
Fast Pure Exploration via Frank-Wolfe

Po-An Wang
KTH Royal Institute of Technology

Stockholm, Sweden
wang9@kth.se

Ruo-Chun Tzeng
KTH Royal Institute of Technology

Stockholm, Sweden
rctzeng@kth.se

Alexandre Proutiere
EECS and Digital Futures
KTH, Stockholm, Sweden

alepro@kth.se

Abstract

We study the problem of active pure exploration with fixed confidence in generic
stochastic bandit environments. The goal of the learner is to answer a query about
the environment with a given level of certainty while minimizing her sampling
budget. For this problem, instance-specific lower bounds on the expected sample
complexity reveal the optimal proportions of arm draws an Oracle algorithm would
apply. These proportions solve an optimization problem whose tractability strongly
depends on the structural properties of the environment, but may be instrumental in
the design of efficient learning algorithms. We devise Frank-Wolfe-based Sampling
(FWS), a simple algorithm whose sample complexity matches the lower bounds
for a wide class of pure exploration problems. The algorithm is computationally
efficient as, to learn and track the optimal proportion of arm draws, it relies on a
single iteration of Frank-Wolfe algorithm applied to the lower-bound optimization
problem. We apply FWS to various pure exploration tasks, including best arm
identification in unstructured, thresholded, linear, and Lipschitz bandits. Despite
its simplicity, FWS is competitive compared to state-of-art algorithms.

1 Introduction

Pure exploration in stochastic bandits [24] refers to the task of answering a given question about the
reward distributions of the different arms, using as few arm pulls (or samples) as possible. The task
may correspond to identifying the best arm [13], the top-m arms [37], all ε-good arms [27], a set of
arms whose expected rewards exceed a given threshold [26], etc. To reduce the sample complexity of
such a task, the learner needs to leverage as much as possible the information available about reward
distributions, which typically comes as known structural properties of the set of their expected rewards.
Exploiting particular structures (e.g., unimodal, Lipschitz, convex, linear) has been thoroughly studied
in the regret minimization setting (see [6], and references therein), but less in the pure exploration
framework, where most efforts have focused on linear structures [35, 20, 39, 36, 10, 18, 9].

In this paper, we investigate a generic learning problem proposed in [8] and covering the aforemen-
tioned pure exploration tasks with or without structure. Consider K arms whose reward distribu-
tions (ν1, . . . , νK) come from a one-dimensional exponential family and are of unknown means
µ = (µ1, . . . , µK). The parameter µ is known to belong to Λ ⊂ RK , the set of possible instances.
For each µ ∈ Λ, we assume that there is a unique true answer i?(µ) that belongs to the finite set I of
possible answers1 (e.g., for the best arm identification task, i?(µ) = arg maxk µk). We consider pure

1Scenarios with several correct answers require a more involved analysis, see [7].

35th Conference on Neural Information Processing Systems (NeurIPS 2021).

exploration tasks in the fixed confidence setting where the learner wishes, for any possible µ ∈ Λ, to
discover i?(µ) with a certain level of confidence 1− δ, for some δ ∈ (0, 1). The learner’s strategy
is defined by (i) an adaptive sampling rule dictating the sequence of arm pulls, (ii) a stopping rule
defining τ , the round where, based on the data gathered so far, the learner decides to stop pulling
arms, and (iii) a decision rule specifying her answer. The goal is to devise a δ-PAC (it outputs the
right answer with probability at least 1− δ for any µ ∈ Λ) strategy minimizing the expected sample
complexity Eµ[τ].

Using the same arguments as those used in [13] for classical MAB problems, we may derive a
lower bound of the expected sample complexity satisfied by any δ-PAC strategy. This lower bound,
whose proof can be found in Appendix B for completeness, is given by T ?(µ)kl(δ, 1− δ), where the
characteristic time T ?(µ) is defined through the following optimization problem:

T ?(µ)−1 = sup
ω∈Σ

inf
λ∈Alt(µ)

K∑
k=1

ωkd(µk, λk), (1)

where Σ is the (K − 1)-dimensional simplex, Alt(µ) is the set of confusing parameters λ ∈ Λ such
that i?(µ) 6= i?(λ), kl(a, b) is the KL divergence between two Bernoulli distributions of means a and
b, and d(µk, λk) denotes the KL divergence of arm-k reward distributions under parameters µ and λ
. A solution ω?(µ) of (1) can be interpreted as an optimal allocation, in the sense that pulling each
arm i a proportion of round equal to ω?i (µ) (in expectation) constitutes an optimal sampling rule.

Most existing algorithms achieving an asymptotically (when δ goes to 0) minimal sample complexity
leverage a Track-and-Stop (TaS) framework [13]. In each round t, they plug µ̂(t) the estimated
expected arm rewards in the lower bound optimization problem (1), and track the allocation w?(µ̂(t)).
As already noticed in [28], the main drawback of the Track-and-Stop framework is that it requires
a recurrent access to an Oracle able to solve (1) (actually existing analyses usually assume that the
Oracle outputs the exact solution for any µ). (1) is a concave program but can become difficult to
solve depending the underlying structure Λ. Indeed, for complex structures, identifying the most
confusing parameters leading to the objective function infλ∈Alt(µ)

∑K
k=1 ωkd(µk, λk) can be hard.

Contributions. 1) Instead of solving (1) in each round as in the TaS framework, we propose an
online iterative method to approach the optimal allocation of arm pulls. Specifically, we devise
Frank-Wolfe-based Sampling (FWS), a computationally efficient algorithm that just relies, in each
round, on a single iteration Frank-Wolfe (FW) algorithm applied to (1) instantiated at µ̂(t).
2) For a wide class of pure exploration problems with or without structure, we derive an upper bound
of the expected sample complexity of FWS for any certainty level δ, and show that this bound matches
the lower bound T ?(µ)kl(δ, 1− δ) asymptotically as δ goes to 0.
3) We illustrate the performance of FWS on various pure exploration problems, including best arm
identification in unstructured, linear, and Lipschitz bandits. In all tested scenarios, and despite its
simplicity, FWS matches the performance of the best existing algorithms.

The use of the FW algorithm has been suggested in [13] in the case of best arm identification problem
in unstructured bandits. In this case, FW iterations take a very simple and intuitive form (see Example
1 introduced in §3). The corresponding sampling rule is referred to as Best Challenger in [13], and
leads to algorithms with remarkably low sample complexity empirically – sometimes lower than that
of TaS algorithms solving (1) in each round. So far however, as discussed in [28], the analysis of
FW-type sampling rules, and even their convergence, have eluded researchers. Towards the design of
FWS algorithm, we devise a simple variant of the FW algorithm that yields a sampling rule whose
sample complexity can be analyzed. We confirm the asymptotic optimality of as well as its empirical
superiority, not only for the case of best arm identification in unstructured bandits as predicted by
[13], but also for a wide class of pure exploration problems. We believe that our analysis also brings
interesting solutions to the three important obstacles we needed to tackle to devise and analyze a
FW-type sampling rule: (i) the objective function in (1) is not smooth; (ii) its curvature becomes
infinite in general close to the boundary of Σ; and (iii) the estimate µ̂(t) is evolving and might be far
from µ.

2 Related Work

Best Arm Identification (BAI) has recently received a lot of attention, either in unstructured bandit
problems, see [13, 33], or in problems with various kinds of structure, e.g., linear [35, 20, 39, 36,

2

10, 18, 9, 31], combinatorial [23, 19, 32], spectral [22], monotone [14], cascading [41]. For BAI in
unstructured bandits with fixed confidence, [13] developed the celebrated Track-and-Stop framework
leading to algorithms able to asymptotically converge towards the optimal allocation of arm draws,
and in turn, to achieve the lowest sample complexity possible in the high confidence regime (as δ
goes to 0). It is possible to apply the TaS framework to specific structures, as this was proposed in
[18] for linear bandits. However, for more involved structures, this might become computationally
too difficult. Indeed TaS requires the learner to repeatedly solve the optimization problem (1).

The authors of [8] propose and exploit an interpretation of the lower bound optimization problem
(1) as the solution of a 2-players game – the ω-player playing the ’sup’ and the λ-player playing the
’inf’. The algorithm presented in [8] combines two zero-regret algorithms applied sequentially by the
two players, and converge to an optimal allocation. Interestingly, the algorithm uses the optimism
in face of uncertainty principle to remove the need of forced exploration (the ω-player is fed with
upper-confidence bounds on her rewards). As shown later, the algorithm does not perform as well
as FWS. The applicability of the framework used in [8] remains unclear to us: in [9] and in [19], the
authors claim that the framework cannot be applied to linear and combinatorial bandits, respectively.

In [28], the author proposes a solution close to ours. His algorithm, LMA (Lazy Miror Ascent), just
runs in each round one iteration of a sub-gradient ascent algorithm applied to (1). Fortunately, the
projection step usually involved in such algorithm is simple. Numerically, as illustrated later in the
paper, we found that LMA may not be as efficient as TaS or FWS. We could try to explain this by
remarking that LMA has similarities with the Exponential Weights algorithm (see Appendix F in
[28]), an algorithm designed for adversarial online optimization problem, and may be too conservative
in a stochastic setting.

As already mentioned in the introduction, FW-based algorithms for BAI in unstructured bandits
have been mentioned first in [13] for their simplicity and good performance. Applying FW as if
the objective function was smooth may fail at converging [28] experimentally. We believe that we
manage to make, in our algorithm, the minimal modification of the FW-based algorithm so that
convergence and asymptotic optimality are guaranteed. Finally note that [2] uses FW in a regret
minimization problem but with a smooth objective function.

We conclude this section by mentioning existing works on the FW algorithm when applied to
optimizing non-smooth functions. The proposed solutions consist by either smoothing objective
function or enlarging the set of differential (this is the second approach we chose). [11, 15] apply
FW on the randomly smoothed surrogate instead of the original non-smooth objective. However,
computing the gradient at each iteration requires to query many time on the objective function, which
may not be practical. [1, 29] use a proximal operator to replace the objective function, but as pointed
out in [4], the smoothing parameters of the proximal operator are not trivial to tune. Our solution
is close to those developed in [30, 4]. There, inspired by the approximate subdifferential [38], the
authors propose to collect the set of the gradients in the neighborhood at each round. They show that
these collection is continuous even when the objective functions is non-smooth, which allows for the
use of FW. The way we deal with the non-smoothness issue is similar but simplified by the fact that
the specific form of our objective function.

3 Preliminaries

We consider the pure exploration task described in the introduction. This section presents the
additional assumptions made towards the design and analysis of our algorithm. These assumptions
are here illustrated for the classical Best Arm Identification (BAI) task in unstructured bandits (see
Example 1); they will be verified for all other examples of pure exploration problems presented in
Section 5. This section also provides useful properties of the lower bound optimization problem (1),
and finally describes our choice of stopping and decision rules.

3.1 Assumptions and properties of the lower bound optimization problem

The answer map i? : Λ → I allows us to decompose Λ into a union of non-overlapping sets:
Λ = ∪i∈ISi, where Si = {µ ∈ Λ : i?(µ) = i} for all i ∈ I. The answer map is known (i.e.,
knowing µ is enough to output the right answer), and hence without loss of generality, we can assume

3

that Si 6= ∅ for all i ∈ I. Using this notation, the set of confusing parameters can be written as
Alt(µ) = ∪i6=i?(µ)Si.
Assumption 1. For each i ∈ I, Si is an open set and the complementary of Si is a finite union of
convex sets. Namely, there exists a finite collection Ji of convex sets Cij s.t. Λ \ Si = ∪j∈Ji

Cij .

Example 1. The BAI task in unstructured bandits with Bernoulli rewards. For this task, we have
Λ = (0, 1)K , I = {1, . . . ,K}, and for all arm i, the set of parameters for which arm i is the best arm
is Si = {µ ∈ Λ : µi > µk,∀k 6= i}. We have: Λ \ Si = ∪j∈Ji

Cij where Ji = I \ {i} is the set of
arms different than i and Cij = {µ ∈ Λ : µj > µi} is the convex set of parameters for which arm j is
better than arm i. �

Now under Assumption 1, we can decompose the lower bound optimization problem as follows:
T ?(µ)−1 = supω∈Σ Fµ(ω) where Fµ(ω) = minj∈Ji?(µ)

fj(ω,µ) and for all j ∈ Ji?(µ),

fj(ω,µ) = inf
λ∈Ci

?(µ)
j

K∑
k=1

ωkd(µk, λk). (2)

Note that (2) is convex program (by convexity of the KL divergence), and that fj is a concave function
in ω (as the minimum of concave functions). As a consequence, the objective function Fµ is also
concave, but not smooth. The following proposition summarizes insightful properties of the functions
fj , j ∈ Ji?(µ). It is a consequence of the envelope theorem and proved in Appendix K.2.

Proposition 1. Let i ∈ I, j ∈ Ji. Define for all (ω,µ) ∈ Σ× Si,

λj(ω,µ) = arg min
λ∈cl(Cij)

K∑
k=1

ωkd(µk, λk), (3)

where cl(Cij) is the closure of Cij . Then under Assumption 1, λj(ω,µ) is unique for all (ω,µ) ∈
Σ̊× Si, where Σ̊ is the interior of Σ. In addition, fj is continuously differentiable on Σ̊× Si, and
∀(ω,µ) ∈ Σ̊× Si,

∇ωfj(ω,µ) =

K∑
k=1

d(µk,λj(ω,µ)k)ek, (4)

where ek denotes the K-dimensional vector whose k-th coordinate is 1 and whose other coordinates
are 0.

A key insight from the above result is that the objective function Fµ is the minimum of a finite
number of continuously differentiable functions. This observation will make the use of a slightly
modifed FW algorithm possible (remember that the FW algorithm is known to converge for smooth
functions only). We use an additional assumption on the gradient and curvature of fj . A controlled
curvature is an essential ingredient when analyzing the convergence of FW-based algorithms, see
e.g. [17]. Define Σγ = {ω ∈ Σ : mink ωk ≥ γ} for any γ ∈ (0, 1/K). Following [17], we define
Cψ(K), the curvature constant of the concave differentiable function ψ : K → R with respect to the
compact set K, as

Cψ(K) = sup
x,z∈K
α∈(0,1]

y=x+α(z−x)

1

α2
[ψ(x)− ψ(y) + 〈y − x,∇ψ(x)〉] . (5)

Refer to [17], for the intuition behind this defintion and examples.

Assumption 2. For all µ ∈ Λ,
(i) there exists L > 0 such that ∀j ∈ Ji?(µ), ω ∈ Σ, ‖∇ωfj(ω,µ)‖∞ ≤ L;
(ii) there exists D > 0 such that ∀γ ∈ (0, 1/K) and ∀j ∈ Ji?(µ), Cfj(·,µ)(Σγ) ≤ D

γ .

There is a simple way to verify whether a pure exploration problem satisfies Assumption 2, by looking
at the second derivative of the function y 7→ d(x, y) at the points (µk, (λj(ω,µ))k) for all k. Refer
to Appendix C for details.

4

Example 1 (cont’d). For unstructured bandits with Bernoulli rewards, we can easily compute fj and
its gradient [13, 28]: for all j 6= i?(µ) and all ω ∈ Σ̊, define mj(ω,µ) =

ωi?(µ)µi?(µ)+ωjµj

ωi?(µ)+ωj
. Then

λj(ω,µ)k = µk if k /∈ {i?(µ), j} and λj(ω,µ)k = mj(ω,µ) otherwise. As a consequence:{
fj(ω,µ) = ωi?(µ)d(µi?(µ),mj(ω,µ)) + ωjd(µj ,mj(ω,µ)),
∇ωfj(ω,µ) = d(µi?(µ),mj(ω,µ))ei?(µ) + d(µj ,mj(ω,µ))ej .

(6)

For this example, we can verify that Assumption 2 holds, either directly or using the tool described in
Appendix C. �

3.2 Stopping and decision rules

Next we present the two last components of the FWS algorithm, namely the stopping and decision rules.
These components are standard and borrowed from the existing literature. We need a few notations.
For any t ≥ 1, let At denote the arm selected in round t. Define Nk(t) =

∑t
s=1 1{As = k} the

number of times arm k has been selected up to round t, and by ωk(t) = Nk(t)/t the corresponding
empirical proportion of draw. When Nk(t) > 0, the empirical average reward of arm k up to round t
is denoted by µ̂k(t) =

∑t
s=1Xk(s)1{As = k}/Nk(t), where Xk(s) is the random reward received

from pulling arm k in round s.

Let us denote by τ , the stopping time defining when the algorithm stops exploring and has to output a
decision. Our decision rule is obviously to output the best empirical answer: ı̂τ = i?(µ̂(τ)).

For the stopping rule, as in other existing algorithms, we leverage a Generalized Likelihood Ratio
Test (GLRT). Our test boils down to comparing tFµ̂(t)(ω(t)) to a threshold β(t, δ) (recall that Fµ is
the objective function of the lower bound optimization problem):

τ = inf{t ≥ 1 : tFµ̂(t)(ω(t)) ≥ β(t, δ)}. (7)

Many thresholds β(t, δ) have been proposed in the literature [21, 13, 18, 28]. For FWS and its analysis,
we just need that the threshold statisfies the two following properties:

∀t ≥ 1,
(
tFµ̂(t)(ω(t)) ≥ β(t, δ)

)
=⇒ (Pµ [i?(µ̂(t)) 6= i?(µ)] ≤ δ) , (8)

∃c1(Λ), c2(Λ) > 0 : ∀t ≥ c1(Λ), β(t, δ) ≤ log

(
c2(Λ)t

δ

)
. (9)

The first of the above properties will naturally imply that FWS returns the true answer with probability
at least 1−δ when stopping, whereas the second will be instrumental in the sample complexity analysis
(there, c1(Λ), c2(Λ) may depend on the set of possible instances, and on the reward distributions).
In [21], the authors manage to provide, for any generic pure exploration task, a single threshold
satisfying (8)-(9)). Unless otherwise mentioned, we will use the stopping rule implementing this
threshold.

4 The FWS Algorithm and its Sample Complexity

In the FWS algorithm, we use the FW algorithm to learn an optimal allocation ω?(µ). In each round,
an iteration of FW updates the allocation that the FWS algorithm aims at approaching using some
tracking procedure. We describe this learning and tracking procedure below.

4.1 Adapting Frank-Wolfe to the non-smooth function Fµ

The FW algorithm [12] solves smooth convex programs by linearizing, in each iteration, the objective
function and moving towards a minimizer of this linear function. Compared to the projected gradient
and proximal methods, FW is computationally more efficient (e.g. it avoids the projection step),
and is particularly well-suited when optimizing over polyhedra [3] (which is our case here). For a
contemporary treatment of FW, refer to [17]. FW was suggested in [13] for BAI in unstructured
bandits to update the allocation to be tracked. For this BAI problem, an iteration of the FW algorithm
takes an intuitive form (see also Appendix A2 in [28]):

Example 1 (cont’d). For BAI in unstructured bandits, the optimal allocation ω?(µ) is the max-
imizer of the function ω 7→ Fµ(ω) = minj fj(ω,µ). Fµ is smooth at points when the mini-
mum is realized at a single arm j? = arg minj fj(ω,µ), and there, in view of (6), its gradient is

5

∇Fµ(ω) = d(µi?(µ),mj?(ω,µ))ei?(µ) + d(µj? ,mj?(ω,µ))ej? . Now in an iteration of the FW
algorithm, one would follow the direction given by arg maxω′∈Σ ω

′>∇Fµ(ω). This direction is
ej? if d(µj? ,mj?(ω,µ)) > d(µi?(µ),mj?(ω,µ)), and ei?(µ) otherwise. This is precisely what
the FW-type sampling rule suggested in [13] is doing: in round (t + 1), the best challenger is
defined as j? = arg minj fj(ω(t), µ̂(t)), and the arm selected corresponds to the direction given
by arg maxω′∈Σ ω

′>∇Fµ̂(t)(ω(t)), i.e., it is either the best challenger j? or the best empirical arm
i?(µ̂(t)). �

The convergence analysis of FW usually requires that the objective function is smooth, and that its
curvature can be controlled. When applying FW-type algorithms to design an optimal sampling rule
(a rule that converges to the allocation ω?(µ) maximizing Fµ), we face three issues: (i) Fµ is not
smooth; (ii) Fµ has an unbounded curvature close to the boundary of Σ; (iii) µ is unknown initially,
so the FW iteration in round t can be applied to Fµ̂(t) only. We discuss below how we circumvent
these issues in the design of our algorithm.

(i) Non-smoothness of Fµ. In view of Proposition 1, Fµ is the minimum of a finite number of
smooth concave functions fj . Hence at points where two of these functions are equal in ω, Fµ is not
differentiable in ω. The FW algorithm has been adapted to cope with non-smooth functions, see e.g.
[30]. Typically, one constructs continuous approximations of the gradient close to non-smooth points
of the functions. This construction often involves the r-subdifferential [16]2, which would be too
costly to compute for Fµ. Instead, we can leverage the fact Fµ is the minimum of concave functions,
and construct the called r-subdifferential subspace: for r ∈ (0, 1),

HFµ(ω, r) = cov
{
∇fj(ω,µ) : j ∈ Ji?(µ), fj(ω,µ) < Fµ(ω) + r

}
, (10)

where cov{S} denotes the convex hull of the set S. This choice greatly simplifies because it does not
require to compute the gradient of fj in a neighborhood of ω. Since the fj are continuously differen-
tiable, we can prove that ω 7→ HFµ(ω, r) is a continuous (i.e. upper- and lower-hemicontinuous).
Using the r-subdifferential subspace, the modified FW update is given as follows. Let x(t) be the
estimated optimizer of Fµ in round t. In round (t+ 1), it is updated as:{

z(t+ 1) = argmaxz∈Σ minh∈HFµ (x(t),rt)〈z − x(t), h〉 (ties broken arbitrarily) ,
x(t+ 1) = t

t+1x(t) + 1
t+1z(t+ 1).

(11)

Of course in the FWS algorithm, µ is unknown, and will be simply replaced by µ̂(t) in the above
update. The way we choose the sequence of parameters {rt}t≥1 will be discussed later. Computing
z(t) is equivalent to solving a zero-sum game, which can be further formulated as a LP [40] (Chapter
20). Refer to Appendix H for a detailed description of this LP.

(ii) Unbounded curvature of Fµ and (iii) unknown µ. These two issues are solved by a single
trick. We impose that in the FW iterations, the update directions z(t) cover all ek, k = 1, . . . ,K
sufficiently often. This ensures that the target allocation x(t) stays away from the boundary of Σ,
which in turn allows us to control the curvature of Fµ̂(t) thanks to Assumption 2. This imposed
constraint can be seen as a sort of forced exploration, and further implies (thanks to our tracking
procedure) that each arm is played often enough. Now, with this kind of forced exploration, µ̂(t) will
concentrate around the true µ.

4.2 Algorithm

The FWS algorithm proceeds as follows. FWS maintains a target allocation, denoted by x(t), its
empirical allocation ω(t), and the empirical average rewards µ̂(t) after round t. After an initialization
phase (K rounds where each arm is selected), FWS alternates between forced exploration and FW
updates. More precisely:
Forced exploration occurs at rounds t where

√
bt/Kc is an integer and at those where µ̂(t− 1) /∈ Λ

(in this case, we cannot compute the objective function). In forced exploration round t, the target
allocation is updated towards the center of the simplex: x(t) = t−1

t x(t− 1) + 1
t (1/K, . . . , 1/K).

FW updates happen in other rounds. There, the target allocation is updated according to our adapted
version of FW (11), where in round t the unknown µ is replaced by µ̂(t− 1). In the successive FW

2For r ∈ (0, 1), the r-subdifferential of ψ : K → R (where K ⊂ RK is compact and convex) is defined as
∂rψ(x) = {h ∈ RK : ψ(y) < ψ(x) + 〈y − x, h〉+ r for all y ∈ K}.

6

updates, we use r-subdifferential subspaces with varying parameter r. For the analysis of FWS, we
will select a sequence of parameters {rt}t≥1 with an appropriate decay rate.

After the target allocation is updated in round t, the algorithm tracks this allocation by selecting the
arm maximizing over k the ratio xk(t)/ωk(t − 1). Finally, FWS, whose pseudo-code is presented
below, uses the stopping and decision rules described in §3.2.

Algorithm 1: FWS algorithm
Input: Confidence level δ, sequence {rt}t≥1

Initialization: Sample each arm once and update ω(K), x(K) = (1
K , . . . ,

1
K), and µ̂(K)

t← K
While (tFµ̂(t)(ω(t)) < β(δ, t) or µ̂(t− 1) /∈ Λ)

t← t+ 1
If (
√
bt/Kc ∈ N or µ̂(t− 1) /∈ Λ) (forced exploration) z(t)← (1

K , . . . ,
1
K)

Else (FW update)

z(t)← argmax
z∈Σ

min
h∈HFµ̂(t−1)

(x(t−1),rt)
〈z − x(t− 1), h〉 (ties broken arbitrarily)

Update x(t)← t−1
t x(t− 1) + 1

t z(t)
Sample the arm At ← argmaxk xk(t)/ωk(t− 1) (ties broken arbitrarily)
Update ω(t) and µ̂(t)

Output: i?(µ̂(t))

4.3 Sample complexity

In the following theorem, we establish the asymptotic optimality of FWS.

Theorem 1. Consider the FWS algorithm with a sequence {rt}t≥1 of strictly positive reals satisfying
(i) limt→∞

1
t

∑t
s=1 rs = 0, and (ii) limt→∞ trt = ∞. Under Assumptions 1, 2, the algorithm

terminates in finite time almost surely and is δ-PAC. Its sample complexity τ satisfies:

∀µ ∈ Λ, Pµ
[
lim sup
δ→0

τ

log(1/δ)
≤ T ?(µ)

]
= 1, and lim sup

δ→0

Eµ [τ]

log(1/δ)
≤ T ?(µ).

The proof is given in Appendix I. We sketch the proof of the guarantees in expectation. The proof
relies on classical concentration results, but more critically combines continuity arguments (developed
in Appendix K) to account for the varying µ̂(t), and tools to analyze the convergence of the modified
FW algorithm (reported in Appendix L).
1. First using concentration inequalities and the fact that FWS includes forced exploration rounds,
we can define, for round t, a "good" event Et under which µ̂(t) is very close to µ and such that∑∞

t=1 Pµ [Ect] <∞. Then, several continuity arguments have to be made. In Lemma 6 (Appendix K)
we show that µ 7→ Fµ is continuous (w.r.t. the uniform convergence norm). In Theorem 3 (Appendix
K) we also prove that the solution z(t+ 1) of the FW update (11) is continuous in µ. The arguments
above allow us to analyze the convergence of the FW updates almost as if µ̂(t) was replaced by µ
provided that the event Et occurs.
2. Now we can study under the event Et, the impact of the FW update on the target allocation.
The main step of our proof is Theorem 6 (Appendix L) characterizing how Fµ(x(t)) get closer
to Fµ(ω?(µ)) in each FW update. We then deduce that after a time T1, Fµ̂(t)(x(t)) is a good
approximation of Fµ(ω?(µ)).
3. We conclude the proof using similar arguments as those in [13]. According to
our stopping rule, t > τ if and only if tFµ̂(t)(ω(t)) > β(t, δ). Hence Eµ [τ] =∑∞
t=1 Pµ [τ > t] =

∑∞
t=1 Pµ

[
tFµ̂(t)(ω(t)) ≤ β(t, δ)

]
which can be approximately upper bounded

by T1 +
∑∞
t=T1

Pµ [Ect] +
∑∞
t=1 Pµ [tFµ(ω?(µ)) ≤ β(t, δ)]. The proof is concluded by remarking

that in view of the property (9) of our stopping threshold, the last sum is close to T ?(µ) log(1/δ) as
δ → 0.
Note that our proof of Theorem 1 accounts for the possibility in certain structures (e.g. linear) of

7

having multiple optimal allocations (these allocations form a convex set). We just reason in terms of
the objective function (as in [18] for linear bandits).

Under the following additional assumption, we can derive non-asymptotic sample complexity upper
bound for FWS. The proof of the following theorem is presented in Appendix N.

Assumption 3. For any µ ∈ Λ, there exist constants κ,E > 0, s.t. if ‖π − µ‖∞ ≤ κ, then

π ∈ Si?(µ), ∀ω ∈ Σ̊, j ∈ Ji?(µ),∇πd(πk,λj(ω,π)k) is continuous and
∥∥∥∇πd(πk,λj(ω,π)k)

∥∥∥
1

≤ E, ∀k = 1, . . . ,K.

Theorem 2. Consider the FWS algorithm with a sequence {rt}t≥1 as in Theorem 1. Under Assump-
tions 1, 2, and 3, the sample complexity τ of the algorithm satisfies: for any µ ∈ Λ, δ ∈ (0, 1), and
any ε < min{κE/2, 1}, ε̃ < 1,

Eµ [τ] ≤ 1 + ε̃

Fµ(ω?(µ))− 6ε

[
log

(
(1 + ε̃)c2(Λ)e

δ(Fµ(ω?(µ))− 6ε)

)
+ log log

(
(1 + ε̃)c2(Λ)

δ(Fµ(ω?(µ))− 6ε)

)]
+ Ψ(K,D,E,L, c1(Λ), ε) + T

5
4

ε,L,

where Tε,L is a constant such if t ≥ Tε,L, then
∑t
s=1 rs < tε and trt > L. The constant Ψ is

polynomial in (D,E,L, c1(Λ), 1/ε) and exponential in K. The precise definition of Ψ is given in
Appendix N.

5 Examples and Experiments for Linear Bandits

5.1 Examples

Our framework can be applied to many pure exploration problems, including BAI in unstructured (see
Example 1), linear, Lipschitz bandits. It further covers threshold bandits (the problem of identifying
all arms with rewards greater than a threshold), linear threshold bandits, top-m bandits (where we
wish to identify the best m arms), and dueling bandits. All these examples are presented in Appendix.
Using numerical experiments, we show that FWS is competitive with state-of-the-art algorithms for
BAI in unstructured, linear, and Lipschitz bandits, see Appendices D-E-F, respectively. To the best of
our knowledge, we report the first results for BAI in Lipschitz bandits. We quote some of our results
for BAI in linear bandits below.

When facing a new pure exploration problem, one can check whether it falls into our framework,
by first directly verifying Assumption 1. In Appendix C, we provide a simple sufficient condition
ensuring that Assumption 2 holds, and explain why all the aforementioned pure exploration problems
satisfy this condition.

5.2 BAI in linear bandits

Linear bandits constitute arguably the most popular and important bandit problems with structure, and
have found many applications [25, 5]. BAI in linear bandits has received a lot of attention recently,
see §2. To model linear bandits, we slightly modify our framework. The reason for this modification
is that the linear structure is so strong that using our initial framework, the set Λ would be small, and
we would have problems ensuring that µ̂(t) ∈ Λ after some reasonable time t. Alternatively (rather
than modifying the framework), we could modify the FWS algorithm so that µ̂(t) is projected onto Λ.

Consider a set of K arms. Arm k is attached a d-dimensional feature vector ak and its average reward
〈ak,µ〉, where µ ∈ Rd is unknown. Without loss of generality, we assume that {ak}k∈[K] spans Rd.
We modify the definition of Λ as follows: Λ =

{
µ ∈ Rd : ∃k ∈ [K] s.t.〈ak − ai,µ〉 > 0,∀i 6= k

}
.

Hence µ parametrizes the average rewards of the arms, but µk is not the average reward of arm k.
The true answer is i?(µ) = argmaxk〈ak,µ〉. The lower bound optimization problem (1) becomes:
supω∈Σ Fµ(ω) where Fµ(ω) = infλ∈Alt(µ)

1
2 (µ− λ)>

∑
k ωkaka

>
k (µ− λ) and Alt(µ) = {λ ∈

Λ : ∃k 6= i?(µ) s.t.〈ak − ai?(µ),λ〉 > 0}, see e.g. [18]. From there, we can reproduce our

framework: for Assumption 1, for all j 6= i?(µ), Ci
?(µ)
j = {λ ∈ Λ : 〈aj − ai?(µ),λ〉 > 0}; as for

8

the functions fj , they are defined through:

λj(ω,µ) = µ+

 〈ai?(µ) − aj ,µ〉∥∥ai?(µ) − aj
∥∥2

V −1
ω

V −1
ω

(aj − ai?(µ)

)
, (12)

where Vω =
∑
k ωkaka

>
k . In the FWS algorithm for linear bandits, we use the Least-Squares

Estimator (LSE) µ̂(t) given past observations, see [18] or Appendix E for an explicit expression.
It can be readily seen that this slight modification of our framework does not affect the validity of
Theorem 1. We just need to use the concentration inequalities derived in [18] for µ̂(t) in the first step
of its proof.

Numerical experiments. We consider the example proposed by [35]. The unknown parameter
µ = e1 and there are d+ 1 arms, e1, · · · , ed, cos(φ)e1 + sin(φ)e2 in Rd, where (e1, · · · , ed) form
the standard orthonormal basis. We set d = 6 and φ = 0.1. To assess the performance of the FWS
algorithm, we compare with the following algorithms: the Lazy Track and Stop algorithm (LT) from
[18]; LineGame-C (CG-C) and LineGame (Lk-C) from [9] and implemented by [34]; the XY-Adaptive
algorithm (XY-A) from [35]. For information, we also run the Round Robin algorithm RR selecting
each equally. For comparison, we finally compute the sample complexity lower bound LBlin(δ)
(equal to T ?(µ)kl(δ, 1− δ)).

Except for XY-A, all algorithms implement the same stopping rule defined in (7) with threshold
β(t, δ) = log((log(t) + 1)/δ) (this threshold was initially suggested in [13], and is also used in [34]
for CG-C and Lk-C). For XY-A, we use the stopping rule advocated in the corresponding papers.
Refer to Appendix E for the detailed implementations.

In Table 1, we present the sample complexity (the number of samples gathered before the algorithm
stops) averaged over 1000 runs for the various algorithms and for different confidence levels δ ∈
{0.1, 0.01, 0.001, 0.0001}. In Appendix E, we provide detailed results, e.g. including box-plots (to
show how confident we are about the values displayed in Table 1), as well as the empirical allocations
achieved under the various algorithms.

Table 1: Sample complexity for the linear bandit benchmark example of [35], averaged over 1000
runs. Refer to Appendix E for details, including box-plots.

FWS LT CG-C Lk-C XY-A RR LBlin(δ)

δ = 0.1 1 030 919 2 498 2 319 7 016 5 451 359
δ = 0.01 1 614 1 464 3 501 3 431 7 779 8 814 920
δ = 0.001 2 229 1 982 4 324 4 326 9 090 12 101 1 408
δ = 0.0001 2 839 2 518 5 118 5 120 9 723 15 314 1 881

6 Conclusion

We have developed FWS, a computationally and statistically efficient algorithm for active pure
exploration in bandit problems with fixed confidence. In each round, FWS performs a single iteration
of a modified FW algorithm to approach an optimal allocation of arm draws predicted by the
asymptotic lower bound. In the FWS algorithm, the FW iterations aim at maximizing a non-smooth
function. Our main contribution is here to adapt the design of FW so that its convergence can
be analyzed even for this non-smooth function. FW-based pure exploration algorithms have been
discussed in the literature, with the belief that they would perform well. We confirm this belief, and
even establish the asymptotic optimality of FWS in wide class of pure exploration problems.

Many interesting research directions could be investigated. Our analysis of the sample complexity in
the moderate confidence regime has the advantage of being applicable to generic pure exploration
problems, but may not be always tight. For bandits with specific structures, we may refine the analysis
in this regime to get better upper bounds. We are also interested in investigating whether the iterative
approach used in the FWS algorithm can be extended to more complex problems such as learning an
optimal policy in MDPs, as well as to regret minimization problems. There, instance-specific regret
lower bounds and the corresponding optimal exploration process are characterized by the solution of
an optimization problem, just as in pure exploration problems.

9

Acknowledgments and Disclosure of Funding
The authors would like to thank the anonymous reviewers whose comments helped us to improve the
manuscript. R.-C Tzeng is supported by ERC Advanced Grant REBOUND (834862). A. Proutiere’s
research is supported by the Wallenberg AI, Autonomous Systems and Software Program (WASP)
funded by the Knut and Alice Wallenberg Foundation. This work was also in part financially
supported by Digital Futures.

10

References
[1] Andreas Argyriou, Marco Signoretto, and Johan Suykens. Hybrid conditional gradient-

smoothing algorithms with applications to sparse and low rank regularization. Regularization,
Optimization, Kernels, and Support Vector Machines, 2014.

[2] Quentin Berthet and Vianney Perchet. Fast rates for bandit optimization with upper-confidence
frank-wolfe. In Proc. of NeurIPS, 2017.

[3] Venkat Chandrasekaran, Benjamin Recht, Pablo A. Parrilo, and Alan S. Willsky. The convex
geometry of linear inverse problems. 2012.

[4] Edward Cheung and Yuying Li. Solving separable nonsmooth problems using frank-wolfe with
uniform affine approximations. In Proc. of IJCAI, 2018.

[5] Wei Chu, Lihong Li, Lev Reyzin, and Robert Schapire. Contextual bandits with linear payoff
functions. In Proc. of AISTATS, 2011.

[6] Richard Combes, Stefan Magureanu, and Alexandre Proutiere. Minimal exploration in structured
stochastic bandits. In Proc. of NeurIPS, 2017.

[7] Rémy Degenne and Wouter M Koolen. Pure exploration with multiple correct answers. In Proc.
of NeurIPS, 2019.

[8] Rémy Degenne, Wouter M Koolen, and Pierre Ménard. Non-asymptotic pure exploration by
solving games. In Proc. of NeurIPS, 2019.

[9] Rémy Degenne, Pierre Ménard, Xuedong Shang, and Michal Valko. Gamification of pure
exploration for linear bandits. In Proc. of ICML, 2020.

[10] Tanner Fiez, Lalit Jain, Kevin G Jamieson, and Lillian Ratliff. Sequential experimental design
for transductive linear bandits. In Proc. of NeurIPS, 2019.

[11] Abraham D Flaxman, Adam Tauman Kalai, and H Brendan McMahan. Online convex opti-
mization in the bandit setting: gradient descent without a gradient. In Proc. of SODA, 2005.

[12] Marguerite Frank and Philip Wolfe. An algorithm for quadratic programming. Naval Research
Logistics Quarterly, 1956.

[13] Aurélien Garivier and Emilie Kaufmann. Optimal best arm identification with fixed confidence.
In Proc. of COLT, 2016.

[14] Aurélien Garivier, Pierre Ménard, Laurent Rossi, and Pierre Menard. Thresholding bandit for
dose-ranging: The impact of monotonicity. arXiv preprint arXiv:1711.04454, 2017.

[15] Elad Hazan and Satyen Kale. Projection-free online learning. In Proc. of ICML, 2012.

[16] Jean-Baptiste Hiriart-Urruty and Claude Lemaréchal. Convex analysis and minimization algo-
rithms I: Fundamentals. Springer science & business media, 2013.

[17] Martin Jaggi. Revisiting frank-wolfe: Projection-free sparse convex optimization. In Proc. of
ICML, 2013.

[18] Yassir Jedra and Alexandre Proutiere. Optimal best-arm identification in linear bandits. In Proc.
of NeurIPS, 2020.

[19] Marc Jourdan, Mojmír Mutnỳ, Johannes Kirschner, and Andreas Krause. Efficient pure explo-
ration for combinatorial bandits with semi-bandit feedback. In Proc. of ALT, 2021.

[20] Zohar S Karnin. Verification based solution for structured mab problems. In Proc. of NeurIPS,
2016.

[21] Emilie Kaufmann and Wouter Koolen. Mixture martingales revisited with applications to
sequential tests and confidence intervals. arXiv preprint arXiv:1811.11419, 2018.

11

[22] Tomáš Kocák and Aurélien Garivier. Best arm identification in spectral bandits. In Proc. of
IJCAI, 2020.

[23] Yuko Kuroki, Junya Honda, and Masashi Sugiyama. Combinatorial pure exploration with
full-bandit feedback and beyond: Solving combinatorial optimization under uncertainty with
limited observation. arXiv preprint arXiv:2012.15584, 2020.

[24] Tze Leung Lai and Herbert Robbins. Asymptotically efficient adaptive allocation rules. Ad-
vances in applied mathematics, 1985.

[25] Lihong Li, Wei Chu, John Langford, and Robert E Schapire. A contextual-bandit approach to
personalized news article recommendation. In Proc. of WWW, 2010.

[26] Andrea Locatelli, Maurilio Gutzeit, and Alexandra Carpentier. An optimal algorithm for the
thresholding bandit problem. In Proc. of ICML, 2016.

[27] Blake Mason, Lalit Jain, Ardhendu Tripathy, and Robert Nowak. Finding all ε-good arms in
stochastic bandits. In Proc. of NeurIPS, 2020.

[28] Pierre Ménard. Gradient ascent for active exploration in bandit problems. arXiv, 2019.

[29] Federico Pierucci, Zaid Harchaoui, and Jérôme Malick. A smoothing approach for composite
conditional gradient with nonsmooth loss. PhD thesis, INRIA Grenoble, 2014.

[30] Sathya N Ravi, Maxwell D Collins, and Vikas Singh. A deterministic nonsmooth frank wolfe
algorithm with coreset guarantees. Informs Journal on Optimization, 2019.

[31] Clémence Réda, Emilie Kaufmann, and Andrée Delahaye-Duriez. Top-m identification for
linear bandits. In Proc. of AISTATS, 2021.

[32] Idan Rejwan and Yishay Mansour. Top-k combinatorial bandits with full-bandit feedback. In
Proc. of ALT, 2020.

[33] Daniel Russo. Simple bayesian algorithms for best arm identification. In Annual Conference on
Learning Theory. PMLR, 2016.

[34] Xuedong Shang. Linbai: Gamification of pure exploration for linear bandits. https://github.
com/xuedong/LinBAI.jl, 2021. [Online; accessed 09-May-2021].

[35] Marta Soare, Alessandro Lazaric, and Rémi Munos. Best-arm identification in linear bandits.
In Proc. of NeurIPS, 2014.

[36] Chao Tao, Saúl Blanco, and Yuan Zhou. Best arm identification in linear bandits with linear
dimension dependency. In Proc. of ICML, 2018.

[37] Tengyao Wang, Nitin Viswanathan, and Sébastien Bubeck. Multiple identifications in multi-
armed bandits. In Proc. of ICML, 2013.

[38] DJ White. Extension of the frank-wolfe algorithm to concave nondifferentiable objective
functions. Journal of optimization theory and applications, 1993.

[39] Liyuan Xu, Junya Honda, and Masashi Sugiyama. A fully adaptive algorithm for pure explo-
ration in linear bandits. In Proc. of AISTATS, 2018.

[40] Petyon Young and Shmuel Zamir. Handbook of game theory. Elsevier, 2014.

[41] Zixin Zhong, Wang Chi Cheung, and Vincent Tan. Best arm identification for cascading bandits
in the fixed confidence setting. In Proc. of ICML, 2020.

12

https://github.com/xuedong/LinBAI.jl
https://github.com/xuedong/LinBAI.jl

	Introduction
	Related Work
	Preliminaries
	Assumptions and properties of the lower bound optimization problem
	Stopping and decision rules

	The FWS Algorithm and its Sample Complexity
	Adapting Frank-Wolfe to the non-smooth function Fbold0mu mumu 2005/06/28 ver: 1.3 subfig package
	Algorithm
	Sample complexity

	Examples and Experiments for Linear Bandits
	Examples
	BAI in linear bandits

	Conclusion

