moeslund normalized these scores into the range 
[0, 1] to create a “class-importance weight” (CIW), representing the economic importance of each defect class. It should be noted that the Water Level 
(VA) class was excluded as an explicit class in the experiments, as it was continuously defined throughout the videos. Instead it has since been treated 
as a separate classification task by Haurum et al. [38,37]. Lastly, in order to represent the non-defective segment of sewer pipes the implicit “Normal” 
class was introduced, evaluated by the lack of classification of any of the 18 annotated sewer defect classes. 

Evaluation Protocol. In the survey conducted by Haurum and Moeslund [2], it was determined that there has been no consensus on how to 
evaluate sewer defect recognition systems. A commonly used metric has been the accuracy metric, often used in the general computer vision domain. 
However, this is a poor metric for imbalanced datasets as well as multi-label datasets, such as the Sewer-ML dataset. Therefore, Haurum and Moeslund 
[16] proposed to evaluate the model performance using two metrics based on the Fβ metric [91], while incorporating domain knowledge, 

Fβ = (1+ β2)
Prc⋅Rcll

β2Prc + Rcll
(B.1)  

where Prc and Rcll are the precision and recall of the classifier, respectively, and β is a weighting of recall, such that the recall β times more important 
than precision. 

A key insight made by Haurum and Moeslund was that in the sewer inspection process false negatives have a larger economic impact than false 
positives. This is due to false positives being verified by human inspectors before initiating a rehabilitation process, whereas false negatives allows 
defective pipes to further degrade. The second key insight was that the different defects do not have the same importance, as some have a larger 
economic impact, see Table B.16. These domain insights were incorporated into the defect evaluation metric F2CIW by setting β = 2, meaning the 
recall is weighted higher than the precision, and by weighting the class F2 scores by their CIW scores, see Eq. (B.2). 

F2CIW =

∑C

c=1
F2c⋅CIWc

∑C

c=1
CIWc

(B.2)  

where CIWc and F2c are the CIW and F2-score for class c, respectively, and C is the number of annotated classes. 
In order to evaluate the normal pipes, which have a CIW of 0 and therefore not included in F2CIW, Haurum and Moeslund proposed to simply use 

the F1 score, denoted as F1Normal. 

Table B.16 
Sewer inspection classes. Overview and short description of each annotation class [88] and the class-importance weights (CIW) [90]. Reproduced from Haurum and 
Moeslund [16].  

Code Description CIW 

VA Water Level (in percentages) 0.0310 
RB Cracks, breaks, and collapses 1.0000 
OB Surface damage 0.5518 
PF Production error 0.2896 
DE Deformation 0.1622 
FS Displaced joint 0.6419 
IS Intruding sealing material 0.1847 
RO Roots 0.3559 
IN Infiltration 0.3131 
AF Settled deposits 0.0811 
BE Attached deposits 0.2275 
FO Obstacle 0.2477 
GR Branch pipe 0.0901 
PH Chiseled connection 0.4167 
PB Drilled connection 0.4167 
OS Lateral reinstatement cuts 0.9009 
OP Connection with transition profile 0.3829 
OK Connection with construction changes 0.4396  
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