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Abstract: Following the impressive capabilities of in-context learning with large
transformers, In-Context Imitation Learning (ICIL) is a promising opportunity for
robotics. We introduce Instant Policy, which learns new tasks instantly from just
one or two demonstrations, achieving ICIL through two key components. First,
we introduce inductive biases through a graph representation and model ICIL as
a graph generation problem using a learned diffusion process, enabling structured
reasoning over demonstrations, observations, and actions. Second, we show that
such a model can be trained using pseudo-demonstrations – arbitrary trajectories
generated in simulation – as a virtually infinite pool of training data. Our experi-
ments show that Instant Policy enables rapid learning of everyday robot tasks. We
also show how it can serve as a foundation for cross-embodiment and zero-shot
transfer to language-defined tasks. Videos are on our project webpage.
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Figure 1: Instant Policy acquires skills instantly after providing demos at test time. We model in-
context imitation learning as a graph-based diffusion process, trained using pseudo-demonstrations.

1 Introduction

Robot policies acquired through Imitation Learning (IL) have shown impressive capabilities in re-
cent years, but today’s Behavioural Cloning (BC) methods still require hundreds or thousands of
demonstrations per task [1]. Meanwhile, language and vision communities have shown that when
large transformers are trained on sufficiently large and diverse datasets, we see the emergence of
In-Context Learning (ICL) [2]. Here, trained models can use test-time examples of a novel task (the
context), and instantly generalise to new instances of this task without updating the model’s weights.
This now offers a promising opportunity of In-Context Imitation Learning (ICIL) in robotics. To this
end, we present Instant Policy, which enables tasks to be learned instantly after the demonstrations.

ICL in language and vision benefits from huge and readily available datasets, which do not exist for
robotics. As such, we are faced with two primary challenges. 1) Given the limited available data, we
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need appropriate inductive biases in observation and action representations for efficient learning in
3D space; 2) Given the inefficiency and cost of manually collecting robotics data, we need a means
to easily collect training data in a scalable way. In this work, we propose solutions to both of these.

We address the first challenge by introducing a novel graph-based representation that integrates
demonstrations, current point cloud observations, and the robot’s actions within a unified graph
space. We then cast ICIL as a diffusion-based graph generation problem, enabling context to be
interpreted effectively in order to predict the robot’s actions. To address the second challenge, we
observe that in traditional BC, the model’s weights directly encode policies for a specific set of
tasks, whereas in ICIL, the model’s weights should encode a more general, task-agnostic ability to
interpret and act upon the given context. Due to this, we were able to train the model using pseudo-
demonstrations – procedurally generated trajectories, where sets of demonstrations are semantically
consistent. This approach allows us to generate virtually infinite training data.

Our experiments, with both simulated and real-world tasks, show that Instant Policy can learn vari-
ous everyday tasks, whilst achieving higher task success rates than state-of-the-art baselines trained
on the same data. As an emergent ability, we also observed generalisation capabilities to object
geometries unseen from the test-time demonstrations. Importantly, we found that performance im-
proves as more data is generated and used for simultaneous training, offering scalable opportunities
with abundant simulated data. In our further experiments on downstream applications, Instant Pol-
icy also achieves cross-embodiment transfer from human-hand demonstrations to robot policies,
and zero-shot transfer to language-defined tasks without needing large language-annotated datasets.
Our contributions are as follows: 1) We cast In-Context Imitation Learning as a diffusion-based
graph generation problem; 2) We show that this model can be trained using procedurally generated
pseudo-demonstrations; 3) We evaluate in simulation and the real world across various everyday
tasks, showing strong performance, encouraging scaling trends, and promising downstream uses.

2 Related Work

In-Context Learning (ICL). ICL is an emerging paradigm in machine learning which allows mod-
els to adapt to new tasks using a small number of examples, without requiring explicit weight updates
or retraining. Initially popularised in natural language processing with models like GPT-3 [2], ICL
has been applied to enable robots to rapidly adapt to new tasks by using foundation models [3],
finding consistent object alignments [4], and directly training policies aimed at task generalisa-
tion [5, 6] or cross-embodiment transfer [7, 8]. Despite these advancements, challenges remain in
achieving true generalisation to unseen tasks. Instant Policy addresses this by leveraging simulated
pseudo-demonstrations to generate abundant and diverse data, while its structured graph representa-
tion ensures that this data is utilised efficiently.

Diffusion Models. Diffusion models [9] have garnered significant attention across various domains,
due to their ability to iteratively refine randomly sampled noise through a learned denoising process,
ultimately generating high-quality samples from the underlying distribution. Initially popularised
for image generation [10], diffusion models have recently been applied to robotics. They have been
utilised for creating image augmentations [11, 12] to help robots adapt to diverse environments,
generating ‘imagined’ goals [13] or subgoals [14] for guiding robotic policies, and learning precise
control policies [15, 16]. In contrast, our work proposes a novel use of diffusion models for graph
generation, enabling structured learning of complex distributions.

Graph Neural Networks (GNNs). Graph Neural Networks (GNNs) allow learning on structured
data using message-passing or attention-based strategies. These capabilities have been applied
across a wide range of domains, including molecular chemistry [17], social network analysis [18],
and recommendation systems [19]. In robotics, GNNs have been employed for obtaining rein-
forcement learning (RL) policies [20, 21], managing object rearrangement tasks [22], and learning
affordance models for skill transfer [23]. In our work, we build on these foundations by studying
structured graph representations for ICIL, enabling learning of the relationships between demonstra-
tions, observations, and actions.
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3 Instant Policy

3.1 Overview & Problem Formulation

Overview. We address the problem of In-Context Imitation Learning, where the goal is for the robot
to complete a novel task immediately after the provided demonstrations. At test time, one or a few
demos of a novel task are provided to define the context, which our trained Instant Policy network
interprets together with the current point cloud observation, and infers robot actions suitable for
closed-loop reactive control (see Figure 1). This enables instantaneous policy acquisition, without
extensive real-world data collection or training. We achieve this through a structured graph repre-
sentation (Section 3.2), a learned diffusion process (Section 3.3), and an abundant source of diverse
simulated pseudo-demonstrations (Section 3.4).

Problem Formulation. We express robot actions a as end-effector displacements TEA ∈ SE(3)
(which, when time-scaled, correspond to velocities), along with binary open-close commands for
the gripper, ag ∈ {0, 1}. Such actions move the robot’s gripper from frame E to a new frame
A and change its binary state accordingly. Our observations, ot at timestep t, consist of seg-
mented point clouds P t, the current end-effector pose in the world frame W , T t

WE ∈ SE(3),
and a binary gripper state stg ∈ {0, 1}. Formally, our goal is to find a probability distribution,
p(at:t+T | ot, {(oij ,aij)

L
i=1}Nj=1), from which robot actions can be sampled and executed. Here,

T denotes the action prediction horizon, while L and N represent the demonstration length and the
number of demonstrations, respectively. For conciseness, from now onwards we refer to the demon-
strations, which define the task at test time and are not used during training, as context C, and the
action predictions as a.

3.2 Graph Representation

To learn the conditional probability of actions, we first need to choose a suitable representation
that would capture the key elements of the problem and introduce appropriate inductive biases. We
propose a heterogeneous graph that jointly expresses context, current observation, and future actions.
This graph is constructed using segmented point cloud observations, as shown in Figure 2.
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Figure 2: (Left) A local graph, Gl, representing the robot’s state (blue nodes) and local geometries
of the objects (green nodes). (Right) A graph representing 2 demos (3 waypoints each), the current
state, and 2 future actions. Edge colours represent different edge types in a heterogeneous graph.

Local Representation. The core building block of our representation is the observation at time step
t, which we express as a local graph Gt

l (P
t,T t

WE , sg) (Figure 2, left). First, we sample M points
from a dense point cloud P t using the Furthest Point Sampling Algorithm and encode local geometry
around them with Set Abstraction (SA) layers [24], obtaining feature vectors F and positions p as
{F i, pi}Mi=1 = ϕ(P t). The separately pre-trained ϕ, an implicit occupancy network [25], ensures
these features describe local geometries (details in Appendix A). We then represent the gripper’s
state in the same format, {F i

g, p
i
g}6i=1, by rigidly transforming key points pkp on the end-effector,
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pg = TWE × pkp and assigning them embeddings that encode node distinction and gripper state
information F i

g = [f ig, ϕg(sg)]
T . Finally, we link scene and gripper nodes with directional edges and

assign edge attributes e representing relative positions in Cartesian space. To increase the precision
and capture high-frequency changes in the positions of the described nodes, we represent edges as
eij = (sin(20π(pj − pi)), cos(2

0π(pj − pi)), ..., sin(2
D−1π(pj − pi)), cos(2

D−1π(pj − pi))).

Context Representation. While Gt
l captures the environment state, a sequence of such graphs,

interleaved with actions, defines a trajectory within context C (Figure 2, middle). We perform this
interleaving by linking gripper nodes across time to represent their relative movement (red edges)
and connecting all demonstration gripper nodes to the current ones to propagate relevant information
(grey edges). This enables the graph to efficiently handle any number of demos, regardless of length,
whilst ensuring that the number of edges grows linearly. The result, Gc(Gt

l , {G1:L
l }N1 ), enables a

structured flow of information between the context and the current observation.

Action Representation. To express future actions a = (TEA, ag) within the graph representation,
we construct local graphs as if the actions were executed and the gripper moved: Ga

l (P
t,T t

WE ×
TEA, ag). This allows ‘imagining’ spatial implications of actions relative to the observation, leaving
learning the environment dynamics to the downstream model. Then, we add edges between current
and future gripper nodes with position-based embeddings to propagate the information from the
current observation (and indirectly the context) to the nodes representing the actions. The final
graph, G(Ga

l (a),Gc(Gt
l , {G1:L

l }N1 )), aggregates relevant information from the context and the current
observation and propagates it to nodes representing the actions.

3.3 Learning Robot Action via Graph Diffusion

To utilise our graph representation effectively, we frame ICIL as a graph generation problem and
learn a distribution over previously described graphs pθ(G) using a diffusion model (Figure 3).

Figure 3: (Left) High-level structure of the network used to train graph-based diffusion model.
(Right) Position of gripper action nodes during the denoising process for one of the predicted actions.

Training. Training our diffusion model includes, firstly, the forward process, where noise is itera-
tively added to the samples extracted from the underlying data distribution q(G). In this phase, we
construct a noise-altered graph by adding noise to the robot actions according to Ho et al. [9]:

q(Gk | Gk−1) = G(Ga
l (N (ak;

√
1− βka

k−1, βkI),Gc)), k = 1, . . . ,K (1)

Here, N represents the normal distribution, βk the variance schedule, and K the total number of
diffusion steps. This process gradually transitions the ground truth graph representation into a graph
constructed using actions sampled from a Gaussian distribution.

Inversely, in the reverse diffusion process, the aim is to reconstruct the original data sample, in
our case the graph, from its noise-altered state, utilising a parameterised model pθ(Gk−1 | Gk).
Intuitively, such a model needs to learn how the gripper nodes representing the robot actions should
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be adjusted, such that the whole graph moves closer to the true data distribution q(G). Formally, the
parameterised model learns a denoising process of actions using our graph representation G(a) as:

Gk−1 = G(Ga
l (α(a

k − γεθ(Gk, k)) +N (0, σ2I)),Gc) (2)
Here, εθ(.) can be interpreted as effectively predicting the gradient field, based on which a single
noisy gradient descent step is taken [15]. As we represent actions as collections of nodes with their
associated positions p and features, that depend on the binary gripper actions ag , such a gradient field
has two components εθ = [∇p,∇ag]T . As we will discuss later, ∇ag can be used directly in the
diffusion process, while a set of ∇p predictions is an over-parameterisation of a gradient direction
on the SE(3) manifold, and additional steps need to be used to compute a precise denoising update.
Thus we learn εθ by making per-node predictions εk and optimising the variational lower bound of
the data likelihood which has been shown [9] to be equivalent to minimising MSE(εk − εθ(Gk)).
As our parameterised model, we use a heterogeneous graph transformer, described in Appendix C

Deployment. During test time, we create the graph representation using actions sampled from the
normal distribution, together with the current observation and the demonstrations as the context. We
then make predictions describing how gripper nodes should be adjusted, and update the positions of
these nodes by taking a denoising step according to the DDIM [26]:

pk−1
g =

√
αk−1p̂

0
g +

√
1− αk−1

1− αk

(
pkg −

√
αkp̂

0
g

)
. (3)

Here, p̂0g = pkg +∇p. This leaves us with two sets of points pk−1
g and pkg , representing gripper poses

at denoising time steps k − 1 and k. As we know the ground truth correspondences, we can extract
an SE(3) transformation that would align them using a Singular Value Decomposition [27] as:

Tk−1,k = argmin
Tk−1,k∈SE(3)

||pk−1 − Tk−1,k × pk||2 (4)

Finally, the ak−1 is calculated by applying calculated transformation Tk−1,k to ak. Note that
for gripper opening and closing actions utilising Equation 3 directly is sufficient. This process is
repeated K times until the graph that is in distribution is generated and, as a byproduct, final a0

actions are extracted, allowing us to sample from the initially described distribution p(a | ot, C).

3.4 An Infinite Pool of Data

Now that we can learn the conditional distribution of actions, we still need to answer the question
of where a sufficiently large and diverse dataset will come from, to ensure that the learned network
can be used for a wide range of real-world tasks. With In-Context Imitation Learning, the model
does not need to encode task-specific policies into its weights, and thus we found that it is possible
to simulate ‘arbitrary but consistent’ robot trajectories as training data. Here, consistent means that
while the generated trajectories differ, they ‘perform’ the same type of pseudo-task at a semantic
level. We call such trajectories pseudo-demonstrations.

Pseudo-Task 2Pseudo-Task 1

Figure 4: Examples of the simulated trajectories - 3 pseudo-demonstrations for 2 pseudo-tasks.

Data Generation. Firstly, to ensure generalisation across object geometries, we populate a simu-
lated environment using a diverse range of objects from the ShapeNet dataset [28]. We then create
pseudo-tasks by randomly sampling object-centric waypoints near or on the objects, that the robot
needs to reach in sequence. Finally, by virtually moving the robot gripper between them and occa-
sionally mimicking rigid grasps by attaching objects to the gripper, we create pseudo-demonstrations
– trajectories that resemble various manipulation tasks. Furthermore, randomising the poses of
the objects and the gripper, allows us to create many pseudo-demonstrations performing the same
pseudo-task, resulting in the data that we use to train our In-Context model. More information about
the data generation process can be found in Appendix D.
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4 Experiments

We conducted experiments in two distinct settings: 1) simulation with RLBench [29] and ground
truth segmentations, and 2) real-world everyday tasks. Videos are available on our webpage at
https://www.robot-learning.uk/instant-policy.

Experimental Setup. Here, we describe parameters used across all our experiments unless explic-
itly stated otherwise. We use a single model to perform various manipulation tasks by providing N=2
demos, which we express as L=10 waypoints as context and predict T=8 future actions. We train
this model for 2.5M optimisation steps using pseudo-demonstrations that are being continuously
generated. When we discuss integrating additional training data beyond pseudo-demonstrations, we
refer to models fine-tuned for an additional 100K optimisation steps using a 50/50 mix of pseudo-
demonstrations and new data. For more information, please refer to Appendix E.

Baselines. We compare Instant Policy to 3 baselines which also enable In-Context Imitation Learn-
ing, namely: BC-Z [7], Vid2Robot [8], and a GPT2-style model [30]. BC-Z combines latent em-
bedding of the demonstrations with the current observation and uses an MLP-based model to predict
robot actions, Vid2Robot utilises a Perceiver Resampler [31] and cross-attention to integrate infor-
mation from the context and current observation, and GPT2 uses causal self-attention to predict
the next tokens in the sequence, which in our case are robot actions. For a fair comparison, we
implemented all baselines by adapting them to work with point cloud observation using the same
pre-trained encoder, and all have roughly the same number of trainable parameters. Additionally, all
components that rely on language-annotated data, such as auxiliary losses, were removed because
our generated pseudo-demonstrations do not have such information. To highlight this, we add an
asterisk to these methods when discussing results.

4.1 Simulated Experiments

The aim of our first set of experiments is two-fold: 1) to evaluate the effectiveness of Instant Pol-
icy in performing various manipulation tasks by comparing it to state-of-the-art baselines, and 2) to
investigate the role the training data plays in generalising to unseen scenarios. We use a standard
RLBench setup using the Franka Emika Panda and test Instant Policy (IP) and the baselines on 24
tasks, 100 rollouts each, randomising the poses of the objects in the environment each time. Addi-
tionally, we test models trained using only pseudo-demonstrations (PD only) and a combination of
pseudo-demonstrations and 20 demonstrations for each of 12 out of the 24 RLBench tasks (PD++).

Results & Discussion. The first notable observation from the results, presented in Table 1, is that all
methods achieve non-zero success rates when only pseudo-demonstrations are used and can perform
well on at least the simpler tasks. This indicates that these pseudo-demonstrations are a powerful
source of limitless data for In-Context Imitation Learning. Our second observation is that incorpo-
rating additional demonstrations from the same domain can greatly boost the performance, helping
with generalisation to unseen tasks and novel object poses for the ones seen during training. Our
third observation is that Instant Policy achieves significantly higher success rates than the baselines,
showing the important inductive bias we achieve through our graph structure in order to interpret
the context. We further demonstrate this by visualising attention weights (Figure 9 in Appendix C),
which reveal the model’s ability to understand the task’s current stage, and also identify the relevant
information in the context. We discuss failure cases in detail in Appendix G.

4.2 Real-World Experiments

In our real-world experiments, we evaluate our method’s ability to learn everyday tasks and gener-
alise to novel objects, unseen in both the training data and the test-time demonstrations. We use a
Sawyer robot with a Robotiq 2F-85 gripper and two external RealSense D415 depth cameras. We
obtain segmentation by seeding the XMem++ [32] object tracker with initial results from SAM [33],
and we provide demonstrations using kinesthetic teaching. To help the model handle imperfect seg-
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Tasks Instant Policy BC-Z* Vid2Robot* GPT2* Tasks Instant Policy BC-Z* Vid2Robot* GPT2*
Open box 0.94 / 0.99 0.22 / 0.98 0.30 / 0.97 0.25 / 0.95 Slide buzzer 0.35 / 0.94 0.04 / 0.26 0.05 / 0.19 0.00 / 0.00
Close jar 0.58 / 0.93 0.00 / 0.06 0.00 / 0.11 0.00 / 0.22 Plate out 0.81 / 0.97 0.26 / 0.55 0.11 / 0.52 0.31 / 0.40
Toilet seat down 0.85 / 0.93 0.40 / 0.88 0.54 / 0.85 0.38 / 0.83 Close laptop 0.91 / 0.95 0.64 / 0.65 0.45 / 0.57 0.53 / 0.72
Close microwave 1.00 / 1.00 0.55 / 0.60 0.72 / 0.87 0.76 / 1.00 Close box 0.77 / 0.99 0.81 / 1.00 0.89 / 0.88 0.42 / 0.41
Phone on base 0.98 / 1.00 0.51 / 0.50 0.48 / 0.51 0.28 / 0.55 Open jar 0.52 / 0.78 0.12 / 0.28 0.15 / 0.30 0.22 / 0.51
Lift lid 1.00 / 1.00 0.82 / 0.82 0.90 / 0.91 0.88 / 0.94 Toilet seat up 0.94 / 1.00 0.62 / 0.63 0.58 / 0.64 0.31 / 0.34
Take umbrella out 0.88 / 0.91 0.42 / 0.64 0.90 / 0.90 0.75 / 0.89 Meat off grill 0.77 / 0.9 0.75 / 0.64 0.76 / 0.33 0.80 / 0.30
Slide block 0.75 / 1.00 0.10 / 0.14 0.12 / 0.16 0.08 / 0.16 Open microwave 0.23 / 0.56 0.00 / 0.13 0.00 / 0.02 0.00 / 0.00
Push button 0.60 / 1.00 0.75 / 0.81 0.85 / 0.88 0.80 / 0.91 Toilet roll off 0.70 / 0.95 0.32 / 0.53 0.29 / 0.55 0.26 / 0.48
Basketball in hoop 0.66 / 0.97 0.02 / 0.09 0.00 / 0.06 0.03 / 0.07 Put rubish in bin 0.97 / 0.99 0.11 / 0.11 0.12 / 0.14 0.18 / 0.17
Meat on grill 0.78 / 1.00 0.64 / 0.88 0.51 / 0.77 0.53 / 0.81 Put umbrella 0.31 / 0.37 0.35 / 0.34 0.41 / 0.28 0.28 / 0.39
Flip switch 0.40 / 0.94 0.15 / 0.63 0.05 / 0.16 0.11 / 0.42 Lamp on 0.42 / 0.41 0.00 / 0.00 0.00 / 0.00 0.00 / 0.00
Average (PD++) Seen 0.97 0.59 0.60 0.65 Average (PD++) Unseen 0.82 0.43 0.37 0.31
Average (PD only) All 0.71 0.36 0.38 0.34

Table 1: Success rates for Instant Policy and baselines on 24 tasks. 100 rollouts for each (trained
using only pseudo-demonstrations / with additional demos from the 12 RLBench tasks on the left).

mentations and noisy point clouds more effectively, we further co-fine-tuned the model used in our
previous experiments using 5 demos from 5 tasks not included in the evaluation.

Insert Toilet Roll Open Airfryer Flip Bottle Stack Bowls Knock over Creeper Kettle on Stove Close Coffee Machine Hang Cable

Open Box Turn Tap Right Turn Tap Left Take Rose Out Push Cans Together Pick up Kettle Close Box Open Cash Register

Figure 5: The 16 tasks used in our real-world evaluation.

Real-World Tasks. To evaluate our model’s ability to tackle various tasks in the real world, we
tested it and the baselines on 16 everyday tasks (Figure 5). We evaluated all methods using 10
rollouts, randomising the poses of the objects in the environment each time. From the results (Ta-
ble 2), we can see that Instant Policy is able to complete various everyday tasks from just a couple
of demonstrations with a high success rate, outperforming the baselines by large margins.

Insert
Toilet Roll

Open
Airfryer

Flip
Bottle

Stack
Bowls

Knock over
Creeper

Kettle on
Stove

Close
Coffee Machine

Hang
Cable

Instant Policy 9 / 10 9 / 10 7 / 10 10 / 10 8 / 10 10 / 10 10 / 10 7 / 10
BC-Z* 1 / 10 5 / 10 0 / 10 2 / 10 5 / 10 1 / 10 1 / 10 0 / 10
Vid2Robot* 3 / 10 6 / 10 0 / 10 1 / 10 7 / 10 3 / 10 4 / 10 1 / 10
GPT2* 1 / 10 6 / 10 0 / 10 4 / 10 5 / 10 5 / 10 5 / 10 1 / 10

Open
Box

Turn Tap
Right

Turn Tap
Left

Take
Rose Out

Push Cans
Together

Pick up
Kettle

Close
Box

Open
Register Average, %

Instant Policy 8 / 10 10 / 10 10 / 10 9 / 10 5 / 10 10 / 10 10 / 10 10 / 10 88.75
BC-Z* 8 / 10 2 / 10 3 / 10 0 / 10 2 / 10 10 / 10 7 / 10 8 / 10 34.38
Vid2Robot* 9 / 10 4 / 10 3 / 10 0 / 10 1 / 10 10 / 10 7 / 10 6 / 10 40.63
GPT2* 0 / 10 5 / 10 5 / 10 0 / 10 0 / 10 10 / 10 5 / 10 7 / 10 36.88

Table 2: Real-world success rates for Instant Policy and the baselines, with 10 rollouts each.

Demo

Demo

Demo

Demo

Test

Test

Test

Test

1

2

3

4

1

1
1

2

2
2

3

3

3
4

4

4

Place a mug on a plate Unplug Charger

Open Box Fold in Half

Figure 6: Objects used in the generalisation ex-
periment (numbers indicate their usage stage).

Generalisation to Novel Objects. While all of
our previous experiments focused on evaluat-
ing our method’s performance on the same ob-
jects used in the demonstrations, here we aim
to test its ability to generalise to novel object
geometries at test time. We do so by provid-
ing demonstrations (i.e., defining the context)
with different sets of objects from the same se-
mantic category, and testing on a different ob-
ject from that same category. For the evalua-
tion, we use four different tasks (Figure 6), each
with six sets of objects (four for the demon-
strations/context and two for evaluation). We
evaluate our method with a different number
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of demonstrations in the context, randomising the poses of the test objects during each roll-
out (5 rollouts for each unseen object set). The results, presented in Table 3, show that, with
an increasing number of demonstrations across different objects, the performance on completely
novel object geometries increases. This indicates that Instant Policy is capable of selectively ag-
gregating and interpolating the information present in the context to disambiguate the task and
the parts of the objects that are relevant to it. It is important to note that this is an emer-
gent behaviour, as we never trained our model with objects from different geometries across the
context, and is enabled by the graph representation and structured cross-attention mechanism.

4.2.1 Downstream Applications

N Open
Box

Fold
in Half

Mug
on Plate

Unplug
Charger

Average,
%

1 2 / 10 7 / 10 7 / 10 0 / 10 40
2 5 / 10 8 / 10 8 / 10 0 / 10 52.5
3 10 / 10 10 / 10 9 / 10 5 / 10 85
4 10 / 10 10 / 10 9 / 10 7 / 10 90

Table 3: Success rates of Instant Policy with a
different number of demonstrations (N), enabling
generalisation to novel object geometries.

Cross-embodiment transfer. Since our model
uses segmented point clouds and defines the
robot state by the end-effector pose and grip-
per state, different embodiments can be used to
define the context and roll out the policy, pro-
vided the mapping between them is known. We
demonstrate this by using human-hand demon-
strations with a handcrafted mapping to the
gripper state, allowing us to transfer the policy
directly to the robot. In qualitative experiments,
we achieve similar success rates on simple tasks, like pick-and-place, compared to kinesthetic teach-
ing. However, for more complex tasks, this approach is limited by the handcrafted mapping. See
our webpage for video examples and Appendix I for more information about handcrafted mapping.

Modality change. While obtaining a policy immediately after demonstrations is a powerful and
efficient tool, it still requires human effort to provide those demonstrations. We can circumvent this
by exploiting the bottleneck of our trained model, which holds the information about the context
and the current observation needed to predict actions. This information is aggregated in the gripper
nodes of the current observations. If we approximate this bottleneck representation using different
modalities, such as language, we can bypass using demonstrations as context altogether. This can
be achieved with a smaller, language-annotated dataset and a contrastive objective. Using language-
annotated trajectories from RLBench and rollout data from previous experiments, we qualitatively
demonstrate zero-shot task completion based solely on language commands. For more details, see
Appendix J, and for videos, visit our webpage.

5 Conclusions

In this work, we introduced Instant Policy, a novel framework for In-Context Imitation Learning
that enables immediate robotic skill acquisition following one or two test-time demonstrations. This
is a compelling alternative paradigm to today’s widespread behavioural cloning methods, which
require hundreds or thousands of demonstrations. We showed that our novel graph structure en-
ables data from demonstrations, current observations, and future actions, to be propagated effec-
tively via a novel graph diffusion process. Importantly, Instant Policy can be trained with only
pseudo-demonstrations generated in simulation, providing a virtually unlimited data source that is
constrained only by available computational resources. Experiments showed strong performance
relative to baselines, the ability to learn everyday real-world manipulation tasks and generalise to
novel object geometries, and strong potential for downstream applications.
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Appendix

A Geometry Encoder

Here, we describe the local geometry encoder used to represent observations of the environment as a
set of nodes. Formally, the local encoder encodes the dense point cloud into a set of feature vectors
together with their associated positions as: {F i, pi}Mi=1 = ϕ(P ). Here, each feature F i describes
the local geometry around the point pi. We ensure this by pre-training an occupancy network [25],
that consists of an encoder ϕe, which embeds local point clouds, and a decoder ψe which given this
embedding and a query point is tasked to determine whether the query lays on the surface of the
object: ψe(ϕe(P ), q) → [0, 1]. The high-level structure of our occupancy network can be seen in
Figure 7. Note that each local embedding is used to reconstruct only a part of the object, reducing
the complexity of the problem and allowing it to generalise more easily.
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Figure 7: High-level structure of the occupancy network.

We parameterise ϕe as a network composed of 2 Set Abstraction layers [24] enhanced with Nerf-
like sine/cosine embeddings [34]. It samples M centroids from the dense point cloud and embeds
the local geometries around them into feature vectors of size 512. Instead of expressing positions
of points relative to the sampled centroids pi as pj − pi ∈ R3, we express them as (sin(20π(pj −
pi)), cos(2

0π(pj − pi)), ..., sin(2
9π(pj − pi)), cos(2

9π(pj − pi))), enabling the model to capture
high-frequency changes in the position of the dense points and capture the local geometry more
precisely. We parametrise ψe as an eight-layer MLP with residual connections, that uses the same
Nerf-like embeddings to represent the position of the query point. We use objects from a diverse
ShapeNet [28] dataset to generate the training data needed to train the occupancy network. For
training Instant Policy, we do not use the decoder and keep the encoder frozen.

B Instant Policy Design Choices & Scaling Trends

Our next set of experiments investigates the impact of various hyperparameters on the performance
of our method, focusing on design choices requiring model re-training, inference parameters that
alter model behaviour at test time, and scaling trends as model capacity and training time increase.
For the design choices and inference parameters, we calculate the average change in success rate on
24 unseen RLBench tasks, with respect to the base model used in the previous set of experiments,
while for the scaling trends, we report validation loss on a hold-out set of pseudo-demonstrations to
see how well it can capture the underlying data distribution.

Design Choices. We now examine the following: action mode, diffusion mode, and the prediction
horizon. For action modes, we compare our proposed parameterisation, which decouples translation
and rotation, against an approach without such decoupling, and more conventional approaches like
combining translation with quaternion or angle-axis representations. For diffusion mode, we evalu-
ate predicting flow versus added noise, direct sample, and omitting diffusion, regressing the actions
directly. Lastly, we assess the impact of predicting different numbers of actions. The results, shown
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Design Choices Inference Parameters
Action
Mode ∆%

Diffusion
Mode ∆%

Prediction
Horizon (T) ∆%

# Diffusion
Steps (K) ∆%

Demo
Length (L) ∆%

# Demos
(N) ∆%

∆p -15 Flow 0 1 -52 1 -16 1 -71 1 -12
(∆pt, ∆pr) 0 Sample -6 4 -13 2 -2 5 -26 2 0
(∆t, ∆q) -37 Noise -7 8 0 4 0 10 0 3 2
(∆t, ∆θ) -21 No Diff -29 16 -4 8 0 15 1 4 -1

Table 4: Performance change of ablation variants when compared to the base model.

in Table 4 (left), show that these choices greatly influence performance. Decoupling translation and
rotation in Cartesian space allows for precise low-level action learning. The diffusion process is
vital for capturing complex action distributions, with predicting flow showing the best results. Fi-
nally, predicting multiple actions is helpful, but this also increases computational complexity. For a
detailed discussion of other design choices, including unsuccessful ones, please refer to Appendix H.

Inference Parameters. Using a diffusion process with a flexible graph representation that handles
arbitrary context lengths allows us to adjust model performance at inference. We investigate the
impact of the number of diffusion steps, the demonstration length, and the number of demonstrations
in the context, as shown in Table 4 (right). Results show that even with just two denoising steps, good
performance can be achieved. Demonstration length is critical; it must be dense enough to convey
how the task should be solved, as this information is not encoded in the model weights. This is
evident when only the final goal is provided (demonstration length = 1), leading to poor performance.
However, extending the demonstration length beyond a certain point shows minimal improvement,
as the RLBench tasks can often be described by just a small number of sparse waypoints. For
more complex tasks, dense demonstrations would be crucial. Finally, performance improves with
multiple demonstrations, though using more than two seems to be unnecessary. This is because two
demonstrations are sufficient to disambiguate the task when generalising only over object poses.
However, as we will show in other experiments, this does not hold when the test objects differ in
geometry from those in the demonstrations.
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Figure 8: Validation loss curves for three different
model sizes.

Scaling Trends. The ability to continuously
generate training data in simulation allows our
model’s performance to be limited only by
available compute (training time) and model ca-
pacity (number of trainable parameters). To as-
sess how these factors influence our approach,
we trained three model variants with different
numbers of parameters and evaluated them af-
ter varying numbers of optimisation steps (Fig-
ure 8). The results show that the model’s
ability to capture the data distribution (as re-
flected by decreasing validation loss) scales
well with both training time and model com-
plexity. This offers some promise that scaling
compute alone could enable the development
of high-performing models for robot manipu-
lation. Qualitatively, we observe a similar per-
formance trend on unseen RLBench tasks, but it eventually plateaus at varying levels, suggesting
the need for more diverse and representative data.

C Network Architecture

Here we describe the neural network used to learn the denoising process on graphs, enabling us
to generate graphs G and implicitly model the conditional action probability. Our parametrised
neural network takes the constructed graph representation as input and predicts the gradient field
for each gripper node representing the actions: εθ(Gk). Such a gradient field has two components
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εθ = [∇p,∇ag]T , with a set of ∇p predictions being an over-parameterisation of a gradient di-
rection on the SE(3) manifold. However, this can result in a large translation dominating a small
rotation, and vice versa, preventing precisely learning both components well. To address this, we
represent the denoising directions as a combination of centre-of-mass movement and rotation around
it, effectively decoupling the translation and rotation predictions while remaining in Cartesian space
as [∇p̂t,∇p̂r]T = [t0EA−tkEA,R

0
EA×pkp−Rk

EA×pkp]T , with ∇p̂ = ∇p̂t+∇p̂r representing flow
(red arrows in Figure 3, left). Here, tEA ∈ R3 and REA ∈ SO(3) define the SE(3) transformation
representing actions TEA.

These predictions are then used in the diffusion process allowing to iteratively update the graph and
ultimately extract desired low-level robot actions. As our parameterised model, we use a heteroge-
neous graph transformer, which updates features of each node in the graph, Fi, as [35]:

F ′
i = W1Fi+

∑
j∈N (i)

atti,j (W2Fj +W5eij) ; atti,j = softmax

(
(W3Fi)

T (W4Fj +W5eij)√
d

)
(5)

Here, Wi represent learnable weights. Equipping our model with such a structured attention mech-
anism allows for selective and informative information aggregation which is propagated through
the graph in a meaningful way, while ensuring that memory and computational complexity scales
linearly with increasing context length (both N and L).

In practice, for computational efficiency and more controlled information propagation, we are using
three separate networks σ, ϕ and ψ, updating relevant parts of the graph in sequence as:

εθ(Gk) = ψ(G(σ(Ga
l ), ϕ(Gc(σ(Gt

l ), {σ(G1:L
l )}N1 ))) (6)

Here, σ operates on local subgraphs Gl and propagates initial information about the point cloud
observation to the gripper nodes, φ additionally propagates information through the demonstrated
trajectories and allows all the relevant information from the context to be gathered at the gripper
nodes of the current subgraph. Finally, ψ propagates information to nodes in the graph represent-
ing the actions. Using such a structured and controlled propagation of information through the
graph, together with the learnable attention mechanism described in Equation 5, allows the model to
continuously aggregate relevant information from the context and make accurate predictions about
the actions (see Figure 9). Additionally, it also results in a clear and meaningful bottleneck in the
network with all the relevant information from the context aggregated in a specific set of nodes
(ϕ(Gc(σ(Gt

l ), {σ(G1:L
l )}N1 ))). This bottleneck representation could be used for retrieval or as shown

in our experiments, to switch modalities, for example to language, via a smaller annotated dataset
and a contrastive objective.
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Figure 9: Attention weights visualised on sub-graph edges at two different timesteps in the phone-
on-base task, showing the model’s ability to track task progress and aggregate relevant information.
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Each of the three separate networks is a heterogeneous graph transformer (Equation 5) with 2 lay-
ers and a hidden dimension of size 1024 (16 heads, each with 64 dimensions). As we are using
heterogeneous graphs, each node and edge type are processed with separate learnable weights and
aggregated via summation to produce all node-wise embeddings. This can be understood as a set
of cross-attention mechanisms, each responsible for processing different parts of the graph repre-
sentation. We use layer normalisation layers [36] between every attention layer and add additional
residual connections to ensure good propagation of gradients throughout the network. Finally, fea-
tures of the nodes representing robot actions are processed with a 2-layer MLP equipped with GeLU
activations [37] to produce the per-node denoising directions.

D Data Generation

Our data generation process, firstly, includes populating a scene with objects with which the robot
will interact. We do so by sampling two objects from the ShapeNet dataset and placing them ran-
domly on a plane. Next, we define a pseudo-task by sampling a sequence of waypoints on or near
those objects. The number of these waypoints is also randomly selected to be between 2 and 6,
inherently modelling various manipulation tasks. We assign one or more waypoints to change the
gripper state, mimicking the rigid robotic grasp and release. We then sample a starting pose for the
gripper, where we initialise a mesh of a Robotiq 2F-85 gripper. By moving the gripper between the
aforementioned waypoints and attaching or detaching the closest object to it when the gripper state
changes, we create a pseudo-demonstration. To further increase the diversity in pseudo-tasks, we
use different interpolation strategies between the waypoints (e.g. linear, cubic or interpolating while
staying on a spherical manifold). We record gripper poses and segmented point cloud observations
using PyRender [38] and three simulated depth cameras. We ensure that the spacing between the
subsequent spaces is constant and uniform (1cm and 3 degrees, same as used for the normalisation of
actions). Moving objects to different poses, choosing a different starting gripper pose and repeating
the process results in several pseudo-demonstrations for the same pseudo-task, which we use to train
our In-Context model. As mentioned in Section 3.4, we do not need to ensure that these generated
trajectories are dynamically or even kinematically feasible, as the environment dynamics and task
specifications, such as feasible grasp, are defined as context at inference.

Bias Sampling. To facilitate more efficient learning of common skills, we bias the sampling to
favour waypoints resembling common tasks such as grasping or pick-and-place. This does not
require creating dynamically feasible trajectories but rather involves designing sampling strategies
for waypoints that loosely approximate these tasks. For instance, by selecting a specific part of an
object, moving the simulated gripper to that location, and closing the gripper, we can simulate a
grasping task, even if the grasp itself is not physically feasible. We design such sampling strategies
for common tasks, such as grasping, pick-and-place, opening or closing. Pseudo-demonstrations
are generated using these strategies for half of the samples, while the rest use completely random
waypoints.

Data Augmentation. To facilitate the emergence of recovery behaviour of the learnt policies, we
further augment the generated trajectories. Firstly, for 30% of the trajectories, we add local distur-
bances associated with actions that would bring the robot back to the reference trajectory, similarly
to how it is done by [39]. Secondly, for 10% of the data points, we purposely change the gripper’s
open-close state. This, we found to be crucial, as, without it, the policy would never try to re-grasp
an object after initially closing the gripper.

E Implementation Details

Here we discuss the implementation details of the Instant Policy, which we found to be important in
making the method perform well.

Demo Processing. Although our network can handle an arbitrary number of demonstrations of any
length, we downsample the demo trajectories to a fixed length (L = 10 in our experiments). First,

15



we record demonstrations at a rate of 25Hz and 10Hz in simulation and the real world, respectively.
The lower rate in the real world is caused by the simultaneous segmentation of objects of interest by
Xmem++ [32]. We then include the start and end of the trajectories and all the waypoints where the
open-close state of the gripper changed. We then include the waypoints in the trajectory, where the
gripper sufficiently slowed down, indicating important trajectory stages (similar to [40]). Finally, if
the current number of the trajectory waypoint is less than L, we add intermediate waypoints between
the already extracted ones.

Normalisation. We normalise all the outputs of our mode to be [−1, 1], a step that we found
to be crucial. To this end, we manually define the maximum end-effector displacement between
subsequent action predictions to be no more than 1cm in translation and 3 deg in rotation and clamp
the noisy actions to be within this range. Thus the flow prediction is capped to be at most twice the
size of this range. Knowing this, we normalise ∇p̂t and ∇p̂r to be between −1 and 1 independently,
enabling efficient network training. For the gripper opening-closing actions, this can be done easily
as they are expressed as binary states {0, 1}. We do not normalise the position of the point cloud
observations but rather rely on the sine/cosine embeddings, a strategy that we found to be sufficient.

Point Cloud Representation. We use segmented point cloud observations of objects of interest in
the environment as our observations. These segmented point clouds do not include the points on the
robot or other static objects such as the table or distractors. In practice, We downsample the point
clouds to contain 2048 points and express them in the end-effector frame as TEW × P to achieve
stronger spatial generalisation capabilities. These point clouds are then processed with a geometry
encoder, described in Section A, producing M = 16 nodes used to construct our devised graph
representation.

Noise-Altered Actions. To add noise to the action expressed as (TEA ∈ SE(3), ag ∈ R, we first
project TEA to se(3) using a Logmap, normalise the resulting vectors, add the noise as described
by [9], unnormalise the result and extract the noisy end-effector transformation T k

EA using Expmap.
Such a process can be understood as adding noise to a SE(3) transformation in its tangential space.
We can do this because around actions (end-effector displacements) are sufficiently small. For bigger
displacements, unnormalised noise should be projected onto the SE(3) manifold directly, as done
by [4] and [41]. Adding noise to real-valued gripper actions can be done directly using the process
described by [9].

Action Denoising. When updating TEA during our denoising process, we use calculated Tk,k−1 (as
described in Section 3.3) and calculate the transformation representing end-effector actions during
the denoising process as T k−1

EA = Tk,k−1 × T k
EA. These actions are then used to construct a graph

representation that is used in the next denoising step. In practice, because we express point cloud
observations in the end-effector frame, we apply the inverse of these actions to the M points repre-
senting the scene and construct local graphs of actions as Ga

l (T
−1
EA ×P t,T t

WE , ag). As there are no
absolute positions in the graph, this is equivalent to applying the actions to the gripper pose T t

WE ,
but it allows us to recompute the geometry embeddings of the point clouds at their new pose, better
matching the ones from the demonstrations.

Training. We trained our model using AdamW [42] optimiser with a 1e−5 learning rate for 2.5M op-
timisation steps (approx. 5 days on a single NVIDIA GeForce RTX 3080-ti) followed by a 50K steps
learning rate cool-down period. For efficient training, we used float16 precision and compiled our
models using torch compile capabilities [43]. Training data in the form of pseudo-demonstrations
were continuously generated during training, replacing the older sample to ensure that the model did
not see the same data point several times, preventing overfitting.

F Simulation Experimental Setup

Here, we describe the 2 changes we made to a standard RLBench setup [29] when conducting our
experiments. 1) We generated all the demonstrations (for the context and for those used during
training as described in Section 4) using only Cartesian Space planning - we disregarded all demon-
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strations that were generated using an RRT-based motion planner [44]. We did so to ensure that the
demonstrations did not have arbitrary motions that would not be captured by our observations of
segmented point clouds and end-effector poses. 2) We restricted the orientations of the objects in
the environment to be within [−π/3, π/3]. We did so to match the distribution of object poses to the
one present in our generated pseudo-demonstrations. It also ensured that most tasks could be solved
without complex motions requiring motion planners.

G Failure Cases

Limitations. While Instant Policy demonstrates strong performance, it has several limitations. First,
like many similar approaches, we assume the availability of segmented point clouds for sufficient
observability. Second, point cloud observations lack colour or other semantically rich information.
Third, our method focuses on relatively short-horizon tasks where the Markovian assumption holds.
Fourth, Instant Policy is sensitive to the quality and downsampling of demonstrations at inference.
Fifth, it does not address collision avoidance or provide end-to-end control of the full configuration
space of the robot arm. Finally, it lacks the precision needed for tasks with extremely low tolerances
or rich contact dynamics. However, we believe many of these limitations can be addressed primarily
through improvements in generation of the pseudo-demonstrations, such as accounting for colli-
sions, incorporating long-horizon tasks, and by improving the graph representation with additional
features from vision models, force information, or past observations.

Here we further discuss the observed failure modes of Instant Policy during our experiments. Given
different setups and assumptions, we do so for each of our experiments independently. However, the
discussed failure modes are shared across the experiments.

Simulated Experiments. During our simulated experiments using RLBench [29], we observed
several common failure modes of Instant Policy. First of all, tasks such as Open Microwave or Put
Umbrella into a Rack require extremely high precision in action predictions, otherwise, the inaccu-
rate dynamics of the simulator will prevent the task from being completed. As such, sometimes the
handle of the microwave would slip from the gripper, or the umbrella would fly off when in contact
with the robot. Second, tasks such as Flipping a Switch or Pushing a Button terminate immediately
after the task condition is met. As we predict actions of not doing anything at the end of the tra-
jectory, this resulted in the policy stopping before the task is fully completed at a state virtually the
same as the desired one. Moreover, our generated pseudo-demonstrations do not include any colli-
sion avoidance, which has proven to be a problem for tasks such as Turning the Lamp On, where the
robot occasionally collides with the lamp by moving in a straight line towards the button. Finally,
other failure modes usually included policy stalling at a certain point or oscillating between two con-
figurations. We hypothesise that such behaviour is caused by conflicting information in the provided
demonstrations and violating the Markovian assumption. In the future, this could be addressed by
incorporating past observations into the graph representation.

Real-World Tasks. By far, the most common failure mode in our real-world experiments was the
segmentation failure caused by several occlusions. Additionally, imperfect segmentation sometimes
included parts of the robot or the table, causing the policy to perform irrelevant actions. This also
sometimes degraded the quality of the demonstrations by including irrelevant points (and thus nodes
in the constructed graph). Moreover, we observed that the overall quality of the demonstrations, in
terms of smoothness and clearly directed motions, had a major impact on the performance of Instant
Policy. If recorded demonstrations included inconsistent and arbitrary motions, information in the
context was conflicting, resulting in the policy stalling or oscillating. Finally, other observed failure
cases mainly involved policy not completing the task due to the lack of precision.

Generalisation to Novel Geometries. When evaluating Instant Policy using objects unseen neither
during training nor demonstration at inference, policy sometimes just mimicked the motion observed
during the demonstrations without achieving the desired outcome. With an increasing number of
diversity demos in the context, such behaviour was minimised. However, some tasks (e.g. placing
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a mug on a plate) were completed mainly due to the high tolerance of the task rather than true
generalisation capabilities.

Cross-Embodiment Transfer. The main failure cases during our cross-embodiment transfer exper-
iments were caused by incorrect mapping of hand poses to end-effector poses and an insufficient
field of view in our observations. This caused the robot to occasionally miss the precise grasp-
ing locations, closing the gripper at stages where it was not intended, and, in general, resulted in
demonstrations of poorer quality.

Modality Transfer. Replacing demonstrations with language descriptions of the task yielded
promising results in our qualitative experiments. However, the observed behaviour was sometimes
mismatched with the object geometries in the environment. For instance, the policy would execute
appropriate motions (e.g., pushing or closing) but at incorrect locations relative to the objects. This
issue likely stems from object features containing only geometric information without any seman-
tic context. Incorporating additional features from vision foundation models into the point cloud
observations and expanding the language-annotated dataset could help address this limitation.

H Things That Did Not Work

Here we discuss various design choices we considered before settling for the approach, described in
Section 3.

Fully-Connected Graph. Initially, we experimented with a fully connected graph, which effectively
acts as a transformer with dense self-attention. While the attention mechanism should, in theory,
learn the structure relevant to the task, this approach failed to produce good results, even for simple
tasks.

One Big Network. Instead of using three separate networks in sequence (as described in Section C),
we experimented with a single larger network, which led to a significant drop in performance. We
hypothesize that this is because, early on, the nodes lack sufficient information to reason about ac-
tions, causing much of the computation to be wasted and potentially resulting in conflicting learning
signals.

More Gripper Nodes. We express the robot state as a set of six nodes in the graph. In theory,
we can use an arbitrary number (> 3) of such nodes, allowing more flexible aggregation of relevant
information. We experimented with different numbers of such nodes and observed minimal changed
in performance, while the computational requirements increased significantly.

No Pre-trained Geometry Encoder. During the training of Instant Policy, we keep the geometry
encoder frozen. We experimented with training this model from scratch end-to-end, as well as fine-
tuning it. Training from scratch did not work at all, while fine-tuning resulted in significantly worse
performance. We also experimented with larger sizes of the encoder and saw no improvement,
indicating that the geometry information was already well represented.

Homogeneous Graph. Instead of using a heterogenous graph transformer, which processes differ-
ent types of nodes and edges using separate sets of learnable weights, we tried using a homogeneous
variant with distinct embeddings added to the nodes and edges. This approach resulted in signifi-
cantly worse performance, given the same number of trainable parameters. This indicates that by
not sharing the same weights, different parts of the network can better focus on aggregating and
interpreting relevant information, resulting in more efficient learning.

Predicting Waypoints. Initially, we tried predicting spare waypoints instead of low-level actions,
e.g. velocities, that progress the execution of a task. We found, that because of these waypoints
represent larger end-effector displacements, predicting them with high precision was challenging.
Intuitively, this is the result of the increased action space that, when normalised, needs to be repre-
sented in an interval [−1, 1].
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Larger Learning Rates. For our experiments, we used a relatively small learning rate of 1e−5. To
speed up the training process, we tried increasing it. However, with increased learning rate we found
the training process to be unstable, resulting in large gradients and increasing training loss. We also
tried using several different optimisers, using AdamW [42] resulting in the best performance.

I Cross-Embodiment Transfer

As described in Section 4.2.1, our approach allows us to provide demonstrations using one embod-
iment (e.g. using human hands) and instantly deploy a policy on a robot, given a mapping between
different embodiments is known. This is because our observations are composed of segmented point
clouds that do not include points on the robot and its end-effector pose. Thus, by mapping the pose
of a human hand to the robot’s end-effector pose, we can effectively obtain the same observations. In
our experiments, we achieve this mapping using a hand keypoint detector from Mediapipe [45] and
manually designing a mapping between these key points and the corresponding robot’s end-effector
pose. We model the position of the end-effector to be represented by the midway position between
the index finger and the thumb and estimate the orientation using an additional point on the palm
of the hand. In this way, we effectively overparametrise the SE(3) pose of the hand, modelled as a
parallel gripper, using a set of positions. This allows us to complete simple tasks, such as grasping
or pick-and-place. However, for more precise tasks, such a crude mapping can be insufficient. It
could be addressed by using more elaborate mappings between human hands and robot grippers, for
example, as done by [46].

J Modality Transfer

Using our graph representation together with network architecture, discussed in Section C, results
in a clear information bottleneck with all the relevant information from the context aggregated in
a specific set of nodes (ϕ(Gc(σ(Gt

l ), {σ(G1:L
l )}N1 ))). Information present in the nodes of the graph

representing the current information holds all the necessary information to compute precise robot
action appropriate for the current situation, and a trained ψ(.) has the capacity to do it. We exploit
this bottleneck and learn to approximate it using the current observation and a language description
of a task and utilise a frozen ψ(.) to compute the desired robot actions in the same way as done when
the context includes demonstrations. We learn this approximation using the local graph representa-
tion of the current observation Gt

l and a language embedding of the task description flang, produced
by Sentence-BERT [47]. We use a graph transformer architecture, similar to the one used to learn
σ, and incorporate flang as an additional type of node in the graph. We train this network using a
language-annotated dataset comprising demonstrations from RLBench and rollouts from our exper-
iments, along with a contrastive objective. At inference, we provide a language description of a task
and, based on the current observation, compute the embeddings of the aforementioned bottleneck.
We then use it to compute robot actions that are executed closed-looped, allowing for zero-shot gen-
eralisation to tasks described by language. Although showing promising performance using only
a small language-annotated dataset, further improvements could be achieved by incorporating se-
mantic information into the observation, using a variational learning framework and expanding the
dataset size. We leave these investigations for future work.
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