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ABSTRACT

Replay-based continual learning has shown to be successful in mitigating catas-
trophic forgetting. Most previous works focus on increasing the sample quality in
the commonly small replay memory. However, in many real-world applications,
replay memories would be limited by constraints on processing time rather than
storage capacity as most organizations do store all historical data in the cloud.
Inspired by human learning, we demonstrate that scheduling over which tasks
to revisit is critical to the final performance with finite memory resources. To
this end, we propose to learn the time to learn for a continual learning system,
in which we learn schedules over which tasks to replay at different times using
Monte Carlo tree search to illustrate this idea. We perform extensive evaluation
and show that our method can learn replay schedules that significantly improve
final performance across all tasks than baselines without considering the schedul-
ing. Furthermore, our method can be combined with any other memory selection
methods leading to consistently improved performance. Our results indicate that
the learned schedules are also consistent with human learning insights.

1 INTRODUCTION

Many organizations deploying machine learning systems receive large volumes of data daily where
these new data are often associated with new tasks. Although all historical data are stored in the
cloud in practice, retraining machine learning systems on a daily basis is prohibitive both in time
and cost. In this setting, the systems must continuously adapt to new tasks without forgetting the
previously learned abilities. Continual learning methods (De Lange et al., 2019; McCloskey &
Cohen, 1989; Parisi et al., 2019) address this challenge where, in particular, replay-based meth-
ods (Chaudhry et al., 2019; Hayes et al., 2020) have shown to be very effective in achieving great
prediction performance and retaining knowledge of old tasks. Replay-based methods mitigate catas-
trophic forgetting by revisiting a small set of samples, which is feasible to process compared to the
size of the historical data. In traditional continual learning literature, the replay memory is limited
due to the assumption that historical data are not available. In the real-world setting where historical
data are in fact always available, the requirement of small memory remains due to processing time
and cost issues.

Most research on replay-based continual learning has been focused on the sample quality in the
memory (Aljundi et al., 2019; Borsos et al., 2020; Chaudhry et al., 2019; Chrysakis & Moens, 2020;
Nguyen et al., 2017; Rebuffi et al., 2017; Yoon et al., 2021) or data compression to increase the
memory capacity (Hayes et al., 2020; Iscen et al., 2020; Pellegrini et al., 2019). Common for these
methods is that the memory allocates an equal amount of space for storing samples from old tasks.
When learning new tasks, the whole memory is replayed to mitigate catastrophic forgetting. How-
ever, in life-long learning settings, this simple strategy would be inefficient as the memory must
store a large number of tasks. Furthermore, these methods ignore the time to learn old tasks again
which is important in human learning. Humans are continual learning systems, and different meth-
ods have been developed to enhance memory retention, such as spaced repetition (Dempster, 1989;
Ebbinghaus, 2013; Landauer & Bjork, 1977) which is used often in education. These education
methods focus on the scheduling of learning and rehearsal of previous learned knowledge.

In this work, we argue that finding the proper schedule of what tasks to replay in the fixed memory
setting is critical for continual learning. To demonstrate our claim, we perform a simple experiment
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Figure 1: Task accuracies on Split MNIST (Zenke et al., 2017) when replaying only 10 samples of classes 0/1
at a single time step. The black vertical line indicates when replay is used. ACC denotes the average accuracy
over all tasks after learning Task 5. Results are averaged over 5 seeds. These results show that the time to
replay the previous task is critical for the final performance.

on the Split MNIST (Zenke et al., 2017) dataset where each task consists of learning the digits
0/1, 2/3, etc. arriving in sequence. The replay memory contains data from task 1 and can only
be replayed at one point in time. Figure 1 shows how the task performances progress over time
when the memory is replayed at different time steps. In this example, the best final performance is
achieved when the memory is used when learning task 5. Note that choosing different time points
to replay the same memory leads to noticeably different results in the final performance. These
results indicate that scheduling the time when to apply replay can influence the final performance
significantly of a continual learning system.

To this end, we propose learning the time to learn, in which we learn replay schedules of which tasks
to replay at different times inspired from human learning (Dempster, 1989). We illustrate the ad-
vantages with replay scheduling by using Monte Carlo tree search (MCTS) (Coulom, 2006) to learn
policies for replay. More specifically, we train a neural network on the current task dataset mixed
with the scheduled replay samples and measure the final performance of the network to evaluate the
replay schedules selected by MCTS. In summary, our contributions are:

• We demonstrate the importance of replay scheduling in continual learning and propose to
learn the time to learn which tasks to replay (Section 3.1 and 3.2).

• We use MCTS as an example method to illustrate how replay schedules for continual learn-
ing can be learned by establishing a finite set of memory compositions that can be replayed
at every task (Section 3.3).

• We demonstrate with several benchmark datasets that learned scheduling can improve the
continual learning performance significantly in the fixed size memory setting (Section 4.1
and 4.4). Furthermore, we show that our method can be combined with any other memory
selection methods (Section 4.3), as well as being efficient in situations where the memory
size is even smaller than the number of classes (Section 4.5).

2 RELATED WORK

In this section, we give a brief overview of continual learning methods, essentially replay-based
methods, as well as spaced repetition techniques for human continual learning.

Continual Learning. Traditional continual learning can be divided into three main areas, namely
regularization-based, architecture-based, and replay-based approaches. Regularization-based meth-
ods aim to mitigate catastrophic forgetting by protecting parameters influencing the predictive per-
formance from wide changes and use the rest of the parameters for learning the new tasks (Adel
et al., 2019; Chaudhry et al., 2018a; Kirkpatrick et al., 2017; Li & Hoiem, 2017; Nguyen et al.,
2017; Rannen et al., 2017; Schwarz et al., 2018; Zenke et al., 2017). Architecture-based methods
isolate task-specific parameters by either increasing network capacity (Rusu et al., 2016; Yoon et al.,
2019; 2017) or freezing parts of the network (Mallya & Lazebnik, 2018; Serra et al., 2018) to main-
tain good performance on previous tasks. Replay-based methods mix samples from old tasks with
the current dataset to mitigate catastrophic forgetting, where the replay samples are either stored in
an external memory (Chaudhry et al., 2019; Hayes et al., 2020; Isele & Cosgun, 2018; Lopez-Paz &
Ranzato, 2017) or generated using a generative model (Shin et al., 2017; van de Ven & Tolias, 2018).
Regularization-based approaches and dynamic architectures have been combined with replay-based
approaches to methods to overcome their limitations (Chaudhry et al., 2018a;b; Douillard et al.,
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2020; Ebrahimi et al., 2020; Joseph & Balasubramanian, 2020; Mirzadeh et al., 2020; Nguyen et al.,
2017; Pan et al., 2020; Pellegrini et al., 2019; Rolnick et al., 2018; von Oswald et al., 2019). Our
work relates most to replay-based methods with external memory which we spend more time on
describing in the next paragraph.

Replay-based Continual Learning. A commonly used memory selection strategy of replay sam-
ples is random selection. Much research effort has focused on selecting higher quality samples
to store in memory (Aljundi et al., 2019; Borsos et al., 2020; Chaudhry et al., 2019; Chrysakis &
Moens, 2020; Hayes et al., 2019; Isele & Cosgun, 2018; Lopez-Paz & Ranzato, 2017; Nguyen et al.,
2017; Rebuffi et al., 2017; Yoon et al., 2021). Chaudhry et al. (2019) reviews several selection strate-
gies in scenarios with tiny memory capacity, e.g., reservoir sampling (Vitter, 1985), first-in first-out
buffer (Lopez-Paz & Ranzato, 2017), k-Means, and Mean-of-Features (Rebuffi et al., 2017). How-
ever, more elaborate selection strategies have been shown to give little benefit over random selection
for image classification problems (Chaudhry et al., 2018a; Hayes et al., 2020). More recently, there
has been work on compressing raw images to feature representations to increase the number of
memory examples for replay (Hayes et al., 2020; Iscen et al., 2020; Pellegrini et al., 2019). Our
approach differs from the above mentioned works since we focus on learning to select which tasks
to replay at the current task rather than improving memory selection or compression quality of the
samples in the memory. Replay scheduling can however be combined with any selection strategy as
well as storing feature representations.

Human Continual Learning. Humans are continual learning systems in the sense of learning
tasks and concepts sequentially. Furthermore, humans have an impressive ability to memorize ex-
periences but can forget learned knowledge gradually rather than catastrophically (French, 1999).
Different learning techniques have been suggested for humans to memorize better (Dunlosky et al.,
2013; Willis, 2007). An example is spaced repetition which gradually increases time-intervals be-
tween rehearsals for retaining long-term memory (Dempster, 1989). This technique has been studied
frequently and was inspired from the works of Ebbinghaus (2013) on memory retention. For exam-
ple, Landauer & Bjork (1977) demonstrated that memory training schedules using adjusted spaced
repetition were better at preserving memory than uniformly spaced training. Hawley et al. (2008)
studies the efficacy of spaced repetition on adults with probable Alzheimer’s disease for learning
face-name association. Several works in continual learning with neural networks are inspired by or
have a connection to human learning techniques, including spaced repetition (Amiri, 2019; Amiri
et al., 2017; Feng et al., 2019; Smolen et al., 2016), mechanisms of sleep (Ball et al., 2020; Mallya
& Lazebnik, 2018; Schwarz et al., 2018), and reactivation of memories (Hayes et al., 2020; van de
Ven et al., 2020). Our replay scheduling method is inspired by spaced repetition; we learn schedules
of which memory samples to use for replay at different time steps.

3 METHOD

In this section, we describe our method for learning replay schedules for continual learning. The
idea is to learn schedules of which memory examples the network should rehearse at different times.
We use Monte Carlo tree search (MCTS) (Browne et al., 2012; Coulom, 2006) to learn a scheduling
policy by encouraging searches for promising replay schedules based on the classification accuracy.

3.1 PROBLEM SETTING

We focus on the setting considering the real-world continual learning needs where all historical data
are available but are prohibitively large. Therefore, only a small amount of historical data can be
used when adapting the model to new data due to processing capability consideration. Thus, the goal
is to learn how to select subsets of historical data to efficiently mitigate catastrophic forgetting when
learning new tasks. We refer to these subsets of historical data as the replay memory throughout the
paper, where the size of the replay memory affects the processing time when learning a new task t.
Moreover, we focus on composing the replay memory based on the seen tasks in the historical data
rather than single stored instances.

Next, we introduce the notation of our problem setting which resembles the traditional continual
learning setting for image classification. We let a neural network fθ, parameterized by θ, learn T
tasks sequentially given their corresponding task datasets D1, . . . ,DT arriving in order. The t-th
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datasetDt = {(x(i)
t , y

(i)
t )}Nt

i=1 consists of Nt samples where x(i)
t and y(i)t are the i-th data point and

class label respectively. The training objective at task t is given by

min
θ

Nt∑
i=1

`(fθ(x
(i)
t ), y

(i)
t ), (1)

where `(·) is the loss function, e.g., cross-entropy loss in our case. Since Dt is only accessible at
time step t, the network fθ is at risk of catastrophically forgetting the previous t − 1 tasks when
learning the current task. Replay-based continual learning methods mitigate the forgetting of old
tasks by storing old examples in an external replay memory, that is mixed with the current task
dataset during training. Next, we describe our method for constructing this replay memory.

We assume that historical data from old tasks are accessible at any time step t. However, since the
historical data is prohibitively large, we can only fill a small replay memoryM with M historical
samples for replay due to processing time constraints. The challenge is how to fill the replay memory
withM samples that efficiently retain the knowledge of old tasks when learning new tasks. We focus
on selecting the samples on task-level by deciding on the task proportion (a1, . . . , at−1) of samples
to fetch from each task, where ai ≥ 0 is the proportion ofM examples from task i and

∑t−1
i=1 ai = 1.

Consequently, we need a method for choosing these task proportions of which old tasks to replay.
To simplify this selection, we construct a discrete set of choices for possible task proportions telling
how many samples from each task to use when constructing the replay memoryM.

3.2 REPLAY SCHEDULING FOR CONTINUAL LEARNING

In this section, we describe our replay scheduling method for selecting the replay memory at
different time steps. We define a replay schedule as a sequence S = (a1, . . . ,aT−1), where
ai = (a1, . . . , aT−1) for 1 ≤ i ≤ T − 1, is the sequence of task proportions used for deter-
mining how many samples per task to fill the replay memory with at task i. To make the selection
of task proportions tractable, we construct an action space with a discrete number of choices for the
task proportions from old tasks. We use the following ways to construct this action space: At the
time to learn task t, we have t − 1 historical tasks that we can choose from. We create t − 1 bins
bt = [b1, b2, ....bt−1] and choose a task index to sample for each bin bi ∈ 1, .., t− 1. We treat the
bins as interchangeable and only keep the unique choices. For example, at task 3, we have seen task
1 and 2; so the unique choices of vectors are [1, 1], [1, 2], [2, 2], where [1, 1] indicates that all memory
samples are from task 1, [1, 2] indicates that half memory is from task 1 and the other half are from
task etc. The task proportion are then computed by counting the number of occurrences of each task
index in bt and dividing by the t − 1, such that at = bincount(bt)/(t − 1). If the memory size
M is not divisible by the task proportion value for task i, we round the number of replay samples
from task i, i.e., ai ·M , up or down accordingly while keeping the memory size fixed. From this
specification, we can build a tree of different replay schedules to evaluate with the network.

Figure 2 shows an example of such a replay schedule tree with Split MNIST (Zenke et al., 2017)
where the memory size has been set to M = 8. The figure shows the current tasks with an example
image of the task classes on the left, and the right side shows examples of possible replay memories
that can be evaluated. The memory starts as the empty set, i.e. M1 = ∅, at task 1. Before learning
task 2, M2 is filled with M task 1 examples since this is the only task seen so far. At task 3,
the memory compositions we can choose from are M examples from either task 1 or 2, as well as
equally fillingM3 with four examples each from both tasks. A replay schedule is represented as a
path traversal of different replay memory compositions from task 1 to task 5. We have color-coded
three examples of possible schedules in Figure 2 to use for illustration: the blue path represents a
replay schedule where only task 1 examples are replayed at all future tasks. The red path represents
using an equally distributed amount of memory samples per task in the memory, and the purple path
represents a schedule where the memory is filledM examples from the previously visited task. Note
that all other possible paths in the tree are also valid replay schedules.

3.3 MONTE CARLO TREE SEARCH FOR REPLAY SCHEDULES

Our proposed setup to find replay schedules is to discretize the number of possible task proportions
per task. The action space of task proportions then turn into a tree shape where each node represents
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Figure 2: An exemplar tree of replay memory compositions from the proposed discretization method described
in Section 3.2 for Split MNIST. The replay memories from one replay schedule are found by traversing from
task 1-5 through the tree on the right hand side. The replay memory compositions have been structured accord-
ing to the task where they can be used for replay. Note that the replay memory at task 1 is the empty set, i.e.,
M = ∅. Example images for each task are shown on the left.

a task proportion that corresponds to a specific composition of the replay memory M, as can be
seen in Figure 2. To find the efficient replay schedule S in mitigating catastrophic forgetting, we
can perform an exhaustive search (e.g., breadth-first search) where all possible replay schedules
are evaluated. However, since the tree grows fast with the number of tasks, we need a scalable
method that enables tree searches in large search spaces. To this end, we propose to use Monte
Carlo tree search (MCTS) (Browne et al., 2012; Coulom, 2006) since MCTS has been successful in
applications with similar conditions (Chaudhry & Lee, 2018; Gelly et al., 2006; Silver et al., 2016).
In our setting, MCTS can help us to concentrate the search in directions towards promising replay
schedules in terms of classification performance and thus learn the time to learn.

Before outlining the steps for performing MCTS, we describe the notation for the tree search. The
tree has T levels where level t corresponds to task t. Each tree level t contains a set of nodes
Vt = {vit}

Kt
i=1 where Kt is the number of nodes at level t. Every node vit has a corresponding

sequence of task proportions ai
t, which can be used to retrieve the replay memory from the his-

torical data. Referring back to Figure 2, the replay memory composition on the root node v11 is
the empty set M = ∅, since the historical data is empty. At task 2, the only task proportion is
a1
2 = (a1, a2, ..., aT−1) = (1.0, 0.0, ..., 0.0), so the replay memory at node v12 is only filled with

samples from task 1. In the rest of the paper, we denote a node at task t as vt by ignoring the
superscript i to avoid clutter in the notation.

At every visited node vt, we store the corresponding task proportions at in the replay schedule S.
The final replay schedule is then used for constructing the replay memory at each time step t during
the continual learning training. Next, we briefly outline the steps for performing MCTS in the search
for replay schedules.

Selection. An MCTS iteration begins by selecting the next node to visit from the root node. If the
current node vt has visited all its children during the previous iterations, the next node is selected by
evaluating the Upper Confidence Tree (UCT) (Kocsis & Szepesvári, 2006) function for all children.
We use the following UCT function proposed by Chaudhry & Lee (2018) to evaluate the score for
moving from node vt to its child vt+1:

UCT (vt, vt+1) = max(Q(vt+1)) + C

√
2 log(N(vt))

N(vt+1)
. (2)
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The reward function Q(·) contains the rewards for previous searches that has passed through the
child vt+1. The exploration constant C ≥ 0 determines the degree of exploration of less visited
replay schedules based on the number of visits N(vt) and N(vt+1) to the corresponding nodes in
the tree. The child node to visit next is the one with the highest UCT score.
Expansion. Whenever the current node vt has unvisited child nodes, the search tree is expanded
with one of the unvisited child nodes vt+1 selected with uniform sampling.
Simulation and Reward. After the expansion step, the search proceeds by selecting the succeed-
ing nodes uniformly at random until a terminal node vT is reached. The replay schedule S is then
collected by appending the task proportions from the visited nodes during the iteration. We train
the network with the replay memories retrieved from S and evaluate the average accuracy over all
tasks after learning the final task T as the reward r, i.e., r = 1

T

∑T
i=1A

(val)
T,i , where A(val)

T,i is the
validation accuracy of task i after learning task T .
Backpropagation. The reward r is backpropagated from the expanded node vt up to the root node
v1, where the number of visits N(·) and reward function Q(·) for each node is updated.
We provide pseudocode in Algorithm 1 in Appendix B. Finally, we emphasize that we use MCTS to
illustrate in a simple setting the importance of learning the time to learn old tasks again.

4 EXPERIMENTS

We evaluated our replay scheduling method empirically on six common benchmark datasets for
continual learning. We show that scheduling of the replay memory improves significantly over
replaying equal proportions across the tasks. Furthermore, we demonstrate that replay scheduling
can be as efficient as replaying all available memory samples in settings where only 1 example per
class can be stored for replay. We denote our method as Replay Scheduling MCTS (RS-MCTS) and
select the result on the held-out test sets from the replay schedule that yielded the best reward on
the validation set during the search. We perform experiments using 5 different seeds on all datasets.
Our code is available as part of the supplementary material. The full details on experimental settings
are in Appendix A and additional results are in Appendix D.

NEW
(dhXe)Datasets. We conduct experiments on six datasets commonly used as benchmarks in the continual

learning literature: Split MNIST (LeCun et al., 1998; Zenke et al., 2017), Fashion-MNIST (Xiao
et al., 2017), Split notMNIST (Bulatov, 2011), Permuted MNIST (Goodfellow et al., 2013), Split
CIFAR-100 (Krizhevsky & Hinton, 2009), and Split miniImagenet (Vinyals et al., 2016). We ran-
domly sample 15% of the training data from each task to use for validation when computing the
reward for the MCTS simulations. NEW

(8z4B)Baselines. We compare RS-MCTS to using 1) random replay schedules (Random), 2) equal task
schedules (ETS), and 3) a heuristic scheduling method (Heuristic). The ETS baseline uses equal
task proportions, such that M/(t − 1) samples per task are replayed during learning of task t, and
use both training and validations sets for training such that they use the same amount of data as RS-
MCTS. The Heuristic baseline replays the old tasks which accuracy on the validation set is below a
certain threshold proportional to the best achieved validation accuracy on the task. Here, the replay
memory is filled with M/k where k is the number of tasks that need to be replayed according to
their decrease in validation accuracy. See Appendix C for more details on the Heuristic baseline.
Network Architectures. We use a multi-head output layer for all datasets except for Permuted
MNIST where the network uses single-head output layer. We use a 2-layer MLP with 256 hid-
den units for Split MNIST, Split FashionMNIST, Split notMNIST, and Permuted MNIST. For Split
CIFAR-100, we use the CNN architecture used in Vinyals et al. (2016) and Schwarz et al. (2018).
For Split mniImagenet, we apply the reduced ResNet-18 from Lopez-Paz & Ranzato (2017).
Evaluation Metric. We use the average test accuracy over all tasks after learning the final task,
i.e., ACC = 1

T

∑T
i=1AT,i where AT,i is the test accuracy of task i after learning task T .

4.1 RESULTS ON REWARD FOR RS-MCTS

In the first experiments, we show that the replay schedules from RS-MCTS yield better performance
than replaying an equal amount of samples per task. The replay memory size is fixed to M = 10 for
Split MNIST, FashionMNIST, and notMNIST, and M = 100 for Permuted MNIST, Split CIFAR-
100, and Split miniImagenet. Uniform sampling is used as the memory selection method for all
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Figure 3: Average test accuracies over tasks after learning the final task (ACC) over the MCTS simulations
for all datasets, where ’S’ and ’P’ are used as short for ’Split’ and ’Permuted’. We compare performance
for RS-MCTS (Ours) against random replay schedules (Random), Equal Task Schedule (ETS), and Heuristic
Scheduling (Heuristic) baselines. For the first three datasets, we show the best ACC found from a breadth-first
search (BFS) as an upper bound. All results have been averaged over 5 seeds. These results show that replay
scheduling can improve significantly over ETS and outperform or perform on par with Heuristic across different
datasets and network architectures.

methods in this experiment. For the 5-task datasets, we provide the optimal replay schedule found
from a breadth-first search (BFS) over all possible replay schedules in our action space as an upper
bound for RS-MCTS. As the search space grows fast with the number of tasks, it will even with only
5 continual learning tasks (which corresponds to a tree with depth of 4) yield a tree with 1050 leaf
nodes. Thus, BFS becomes computationally infeasible when we have 10 or more tasks.

NEW
(8z4B)Figure 3 shows the progress of ACC over the MCTS iterations by RS-MCTS for all datasets. We

also show the best ACC metrics for ETS, Heuristic, and BFS as straight lines. We observe that
RS-MCTS outperforms Random and ETS successively with more iterations. Furthermore, RS-
MCTS approaches the upper limit from BFS on the 5-task datasets. For Permuted MNIST and Split
CIFAR-100, the Heuristic baseline and RS-MCTS perform on par after 50 iterations. This shows
that Heuristic with careful tuning of the validation accuracy threshold can be a strong baseline when
comparing against replay scheduling. The top row of Table 1 shows the ACC for each method
for this experiment. We note that RS-MCTS outperforms ETS significantly for most datasets and
performs on par with Heuristic.

4.2 REPLAY SCHEDULE VISUALIZATIONS
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Figure 4: Visualization using a bubble plot of a re-
play schedule learned from Split CIFAR-100. The
task proportions vary dynamically over time which
would be hard to replace by a heuristic method.

We visualize a learned replay schedule from Split
CIFAR-100 with memory size M = 100 to gain
insights into the behavior of the scheduling policy
from RS-MCTS. Figure 4 shows a bubble plot of
the task proportions that are used for filling the re-
play memory at every task. Each color of the cir-
cles corresponds to a historical task and its size
represents the proportion of examples that are re-
played at the current task. The sum of all points
from all circles at each column is fixed at the dif-
ferent time steps since the memory size M is fixed.
The task proportions vary dynamically over time in
a sophisticated nonlinear way which would be hard
to replace by a heuristic method. Moreover, we can
observe space repetition style scheduling in many
tasks, e.g., task 1-3 are replayed with similar pro-
portion at the initial tasks but eventually starts varying the time interval between replay. Also, task 4
and 6 need less replay in their early stages, which could potentially be that they are simpler or corre-
lated with other tasks. We provide a similar visualization for Split MNIST in Figure 7 in Appendix

NEW
(kfup)

D.1 to bring more insights to the benefits of replay scheduling.

4.3 ALTERNATIVE MEMORY SELECTION METHODS

In this section, we show that our method can be combined with any memory selection method
for storing replay samples. In addition to uniform sampling, we apply various memory selection
methods commonly used in the continual learning literature, namely k-means clustering, k-center
clustering (Nguyen et al., 2017), and Mean-of-Features (MoF) (Rebuffi et al., 2017). We compare
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Figure 5: Average test accuracies over tasks after learning the final task (ACC) over different replay memory
sizesM for the RS-MCTS (Ours) and the Random, ETS, and Heuristic baselines on all datasets. All results have
been averaged over 5 seeds. The results show that replay scheduling can outperform replaying with random
and equal task proportions, especially for small M , on both small and large datasets across different backbone
choices. Furthermore, our method requires less careful tuning than the Heuristic baseline as M increases.

Table 1: Accuracy comparison between RS-MCTS (Ours), Random choice scheduling (Random), Heuristic
Scheduling (Heuristic), and Equal Task Schedule (ETS) with various memory selection methods evaluated
across all datasets. We use ’S’ and ’P’ as short for ’Split’ and ’Permuted’ for the datasets. The replay memory
size is M = 10 and M = 100 for the 5-task and 10/20-task datasets respectively. We report the mean and
standard deviation averaged over 5 seeds. RS-MCTS performs better or on par than the baselines on most
datasets and selection methods, where MoF yields the best performance in general.

5-task Datasets 10- and 20-task Datasets

Selection Method S-MNIST S-FashionMNIST S-notMNIST P-MNIST S-CIFAR-100 S-miniImagenet

Uniform

Random 95.91± 1.56 95.82± 1.45 92.39± 1.29 72.44± 1.15 53.99± 0.51 48.08± 1.36
ETS 94.02± 4.25 95.81± 3.53 91.01± 1.39 71.09± 2.31 47.70± 2.16 46.97± 1.24
Heuristic 96.02± 2.32 97.09± 0.62 91.26± 3.99 76.68± 2.13 57.31± 1.21 49.66± 1.10
Ours 97.93± 0.56 98.27± 0.17 94.64± 0.39 76.34± 0.98 56.60± 1.13 50.20± 0.72

k-means

Random 94.24± 3.20 96.30± 1.62 91.64± 1.39 74.30± 1.43 53.18± 1.66 49.47± 2.70
ETS 92.89± 3.53 96.47± 0.85 93.80± 0.82 69.40± 1.32 47.51± 1.14 45.82± 0.92
Heuristic 96.28± 1.68 95.78± 1.50 91.75± 0.94 75.57± 1.18 54.31± 3.94 49.25± 1.00
Ours 98.20± 0.16 98.48± 0.26 93.61± 0.71 77.74± 0.80 56.95± 0.92 50.47± 0.85

k-center

Random 96.40± 0.68 95.57± 3.16 92.61± 1.70 71.41± 2.75 48.46± 0.31 44.76± 0.96
ETS 94.84± 1.40 97.28± 0.50 91.08± 2.48 69.11± 1.69 44.13± 1.06 41.35± 1.23
Heuristic 94.55± 2.79 94.08± 3.72 92.06± 1.20 74.33± 2.00 50.32± 1.97 44.13± 0.95
Ours 98.24± 0.36 98.06± 0.35 94.26± 0.37 76.55± 1.16 51.37± 1.63 46.76± 0.96

MoF

Random 95.18± 3.18 95.76± 1.41 91.33± 1.75 77.96± 1.84 61.93± 1.05 54.50± 1.33
ETS 97.04± 1.23 96.48± 1.33 92.64± 0.87 77.62± 1.12 60.43± 1.17 56.12± 1.12
Heuristic 96.46± 2.41 95.84± 0.89 93.24± 0.77 77.27± 1.45 55.60± 2.70 52.30± 0.59
Ours 98.37± 0.24 97.84± 0.32 94.62± 0.42 81.58± 0.75 64.22± 0.65 57.70± 0.51

our method and ETS combined with these different selection methods. As in Section 4.1, we set the
replay memory size M = 10 for the 5-task datasets and M = 100 for the 10- and 20-task datasets.
Table 1 shows the results across all datasets. We note that using the replay schedule from RS-MCTS

NEW
(8z4B)

outperforms the baselines when using the alternative selection methods, where MoF performs the
best on most datasets.

4.4 RESULTS WITH VARYING REPLAY MEMORY SIZE

We show that our method can improve the performance across different choices of memory size. In
this experiment, we set the replay memory size to ensure the ETS baseline replays an equal number
of samples per class at the final task. The memory size is set to M = ncpt · nspc · (T − 1), where
ncpt is the number of classes per task in the dataset and nspc are the number of samples per class we
wish to replay at task T for the ETS baseline. In Figure 5, we observe that RS-MCTS yield better

FIX
(8z4B)

task accuracies than ETS, especially for small memory sizes. Both RS-MCTS and ETS perform
better than Heuristic as M increases showing that Heuristic requires careful tuning of the validation
accuracy threshold.
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Table 2: Accuracy comparison in the 1 example per class memory setting evaluated across all datasets. We use
’S’ and ’P’ as short for ’Split’ and ’Permuted’ for the datasets. RS-MCTS has replay memory size M = 2
and M = 50 for the 5-task and 10/20-task datasets respectively. The baselines replay all available memory
samples. We report the mean and standard deviation averaged over 5 seeds. RS-MCTS performs on par with
the best baselines on all datasets except S-CIFAR-100.

5-task Datasets 10- and 20-task Datasets

Method S-MNIST S-FashionMNIST S-notMNIST P-MNIST S-CIFAR-100 S-miniImagenet

Random 92.56± 2.90 92.70± 3.78 89.53± 3.96 70.02± 1.76 48.62± 1.02 48.85± 1.38
A-GEM 94.97± 1.50 94.81± 0.86 92.27± 1.16 64.71± 1.78 42.22± 2.13 32.06± 1.83
ER-Ring 94.94± 1.56 95.83± 2.15 91.10± 1.89 69.73± 1.13 53.93± 1.13 49.82± 1.69
Uniform 95.77± 1.12 97.12± 1.57 92.14± 1.45 69.85± 1.01 52.63± 1.62 50.56± 1.07

RS-MCTS (Ours) 96.07± 1.60 97.17± 0.78 93.41± 1.11 72.52± 0.54 51.50± 1.19 50.70± 0.54

4.5 EFFICIENCY OF REPLAY SCHEDULING

2 3 4 5
0
2
4
6
8

Task

#S
am

pl
es

Ours Baselines

Figure 6: Number of replayed sam-
ples per task for the 5-task datasets
in our tiny memory setting. Our
method uses a fixed M = 2 sam-
ples for replay, while the baselines
increment their memory per task.

Here, we illustrate the efficiency of replay scheduling with com-
parisons to several common replay-based continual learning base-
lines in an even more extreme memory setting. Our goal is to
investigate if scheduling over which tasks to replay can be more
efficient in situations where the memory size is even smaller than
the number of classes. To this end, we set the replay memory
size for our method to M = 2 for the 5-task datasets, such that
only 2 samples can be selected for replay at all times. For the 10-
and 20-task datasets which have 100 classes, we set M = 50.
We then compare against the most memory efficient continual
learning baselines, namely A-GEM (Chaudhry et al., 2018b), ER-
Ring (Chaudhry et al., 2019) which show promising results with
1 sample per class for replay after learning each task, and with
uniform memory selection as reference. Additionally, we compare to using random replay sched-

NEW
(8z4B)

ules (Random) with the same memory setting as for RS-MCTS. We visualize the memory usage
when training on one of the 5-task datasets for our method and the baselines in Figure 6. We also
visualize the memory usages for the other benchmarks in the Appendix E.

Table 2 shows the ACC for each method across all datasets. Despite using significantly fewer sam-
ples for replay, RS-MCTS performs better or on par with the best baselines on all datasets except
Split CIFAR-100. These results show that replay scheduling can be even more efficient than the
state-of-the-art memory efficient replay-based methods, which indicate that learning the time to
learn is an important research direction in continual learning.

5 CONCLUSIONS

We propose learning the time to learn, i.e., in a real-world continual learning context, learning sched-
ules of what previous tasks to replay at different times. To the best of our knowledge, we are the
first to consider the time to learn in machine learning inspired by human learning techniques. We
demonstrate with an example method that learned replay schedules produce significantly improved
results under the same memory budget when comparing with the method without scheduling. Fur-
thermore, the dynamic behavior of the learned schedules showed similarities to human learning
techniques, such as spaced repetition, by rehearsing previous tasks with varying time intervals. Fi-
nally, we showed that replay scheduling allows for utilizing the memory more efficiently compared
to standard benchmarks replaying all memory samples in the tiny memory setting.

In future work, we would like to explore choosing memory samples on an instance level as the
current work selects samples on task level. This would need a policy learning method, that scales
to large action spaces which is a research challenge by itself. Also, our demonstrated method with
MCTS can be inefficient, especially in continual learning settings, in terms of training time and since
it needs to learn for each dataset and application separately. In future work, we will incorporate
reinforcement learning methods that generalize. We will therefore extend replay scheduling to learn
general policies that can be directly applied to any new application and domain.
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APPENDIX

This supplementary material is structured as follows:

• Appendix A: Full details of the experimental settings.

• Appendix B: Pseudocode of RS-MCTS in Algorithm 1 to provide more details about our
method.

• Appendix C describes the Heuristic scheduling baseline.

• Appendix D shows additional experimental results.

• Appendix E includes additional figures.

A EXPERIMENTAL SETTINGS

In this section, we describe the full details of the experimental settings used in this paper.

Datasets: We conduct experiments on six datasets commonly used in the continual learning lit-
erature. Split MNIST (Zenke et al., 2017) is a variant of the MNIST (LeCun et al., 1998) dataset
where the classes have been divided into 5 tasks incoming in the order 0/1, 2/3, 4/5, 6/7, and 8/9.
Split Fashion-MNIST (Xiao et al., 2017) is of similar size to MNIST and consists of grayscale
images of different clothes, where the classes have been divided into the 5 tasks T-shirt/Trouser,
Pullover/Dress, Coat/Sandals, Shirt/Sneaker, and Bag/Ankle boots. Similar to MNIST, Split notM-
NIST (Bulatov, 2011) consists of 10 classes of the letters A-J with various fonts, where the classes
are divided into the 5 tasks A/B, C/D, E/F, G/H, and I/J. We use training/test split provided by
Ebrahimi et al. (2020) for Split notMNIST. Permuted MNIST Goodfellow et al. (2013) dataset con-
sists of applying a unique random permutation of the pixels of the images in original MNIST to
create each task, except for the first task that is to learn the original MNIST dataset. We reduce the
original MNIST dataset to 10k samples and create 9 unique random permutations to get a 10-task
version of Permuted MNIST. In Split CIFAR-100 (Krizhevsky & Hinton, 2009), the 100 classes are
divided into 20 tasks with 5 classes for each task (Lopez-Paz & Ranzato, 2017; Rebuffi et al., 2017).
Similarly, Split miniImagenet Vinyals et al. (2016) consists of 100 classes randomly chosen from
the original Imagenet dataset where the 100 classes are divided into 20 tasks with 5 classes per task.

Network Architectures: We use a 2-layer MLP with 256 hidden units and ReLU activation for
Split MNIST, Split FashionMNIST, Split notMNIST, and Permuted MNIST. We use a multi-head
output layer for each dataset except Permuted MNIST where the network uses single-head output
layer. For Split CIFAR-100, we use a multi-head CNN architecture built according to the CNN in
(Adel et al., 2019; Schwarz et al., 2018; Vinyals et al., 2016), which consists of four 3x3 convo-
lutional blocks, i.e. convolutional layer followed by batch normalization (Ioffe & Szegedy, 2015),
with 64 filters, ReLU activations, and 2x2 Max-pooling. For Split mniImagenet, we use the reduced
ResNet-18 from Lopez-Paz & Ranzato (2017) with multi-head output layer.

Hyperparameters: We train all networks with the Adam optimizer (Kingma & Ba, 2014) with
starting learning rate η = 0.001 and hyperparameters β1 = 0.9 and β2 = 0.999. Note that the
learning rate for Adam is not reset before training on a new task. Next, we give details on number
of training epochs and batch sizes specific for each dataset:

• Split MNIST: 10 epochs/task, batch size 128.

• Split FashionMNIST: 30 epochs/task, batch size 128.

• Split notMNIST: 50 epochs/task, batch size 128.

• Permuted MNIST: 20 epochs/task, batch size 128.

• Split CIFAR-100: 25 epochs/task, batch size 256.

• Split miniImagenet: 1 epoch/task (task 1 trained for 5 epochs as warm up), batch size 32.

Monte Carlo Tree Search: We run RS-MCTS for 100 iterations in all experiments. The replay
schedules used in the reported results on the held-out test sets are from the replay schedule that gave
the highest reward on the validation sets. The exploration constant for UCT in Equation 2 is set to
C = 0.1 in all experiments (Chaudhry & Lee, 2018).
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Computational Cost: All experiments were performed on one NVIDIA GeForce RTW 2080Ti.
The wall clock time for ETS on Split MNIST was around 1.5 minutes, and RS-MCTS and BFS takes
40 seconds on average to run one iteration, where BFS runs 1050 iterations in total for Split MNIST.

Implementations: We adapted the implementation released by Borsos et al. (2020) for the mem-
ory selection strategies Uniform sampling, k-means clustering, k-center clustering (Nguyen et al.,
2017), and Mean-of-Features (Rebuffi et al., 2017). Furthermore, we follow the implementations
released by Chaudhry et al. (2019) and Mirzadeh & Ghasemzadeh (2021) for A-GEM (Chaudhry
et al., 2018b) and ER-Ring (Chaudhry et al., 2019).

Experimental Settings for with Single Task Replay Memory Experiment: We motivated the
need for replay scheduling in continual learning with Figure 1 in Section 1. This simple experiment
was performed on Split MNIST where the replay memory only contains samples from the first task,
i.e., learning the classes 0/1. Furthermore, the memory can only be replayed at one point in time and
we show the performance on each task when the memory is replayed at different time steps. We set
the memory size to M = 10 samples such that the memory holds 5 samples from both classes. We
use the same network architecture and hyperparameters as described above for Split MNIST. The
ACC metric above each subfigure corresponds to the ACC for training a network with the single task
memory replay at different tasks. We observe that choosing different time points to replay the same
memory leads to noticeably different results in the final performance, and in this example, the best
final performance is achieved when the memory is used when learning task 5. Therefore, we argue
that finding the proper schedule of what tasks to replay at what time in the fixed memory situation
can be critical for continual learning.

B REPLAY SCHEDULING MONTE CARLO TREE SEARCH ALGORITHM

We provide pseudo-code in Algorithm 1 outlining the steps for our method Replay Scheduling
Monte Carlo tree search (RS-MCTS) described in the main paper (Section 3.3). The MCTS pro-
cedure selects actions over which task proportions to fill the replay memory with at every task,
where the selected task proportions are stored in the replay schedule S. The schedule is then passed
to EVALUATEREPLAYSCHEDULE(·) where the continual learning part executes the training with
replay memories filled according to the schedule. The reward for the schedule S is the average vali-
dation accuracy over all tasks after learning task T , i.e., ACC, which is backpropagated through the
tree to update the statistics of the selected nodes. The schedule Sbest yielding the best ACC score is
returned to be used for evaluation on the held-out test sets.

The function GETREPLAYMEMORY(·) is the policy for retrieving the replay memoryM from the
historical data given the task proportion a. The number of samples per task determined by the task
proportions are rounded up or down accordingly to fill M with M replay samples in total. The
function GETTASKPROPORTION(·) simply returns the task proportion that is related to given node.
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Algorithm 1 Replay Scheduling Monte Carlo tree search
Require: Tree nodes v1:T , Datasets D1:T , Learning rate η
Require: Replay memory size M
1: ACCbest ← 0, Sbest ← ()
2: while within computational budget do
3: S ← ()
4: vt, S ← TREEPOLICY(v1, S)
5: vT , S ← DEFAULTPOLICY(vt, S)
6: ACC← EVALUATEREPLAYSCHEDULE(D1:T , S,M)
7: BACKPROPAGATE(vt,ACC)
8: if ACC > ACCbest then
9: ACCbest ← ACC

10: Sbest ← S
11: return ACCbest, Sbest

12: function TREEPOLICY(vt, S)
13: while vt is non-terminal do
14: if vt not fully expanded then
15: return EXPANSION(vt, S)
16: else
17: vt ← BESTCHILD(vt)
18: S.append(at), where at ← GETTASKPROPORTION(vt)

19: return vt, S

20: function EXPANSION(vt, S)
21: Sample vt+1 uniformly among unvisited children of vt
22: S.append(at+1), where at+1 ← GETTASKPROPORTION(vt+1)
23: Add new child vt+1 to node vt
24: return vt+1, S

25: function BESTCHILD(vt)
26: vt+1 = argmax

vt+1∈ children of v
max(Q(vt+1)) + C

√
2 log(N(vt))
N(vt+1)

27: return vt+1

28: function DEFAULTPOLICY(vt, S)
29: while vt is non-terminal do
30: Sample vt+1 uniformly among children of vt
31: S.append(at+1), where at+1 ← GETTASKPROPORTION(vt+1)
32: Update vt ← vt+1

33: return vt, S

34: function EVALUATEREPLAYSCHEDULE(D1:T , S,M )
35: Initialize neural network fθ
36: for t = 1, . . . , T do
37: a← S[t− 1]
38: M← GETREPLAYMEMORY(M,a)

39: for B ∼ D(train)
t do

40: θ ← SGD(B ∪M,θ, η)

41: A
(val)
1:T ← EVALUATEACCURACY(fθ,D(val)

1:T )

42: ACC← 1
T

∑T
i=1A

(val)
T,i

43: return ACC

44: function BACKPROPAGATE(vt, R)
45: while vt is not root do
46: N(vt)← N(vt) + 1
47: Q(vt)← R
48: vt ← parent of vt
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C HEURISTIC SCHEDULING BASELINE
NEW
(8z4B)We implemented a heuristic scheduling baseline to compare against RS-MCTS. The baseline keeps

a validation set for the old tasks and replays the tasks which validation accuracy is below a certain
threshold. We set the threshold in the following way: Let At,i be the validation accuracy for task
t evaluated at time step i. The best evaluated validation accuracy for task t at time i is given by
A

(best)
t,i = max({At,1, ..., At,i}). The condition for replaying task t on the next time step is then

At,i ≥ τA
(best)
t,i , where τ ∈ [0, 1] is a ratio controlling how much the current accuracy on task t

is allowed to decrease w.r.t. the best accuracy. The replay memory is filled with M/k, where k
is the number of tasks that need to be replayed according to their decrease in validation accuracy.
This heuristic scheduling corresponds to the intuition of re-learning when a task has been forgotten.
Training on the current task is performed without replay if the accuracy on all old tasks is above
their corresponding threshold.

Grid search for τ . We performed a coarse-to-fine grid search for the ratio τ on each dataset. The
best value for τ is selected according to the highest mean accuracy on the validation set averaged
over 5 seeds. The validation set consists of 15% of the training data and is the same for RS-MCTS.
We use the same experimental settings as described in Appendix A. The memory sizes are set to
M = 10 andM = 100 for the 5-task datasets and the 10/20-task datasets respectively, and we apply
uniform sampling as the memory selection method. We provide the ranges for τ that was used on
each dataset and put the best value in bold:

• Split MNIST: τ = [0.9, 0.93, 0.95, 0.96, 0.97, 0.98, 0.99]
• Split FashionMNIST: τ = [0.9, 0.93, 0.95, 0.96, 0.97, 0.98, 0.99]
• Split notMNIST: τ = [0.9, 0.93, 0.95, 0.96, 0.97, 0.98, 0.99]
• Permuted MNIST: τ = [0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.9, 0.95, 0.97, 0.99]
• Split CIFAR-100: τ = [0.3, 0.4, 0.45, 0.5, 0.55, 0.6, 0.65, 0.7, 0.8, 0.9, 0.95, 0.97, 0.99]
• Split miniImagenet: τ = [0.5, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95, 0.97, 0.99]

Note that we use these values for τ on all experiments with Heuristic for the corresponding datasets.
The performance for this heuristic highly depends on careful tuning for the ratio τ when the memory
size or memory selection method changes, as can be seen in in Figure 5 and Table 1.
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Figure 7: Comparison of test classification accuracies for Task 1-5 on Split MNIST from a network trained
without replay (Fine-tuning), ETS, and RS-MCTS. The ACC metric for each method is shown on top of each
figure. We also visualize the replay schedule found by RS-MCTS as a bubble plot to the right. The memory
size is set to M = 10 with uniform memory selection for ETS and RS-MCTS. Results are shown for 1 seed.

D ADDITIONAL EXPERIMENTAL RESULTS

In this section, we bring more insights to the benefits of replay scheduling in Section D.1 as well as
provide metrics for catastrophic forgetting in Section D.2.

D.1 REPLAY SCHEDULE VISUALIZATION FOR SPLIT MNIST
NEW
(kfup,
dhXe)

In Figure 7, we show the progress in test classification performance for each task when using ETS
and RS-MCTS with memory size M = 10 on Split MNIST. For comparison, we also show the
performance from a network that is fine-tuning on the current task without using replay. Both
ETS and RS-MCTS overcome catastrophic forgetting to a large degree compared to the fine-tuning
network. Our method RS-MCTS further improves the performance compared to ETS with the same
memory, which indicates that learning the time to learn can be more efficient against catastrophic
forgetting. Especially, Task 1 and 2 seems to be the most difficult task to remember since it has the
lowest final performance using the fine-tuning network. Both ETS and RS-MCTS manage to retain
their performance on Task 1 using replay, however, RS-MCTS remembers Task 2 better than ETS
by around 5%.

To bring more insights to this behavior, we have visualized the task proportions of the replay ex-
amples using a bubble plot showing the corresponding replay schedule from RS-MCTS in Figure
7(right). At Task 3 and 4, we see that the schedule fills the memory with data from Task 2 and
discards replaying Task 1. This helps the network to retain knowledge about Task 2 better than ETS
at the cost of forgetting Task 3 slightly when learning Task 4. This shows that the learned policy
has considered the difficulty level of different tasks. At the next task, the RS-MCTS schedule has
decided to rehearse Task 3 and reduces replaying Task 2 when learning Task 5. This behavior is
similar to spaced repetition, where increasing the time interval between rehearsals helps memory
retention. We emphasize that even on datasets with few tasks, using learned replay schedules can
overcome catastrophic forgetting better than standard ETS approaches.

D.2 ANALYSIS OF CATASTROPHIC FORGETTING
NEW
(dhXe)In this section, we compare the degree of catastrophic forgetting for our method and the baselines.

We use backward transfer (BWT) from Lopez-Paz & Ranzato (2017) for measuring catastrophic
forgetting, which is given by

BWT =
1

T − 1

T−1∑
i=1

AT,i −Ai,i, (3)

whereAt,i is the test accuracy for task t after learning task i. Table 3 shows the ACC and BWT met-
rics for the experiments in Section 4.3. In general, the BWT metric is consistently better when the
corresponding ACC is better. We find an exception in Table 3 on Split CIFAR-100 and Split miniIm-
agenet between Ours and Heuristic with uniform selection method, where Heuristic has better BWT
while its mean of ACC is slightly lower than ACC for Ours. Table 4 shows the ACC and BWT
metrics for the experiments in Section 4.5, where we see a similar pattern that better ACC yields
better BWT. The BWT of RS-MCTS is on par with the other baselines except on Split CIFAR-100
where the ACC on our method was a bit lower than the best baselines.
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Table 3: Performance comparison with ACC and BWT metrics for all datasets between RS-MCTS and the
baselines with various memory selection methods. The memory size is set to M = 10 and M = 100 for
the 5-task and 10/20-task datasets respectively. We report the mean and standard deviation of ACC and BWT,
where all results have been averaged over 5 seeds. RS-MCTS performs better or on par than the baselines on
most datasets and selection methods, where MoF yields the best performance in general.

Split MNIST Split FashionMNIST Split notMNIST
Selection Method ACC(%)↑ BWT(%)↑ ACC(%)↑ BWT(%)↑ ACC(%)↑ BWT(%)↑

Uniform

Random 95.91± 1.56 -4.79± 1.95 95.82± 1.45 -4.35± 1.79 92.39± 1.29 -4.56± 1.29
ETS 94.02± 4.25 -7.22± 5.33 95.81± 3.53 -4.45± 4.34 91.01± 1.39 -6.16± 1.82
Heuristic 96.02± 2.32 -4.64± 2.90 97.09± 0.62 -2.82± 0.84 91.26± 3.99 -6.06± 4.70
Ours 97.93± 0.56 -2.27± 0.71 98.27± 0.17 -1.29± 0.20 94.64± 0.39 -1.47± 0.79

k-means

Random 94.24± 3.20 -6.88± 4.00 96.30± 1.62 -3.77± 2.05 91.64± 1.39 -5.64± 1.77
ETS 92.89± 3.53 -8.66± 4.42 96.47± 0.85 -3.55± 1.07 93.80± 0.82 -2.84± 0.81
Heuristic 96.28± 1.68 -4.32± 2.11 95.78± 1.50 -4.46± 1.87 91.75± 0.94 -5.60± 2.07
Ours 98.20± 0.16 -1.94± 0.22 98.48± 0.26 -1.04± 0.31 93.61± 0.71 -3.11± 0.55

k-center

Random 96.40± 0.68 -4.21± 0.84 95.57± 3.16 -7.20± 3.93 92.61± 1.70 -4.14± 2.37
ETS 94.84± 1.40 -6.20± 1.77 97.28± 0.50 -2.58± 0.66 91.08± 2.48 -6.39± 3.46
Heuristic 94.55± 2.79 -6.47± 3.50 94.08± 3.72 -6.59± 4.57 92.06± 1.20 -4.70± 2.09
Ours 98.24± 0.36 -1.93± 0.44 98.06± 0.35 -1.59± 0.45 94.26± 0.37 -1.97± 1.02

MoF

Random 95.18± 3.18 -5.73± 3.95 95.76± 1.41 -4.41± 1.75 91.33± 1.75 -5.94± 1.92
ETS 97.04± 1.23 -3.46± 1.50 96.48± 1.33 -3.55± 1.73 92.64± 0.87 -4.57± 1.59
Heuristic 96.46± 2.41 -4.09± 3.01 95.84± 0.89 -4.39± 1.15 93.24± 0.77 -3.48± 1.37
Ours 98.37± 0.24 -1.70± 0.28 97.84± 0.32 -1.81± 0.39 94.62± 0.42 -1.80± 0.56

Permuted MNIST Split CIFAR-100 Split miniImagenet
Selection Method ACC(%)↑ BWT(%)↑ ACC(%)↑ BWT(%)↑ ACC(%)↑ BWT(%)↑

Uniform

Random 72.44± 1.15 -25.56± 1.39 53.99± 0.51 -34.19± 0.66 48.08± 1.36 -15.98± 1.08
ETS 71.09± 2.31 -27.39± 2.59 47.70± 2.16 -41.68± 2.37 46.97± 1.24 -18.32± 1.34
Heuristic 76.68± 2.13 -20.82± 2.41 57.31± 1.21 -30.76± 1.45 49.66± 1.10 -12.04± 0.59
Ours 76.34± 0.98 -21.21± 1.16 56.60± 1.13 -31.39± 1.11 50.20± 0.72 -13.46± 1.22

k-means

Random 74.30± 1.43 -23.50± 1.64 53.18± 1.66 -35.15± 1.61 49.47± 2.70 -14.10± 2.71
ETS 69.40± 1.32 -29.23± 1.47 47.51± 1.14 -41.77± 1.30 45.82± 0.92 -19.53± 1.10
Heuristic 75.57± 1.18 -22.11± 1.22 54.31± 3.94 -33.80± 4.24 49.25± 1.00 -12.92± 1.22
Ours 77.74± 0.80 -19.66± 0.95 56.95± 0.92 -30.92± 0.83 50.47± 0.85 -13.31± 1.24

k-center

Random 71.41± 2.75 -26.73± 3.11 48.46± 0.31 -39.89± 0.27 44.76± 0.96 -18.72± 1.17
ETS 69.11± 1.69 -29.58± 1.81 44.13± 1.06 -45.28± 1.04 41.35± 0.96 -23.71± 1.45
Heuristic 74.33± 2.00 -23.45± 2.27 50.32± 1.97 -37.99± 2.14 44.13± 0.95 -18.26± 1.05
Ours 76.55± 1.16 -21.06± 1.32 51.37± 1.63 -37.01± 1.62 46.76± 0.96 -16.56± 0.90

MoF

Random 77.96± 1.84 -19.44± 2.13 61.93± 1.05 -25.89± 1.07 54.50± 1.33 -8.64± 1.26
ETS 77.62± 1.12 -20.10± 1.26 60.43± 1.17 -28.22± 1.26 56.12± 1.12 -8.93± 0.83
Heuristic 77.27± 1.45 -20.15± 1.63 55.60± 2.70 -32.57± 2.77 52.30± 0.59 -9.61± 0.67
Ours 81.58± 0.75 -15.41± 0.86 64.22± 0.65 -23.48± 1.02 57.70± 0.51 -5.31± 0.55

Table 4: Performance comparison with ACC and BWT metrics for all datasets between RS-MCTS and the
baselines in the setting where only 1 sample per class can be replayed. The memory sizes are set to M = 10
and M = 100 for the 5-task and 10/20-task datasets respectively. We report the mean and standard deviation
of ACC and BWT, where all results have been averaged over 5 seeds. RS-MCTS performs on par with the best
baselines for both metrics on all datasets except S-CIFAR-100.

Split MNIST Split FashionMNIST Split notMNIST
Method ACC(%)↑ BWT(%)↑ ACC(%)↑ BWT(%)↑ ACC(%)↑ BWT(%)↑

Random 92.56± 2.90 -8.97± 3.62 92.70± 3.78 -8.24± 4.75 89.53± 3.96 -8.13± 5.02
A-GEM 94.97± 1.50 -6.03± 1.87 94.81± 0.86 -5.65± 1.06 92.27± 1.16 -4.17± 1.39
ER-Ring 94.94± 1.56 -6.07± 1.92 95.83± 2.15 -4.38± 2.59 91.10± 1.89 -6.27± 2.35
Uniform 95.77± 1.12 -5.02± 1.39 97.12± 1.57 -2.79± 1.98 92.14± 1.45 -4.90± 1.41

RS-MCTS (Ours) 96.07± 1.60 -4.59± 2.01 97.17± 0.78 -2.64± 0.99 93.41± 1.11 -3.36± 1.56

Permuted MNIST Split CIFAR-100 Split miniImagenet
Method ACC(%)↑ BWT(%)↑ ACC(%)↑ BWT(%)↑ ACC(%)↑ BWT(%)↑

Random 70.02± 1.76 -28.22± 1.92 48.62± 1.02 -39.95± 1.10 48.85± 1.38 -14.55± 1.86
A-GEM 64.71± 1.78 -34.41± 2.05 42.22± 2.13 -46.90± 2.21 32.06± 1.83 -30.81± 1.79
ER-Ring 69.73± 1.13 -28.87± 1.29 53.93± 1.13 -34.91± 1.18 49.82± 1.69 -14.38± 1.57
Uniform 69.85± 1.01 -28.74± 1.17 52.63± 1.62 -36.43± 1.81 50.56± 1.07 -13.52± 1.34

RS-MCTS (Ours) 72.52± 0.54 -25.43± 0.65 51.50± 1.19 -37.01± 1.08 50.70± 0.54 -12.60± 1.13
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E ADDITIONAL FIGURES

Memory usage. We visualize the memory usage for Permuted MNIST and the 20-task datasets
Split CIFAR-100 and Split miniImagenet in Figure 8 for our method and the baselines used in the
experiment in Section 4.5. Our method uses a fixed memory size of M = 50 samples for replay
on all three datasets. The memory size capacity for our method is reached after learning task 6 and
task 11 on the Permuted MNIST and the 20-task datasets respectively, while the baselines continue
incrementing their replay memory size.
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Figure 8: Number of replayed samples per task for 10-task Permuted MNIST (top) and the 20-task datasets
in the experiment in Section 4.5. The fixed memory size M = 50 for our method is reached after learning
task 6 and task 11 on the Permuted MNIST and the 20-task datasets respectively, while the baselines continue
incrementing their number of replay samples per task.
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