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ABSTRACT

Text-to-image generation models can create high-quality images from input
prompts. However, they struggle to support the consistent generation of identity-
preserving requirements for storytelling. Existing approaches to this problem typ-
ically require extensive training in large datasets or additional modifications to
the original model architectures. This limits their applicability across different
domains and diverse diffusion model configurations. In this paper, we first ob-
serve the inherent capability of language models, coined context consistency, to
comprehend identity through context with a single prompt. Drawing inspiration
from the inherent context consistency, we propose a novel training-free method
for consistent text-to-image (T2I) generation, termed “One-Prompt-One-Story”
(1Prompt1Story). Our approach 1Prompt1Story concatenates all prompts into a
single input for T2I diffusion models, initially preserving character identities. We
then refine the generation process using two novel techniques: Singular-Value
Reweighting and Identity-Preserving Cross-Attention, ensuring better alignment
with the input description for each frame. In our experiments, we compare our
method against various existing consistent T2I generation approaches to demon-
strate its effectiveness through quantitative metrics and qualitative assessments.

1 INTRODUCTION

Text-based image generation (T2I) (Ramesh et al., 2022; Saharia et al., 2022; Rombach et al., 2022)
aims to generate high-quality images from textual prompts, depicting various subjects in various
scenes. The ability of T2I diffusion models to maintain subject consistency across a wide range of
scenes is crucial for applications such as animation (Hu, 2024; Guo et al., 2024), storytelling (Yang
et al., 2024; Gong et al., 2023; Cheng et al., 2024), video generation models (Khachatryan et al.,
2023; Blattmann et al., 2023) and other narrative-driven visual applications. However, achieving
consistent T2I generation remains a challenge for existing models, as shown in Fig. 1 (up).

Recent studies tackle the challenge of maintaining subject consistency through diverse approaches.
Most methods require time-consuming training on large datasets for clustering identities (Avrahami
et al., 2023), learning large mapping encoders (Gal et al., 2023b; Ruiz et al., 2024), or perform-
ing fine-tuning (Ryu, 2023; Kopiczko et al., 2024), which carries the risk of inducing language
drift (Heng & Soh, 2024; Wu et al., 2024a; Huang et al., 2024), etc. Several recent training-free
approaches (Tewel et al., 2024; Zhou et al., 2024) demonstrate remarkable results in generating
images with consistent subjects by leveraging shared internal activations from the pre-trained mod-
els. These methods require extensive memory resources or complex module designs to strengthen
the T2I diffusion model to generate satisfactory consistent images. However, they all neglect the
inherent property of long prompts that identity information is implicitly maintained by context un-
derstanding, which we refer to as the context consistency of language models. For example, the dog
object in “A dog is watching the movie. Afterward, the dog is lying in the garden.” can be easily un-
derstood as the same without any confusion since it appears in the same paragraph and is connected
by the context. We take advantage of this inherent feature to eliminate the requirement of additional
finetuning or complicated module design.
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Figure 1: Existing methods (up) encounter challenges in consistent T2I generation. T2I models such as
SDXL (Podell et al., 2023) and Juggernaut-X-v10 (RunDiffusion, 2024) often exhibit noticeable identity in-
consistency across generated images. Although recent methods including IP-Adapter and ConsiStory have
improved identity consistency, they lost the alignment between the generated images and corresponding input
prompts. Additional results of our 1Prompt1Story (down) demonstrate superior consistency without com-
promising the alignment between text and images.

Observing the inherent context consistency of language models, we propose a novel approach to
generate images with consistent characters using a single prompt, termed One-Prompt-One-Story
(1Prompt1Story). Specifically, 1Prompt1Story consolidates all desired prompts into a single longer
sentence, which starts with an identity prompt that describes the corresponding identity attributes and
continues with subsequent frame prompts describing the desired scenarios in each frame. We de-
note this first step as prompts consolidation. By reweighting the consolidated prompt embeddings,
we can easily implement a basic method Naive Prompt Reweighting to adjust the T2I generation
performance, and this approach inherently achieves excellent identity consistency. Fig. 1 (up, the
6th column) illustrates two examples, each featuring an image generated with different frame de-
scriptions within a single prompt by reweighting the frame prompt embeddings. These examples
demonstrate that Naive Prompt Reweighting is able to maintain identity consistency with various
scenario prompts. However, this basic approach does not guarantee strong text-image alignment for
each frame, as the semantics of each frame prompt are usually intertwined within the consolidated
prompt embedding (Radford et al., 2021). To further enhance text-image alignment and identity
consistency of the T2I generative models, we introduce two additional techniques: Singular-Value
Reweighting (SVR) and Identity-Preserving Cross-Attention (IPCA). The Singular-Value Reweight-
ing aims to refine the expression of the prompt of the current frame while attenuating the informa-
tion from the other frames. Meanwhile, the strategy Identity-Preserving Cross-Attention strengthens
the consistency of the subject in the cross-attention layers. By applying our proposed techniques,
1Prompt1Story achieves more consistent T2I generation results compared to existing approaches.

In the experiments, we extend an existing consistent T2I generation benchmark as ConsiStory+ and
compare it with several state-of-the-art methods, including ConsiStory (Tewel et al., 2024), Story-
Diffusion (Zhou et al., 2024), IP-Adapter (Ye et al., 2023), etc. Both qualitative and quantitative
performance demonstrate the effectiveness of our method 1Prompt1Story. In summary, the main
contributions of this paper are:

• To the best of our knowledge, we are the first to analyze the overlooked ability of language models
to maintain inherent context consistency, where multiple frame descriptions within a single prompt
inherently refer to the same subject identity.

• Based on the context consistency property, we propose One-Prompt-One-Story as a novel training-
free method for consistent T2I generation. More specifically, we further propose Singular-Value
Reweighting and Identity-Preserving Cross-Attention techniques to improve text-image alignment
and subject consistency, allowing each frame prompt to be individually expressed within a single
prompt while maintaining a consistent identity along with the identity prompt.
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• Through extensive comparisons with existing consistent T2I generation approaches, we con-
firm the effectiveness of 1Prompt1Story in generating images that consistently maintain identity
throughout a lengthy narrative over our extended ConsiStory+ benchmark.

2 RELATED WORK

T2I personalized generation. T2I personalization is also referred to T2I model adaptation. This
aims to adapt a given model to a new concept by providing a few images and binding the new
concept to a unique token. As a result, the adaptation model can generate various renditions of the
new concept. One of the most representative methods is DreamBooth (Ruiz et al., 2023), where
the pre-trained T2I model learns to bind a modified unique identifier to a specific subject given a
few images, while it also updates the T2I model parameters. Recent approaches (Kumari et al.,
2023; Han et al., 2023b; Shi et al., 2023) follow this pipeline and further improve the quality of
the generation. Another representative, Textual Inversion (Gal et al., 2023a), focuses on learning
new concept tokens instead of fine-tuning the T2I generative models. Textual Inversion finds new
pseudo-words by conducting personalization in the text embedding space. The coming works (Dong
et al., 2022; Voynov et al., 2023; Han et al., 2023a; Zeng et al., 2024) follow similar techniques.

Consistent T2I generation. Despite recent advances, T2I personalization methods often require ex-
tensive training to effectively learn modifier tokens. This training process can be time-consuming,
which limits their practical impact. More recently, there has been a shift towards developing consis-
tent T2I generation approaches (Wang et al., 2024b;a), which can be considered a specialized form of
T2I personalization. These methods mainly focus on generating human faces that possess semanti-
cally similar attributes to the input images. Importantly, they aim to achieve this identity-preserving
T2I generation without the need for additional fine-tuning. They mainly take advantage of PEFT
techniques (Ryu, 2023; Kopiczko et al., 2024) or pre-training with large datasets (Ruiz et al., 2024;
Xiao et al., 2023) to learn the image encoder to be customized in the semantic space. For exam-
ple, PhotoMaker (Li et al., 2023b) enhances its ability to extract identity embeddings by fine-tuning
part of the transformer layers in the image encoder and merging the class and image embeddings.
The Chosen One (Avrahami et al., 2023) utilizes an identity clustering method to iteratively identify
images with a similar appearance from a set of images generated by identical prompts.

However, most consistent T2I generation methods (Akdemir & Yanardag, 2024; Wang et al., 2024a)
still require training the parameters of the T2I models, sacrificing compatibility with existing pre-
trained community models, or fail to ensure high face fidelity. Additionally, as most of these sys-
tems (Li et al., 2023b; Gal et al., 2023b; Ruiz et al., 2024) are designed specifically for human faces,
they encounter limitations when applied to non-human subjects. Even for the state-of-the-art ap-
proaches, including StoryDiffusion (Zhou et al., 2024), The Chosen One (Avrahami et al., 2023)
and ConsiStory (Tewel et al., 2024), they either require time-consuming iterative clustering or high
memory demand in generation to achieve identity consistency.

Storytelling. Story generation (Li et al., 2019; Maharana et al., 2021), also referred to as sto-
rytelling, is one of the active research directions that is highly related to character consistency.
Recent researches (Tao et al., 2024; Wang et al., 2023) have integrated the prominent pre-trained
T2I diffusion models (Rombach et al., 2022; Ramesh et al., 2022) and the majority of these ap-
proaches require intense training over storytelling datasets. For example, Make-a-Story (Rahman
et al., 2023) introduces a visual memory module designed to capture and leverage contextual in-
formation throughout the storytelling process. StoryDALL-E (Maharana et al., 2022) extends the
story generation paradigm to story continuation, using DALL-E capabilities to achieve substantial
improvements over previous GAN-based methodologies. Note that the story continuation shares
similarities with consistent Text-to-Image generation by using reference images. However, current
consistent T2I generation methods prioritize preserving human face identities, whereas story contin-
uation involves supporting various subjects or even multiple subjects within the generated images.

In this paper, our proposed consistent T2I framework, 1Prompt1Story, diverges significantly from
previous approaches in storytelling and consistent T2I generation methods. We explore the inherent
context consistency property in language models instead of finetuning large models or designing
complex modules. Importantly, it is compatible with various T2I generative models, since the prop-
erties of the text model are independent of the specific generation model used as the backbone.
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3 METHOD

Consistent T2I generation aims to generate a set of images depicting consistent subjects in different
scenarios using a set of prompts. These prompts start with an identity prompt, followed by the frame
prompts for each subsequent visualization frame. In this section, we first empirically show that
different frame descriptions included in a concatenated prompt can maintain identity consistency
due to the inherent context consistency property of language models. We examine this observa-
tion through comprehensive analyses in Sec. 3.1 and propose the basic Naive Prompt Reweight-
ing pipeline of our method 1Prompt1Story. Following that, to ensure that each frame description
within the prompt is expressed individually while diminishing the impact of other frame prompts,
we introduce Singular-Value Reweighting and Identity-Preserving Cross-Attention in Sec. 3.2. The
illustration of 1Prompt1Story is shown in Fig. 4 and Algorithm 1 in the Appendix.

3.1 CONTEXT CONSISTENCY

Latent Diffusion Models. We built our approach on the SDXL (Podell et al., 2023) model. This
latent diffusion model consists of two primary components: an autoencoder (i.e., an encoder E and
a decoder D ) and a diffusion model (i.e., ϵθ with parameter θ). The model ϵθ is trained by the loss:

LLDM := Ez0∼E(x),ϵ∼N (0,1),t∼Uniform(1,T )

[
∥ϵ− ϵθ(zt, t, τξ(P))∥22

]
, (1)

where ϵθ is a UNet, conditioning a latent input zt, a timestep t ∼ Uniform(1, T ), and a text em-
bedding τξ(P). More specifically, text-guided diffusion models generate an image from the textual
condition as C = τξ(P) ∈ RM×D, where the text embedding is with M tokens and each token has a
feature dimension of D and τξ is the CLIP text encoder (Radford et al., 2021)1. The cross-attention
map is derived from ϵθ(zt, t, C). Let fzt represent the output of the feature map from the network
ϵθ. We get a query matrix Q = lQ(fzt) using the projection network lQ. Similarly, given a textual
embedding C, we compute a key matrix K = lK(C) with projection network lK. Then the attention
map is computed according to: At = softmax(Q · KT /

√
d) where d is the dimension of queries

and key, and the cell [At]ij defines the weight of the j-th token on the i-th token.

Problem Setups. In the T2I diffusion models, the text embedding C = τξ(P) ∈ RM×D is with M
tokens. The M tokens contain a start token [SOT] , followed by |P| tokens corresponding to the
prompt, and M − |P| − 1 padding end tokens [EOT] . Previous consistent T2I generation works
(Avrahami et al., 2023; Tewel et al., 2024; Zhou et al., 2024) generate images from a set of N
prompts. This set of prompts starts with an identity prompt P0 that describes the relevant attribute of
the subject and continues with multiple frame prompt Pi, where i = 1, . . . , N describes each frame
scenario. However, this separate generation pipeline ignores the inherent language property, i.e., the
context consistency, by which identity is consistently ensured by the context information inherent in
language models. This property stems from the self-attention mechanism within Transformer-based
text encoders (Radford et al., 2021; Vaswani et al., 2017), which allows learning the interaction
between phrases in the text embedding space.

In the following, we analyze the context consistency under different prompt configurations in both
textual space and image space. Specifically, we refer to the conventional prompt setups as multi-
prompt generation, which is commonly used in existing consistent T2I generation methods. The
multi-prompt generation uses N prompts separately for each generated frame, each sharing the same
identity prompt and the corresponding frame prompt as [P0;Pi], i ∈ [1, N ]. In contrast, our single-
prompt generation concatenates all the prompts as [P0;P1; . . . ;PN ] for each frame generation,
which we refer as the Prompt Consolidation (PCon).

3.1.1 CONTEXT CONSISTENCY IN TEXT EMBEDDINGS

Empirically, we find that the frame prompt {Pi | i = 1, . . . , N} in the single-prompt generation
setup have relatively small semantic distances among each other in the textual embedding space,
whereas those across multi-prompt generation have comparatively larger distances. For instance,
we set the identity frame P0 = “A watercolor of a cute kitten” as an example. We then create

1SDXL uses two text encoders and concatenate the embeddings as the final input. M = 77 by default.
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N = 5 frame prompts {Pi, i ∈ [1, N ]} as “in a garden”, “dressed in a superhero cape”, “wearing
a collar with a bell”, “sitting in a basket”, and “dressed in a cute sweater”, respectively. Under the
multi-prompt setup, each frame is generated by the text embedding defined as Ci = τξ([P0;Pi]) =
[cSOT , cP0 , cPi , cEOT ], (i = 1, . . . , N), while the text embedding of the Prompt Consolidation in
the single-prompt case is C = τξ([P0;P1; . . . ;PN ]) = [cSOT , cP0 , cP1 , . . . , cPN , cEOT ].

Figure 2: t-SNE visualization of text embeddings
(Left): cPi from single-prompt generation are closer
together compared to those from multi-prompt gener-
ation. Statistical results (Right): We evaluated the
average distances between the corresponding point sets
of all prompt sets on the ConsiStory+ benchmark af-
ter dimensionality reduction. The average distance be-
tween text embeddings from single-prompt generation
is smaller than that from multi-prompt generation.

To analyze the distances among the frame
prompts, we extract cPi from Ci for multi-
prompt setup and apply t-SNE for 2D visual-
ization (Fig. 2-left). Similarly, we extract all
cPi from C for the single-prompt setup (Fig. 2-
left). As can be observed, the text embeddings
of frame prompts under the multi-prompt setup
are widely distributed in the text representation
space (red dots) with an average Euclidean L2

distance of 71.25. In contrast, the embeddings
in the single-prompt case exhibit more compact
distributions (blue dots), with a much smaller
average L2 distance of 46.42. We also per-
formed a similar distance analysis on all prompt
sets in our benchmark ConsiStory+. As shown
in Fig.2-right, we can conclude a similar obser-
vation that the frame prompts share more sim-
ilar semantic information and identity consis-
tency within the single-prompt setup.

3.1.2 CONTEXT CONSISTENCY IN IMAGE GENERATION

To demonstrate that context consistency is also maintained in the image space, we further conducted
image generation experiments using the prompt example above. The images generated by the SDXL
model with the multi-prompt configuration, as illustrated in Fig. 3 (left, the first row), show various
characters that lack identity consistency. Instead, we use our proposed concatenated prompt P =
[P0;P1; . . . ;PN ]. To generate the i-th frame (i = 1, ..., N ), we reweight the cPi corresponding
to the desired frame prompt Pi by a magnification factor while rescaling the embeddings of the
other frame prompts by a reduction factor. This modified text embedding is then imported to the
T2I model to generate the frame image. We refer to this simplistic reweighting approach as Naive
Prompt Reweighting (NPR). By this means, the T2I model synthesizes frame images with the same
subject identity. However, the backgrounds get blended among these frames, as shown in Fig. 3
(left, the second row). By contrast, our full model 1Prompt1Story introduced in Sec. 3.2 generates
images with better consistent identity and text-image alignment for each frame prompt, as shown in
Fig. 3 (left, the last row).

To visualize identity similarity among images, we removed backgrounds using CarveKit (Selin,
2023) and extracted visual features with DINO-v2 (Oquab et al., 2023; Darcet et al., 2023). These
features are then projected into the 2D space by t-SNE (Hinton & Roweis, 2002) (as shown in Fig. 3
(mid)). Our complete approach 1Prompt1Story obviously obtains better identity consistency than
the other two comparison methods, while Naive Prompt Reweighting shows improvements over
the SDXL baseline. We also applied the analysis across our extended benchmark ConsiStory+ and
calculated the average pairwise distance, as shown in Fig. 3 (right). These results further consolidate
our conclusion that the frame prompts in a single-prompt setup share more identity consistency than
the multi-prompt case.

3.2 ONE-PROMPT-ONE-STORY

As also observed from the above section, simply concatenating the prompts as Naive Prompt
Reweighting cannot guarantee that the generated images accurately reflect the frame prompt de-
scriptions, for which we assume that the T2I model cannot accurately capture the correct partition
of the concatenated prompt embeddings. Furthermore, the various semantics within the consoli-
dated descriptions interact with each other (Chefer et al., 2023; Rassin et al., 2024). To mitigate
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Figure 3: (Left): SDXL generates frame images using multi-prompt generation, while Naive Prompt Reweight-
ing (NPR) and our method utilize the single-prompt setup. (Mid): Image features are extracted by DINO-
v2 (Oquab et al., 2023) and visualized by the t-SNE reduction. Naive Prompt Reweighting and 1Prompt1Story
show more consistent identity generations than the SDXL model. (Right): Statistics of the average feature
distances among generated images from the prompts in our extended ConsiStory+ benchmark, which further
confirms that 1Prompt1Story produces better identity consistency.

this issue, we propose additional techniques based on the Prompt Consolidation (PCon), namely
Singular-Value Reweighting (SVR) and Identity-Preserving Cross-Attention (IPCA).

Singular-Value Reweighting. After the Prompt Consolidation as C = τξ([P0;P1; . . . ;PN ]) =
[cSOT , cP0 , cP1 , . . . , cPN , cEOT ], we require the current frame prompt to be better expressed in
the T2I generation, which we denote as Pexp = Pj , (j = 1, ..., N). We also expect the remaining
frames to be suppressed in the generation, which we denote as Psup = Pk, k ∈ [1, N ]\{j}. Thus,
the N frame prompts of the subject description can be written as {Pexp,Psup}. As the [EOT]
token contains significant semantic information (Li et al., 2023a; Wu et al., 2024b), the semantic
information corresponding toPexp, in bothPj and [EOT] , needs to be enhanced, while the semantic
information corresponding to Psup, in Pk, k ̸= j and [EOT] , need to be suppressed. We extract
the token embeddings for both express and suppress sets as X exp = [cPj , cEOT ] and X sup =
[cP1 , . . . , cPj−1 , cPj+1 , . . . , cPN , cEOT ].

Inspired by (Gu et al., 2014; Li et al., 2023a), we assume that the main singular values of X exp

correspond to the fundamental information of Pexp. We then perform SVD decomposition as:
X exp = UΣVT , where Σ = diag(σ0, σ1, · · · , σnj ), the singular values σ0 ≥ · · · ≥ σnj

2.
To enhance the expression of the frame Pj , we introduce the augmentation for each singular value,
termed as SVR+ and formulated as:

σ̂ = βeασ ∗ σ. (2)

where the symbol e is the exponential, α and β are parameters with positive numbers. We recover
the tokens as X̂ exp = UΣ̂VT , with the updated Σ̂ = diag(σ̂0, σ̂1, · · · , ˆσnj

). The new prompt
embedding is defined as X̂ exp = [ĉPj , ĉEOT ], and Ĉ = [cSOT , cP0 , · · · , ĉPj , · · · , cPN , ĉEOT ].
Note that there is an updated X̂ sup = [cP1 , . . . , cPj−1 , cPj+1 , . . . , cPN , ĉEOT ].

Similarly, we suppress the expression of the remaining frames. Since X̂ sup contains information
related to multiple frames, the main singular values of SVD in X̂ sup only capture a small portion
of these descriptions, which may lead to insufficient weakening of such semantics (as shown in the
Appendix of Fig. 11-right). Therefore, we propose to weaken each frame prompt in X̂ sup separately.
We construct the matrix as X̂ sup

k = [cPk , ĉEOT ], k ̸= j to perform SVD with the singular values
σ̂0 ≥ · · · ≥ σ̂nk

. Then, each singular value is weakened as follows, termed as SVR-:

σ̃ = β′e
−α′σ̂ ∗ σ̂. (3)

where α′ and β′ are parameters with positive numbers. The recovered structure is X̃ sup
k =

[c̃Pk , c̃EOT ], After reducing the expression of each suppress token, we finally obtain the new text
embedding C̃ = [cSOT , cP0 , c̃P1 , · · · , ĉPj , · · · , c̃PN , c̃EOT ].

2nj = min(D, |cPj |+ |cEOT |). The dimension D in the SDXL model is greater than |cPj |+ |cEOT |)
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X̂ exp = [ĉPj , ĉEOT ]

X̂ sup
k = [cPk , ĉEOT ]cP1 , . . . , cPj−1 , cPj+1 , . . . , cPN , ĉEOT X̃ sup

k = [c̃Pk , c̃EOT ]

k ∈ [1, N ]\{j}

cPj , cEOT

Q̃

Ã

C = [cSOT , cP0 , cP1 , . . . , cPj , . . . , cPN , cEOT ]

C̃ =

c̃EOTcP0 c̃P1cSOT . . . . . .ĉPj c̃PN

X exp = [cPj , cEOT ]

Σ̃

Σ Σ̂

Σ

K̃ K̄

Ṽ
V̄

 

Figure 4: (a): The overall pipeline of 1Prompt1Story. We combine the identity prompt and frame prompts into a
single prompt, then we apply both Singular-Value Reweighting (SVR) and Identity-Preserving Cross-Attention
(IPCA) to generate identity-consistent images. (b): During SVR, we first enhance the semantic information of
the express set X exp (red arrow), then iteratively weaken the semantics for the suppress set X sup (blue arrow).
(c): In IPCA, we concatenate K̃ with K̄ and Ṽ with V̄ to improve identity consistency.

Identity-Preserving Cross-Attention. The use of Singular-Value Reweighting can reduce the blend-
ing of frame descriptions in single-prompt generation. However, we observed that it can also impact
context consistency within the single prompt, leading to images generated slightly less similar in
identity (as shown in the ablation study of Fig. 7). Recent work (Liu et al., 2024) demonstrated
that cross-attention maps capture the characteristic information of the token, while self-attention
preserves the layout information and the shape details of the image. Inspired by this, we propose
Identity-Preserving Cross-Attention to further enhance the identity similarity between images gen-
erated from the concatenated prompt of our proposed Prompt Consolidation.

For a specific timestep t, after applying Singular-Value Reweighting, we have the updated text em-
bedding C̃. During a denoising pass through the diffusion model, we obtain the corresponding
Q̃, K̃, Ṽ in the cross-attention layer. Here, we aim to strengthen the identity consistency among the
images and mitigate the impact of irrelevant prompts. We set the token features in K̃ corresponding
to Pi, i ∈ [1, N ] to zero , resulting in K̄. Here, only the identity prompt remains to augment the
identity semantics. Similarly, we can get V̄ . We form a new version of K̃ by concatenating it with
K̄, dubbed K̃ = Concat(K̃⊤, K̄⊤)⊤. The new cross-attention map is then given by:

Ã = softmax
(
Q̃K̃⊤/

√
d
)

(4)

where d is the dimension of Q̃ and K̃. Similarly, we update Ṽ = Concat(Ṽ⊤, V̄⊤)⊤. The final out-
put feature of the cross-attention layer is Ã×Ṽ . This output is a reweighted version that strengthens
identity consistency using filtered features, which only contain the identity prompt semantics.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUPS

Comparison Methods and Benchmark. We compare our method with the following consistent T2I
generation approaches: BLIP-Diffusion (Li et al., 2024), Textual Inversion (TI)(Gal et al., 2023a),
IP-Adapter(Ye et al., 2023), PhotoMaker (Li et al., 2023b), The Chosen One (Avrahami et al., 2023),
ConsiStory (Tewel et al., 2024), and StoryDiffusion (Zhou et al., 2024). We follow the default
configurations in their papers or open-source implementations.

To evaluate their performance, we introduce ConsiStory+, an extension of the original ConsiStory
(Tewel et al., 2024) benchmark. This new benchmark incorporates a wider range of subjects, de-
scriptions, and styles. Following the evaluation protocol outlined in ConsiStory, we evaluated both
prompt alignment and subject consistency across ConsiStory+, generating up to 1500 images on 200
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Figure 5: Qualitative results. We compare our method with PhotoMaker, IP-Adapter, ConsiStory, and Story-
Diffsion. Among them, Texture Inversion, PhotoMaker, ConsiStory, and StoryDiffsion struggled to maintain
identity consistency for the dragon object while IP-Adapter produced images with relatively similar poses and
backgrounds. See Comparison with the remaining methods in Fig. 22 of the Appendix.

prompt sets. Additional details on the construction of our benchmark and the implementation of the
methods are provided in Appendix B.2 and Appendix B.3.

Evaluation Metrics. To assess prompt alignment performance, we compute the average CLIP-
Score (Hessel et al., 2021) for each generated image in relation to its corresponding prompt, which
we denote as CLIP-T. For the identity consistency evaluation, we measure image similarity using
both DreamSim (Fu et al., 2023), which has been shown to closely reflect human judgment in eval-
uating visual similarity, and CLIP-I (Hessel et al., 2021), calculated by the cosine distance between
image embeddings. In line with the methodology proposed in DreamSim (Fu et al., 2023), we
remove image backgrounds using CarveKit (Selin, 2023) and replace them with random noise to
ensure that similarity measurements focus solely on the identities of subjects.

4.2 EXPERIMENTAL RESULTS

Qualitative Comparison. In Fig. 5, we present the qualitative comparison results. Our method
1Prompt1Story demonstrates well-balanced performance in several key aspects, including identity
preservation, accurate frame descriptions, and diversity in the pose of objects. In contrast, other
methods exhibit shortcomings in one or more of these aspects. Specifically, PhotoMaker, ConsiS-
tory, and StoryDiffusion all produce inconsistent identities for the subject “dragon” in the exam-
ples on the left. Additionally, IP-Adapter tends to generate images with repetitive poses and similar
backgrounds, often neglecting frame prompt descriptions. ConsiStory also displays duplicated back-
ground generation in the consistent T2I generation.
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Table 1: Quantitative comparison. The best and second best results are highlighted in bold and underlined,
respectively. Vanilla SD1.5 and Vanilla SDXL are shown as references and excluded from this comparison.

Method Base Model Train-Free CLIP-T↑ CLIP-I↑ DreamSim↓ Steps Memory
(GB)↓

Inference
Time (s)↓

Vanilla SD1.5 - - 0.8353 0.7474 0.5873 50 4.73 2.4657
Vanilla SDXL - - 0.9074 0.8165 0.5292 50 16.04 13.0890

BLIP-Diffusion SD1.5 ✗ 0.7607 0.8863 0.2830 26 7.75 1.9284
Textual Inversion

SDXL

✗ 0.8378 0.8229 0.4268 40 32.94 282.507
The Chosen One ✗ 0.7614 0.7831 0.4929 35 10.93 11.2073
PhotoMaker ✗ 0.8651 0.8465 0.3996 50 23.79 18.0259
IP-Adapter ✗ 0.8458 0.9429 0.1462 30 19.39 13.4594

ConsiStory

SDXL

✓ 0.8769 0.8737 0.3188 50 34.55 34.5894
StoryDiffusion ✓ 0.8877 0.8755 0.3212 50 45.61 25.6928
Naive Prompt Reweighting (NPR) ✓ 0.8411 0.8916 0.2548 50 16.04 17.2413
1Prompt1Story (Ours) ✓ 0.8942 0.9117 0.1993 50 18.70 23.2088

Table 2: User study with 37 people to vote for the
best consistent T2I generation method according to
human preference.

Method IP-Adapter ConsiStory StoryDiffusion Ours

Percent (%)↑ 8.60 13.00 29.80 48.60

Table 3: Ablation study. We evaluated the influence
of each component in 1Prompt1Story, including the
Singular-Value Reweighting (SVR+ and SVR-), and
Identity-Preserving Cross-Attention (IPCA).

Method CLIP-T↑ CLIP-I↑ DreamSim↓

PCon; SVR+ 0.8774 0.8886 0.2560
PCon; SVR- 0.8910 0.8904 0.2605
PCon; SVR+; SVR- 0.8989 0.8849 0.2538
PCon; SVR+; SVR-; IPCA (Ours) 0.8942 0.9117 0.1993

Figure 6: Prompt alignment vs. identity consistency.
Our method 1Prompt1Story is positioned in the upper
right corner.

Quantitative Comparison. In Table 1, we illustrate the quantitative comparison with other ap-
proaches. In all evaluation metrics, 1Prompt1Story ranks first among the training-free methods, and
second when including training-required methods. Furthermore, compared to other training-free
methods, our approach demonstrates a reasonable fast inference speed while achieving excellent per-
formance. More specifically, our method 1Prompt1Story achieves the CLIP-T score closely aligned
with the vanilla SDXL model. In terms of identity similarity, measured by CLIP-I and DreamSim,
our method ranks just below IP-Adapter. However, the high identity similarity of IP-Adapter mainly
stems from its tendency to generate images with characters depicted in similar poses and layouts.
To further explore this potential bias, we conducted a user study to investigate human preferences.
Following ConsiStory, we also visualized our quantitative results using a chart, as shown in Fig. 6.
Training-based methods, such as IP-Adapter and Textual Inversion, often overfit character identity
and perform poorly on prompt alignment. In contrast, among training-free methods, our approach
achieves the best balance in both prompt alignment and identity consistency.

User Study. In the user study, we compare our method with several state-of-the-art approaches,
including IP-Adapter, ConsiStory, and StoryDiffusion. From our benchmark, we randomly selected
30 sets of prompts, each comprising four fixed-length prompts, to generate test images. Twenty
participants were asked to select the image that best demonstrated overall performance in terms
of identity consistency, prompt alignment, and image diversity. As shown in Table 2, the results
indicated that our method 1Prompt1Story aligns best with human preference. More details of the
user study are shown in Appendix. F.

Ablation study. We performed an ablation study to analyze each component, as illustrated both
qualitatively and quantitatively in Fig. 7 and Table 3. When using Singular-Value Reweighting
exclusively with improving the express set as SVR+ (that is, Eq. 2), the generated images blend
with other descriptions, as can be seen in Fig. 7 (left, first row). Similarly, when Singular-Value
Reweighting is only to weaken the suppress set as SVR- (i.e., Eq.3), the same issue appears in Fig. 7
(left, second row). In contrast, integrating both SVR+ and SVR- in Singular-Value Reweighting
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Figure 7: Qualitative ablation study. All ablated cases with incomplete components of 1Prompt1Story strug-
gle to achieve both prompt alignment and identity consistency as effectively as our full method.

Figure 8: (Left): Our method 1Prompt1Story can integrate with ControlNet to enable spatial control for con-
sistent character generation. (Right): Additionally, our method can also combine with other methods, such as
PhotoMaker, to achieve real-image personalization with improved identity consistency.

can effectively mitigate blending in generated images (Fig. 7 (right, first row)). Although Singular-
Value Reweighting can effectively resolve frame prompt blending issues, without Identity-Preserving
Cross-Attention, there remains a weak inconsistency among the generated images. As shown in
Fig. 7 (right, second row), the results indicate that using Singular-Value Reweighting and Identity-
Preserving Cross-Attention achieves the best performance, as also evident in Table 3 (the last row).
Additional results of ablation analysis and visualization are presented in the Appendix. C.

Additional applications. 1Prompt1Story can also achieve spatial controls, integrating with exist-
ing control-based generative methods such as ControlNet (Zhang & Agrawala, 2023). As shown
in Fig. 8 (left), our method effectively generates consistent characters with human pose control.
Furthermore, our method can be combined with other approaches, such as PhotoMaker (Li et al.,
2023b), to improve the consistency of identity with real images. By applying our method, the gen-
erated images more closely resemble the real identities, as demonstrated in Fig. 8 (right).

5 CONCLUSION

In this paper, we addressed the critical challenge of maintaining subject consistency in text-to-
image (T2I) generation by leveraging the inherent property of context consistency found in natu-
ral language. Our proposed method, One-Prompt-One-Story (1Prompt1Story), effectively utilizes
a single extended prompt to ensure consistent identity representation across diverse scenes. By in-
tegrating techniques such as Singular-Value Reweighting and Identity-Preserving Cross-Attention,
our approach not only refines frame descriptions but also strengthens the consistency at the atten-
tion level. The experimental results on the ConsiStory+ benchmark demonstrated the superiority
of 1Prompt1Story over state-of-the-art techniques, showcasing its potential for applications in an-
imation, interactive storytelling, and video generation. Ultimately, our contributions highlight the
importance of understanding context in T2I diffusion models, paving the way for more coherent and
narrative-consistent visual output.
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APPENDIX

A BOARDER IMPACTS AND LIMITATIONS

Boarder Impacts. The application of T2I models in consistent image generation offers exten-
sive potential for various downstream applications, enabling the adaptation of images to different
contexts. In particular, synthesizing consistent characters has diverse applications, however, it is a
challenging task for diffusion models. Our 1Prompt1Story can help the users customize their desired
characters in different story scenarios, resulting in significant time and resource savings. Notably,
current methods have inherent limitations, as discussed in this paper. However, our model can serve
as an intermediary solution while offering valuable insights for further advancements.

Limitations. While our method 1Prompt1Story can achieve high-fidelity consistent T2I genera-
tion, it is not free of limitations. Firstly, we have to know all the prompts in advance. Additionally,
the length of the input prompt is constrained by the maximum capacity of the text encoder. Al-
though we proposed a sliding window technique that facilitates infinite-length story generation in
Appendix D.2, this approach may encounter issues where the identity of the generated images grad-
ually diverges and becomes less consistent.

B IMPLEMENTATION DETAILS

B.1 MODEL CONFIGURATIONS

We generate subject-consistent images by modifying text embeddings and cross-attention modules
at inference time, without any training or optimization processes. Our primary base model is the pre-
trained Stable Diffusion XL (SDXL)3. SDXL has two text encoders: the CLIP L/14 encoder (Rad-
ford et al., 2021) and the OpenCLIP bigG/14 encoder (Cherti et al., 2023). We separately update the
text embeddings produced by each encoder. For Naive Prompt Reweighting, we multiply the text
embedding corresponding to the frame prompt that needs to be expressed by a factor of 2, while the
text embedding corresponding to the frame prompts that need to be suppressed is multiplied by a
factor of 0.5, keeping the cEOT unchanged.

In our method, 1Prompt1Story, we set the parameters as follows: α = 0.01, β = 1.5 in Eq.2,
and α′ = 0.03, β′ = 1.2 in Eq.3. During the generation process, we initialize all frames with the
same noise and apply a dropout rate of 0.5 to the token features in K̄ corresponding to P0. In the
implementation of IPCA, the concatenated K̃ and Ṽ are derived from the original text embeddings
prior to applying SVR. We design an attention mask where all values in the column corresponding
to Pi, i ∈ [1, N ] are set to zero, while all other positions are set to one. The natural logarithm of this
mask is then added to the original attention map. Our full algorithm is presented in Algorithm 1.
Following (Tewel et al., 2024; Alaluf et al., 2024; Luo et al., 2023), we use Free-U (Si et al., 2024)
to enhance the generation quality. All generated images based on SDXL are produced at a resolution
of 1024× 1024 using a Quadro RTX 3090 GPU with 24GB VRAM.

B.2 BENCHMARK DETAILS

To evaluate the effectiveness of our method, we developed ConsiStory+, an extended prompt bench-
mark based on ConsiStory (Tewel et al., 2024). We enhanced both the diversity and size of the
original benchmark, which only comprised 100 sets of 5 prompts across 4 superclasses. Our ex-
pansion resulted in 200 sets, with each set containing between 5 and 10 prompts, categorized into
8 superclasses: humans, animals, fantasy, inanimate, fairy tales, nature, technology, and foods. The
extended prompt benchmark was generated using ChatGPT 4.0-turbo4, involving two main steps.
First, we expanded the 100 prompt sets from the original benchmark, increasing each to a length of
5 to 10 prompts, as shown in Fig. 9 (left). Then, we generated new prompt sets for each of the new
superclasses, as illustrated in Fig. 9 (right). The prompt sets collected through these two steps were
combined to form our benchmark, ConsiStory+.

3https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0
4https://chatgpt.com/

16

https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0
https://chatgpt.com/


864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Figure 9: (Left): We expand the length of the original prompt sets to a random number between 5 and 10.
(Right): We generate a new prompt set within one of the new superclass “fairy tales”.

B.3 COMPARISON METHOD IMPLEMENTATIONS

We compare our method with all other approaches based on Stable Diffusion XL, except for BLIP-
Diffusion (Li et al., 2024), which is based on Stable Diffusion v1.55. The DDIM steps is set to the
default value in the open-source code of each method. Below are the third-party packages we used
for method implementations:

• The unofficial implementation of Textual Inversion (TI) (Gal et al., 2023a) at https://
github.com/oss-roettger/XL-Textual-Inversion.

• The unofficial implementation of The Chosen One (Avrahami et al., 2023) at https://
github.com/ZichengDuan/TheChosenOne.

5https://huggingface.co/runwayml/stable-diffusion-v1-5
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Algorithm 1 1Prompt1Story
Input : A text embedding C = [cSOT , cP0 , cP1 , · · · , cPN , cEOT ] and latent vector zt.
Output: The subject consistency images I1, · · · , IN .

for j = 1, . . . , N do
// Singular-Value Reweighting

X̂ exp = [ĉPj , ĉEOT ]← X exp = [cPj , cEOT ] (Eq. 2);
for k = [1, N ] \ {j} do
X̃ sup = [c̃Pk , c̃

EOT ]← [cPk , ĉ
EOT ] (Eq. 3);

end
C̃ = [cSOT , cP0 , c̃P1 , · · · , ĉPj , · · · , c̃PN , c̃EOT ];

// Identity-Preserving Cross-Attention
for t = T, . . . , 1 do
K̃, Ṽ ← C̃;
K̄, V̄ ← K̃, Ṽ;
K̃ = Concat(K̃⊤, K̄⊤)⊤, Ṽ = Concat(Ṽ⊤, V̄⊤)⊤;
Ã ← Q̃, K̃ (Eq. 4);
zt−1 ← ϵθ(zt, t, C̃) with Ã, Ṽ;

end
Ij = D(z0)

end
Return I1, · · · , IN .

• The official implementation of IP-Adapter (Ye et al., 2023) at https://github.com/
tencent-ailab/IP-Adapter.

• The official implementation of PhotoMaker (Li et al., 2023b) at https://github.com/
TencentARC/PhotoMaker.

• The official implementation of BLIP-Diffusion (Li et al., 2024) at https://github.com/
salesforce/LAVIS/tree/main/projects/blip-diffusion.

• The official implementation of StoryDiffusion (Zhou et al., 2024) at https://github.com/
HVision-NKU/StoryDiffusion.

Since Consistory (Tewel et al., 2024) is not open-source, we reimplemented it ourselves. During the
inference time, BLIP-Diffusion (Li et al., 2024), IP-Adapter (Ye et al., 2023), and PhotoMaker (Li
et al., 2023b) all require a reference image as the additional input. To generate the reference image,
we use their corresponding base models, providing the identity description as the input prompt. For
example, if the full prompt is “a photo of a beautiful girl walking on the street”, we use “a photo of
a beautiful girl” to generate the reference image. The reference image is then used to generate all
frames in the corresponding prompt set.

C ADDITIONAL ABLATION STUDY

C.1 ROBUSTNESS TO DIVERSE DESCRIPTION ORDERS

To validate the robustness of our method regarding the order of frame prompts, we used the same
three frame prompts: “wearing a scarf in a meadow”, “playing in the snow”, and “at the edge of
a river” to create six different sequences for images generation. The identity prompt was consis-
tently set to “a photo of a fox” and each sequence used the same seed for a generation. As shown
in Fig. 10, our method 1Prompt1Story generates images with identity consistency across different
orders. Furthermore, the content of the images generated from varying sequences is closely aligned
with the text descriptions, further demonstrating our method Singular-Value Reweighting effective-
ness in suppressing content of unrelated frame prompts.
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Figure 10: Robustness to frame prompts order. With the same set of frame prompts but in different orders,
our method 1Prompt1Story consistently generates images with a unified identity.

C.2 Singular-Value Reweighting ANALYSIS

Our Singular-Value Reweighting algorithm comprises two successive components: SVR+ enhances
the frame prompts we wish to express, while SVR- iteratively weakens the frame prompts we aim to
suppress. In our experiments, we first apply SVR+, followed by SVR-. In particular, we found that
performing SVR- before SVR+ also yields similar results (see Fig. 11-left).

In the process of applying SVR-, we employed a strategy of iteratively suppressing each frame
prompt. In fact, we could also concatenate the text embeddings corresponding to all frame prompts
for suppression. To explore this, we conducted further ablation study specifically on the SVR-
component. Assuming that we have n frames to generate, we discovered that merging the text
embeddings corresponding to the n − 1 frames we wish to suppress with cEOT and subsequently
performing the SVD decomposition does not effectively extract the main components of all frame
prompts included in cEOT. Consequently, applying Eq. 3 to weaken the eigenvalues based on their
magnitude fails to adequately eliminate the descriptions of all suppressed frames. we refer to this as
“joint suppress”, as illustrated in Fig. 11 (right, the first row). In contrast, if we handle each frame
prompt to be suppressed individually and iteratively perform SVD and the operations from Eq. 3,
which we term “iterative suppress”, we can more effectively suppress all irrelevant frame prompts,
as shown in Fig. 11 (right, the second row).

In our SVR, we enhance only the current frame prompt that needs to be expressed. An alternative
option is to enhance the identity prompt simultaneously. We found that doing so can make the
object’s identity more consistent; however, it also introduces some negative effects, the background
and subject’s pose appearing more similar across images, as shown in Fig. 12. Furthermore, to
demonstrate the role of the cEOT in SVR, we conducted an ablation study on the cEOT component.
Specifically, we kept the cEOT part of the text embedding unchanged during the SVR process and
used this text embedding to generate images. As shown in Fig. 13, the results indicate that without
performing SVR on the cEOT, the backgrounds of different frame prompts tend to blend together.
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Figure 11: (Left): “SVR+ First” indicates that SVR+ is applied before SVR- in the Singular-Value Reweighting
process, while “SVR- First” means the opposite order. We found that both sequences yield similar results
(same seed). (Right): Compared to “Joint Suppress”, “Iterative Suppress” is more effective at minimizing the
influence of other frame prompts when generating images for the current frame. “Joint Suppress” produces
images with similar backgrounds (the first row, first and third columns).

Figure 12: SVR with identity enhancement. The first row represents the original SVR with enhancements
applied only to the frame prompt. The second row builds upon the original by further enhancing the identity
prompt in the SVR+ module. The results indicate that while the second method improves identity consistency,
it also leads to more similar object poses and backgrounds.

C.3 Naive Prompt Reweighting ABLATION STUDY

Similar to the Singular-Value Reweighting (SVR) experiment, we conducted an ablation study to
verify the effectiveness of Naive Prompt Reweighting (NPR) in terms of identity preservation and
prompt alignment compared to our method 1Prompt1Story. We denote NPR+ as applying a scal-
ing factor of 2 to the text embedding corresponding to the current frame prompt that needs to be
expressed. Conversely, NPR- denotes applying a scaling factor of 0.5 to the text embeddings of all
other frame prompts that need to be suppressed. NPR represents the combination of both NPR+ and
NPR- operations.

As shown in Fig. 14, images generated using the NPR+, NPR-, and NPR methods all exhibit varying
degrees of interference from other frame prompts. In contrast, our method effectively removes
irrelevant semantic information from other frame subject descriptions in the single-prompt setting,
resulting in images that are more aligned with their corresponding frame prompts.

C.4 SEED VARIETY

Since our method 1Prompt1Story does not modify the original parameters of the diffusion model,
it preserves the inherent ability of the model to generate images with diverse identities and back-
grounds using different seeds. By varying the initial noise while keeping the input prompt set con-
stant, our method can produce a range of characters and backgrounds, all while maintaining strong
identity consistency and prompt alignment, as shown in Fig. 15.
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Figure 13: Ablation study for cEOT. The left three images demonstrate the SVR process with a fixed cEOT,
while the right illustrates the SVR procedure described in the main text. The results indicate that keeping cEOT

unchanged leads to background blending across images generated for different frame prompts, highlighting the
importance of updating cEOT dynamically.

Figure 14: Naive Prompt Reweighting ablation study. NPR+, NPR-, and NPR are ineffective at suppressing the
influence of other frame prompts. For example, the “puppy”, which appears only in the frame prompt of the
third frame, also shows up in the first and second frames using the aforementioned methods. In contrast, our
method (the last row) effectively suppresses unwanted semantic information from other frame prompts.

D ADDITIONAL RESULTS OF OUR METHOD 1Prompt1Story

D.1 CONSISTENT STORY GENERATION WITH MULTIPLE SUBJECTS.

Our method is capable of generating stories involving multiple subjects. By specifying several sub-
jects in the identity prompt and appending corresponding frame prompts, we can directly produce a
series of images that maintain consistent identities across these subjects, as demonstrated in Fig. 16.
However, this approach has a limitation: all generated images will include every character refer-
enced in the identity prompt, which poses a constraint on the flexibility of our method.
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Figure 15: Seed variation. By using different seeds, our method 1Prompt1Story can generate images with
diverse backgrounds while maintaining a consistent identity.

D.2 STORY GENERATION OF ANY LENGTH.

To generate stories of any length, we designed a “sliding window” technique to overcome the input
text length limitations of diffusion models like SDXL. Suppose we aim to generate a story with n
images, each corresponding to n frame prompts, using a window size t, where t < n. Similarly, we
represent the identity prompt as P0 and the frame prompts as Pi, where i ∈ [1, n]. For generating the
image corresponding to the i-th frame, if i ≤ t, we use P = [P0;P1; . . . ;Pt] as input prompt and
apply our method 1Prompt1Story to generate the images. If i > t, we use P = [P0;Pi−t+1; . . . ;Pi]
to generate the images. As shown in Fig. 19, we applied an ultra-long prompt to generate 42 images
with consistent identities, using a window size of 10.

D.3 COMBINE WITH DIFFERENT DIFFUSION MODELS.

Since our method exclusively modifies the text-embedding and cross-attention modules of the dif-
fusion model, it can be directly adapted to other diffusion models. In this study, we implemented
our approach within the SDXL framework. Other models utilizing the SDXL framework, such as
playground-v2.56, RealVisXL V4.07 and Juggernaut-X-v108, can apply our method without any
additional modifications or fine-tuning. Our experimental results (see Fig. 20) indicate that these

6https://huggingface.co/playgroundai/playground-v2.5-1024px-aesthetic
7https://huggingface.co/SG161222/RealVisXL V4.0
8https://huggingface.co/RunDiffusion/Juggernaut-X-v10
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Figure 16: Multi-subject story generation. By defining multiple subjects in the identity prompt, our method
generates images featuring multiple characters, each maintaining good identity consistency.

Figure 17: Additional result with PhotoMaker. We compared additional results of our method combined with
PhotoMaker, where a lower DreamSim score indicates better ID consistency between the generated images. The
results demonstrate that our method has the potential to enhance the performance of PhotoMaker.

models can also achieve image generation with enhanced identity consistency when employing our
method 1Prompt1Story.

E ADDITIONAL EXPERIMENTS

E.1 ADDITIONAL PROMPT ALIGNMENT METRICS

In addition to the primary evaluation metrics, we conduct an experiment using the recent prompt
alignment metrics DSG(Cho et al., 2023) and VQAScore(Lin et al., 2025). Both DSG and VQA
are metrics that measure the consistency between images and text by evaluating questions and their
corresponding answers. These metrics have been shown to provide more reliable strengths in fine-
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Metric SD1.5 SDXL BLIP-
Diffusion

Textual
Inversion

The
Chosen One PhotoMaker IP-Adapter ConsiStory Story

Diffusion NPR Ours

VQAScore↑ 0.7157 0.8473 0.5735 0.6655 0.6990 0.8178 0.7834 0.8184 0.8335 0.8044 0.8275
DSG w/ dependency↑ 0.7354 0.8524 0.6128 0.7219 0.6667 0.8108 0.7564 0.8196 0.8400 0.8407 0.8520
DSG w/o dependency↑ 0.8095 0.8961 0.6909 0.8051 0.7495 0.8700 0.8122 0.8696 0.8853 0.8863 0.8945
FID↓ - - 65.32 48.94 83.74 55.27 66.76 45.20 51.63 44.02 44.16

Table 4: Additional metircs comparison. SD1.5 and SDXL are shown as references and excluded from this
comparison. The bold and underlined are the best and second best results respectively.

grained diagnosis and align closely with human judgment. We present our comparison with all other
methods in Table 4, results show that our method 1Prompt1Story outperforms other training-based
methods and achieves the highest value on the DSG metric.

E.2 VISUAL QUALITY COMPARSION

To evaluate the impact of different methods on image quality under ID consistency generation, we
use images generated by the base model as the real dataset and images generated by each method
itself as the fake dataset. Then, we calculate the FID(Heusel et al., 2017). As shown in Table 4
(the last row), Naive Prompt Reweighting (NPR) and our method 1Prompt1Story achieved the best
and second-best results in terms of FID. This indicates that our method has a smaller impact on the
image generation quality of the base model compared to other methods.

E.3 CONTEXT CONSISTENCY IN TEXT EMBEDDINGS

Besides the separate t-SNE dimensionality reduction conducted for multi-prompt and single-prompt
setups in sec. 3.1.1, we extended our analysis by performing a joint t-SNE reduction on the com-
bined text embeddings from both setups. This unified approach allows for a direct visual compari-
son of the embeddings’ spatial arrangements within the text representation space. As illustrated in
Fig. 18 (left), the text embeddings originating from the multi-prompt setup remain widely dispersed
(red dots), indicative of their diverse semantic properties. Conversely, embeddings from the single-
prompt setup (blue dots) exhibit noticeably tighter clustering. To substantiate these observations, we
also perform statistical analysis on our benchmark dataset, as shown in Fig. 18 (right).

F USER STUDY DETAILS

Figure 18: Additonal t-SNE visualization of text em-
beddings (Left) and statistical results (Right).

In the user study, we compared our method with
three state-of-the-art approaches: IP-Adapter,
Consistory, and Story Diffusion. We selected
30 prompt sets from our ConsiStory+ bench-
mark to generate test images, with each prompt
set producing four frames.

In the questionnaire, participants were first pro-
vided with guidance on selecting images. They
were instructed to choose the set that exhibited
the most balanced performance across three cri-
teria: identity consistency, prompt alignment,
and image diversity, according to their personal
preferences. As illustrated in Fig. 21, we detailed these criteria at the beginning of the questionnaire.
Additionally, we provided an example to demonstrate our recommended best choice, including justi-
fications for both selecting and not selecting each set, thereby aiding participants in making informed
decisions.
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Figure 19: Long story generation. By using the “sliding window” technique, our method 1Prompt1Story can
generate stories of any length with consistent identity throughout.
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Figure 20: Evaluation with different models. We test our method on various T2I diffusion models, and
without requiring fine-tuning, our approach could directly generate images with a consistent identity.
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In this survey, you will evaluate four sets of images based on three criteria: “Identity Consistency” “Prompt

Alignment” and “Image Diversity”. Your task is to select the set that performs best across all three aspects.

Identity Consistency: Refers to the visual coherence of the subject's appearance across the set, indicating that the

same subject is depicted in all images.

Prompt Alignment: Indicates how well each image in the set matches its corresponding text description.

Image Diversity: Refers to the variety of poses, object arrangements, and overall composition within the set of

images.

Each row represents one of the four image sets: A, B, C, and D. Each column corresponds to the same frame descriptions:

['wearing a superhero cape', 'at the beach', 'wearing a headscarf', 'wearing a birthday hat'].

In this example, the best choice is set A (the first row).

Set A (the first row) performs well in terms of “Identity Consistency,” “Text Alignment,” and “Image Diversity”.

Set B (the second row) is not chosen because its identity consistency is poor.

Set C (the third row) is not selected despite its high identity consistency because its text alignment and image diversity are lacking.

Set D (the fourth row) is also not chosen due to its poor identity consistency.

Figure 21: User study questionnaire. Before filling out the questionnaire, participants were provided with se-
lection guidelines, including detailed explanations of the three evaluation criteria: identity consistency, prompt
alignment, and image diversity. Additionally, an example was provided, along with our recommended best
choice and the reasoning behind the selection.
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Figure 22: Additional qualitative comparison. We also compared our method with other existing approaches.
The characters generated by vanilla SD1.5 and vanilla SDXL exhibit significant variations in both form and
appearance. In contrast, some training-based methods, such as Textual Inversion and The Chosen One, generate
characters with consistent forms, but their appearance lacks similarity. While NPR can produce characters with
consistent identities, the backgrounds often blend across images. In contrast, our method not only ensures
identity consistency but also generates backgrounds that closely align with the corresponding text descriptions.
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