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Abstract

We study the complexity of learning real-valued Multi-Index Models (MIMs) un-
der the Gaussian distribution. A K-MIM is a function f : R? — R that depends
only on the projection of its input onto a K-dimensional subspace. We give a
general algorithm for PAC learning a broad class of MIMs with respect to the
square loss, even in the presence of adversarial label noise. Moreover, we estab-
lish a nearly matching Statistical Query (SQ) lower bound, providing evidence
that the complexity of our algorithm is qualitatively optimal as a function of the
dimension. Specifically, we consider the class of bounded variation MIMs with
the property that degree at most m distinguishing moments exist with respect to
projections onto any subspace. In the presence of adversarial label noise, the com-
plexity of our learning algorithm is d° (™) 2Py (K/€) For the realizable and inde-
pendent noise settings, our algorithm incurs complexity d°(") 2P0l (K) (1 /¢)O(K)
To complement our upper bound, we show that if for some subspace degree-m dis-
tinguishing moments do not exist, then any SQ learner for the corresponding class
of MIMs requires complexity d*("). As an application, we give the first efficient
learner for the class of positive-homogeneous L-Lipschitz K-MIMs. The result-
ing algorithm has complexity poly(d)2P°Y (KL/€) This gives a new PAC learning
algorithm for Lipschitz homogeneous ReLLU networks with complexity indepen-
dent of the network size, removing the exponential dependence incurred in prior
work.

1 Introduction

A common assumption in supervised learning is that real-world data possess hidden low-
dimensional structure, in the sense that the relationship between the features is of a lower-
dimensional nature. A natural formalization of this principle leads to the notion of a Multi-index
model [EJS81), [Hub&5, [Li91), [HL.93| [XTLZ02, X1a08]], defined below.

Definition 1.1 (Multi-Index Model (MIM)). A function f : R¢ — R is a K-MIM if there exists
a K-dimensional subspace W C R¢ such that f(x) = f(xw ) for all x € R, where xyy is the
projection of x onto W. The special case of &' = 1 corresponds to Single-Index Models (SIMs).

A few comments are in order. First, the dimension K of the hidden subspace is typically assumed
to be significantly smaller than the ambient dimension d. Second, certain regularity assumptions
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on the target class are required for learning to be (even information-theoretically) possible. MIMs
can be viewed as a lens for studying neural networks and other natural function classes. In re-
cent years, we have witnessed a resurgence of research interest on learning SIMs and special cases
of MIMs; see,e.g., [DH18, IDKKZ20, [DK20, |AGJ21, IDKTZ22| ICKM22, WZDD23| |GGKS23,
DPLB24, [ZWDD24| WZDD24| [DIKZ25| [ZWDD23]| and references therein. See for
a summary of related work. Yet, our understanding of the computational complexity of learning
MIMs remains limited, especially in the presence of noisy data.

The main result of this paper is an efficient robust regression algorithm, with respect to the square
loss, for a broad class of MIMs. We complement our upper bound with a nearly matching Statistical
Query lower bound, providing evidence that the sample complexity of our algorithm is qualitatively
optimal—as a function of the dimension—for computationally efficient algorithms.

We start with the definition of learning in our context.

Definition 1.2 (Agnostic PAC Learning under Gaussian Distribution). Let C be a class of functions
f:R% — Rand D be a distribution of (x,y) over R? x R with D, equal to the standard Gaussian.
Given i.i.d. samples from D, the goal is to output a hypothesis h : R¢ — R such that with high prob-

ability the error err p (h) def E(x,y)~p[(y — h(x))?] is small, compared to OPT Lef inf e errp(f).

corresponds to the agnostic model [Hau92| [KSS94] that does not make any assump-
tions on the labels. The special case corresponding to OPT = 0 (when each label is consistent with
a function in the class) is known as realizable PAC learning [Val84]. Moreover, the goal is to find a
hypothesis with small loss—as opposed to identifying the parameters of the target function.

1.1 Our Results

We give a new algorithm for learning MIMs under fairly general assumptions. Essentially, our
algorithm is an iterative subspace finding method that learns better and better approximations V' to
the hidden subspace W. Our method succeeds under suitable conditions on the target MIM class.
Roughly, we need to know that, for any subspace V, either V' is a good enough approximation to W
(i.e., we can use it to learn f); or that by computing moments of x conditioned on the value of f and
the projection onto V', we can learn some previously undiscovered direction in . We additionally
require the technical conditions that the target function has bounded norm and bounded variation, as
the sample complexity of learning inherently scales with these bounds.

For two subspaces W, V of R?, denote by Wy, of {wy : w € W} which is itself a subspace. The
necessary condition for our function class is given in the following definition.

Definition 1.3 (Well-Behaved MIMs). Let d, K,m € Z4 and (,7,0 > 0. We define the class
F(K,m,(,T,0) as the set of all continuous and continuously differentiable almost everywhere K -
MIM functions f : R? — R which have the following properties:

1. Exon, [IVF &), Bxnr, [f2(x)] are finite and f is close to a bounded function in Lg-nor

2. For any subspace V' C R and any distribution D on R< x R with Dy = Ny such that err p(f) <
¢ either (a) there exists g : V' — R such that Ex, [(f(x) — g(xv))?] < 7, or (b) with non-
trivial probability over z ~ Ny independent of x there exists a degree at most m, zero-mean, unit
variance polynomial p : U — R, where U = Wy, . and W is the hidden K -dimensional subspace
corresponding to f, such that Ey  (p, xy =zy) [Exn,[p(x0)|xv = z2v,y = yol?] > 0.

Our main algorithmic result is the following:

Theorem 1.4 (Robust Regression for Well-behaved MIMs). Let D be a distribution on R? x R with
Dy = Ny. There exists an agnostic PAC learner for F(K,m,(,T,0), where ¢ > OPT + ¢, that
draws N = dO(m)opoly, (K/(€9)) j i d. samples, runs in poly () time, and computes a hypothesis
h such that with high probability errp(h) < 7+ OPT + e

We establish a similar algorithmic result for the realizable and independent label
noise settings. In these (easier) settings, the complexity of our algorithm becomes
dO(m)gpely(K) (1 /6)O(K)poly(1/0), ie., we incur exponential dependence only on K. This
is because in these settings the label is independent of the irrelevant subspace W+, ensuring that

IThis is a mild assumption which holds, e.g., when the function has bounded 2.1-degree moment.



every direction extracted by our algorithm lies (up to estimation error) within W. For the details,
we refer the reader to

As we establish in [Theorem 1.10] the d™ complexity dependence is qualitatively optimal in the
Statistical Query model, even in the realizable (clean label) setting.

As an application of our general algorithmic technique, we obtain the first learner for positive-
homogeneous Lipschitz MIMs whose complexity is a fixed-degree polynomial in the dimension.

Definition 1.5 (Positive-Homogeneous Lipschitz MIMs). For K € Z, and L > 0, we define Hx, 1,
to be the class of all L-Lipschitz and unit 2-norm K-MIMs f : R? — R such that f is positive-
homogeneous, i.e., f(tx) =t f(x) forall t > 0,x € R%.

We note that H 1, is a broad nonparametric class containing various MIMs of interest. For example,
it contains the class of Lipschitz and homogeneous ReLU networks (since the ReLU activation is

itself positive-homogeneous). As an application of our general algorithm, we show:

Theorem 1.6 (PAC Learning Mg ). Let D be the distribution of (x, f(x)), where x ~ Ny and
f € Hi 1. There exists an algorithm that draws N = d? 20(K°L*/€) i d. samples from D, runs
in time poly (N), and returns a hypothesis h such that with high probability errp(h) < e.

As an immediate corollary of we obtain a new algorithm—with qualitatively better
complexity—for homogeneous Lipschitz ReLU networks. Let Fg g 1, be the class of L-Lipschitz
functions of the form f(X) = WD¢(WD_1(' o ¢(W1X) e ))7 where (b(z) = max{z7 0} is the
ReL.U activation, W; € RFi+1%ki i ¢ [D — 1], with k; = d and kp = 1, rank(W;) < K, and
S =P k. Since Fs k.1, C H,1, we obtain the following.

Corollary 1.7 (Learning ReLU Networks). Let D be the distribution of (x, f(x)), with x ~ Ny
and f € Fs 1. There is an algorithm that draws N = d> QO(K*L?/e%) samples from D, runs in
poly(NN) time , and returns a hypothesis h such that with high probability errp(h) < €.

improves on the prior work of [CKM22] by eliminating the complexity dependence
on the network size S (on which the prior algorithm of [CKM?22]] had an exponential dependence).

We now proceed to describe our Statistical Query lower bounds. We start with the model definition.

Definition 1.8 (Statistical Query Model). Let D be a distribution on R%. A statistical query is a
bounded function ¢ : R? — [0, 1]. We define STAT(7) to be the oracle that given any such query
g, outputs a value v such that |[v — Ex.p[g(x)]| < 7, where 7 > 0 is the tolerance of the query. A
Statistical Query (SQ) algorithm is an algorithm whose objective is to learn some information about
an unknown distribution D by making adaptive calls to the corresponding STAT(7) oracle.

Our SQ lower bound relies on the existence of a distribution on labeled examples that has similar
low-degree moments as the standard Gaussian projected onto some subspace. Namely, for a dis-
tribution (x, %) supported on R%*! and an appropriate subspace V' C R, the distribution of xy, .
conditioned on any fixed value of xy, and y matches its first 7m moments with A (0, ;-1 ) (the stan-
dard Gaussian projected onto the subspace V), where II, . denotes the projection matrix of the
subspace V.

Definition 1.9 (Relative Matching of Degree-m Moments). Let m € Z, A be a distribution of v
supported on R™ and U C R™ be a subspace. We say that A matches degree-m moments relative to
the subspace U (with the standard Gaussian projected onto UU1) if for almost all ¥ € U, under the
distribution of v = vy, for all m/ < m it holds Ey. ajv, —v[(Vy+ o] = EVNN(O,HUL)[V(X)m/]’

where we denote by v®™ the m/-fold tensor product.

We are now ready to state our SQ lower bound for agnostic PAC learning of K-MIMs under the
Gaussian distribution.

Theorem 1.10 (SQ Lower Bound for Learning K-MIMs). Let C be a class of rotationally invariant
K-MIMs on R%. Suppose there exist m € Z, 7 > 0, and a joint distribution D of (x,y) supported
on R?® x R with Dy equal to Ny such that for some subspace V. C R%, we have:

1. The distribution D matches degree-m moments relative to the subspace V x R, where the extra
R contains the label; and



2. Any function h : R? — R has E(x ,)~p[(h(xv) — y)*] > 7.

Then, under the mild assumption that the extreme values of y have small contribution to the variance,
the following holds: for d sufficiently large compared to K and m, and ¢ € (0, 1), any SQ algorithm
that learns C within error substantially better than T given OPT < inf.cc errp(c) requires either

a query to STAT (d_(l_c)m/4) or 247 many queries.

Since a query to STAT(7) requires (1/72) samples to simulate in general, the intuitive interpre-
tation of our SQ lower bound is the following: any simulation of an SQ algorithm for our learning
task using samples, either requires d(*=¢)/™/2 samples or exponential in d° time.

Note that[Theorem 1.10]is essentially (up to some technical conditions on each side) a converse to
Theorem [I.4] In particular, Theorem [I.10] says that if there is a subspace V' so that it is neither
the case that y is 7-close to a function of Xy nor is there a non-trivial moment conditioned on xy
and y of degree at most m, then it is SQ-hard to learn (with queries of d~?("™) accuracy) to error
much better than 7. On the other hand, Theorem [I.4]says that if for every subspace V we either are
approximated by a function of xy, or have a non-trivial conditional moment, then we can learn to
error roughly 7 in time d°("™) times some function of the other parameters.

It is worth pointing out that an SQ lower bound for realizable learning of K-MIMs can be obtained
here as a corollary of[Theorem 1.10|by additionally having that OPT = inf.cc errp(c) = 0.

Both [Definition 1.9)and the corresponding SQ lower bounds for learning MIMs can be generalized
for approximate moment-matching and for more general label spaces; see[Section C|

1.2 Technical Overview

General Algorithm. Intuitively, our plan is to first estimate the hidden subspace, W, and then to
use a brute-force technique to learn a distribution that depends on K dimensions. A straightforward
approach to implement this plan is to use the method of moments. Since (in the noiseless case) y de-
pends only on the components of x within W, any non-vanishing moments must lie entirely within
W . Unfortunately, this approach can perform poorly—even for simple function classes, such as
linear combinations of ReLUs. Specifically, [DKKZ20] showed that there exist linear combinations
of k£ ReLUs whose first kK moments vanish. This implies that any purely “moment-based” strategy
would require at least d*(*) sample and time complexity. The work [CKM?22] improved on this
(for Lipschitz and homogenerous ReLU networks) by considering a more powerful test: examining
moments of x conditioned on y falling within a specified range (or, equivalently, analyzing moments
of indicator functions applied to y). While this broadens the power of the algorithm, simply com-
puting moments in one shot may still be insufficient to obtain near-optimal algorithms. In particular,
[DIKZ25]] presents a class of Boolean functions for which no constant number of moments suffices
to learn the hidden subspace. However, a two-stage procedure—first using moments to identify a
lower-dimensional subspace V', and then leveraging additional moments conditioned on the projec-
tion onto V' —can successfully learn the full subspace.

This approach underlies our algorithm (see LearnMIMs). We employ an iterative approach that
constructs progressively larger subspaces V. At each stage, we analyze the moments of x condi-
tioned on y lying within a small range and the projection of x onto V falling within another localized
region. If any of these conditional moments exhibits significant correlation with a particular direc-
tion (which we can detect using spectral methods), we augment V' by adding that direction. We
repeat this process for several iterations, and then learn a function of the projection onto V' via
brute-force search.

This method does not work for all functions, but is successful for functions that are suitably well-
behaved. In particular, we require that at each stage, either at least one of the discovered directions
correlates non-trivially with the hidden subspace W (indicating progress), or that the current sub-
space V' already contains sufficient information to learn the target function to suitable error. In
particular, we aim to ensure that for every function f in our class (possibly with added noise) and
every subspace V/, either f is well-approximated by some function of the projection onto V' (within
the allowable error tolerance of our learner), or there exists a neighborhood N C V and an interval
I C R such that, conditioned on xyy € N and y € I, the distribution of x exhibits a non-trivial
moment in some direction in Wy .. To achieve this, we prove that a weaker condition actually suf-
fices. This condition essentially states that either the function is close to a function of the projection



onto V, or that every noisy version of the function—with a small amount of additional additive

noise—exhibits distinguishing moments (see |Proposition 2.2). To make the algorithm work, we
also need a few other minor technical assumption to ensure that it is sufficient to condition on small

neighborhoods. For the full condition, see

SQ Lower Bound. While the aforementioned condition might not appear especially natural, we
show that it is essentially necessary—in the sense that we establish a nearly-matching lower bound
in the Statistical Query (SQ) model. In particular, if we have a rotationally-invariant function class
containing some function f that does not satisfy this condition—namely, for some subspace V, f is
neither close to a function of xy nor is there some conditioning on y and xy that leads to non-trivial
low degree moments—then we prove a lower bound for learning this function class to suitably small
error in the SQ model. In particular, if we rotate this function f and the joint distribution of (x,y)
about V', we have a distribution that—once we condition on the value of ¥ and xy—we end-up with
a random rotation of the distribution A, y,,, where A, ., is the distribution of xy,. conditioned on
y and xy . Furthermore, A, ,, matches its first 7 moments with the standard Gaussian projected
onto the subspace V*. This is an example of a Relativized Non-Gaussian Component Analysis
(RNGCA) problem. Given the moment-matching property, one would expect the following: the
SQ-complexity of distinguishing between this distribution and the one where xy, 1 is independent of
xy and the y is d*2(™). Since the latter distribution cannot be learned within any error better than the
error of learning y as a function of xy (which by our assumption is large), this provides our learning
SQ lower bound.

Unfortunately, while this kind of SQ lower bounds for Non-Gaussian Component Analysis (NGCA)
are well-established [DKS17], the distributions A, , will likely not be continuous with respect to
the standard Gaussian. In particular, they will not have finite chi-squared norm with respect to the
standard Gaussian. This rules out the traditional SQ dimension-based arguments for proving the
desired lower bounds. Recent work [DKRS23|] showed that these kinds of SQ lower bounds can
be proven with just moment-matching and no assumption on the Chi-squared norm. However, that
work did not prove these bounds for RNGCA, i.e., could prove lower bounds for learning a single
Ay x, , but not the mixture over many of them (as we vary y and xy). Fortunately, this can be fixed
by generalizing the techniques of [DKRS23] to our more challenging context. Specifically, we show
that an arbitrary bounded SQ query function ¢ is overwhelmingly likely to have expectation over
the joint distribution of (x,y) very close to the averaged expectation over random rotations of this
distribution described above. By mirroring the analysis of [DKRS23||, we prove this by using Fourier
analysis. We note that the low-degree Fourier coefficients of A, x, vanish (or nearly vanish) and so
contribute little to the expectation of g; and that the higher-degree Fourier coefficients are unlikely
to correlate well with ¢ after the random rotation is applied.

Concrete Applications. Given our general algorithm, our applications hinge on establishing struc-
tural results for the relevant function classes. In particular, in order to obtain an algorithm for a
function class 7, we need to show that it satisfies Definition T.3|with suitably favorable parameters.
Specifically, we need to establish that, unless a function in F is already close to depending only on
the projection onto V/, it exhibits non-trivial conditional low degree moments.

Our main application is to the class of positive-homogeneous Lipschitz functions— a broad, non-
parametric generalization of the ReLU networks studied in [CKM22]. Here we show that second
moments are sufficient. The basic idea is that if f is not close to zero, then there exists some x for
which | f(x)] is reasonably large. This implies that | f(Ax)| will be quite large for suitably large A.
On the other hand, by the Lipschitz property, | f(x)| can only be large if ||xy || is large. Therefore,
the set S; = {x : |f(x)| > 7} will exhibit a non-trivial second moment along W for sufficiently
large 7. This argument yields at least one relevant direction. Moreover, given a subspace V', we
can apply the same reasoning to the residual function f(x) — f(xy ). This shows that either f(x) is
close to f(xy ) (i.e., a function of the projection onto V'), or f exhibits a non-vanishing conditional
moment. Consequently, by approximating the Boolean function 1(| f(x) — f(xv)| > 7) by a piece-
wise constant function over a partition consisting of cubes in xy and intervals in y, we show that
there exists a partition element for which the conditional distribution exhibits a non-trivial moment.
This, in turn, implies that the function class is well-behaved, so our algorithm applies.

An additional application is for the class of polynomials that depend only on projections onto a
low-dimensional subspace, recovering the upper bounds of [CM20]. See



1.3 Related Work

Due to space limitations, here we record the most directly relevant works. For a detailed overview,
see Roughly speaking, our algorithmic understanding of learning SIMs is currently
fairly complete, both for parameter recovery [DHI1S8| |AGJ21l IDPLB24] and agnostic PAC learn-
ing [DKTZ22, WZDD24l [ZWDD24, ZWDD25]|. On the other hand, our understanding of the effi-
cient learnability of MIMs is somewhat more limited. A number of papers have developed efficient
learners for interesting special cases, including low-dimensional polynomials [CM20] and homoge-
neous ReLLU networks [CKM22]. [ABAB™21, [ABAM22, [ABAM23] introduced a complexity no-
tion (leap complexity) for learning structured MIMs, which turns out to essentially characterize the
Correlational SQ (CSQ) complexity of learning under certain assumptions. More recently, [JMS24|]
adapted the notion of leap complexity to characterize the SQ hardness of hidden-junta functions (a
natural special case of MIMs). The reader is referred to [BH25] for a very recent survey on the topic.

[DPLB24]| defined the notion of the generative exponent, which plays the role of our parameter m in
characterizing the complexity of parameter recovery for SIMs. As explained in Appendix [C.3] our
Definition [T.3]reduces to a modification of the generative exponent when K = 1. Such a modifica-
tion is necessary, to account for the fact that we characterize the complexity of PAC learning, rather
than parameter estimation, even in the presence of adversarial label noise. Thus, our techniques can
be viewed as a generalization of [DPLB24] to multi-index models.

Comparison with [DIKZ25] At the technical level, the most closely related work to ours is
[DIKZ25], that established a discrete-analogue of our results in the context of classification for
MIMs with finite output space. While our work broadly follows the approach of [DIKZ25], the
transition from discrete-valued MIMs to those with infinitely many outputs, as well as the shift from
Lg-loss to Ly-loss, requires significant changes in the mechanics of our results and the analysis.

In terms of our algorithm, perhaps the most significant change is that we can no longer condition
on specific values of y—since we do not expect to observe repeated y values. Instead, we need
to condition on y falling within a small interval. Additionally, since y is now unbounded and we
are working with the Lo loss, establishing convergence results for our piecewise constant approxi-
mations becomes more challenging. Finally, [DIKZ25] used a technical condition on the Gaussian
surface area of the level-sets to allow conditioning on small rectangles, and to guarantee that the
learned directions are sufficiently distinct from those already identified. Here we need to design
new conditions to deal with these issues. Regarding our SQ lower-bound analysis, conditioning on
a given value of y in this setting would likely yield a singular distribution. So establishing the de-
sired bounds requires us to develop new machinery for proving lower bounds for relativized NGCA
without having bounds on the chi-squared divergence. Another technical complication arises in our
reduction from testing lower bounds to learning. In particular, we need to be able to approximate
the Lo loss within the SQ framework. While this is essentially trivial for the L loss, here we need
to add some technical conditions to make it feasible, as y might be unbounded.

Comparison with [DLB25] We compare our contributions to the independent work of [DLB23]].
Roughly speaking, both works study the task of learning MIMs and obtain efficient algorithms with
qualitatively similar sample complexities with respect to the dimension. This similarity notwith-
standing, the two works address fundamentally different objectives:

1. PAC Learning vs. Parameter Recovery: Our work focuses on the PAC learning task, i.e.,
the task of obtaining a hypothesis with low prediction error (without requiring to identify the
underlying subspace). In contrast, [DLB235]] focuses on parameter recovery, aiming to precisely
estimate the underlying subspace. Note that PAC learning may be feasible in settings where
parameter recovery is information-theoretically impossible. Specifically, it is possible to design
very simple functions that admit accurate predictors even when the subspace is not identifiable.
In[Section C.3| we elaborate on this distinction in the context of the prior work [DPLB24]| (which
focused on single-index models).

2. Agnostic Learning/Adversarial Label Noise: Our work provides an algorithm with provable
guarantees for both the independent label noise and the agnostic settings. In contrast, the work
of [DLB25] focuses on the realizable setting.



Interestingly, when restricted to the realizable setting and when parameter-recovery is possible, one
can show that our and the “generative-leap exponent” of [DLB25] are essentially
equivalent. This can be shown by roughly the same analysis as presented in for the
generative exponent (the single-index special case). In other words, our complexity measure from
can be viewed as a generalization of the “generative leap” to the potentially noisy
setting.

Finally, we note that the sample complexity dependence of the algorithm in [DLB23] is, roughly,
dmax{l,m/2} (excluding factors that depend on e and the underlying activation), is quantitatively
optimal with respect to the dimension in the class of SQ algorithms (as follows from our SQ lower
bound). Our work focused on obtaining a qualitative bound of the form d°("™), which suffices for
the purpose of characterizing polynomial learnability of MIM:s. outlines a simple
approach to obtain a sample bound of d/”/2! in our setting.

2 General MIM Algorithm

As mentioned in to apply the moment method effectively to such a general class of
functions, we need to condition on x and y falling within certain ranges. To achieve this, we par-
tition the space of x and y into sufficiently small regions—specifically, regular cubic regions for
x and intervals for y. We prove that, as long as these partitions are fine enough, they can detect
distinguishing moments. Formally:

Definition 2.1 (e-Approximating Discretization). Let V' be a subspace of R?. We define an -
approximating discretization of V' x R as a pair (S, Z) satisfying the following. The set S partitions
the subset of V', consisting of all vectors whose coordinates in a fixed orthonormal basis of V" are less
than /log(1/€) in absolute value, into cubes of side length € (with respect to the same orthonormal
basis). The set Z partitions the interval [—1/¢, 1/¢] into intervals of length €.

Moreover, for a partition S, we denote by hs the piecewise constant function that for every S € S
outputs hs(x) = E[y | x € S]forall x € S.

As mentioned in our algorithm, LearnMIMs, performs iterative subspace approxi-
mation. At each step ¢, it updates a list of vectors L; (Line |3c| of LearnMIMs) so that the span
V; = span(L;) becomes a better approximation of the hidden subspace W. Specifically, at each
iteration, the algorithm computes a sufficiently fine discretization (S, Z) of the space V; x R (Line
of FindDirection). Using the assumption that the distribution is well-behaved (Definition 1.3)), we
can show that a non-negligible fraction of the discretization cells exhibit distinguishing moments.

As aresult, we extract relevant directions by computing the top eigenvectors of the influence matrix
corresponding to a regression polynomial fitted within each cell (Line 3| of FindDirection). How-
ever, since the number of discretization cells depends exponentially on dim(V;), we must apply a
filtering step to avoid adding too many vectors. To this end, we construct a matrix U, which is the
weighted sum of influence matrices across all discretization cells, with weights given by the proba-
bility mass of each cell (Line of FindDirection). It is not difficult to show that, since a constant
fraction of the cells exhibit distinguishing moments, there exists an eigenvector of U with a suffi-
ciently large eigenvalue that correlates with a distinguishing moment, thereby revealing a relevant
direction. Once no further distinguishing moments can be found, since the target function satis-
fies the current subspace V; forms a good enough approximation of W. Finally, the
algorithm returns a piecewise constant function hgs, defined over a sufficiently fine partition S of V;.

The main part of our analysis is to show that, at each iteration, as long as V; is not sufficient to
compute a hypothesis with small error, the algorithm will add a direction that correlates with IV. By
applying this argument iteratively, we can show that improvement will eventually stop and we will
have a good predictor.

Proposition 2.2 (Estimating a Relevant Direction). Let D be distribution supported on R x R
whose x-marginal is Ny. Let f : R? — R be such that f € F(K, m,OPT + ¢, 7,0), and denote
by W a K-dimensional subspace defining f. Let V be a k-dimensional subspace of R® and let S
be a partition of V' into cubes of width (e/k)°™), IfE(x,y)~p|(hs(x) —y)?] > 7+ OPT +¢, then
FindDirection, when given N = d°™) (k/e)°®) /6OM) samples, runs in time poly(N), and with



LearnMIMs: Robust Regression for Well-Behaved MIMs

Input: Accuracy € > 0, sample access to a distribution D over R? x R for which there exists a
K-MIM function f € F(K,m,OPT + ¢, 1,0), parameters m, o, K.
Output: A hypothesis h such that with high probability errp (k) < 7+ OPT +e.

1. Let T be a sufficiently large constant-degree polynomial in m, K, 1/0,1/e.
2. Initialize Ly < 0, N « d°(™)2T log(1/6).
3. Fort=1,...,T
(a) Draw aset Sy of IV i.i.d. samples from D.
(b) & + FindDirection(span(L;), Si, €, 0, m, K).
() Lyy1 + L U&.
4. Construct an e-approximating discretization (S,Z) of span(L;) x R.
5. Draw N i.i.d. samples from D and empirically approximate the piecewise constant function hs.
6. Return hs.

Algorithm 1: Learning Well-Behaved MIMs

FindDirection: Estimating a relevant direction

Input: A subspace V of R%, and a set of N samples from a distribution D over R? x R for which
there exists a K-MIM function f € F(K, m,OPT + ¢, 1, 0), parameters ¢, o, m, K.
Output:A set of unit vectors &£.

1. Let A be a sufficiently small polynomial in o, ¢, 1/K.
2. Construct an e-approximating discretization (S,Z) of V' x R.

3. Foreach S € S and I € Z, perform degree-m polynomial regression on 1(y € I) over the
samples, resulting in a polynomial pg j(xy-1).

4. LetU = ZSES,IEI ExNDx [va,I(XVL)VpS7](XvL)T | X € S]Pr(x’y)wD[S].

5. Return the set £ of unit eigenvectors of U with corresponding eigenvalues at least .

Algorithm 2: Estimating a relevant direction

high probability returns a list of unit vectors & of size |E| = (mK/(ec))®W), such that for some
v EE v = (eo/(mK))°W.

We sketch the analysis of our driving proposition bellow. Full details of the proof are provided in
[Section DI

Proof Sketch of [Proposition 2.2} Let w(!), ..., w(¥) be an orthonormal basis of W and denote by

U the matrix computed at Line 4] Let Z a partition of [—1/e?™) 1/e2()] to intervals of width
o(1)
e,

Our strategy for proving the proposition essentially involves three steps: (i) show that Condition
(2b) of Definition 1.3]is satisfied; (ii) prove that the discretization of V' x R into cube-interval pairs
is sufficient to detect moments; and (iii) argue that, given the observed moments, there exists an
eigenvector of U corresponding to a large eigenvalue that has a non-trivial projection onto W. We
briefly discuss the proof of each of these steps.

Notice that, to establish the first step, it suffices to show that if E[(f(x) — hs(x))?] > T + ¢,
then E[(f(x) — g(xV))?] > 7 forall g : V — R. This follows from the assumption that f is
a function of bounded variation, i.e., Exn,[[|Vf(x)||?] is bounded, and that f is approximately
bounded: any such function can be approximated arbitrarily well by piecewise-constant functions
over a sufficiently fine partition of cubes covering all of R¢ except for a set of small mass under N;.
Hence, Condition (2a) is not satisfied, therefore Condition (2b) is (see Definition 1.3).



Step (ii) holds essentially because, by assumption, the distinguishing moment condition applies to
all label random variables ' that are (OPT +¢)-close to f in L. Specifically, we construct a label ¢/
that remains close to f in two steps: first discretizing and then averaging y over boxes. We discretize
y by rounding it to the nearest multiple of ¢, thereby partitioning the label distribution into intervals
of width e. Then, since f has bounded variation, for each cube S € S the value f(x) is close to the
average label over that cube, so we can do the same for the label. By combining these two steps, we
obtain a label random variable y’ that is discretized over small intervals, is conditionally independent
of a specific point x given a cube S € S, and remains close to f. Using this independence yields the
distinguishing-moment condition on the joint discretization of xy- and y. Moreover, since Condition
(2b) ensures that distinguishing moments hold for a non-trivial fraction of xy,, it follows that we
observe these moments conditioned on a cube S with probability at least a: over S, for some o > 0.

Step (iii) follows because the regression polynomial pg ; must match low-degree Hermite coeffi-

. . . def - .
cients with the function g(x) = Ex ,~p[l(y € I) | x € 5], and hence must exhibit sufficient
variation along directions where g has a nontrivial low-degree moment, which in turn implies a
nonzero directional derivative in these directions.

Recall that with probability @ > 0 over S € & there exists some ¢ € [K] such that
E[(w® - Vps.1(xy1))?] = Q(o/K). This implies that, for some i € [K], with probability o/ K
over S it holds that E[(w(® - Vpg (xy1))?] = Q(0/K). Therefore, the quadratic form of U for
the corresponding w(?) is large, i.e., (w(¥) TUw(®) = Q(o/K?). Moreover, from well-known facts
about polynomials over the standard Gaussian, we obtain that ||U||p < m/poly(e).

Finally, by a standard linear algebraic fact, if we consider the unit eigenvectors of U corresponding
to eigenvalues greater than O(o/K?), we obtain at most (|U|pK/c)?() such vectors. Among
them, at least one achieves correlation at least (¢/(|U|rK))°") with the aforementioned w(?).

Furthermore, we note that the number of samples specified in the statement is precisely the num-
ber required to perform polynomial regression with enough accuracy to observe these low-degree

moments with high probability. This completes the proof sketch of O

3 SQ Lower Bounds for MIMs

In order to prove our SQ lower bound for learning MIMs, we develop the framework of Rela-
tivized Non-Gaussian Component Analysis (RNGCA), a generalization of the previously developed
Non-Gaussian Component Analysis (NGCA) framework [DKS17, DKRS23||—where we allow the
hidden distribution to be a labeled distribution so that we can tackle the supervised MIM setting.
The main technical contribution of this section (Theorem 3.3) is an SQ lower bound for RNGCA.
Our SQ lower bounds for learning MIMs follow as an application of this general result. We believe
that our generic SQ lower bound for RNGCA will be of broader applicability.

We start by defining the family of relativized hidden-subspace distributions, which is a core ingre-
dient of the RNGCA framework.

We require some additional notation. We use Og C R*k with k < d to denote the set of all
d x k orthogonal matrices, i.e., the set of all matrices V such that VTV = I,. For two distributions
D1, Dy over X7, Xo, we use D1 ® D5 to denote the product distribution of D4 and D over X7 x Xo.
Definition 3.1 (Relativized Hidden-Subspace Distribution). For a joint distribution A of (z,y) sup-
ported on R* x R” and a matrix U € Oy, i, we define the distribution Pé as the joint distribution
of (z',y’) supported on R? x R™ such that

1. the joint distribution of (U z’,y’) is A; and
2. z},. is distributed according to A'(0, IT;1. ) independent of the value of (U2, y’), where U is
the column space of U and A/ (0, IT;; 1 ) is the standard Gaussian projected onto U~

That is, up to a rotation on R%, P4} is the distribution on R~ x (R* x R") given by N;_ ® A.

We now define the natural hypothesis testing version of the RNGCA problem. This suffices for
the purpose of proving hardness, as the learning version typically reduces to the testing problem.
Intuitively, the task here is to test whether there is a subspace such that the marginal distribution on
the subspace is not a standard Gaussian.



Definition 3.2 (Hypothesis Testing Version of Relativized Non-Gaussian Component Analysis). Let
d > k > 1 be integers. For a joint distribution A of (x,y) supported on R* x R™, one is given
access to a distribution D such that either: Hy: D = N; ® Ay, or Hy: D is given by P{‘J, where
U ~ U(Og). The goal is to distinguish between these two hypotheses Hy and H;.

We are now ready to give our main SQ lower bound result for this problem. Intuitively, our lower
bound states that if the distribution A of (z, y) matches degree-m moments relative to the subspace
with the standard Gaussian, then any SQ algorithm solving the RNGCA testing problem requires
complexity d*("). The reader is referred to for the generalization of [Theorem 3.3| with
approximate moment matching and generalized label spaces.

Theorem 3.3 (SQ Lower Bound for RNGCA). Let A € (0,1) and d,k,m € N with m even
and k,m < d*/logd. Let A be a distribution over R¥ x R™ that matches degree-m moments

relative to the subspace R™ (with the standard Gaussian on R*). Let 0 < ¢ < (1 — \)/4 and d be
sufficiently large. Then any SQ algorithm solving the d-dimensional RNGCA problem with hidden

distribution A (as defined in with 2/3 success probability requires either a query to
STAT (O, (d=((A=N/4=Im)) o 24" many queries.

It is worth noting that the non-relativized special case of[Theorem 3.3|(i.e., when n = 0) was already
proven in prior work [DKRS23]. It is important to note that [Theorem 3.3| cannot be derived using
[DKRS23] as a black-box. While a weaker version of [Theorem 3.3| could be potentially obtained
using techniques in previous works (see, e.g., [DKS17, IDKS19]), this would necessarily require the
additional assumption that x*(A, Ny ® Ay ) is finite. As a result, one would not be able to apply it
to even the simplest settings like realizable MIMs—as having noiseless labels would induce infinite
X?(A, N}, ® Ay). Our proof here builds on the earlier proof in [DKRS23]. Namely, we apply
a similar technique of truncating the x part of the distribution inside a ball, and then use Fourier
analysis on the truncated A. However, doing so for the labeled distribution A here would also mess
up the marginal distribution A, and change the notion of the norm in Fourier analysis. To deal with
this problem, our analysis employs a new reweighting technique to ensure the equivalence of norm
before and after the truncation. The detailed proof is given in

Given [Theorem 3.3] we are now ready to prove|[Theorem 1.10](see full proof in[Section C.2).

Proof sketch o The proof follows directly by embedding an RNGCA problem to
agnostic PAC learning of the class C. Let A’ be the distribution D in [Theorem 1.10]and W be
the K -dimensional relevant subspace of the -MIM c¢ that minimizes the error err 4/ (c). Let V be

the subspace satisfying the conditions in [Theorem 1.10/and U = Wy, ., where Wy, . def {wy :

w € W}. Without loss of generality, we assume that V" is the subspace spanned by the last dim(V)
coordinates, and U is the subspace spanned by the dim(U') coordinates immediately preceding those
of V, which can be arranged by an appropriate rotation.

Let (x,y) ~ A’. We define the distribution A for the RNGCA as the joint distribu-
tion of (x', (x”,y)) over RUM(U) 5 RAIM(V)+1 where x’ and x”’ each contains the coordinates of x
corresponding to U and V, i.e., x contains the part of the relevant subspace (of the optimal hypothe-
sis) outside V and (x”, y) contains V and the label y. Let D be the input distribution of this RNGCA
problem. Notice that D can be equivalently thought of as a labeled distribution supported on R% x R,
where we treat the coordinate corresponding to the y part as the label. If D is the null hypothesis
distribution, we would simply observe the production distribution of A/(0, Id—dim(v)) ® Ay, where
Ay is the marginal distribution of (x”, y). If we treat D as a labeled distribution, then any hypothesis
can only predict the label by the value of xy, therefore, no hypothesis 4 : RY — R can have error
errp(h) < 7 from the assumption. However, if D is the alternative distribution, the distribution we
observe is the product distribution of A/(0, Id,dim(U),dim(V)) ® A (up to applying a rotation). If
we treat D as a labeled distribution, since A contains the coordinates of A’ that span the relevant
subspace W of the optimal hypothesis, when given to the MIM algorithm, it is obliged to return a
hypothesis with squared error substantially better than 7.

Given the above discussion, we can simply give the distribution D to the MIM algorithm as a labeled
distribution over R x R and check the error of the output hypothesis. If the error is better than 7,
D must be the alternative hypothesis distribution. Otherwise, D is the null hypothesis distribution.

This completes the proof sketch of [Theorem 1.10 O
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are thoroughly proven in the supplementary material. The introduction describes how this
contribution resolves the open problem of characterizing the complexity of learning real-
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made in the paper.
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contributions made in the paper and important assumptions and limitations. A No or
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* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these
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2. Limitations
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plete proof for all statements in the supplementary material.
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* The answer NA means that the paper does not include theoretical results.
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they appear in the supplemental material, the authors are encouraged to provide a
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Question: Does the paper fully disclose all the information needed to reproduce the main
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sions of the paper (regardless of whether the code and data are provided or not)?
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Guidelines:
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whether the code and data are provided or not.
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taken to make their results reproducible or verifiable.

* Depending on the contribution, reproducibility can be accomplished in various ways.
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fully might suffice, or if the contribution is a specific model and empirical evaluation,
it may be necessary to either make it possible for others to replicate the model with
the same dataset, or provide access to the model. In general. releasing code and data
is often one good way to accomplish this, but reproducibility can also be provided via
detailed instructions for how to replicate the results, access to a hosted model (e.g., in
the case of a large language model), releasing of a model checkpoint, or other means
that are appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all sub-

missions to provide some reasonable avenue for reproducibility, which may depend

on the nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear
how to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to re-
produce the model (e.g., with an open-source dataset or instructions for how to
construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case au-
thors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [NA]

Justification: The paper is theoretical in nature and does not include code, data or experi-
ments.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not
be possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

 Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [NA]
Justification: The paper is theoretical in nature and does not include experiments.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of
detail that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropri-
ate information about the statistical significance of the experiments?

Answer: [NA]
Justification: The paper is theoretical in nature and does not include experiments.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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8.

10.

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

e It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* Itis OK to report 1-sigma error bars, but one should state it. The authors should prefer-
ably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of
Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [NA]
Justification: The paper is theoretical in nature and does not include experiments.
Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments
that didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]
Justification: Our research conforms in every respect with the NeurIPS Code of Ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: The work is theoretical and we do not see any major or immediate implica-
tions on society.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

o If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.
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» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact spe-
cific groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitiga-
tion strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The work is theoretical.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by re-
quiring that users adhere to usage guidelines or restrictions to access the model or
implementing safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]
Justification: This work does not use any assets.
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the pack-
age should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the li-
cense of a dataset.
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* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documenta-
tion provided alongside the assets?

Answer: [NA|
Justification: This work does not use any assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can
either create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the pa-
per include the full text of instructions given to participants and screenshots, if applicable,
as well as details about compensation (if any)?

Answer: [NA]

Justification: This work does not involve any crowdsourcing or research with human sub-
jects.

Guidelines:

e The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

* Including this information in the supplemental material is fine, but if the main contri-
bution of the paper involves human subjects, then as much detail as possible should
be included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, cura-
tion, or other labor should be paid at least the minimum wage in the country of the
data collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA|
Justification: This work does not involve research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research

with human subjects.

* Depending on the country in which research is conducted, IRB approval (or equiva-
lent) may be required for any human subjects research. If you obtained IRB approval,
you should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.
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* For initial submissions, do not include any information that would break anonymity
(if applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: LLMs where used only for writing, editing and formatting purposes.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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Appendix

Organization The appendix is structured as follows: In we discuss additional related
work. In we record the notation and mathematical background required in our technical
sections. The technical content of the appendix consists of two sections: [Section C|presents our SQ
lower bounds and [Section D|presents our algorithmic results.

A Related Work

The most closely related works to ours is [DIKZ25]] which studies the problem of learning discrete-
valued MIMs. In we highlight the technical and conceptual distinctions between our
approach and that of [DIKZ25]. However, for learning real-valued MIMs, there has been no prior
work establishing a characterization of the SQ complexity of the problem.

For the special case of SIMs, the problem is much better understood. Specifically, recent work
[DPLB24]] examined the complexity of parameter estimation for SIMs and identified a complexity
measure that, under certain assumptions, characterizes the SQ sample complexity. As we demon-
strate in our SQ lower bound strictly generalizes theirs, applying both to learning to
small-Ls error learning and parameter estimation whenever the MIM matches moments. More-
over, there has been a lot of algorithmic works for general classes of SIMs/GLMs from classical
works like [KKKS11]] to more recent works obtaining near optimal complexity and error guarantees
[DGK ™20, WZDD24, ZWDD24, ZWDD?253|, WZDD23].

Several works introduce CSQ complexity measures and algortihms for learning MIMs and
SIMs—e.g. the information exponent for SIM link functions [AGJ21| [DHI18], the leap complex-
ity [ABAB™ 21, [ABAM?22, [ABAM?23]] for MIMs. However, all of these measures yield only CSQ
guarantees, since they neither condition on the label y. Notably, [JMS24]] further generalized the no-
tion of leap complexity to characterize the SQ hardness of hidden-junta functions (which is a special
case of MIMs).

Moreover, recently there is a significant interest in learning several structured subclasses of MIMs.
Specifically [OSSW24]| studied the problem of learning sums of SIMs under a near-orthonormality
and [RL24] under a strict orthonormality assumption, providing both algorithms and lower bounds.
Iterative dimensionality reduction techniques have been used in the past for learning certain func-
tions families such as homogeneous ReL.U networks [CKM22] and polynomials in a few relevant
directions [CM20]. There has also been a lot of work [DDM™ 25| [TDD ™24, [KZM25] on the prob-
lem of weak subspace recovery for MIMs using a linear number of samples within the approximate
message passing framework.

Other works offer alternative guarantees, complexity under random bias [CMM25], gradient-flow
convergence and time bounds [SBH24], mean-field Langevin dynamics yielding global conver-
gence in infinite-width nets [MHWE25] and agnostic subspace-recovery learning with an oracle
[MHJE24].

B Preliminaries

Basic Notation For n € Z., let [n] 2o {1,...,n}. We will use lowercase boldface letters for
vectors and capitalized boldface letters for matrices and tensors. For x € R? and i € [d], x; denotes
the i-th coordinate of x, and ||x||; := (Z?Zl |x;|*)1/* denotes the £-norm of x. Throughout this
text, we will often omit the subscript and simply write ||x|| for the ¢3-norm of x. For a matrix
V € R"*™, we denote by || V|2, || V|| to be the operator norm and Frobenius norm respectively.
We will use x - y for the inner product of x,y € R%.

For a subspace V' of R, we denote by V= its orthogonal complement and by ITy its projection
matrix. For vectors x, v € R and a subspace IV C R denote by xy the projection of x onto V' and
by x, the projection of x onto the line spanned by v. For two subspaces V, W C R?, we denote by
Wy ={wy:weW}andby V+W ={w+v:weW,veV} note that Wy, and V + W are
both subspaces. Furthermore, for a set of vectors L C R?, we denote by span(L) the subspace of
R? defined by their span. We slightly abuse notation and denote by e; the i-th standard basis vector
in R%. We use S*~ 1 = {x € R" : ||x||2 = 1} to denote the n-dimensional unit sphere.
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We use the standard asymptotic notation, where O(-) is used to omit polylogarithmic factors. Fur-
thermore, we use a < b to denote that there exists an absolute universal constant C' > 0 (independent
of the variables or parameters on which a and b depend) such that a < Cb, 2 is defined similarly.
We use the notation g(t) < poly(t) for a quantity ¢ > 1 to indicate that there exists constants
¢, C' > 0 such that g(t) < C't°. Similarly we use g(t) > poly(t) for a quantity ¢ < 1 to denote that
there exists constants ¢, C' > 0 such that g(¢) > Ct°.

Tensor Notation For tensors, we will consider a k-tensor to be an element in (R%)®* 2 R4" This
can be thought of as a vector with d* coordinates. We will use A, ..., to denote the coordinate of
a k-tensor A indexed by the k-tuple (i1, ...,17). By abuse of notation, we will sometimes also use
this to denote the entire tensor. The inner product and £*-norm of a k-tensor are defined by viewing
the tensor as a vector with d* coordinates and then applying the standard definitions of the inner
product and #¥-norm for vectors. The inner product of two tensors will be denoted by (-, -). For a
vector v € R?, we denote by v®* to be a vector (linear object) in R . In addition, for a matrix

V € R¥™ we denote by V®* to be a matrix (linear operator) mapping R™" to R?". Also, we
define the set of orthogonal d x m matrices by Og., = {V € R>*™ | VIV =1,,}.

Probability Notation We use E,... p[z] for the expectation of the random variable x according to the
distribution D and Pr[€] for the probability of event £. For simplicity of notation, we may omit the
distribution when it is clear from the context. For a continuous distribution D over R%, we sometimes
use D for both the distribution itself and its probability density function. For two distributions
D1, D4 over a probability space €2, let dpv (D1, D2) o supgcq |Prp, (S) — Prp,(S)| denote the
total variation distance between D; and D5. For two continuous distributions Dy, D5 both over R¢,
we use x*(D1, D2) = [za D1(x)?/D2(x)dx — 1 to denote the chi-square norm of Dy w.r.t. Ds.

For a distribution D on a space X and two measurable functions f;, fo : X — R?, we define their

inner product w.r.t. D as (f1, f2)p B, [(f1(x), f2(x))], and define the L? norm of a function

fwrt. Das | flp def {f, f)}:,/Q. For two distributions D1, Dy over X1, X5, we use D1 ® D5 to

denote the product distribution over X; x Xs.

For a subset S C R? with finite measure or finite surface measure, we use U(S) to denote the
uniform distribution over S (w.r.t. Lebesgue measure for the volume/surface area of S).

We use 1 to denote the indicator function of a set, specifically 1(¢ € S) = 1ift € S and 0 otherwise.
For a joint distribution D of (x, y) over X x ), we use Dy and D, to denote the marginal distribution
of x and y and use Dx|,—, to denote the conditional distribution of x given y = 3’ (we will use the
notation Dy, as a shorthand when the variable y is used in the context). Let N (p, X)) denote the

d-dimensional Gaussian distribution with mean g € R? and covariance X € R%*?. For simplicity
of notation, we use Ay for the d-dimensional standard normal A/ (0, I).

Basics of Hermite Polynomials We require the following definitions.

Definition B.1 (Normalized Hermite Polynomial). For £ € N, we define the k-th probabilist’s
Hermite polynomials Hey, : R — R as Heg(t) = (—1)%et/2. %e_tz/? We define the k-th
normalized Hermite polynomial hy, : R — R as hy(t) = Hey(t)/Vk!.

Furthermore, we will use multivariate Hermite polynomials in the form of Hermite tensors (as the
entries in the Hermite tensors are rescaled multivariate Hermite polynomials). We define the Hermite
tensor as follows.

Definition B.2 (Hermite Tensor). For k € N and x € R?, we define the k-th Hermite tensor as

1
(Hr(X))i1in,..in = N Z ® (L) ® Xic -

Partitions P of [k] {a,b}€P {c}eP
into sets of size 1 and 2
For a function f : R? — Rand ¢ € N, we use f=¢ to denote f<¢(x) = Zf;:o(Ak, Hy (x)), where
A; = Exon,[f(x)H(x)], which is the degree-¢ approximation of f. We use f>¢ = f — f<¢
to denote its residue. We also remark that both our definition of Hermite polynomial and Hermite

tensor are “normalized” in the following sense: For Hermite polynomials, it holds ||h||2 = 1. For
Hermite tensors, given any symmetric tensor A, we have ||(A, Hy(x))]|2 = (A, A
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C Statistical Query Lower Bounds

In this section, we establish our SQ lower bounds for learning Multi-Index models, thereby proving
[Theorem .10

Organization. The structure of this section is as follows: In[Section C.1| we define a relativized
version of Non-Gaussian Component Analysis that is appropriate for supervised learning tasks and
establish an optimal SQ lower bound for it under appropriate conditions. In[Section C.2] we leverage
this general result to show our SQ lower bounds for learning MIMs, for both the realizable and the
agnostic settings. Finally, in we relate the conditions of our SQ lower bounds for
learning MIMs with prior complexity measures in the literature.

C.1 Statistical Query Lower Bounds for Relativized NGCA

In this section, we prove an SQ lower bound for Relativized Non-Gaussian Component Analysis
(RNGCA). The main result of this section is a generalization of handling more general
label spaces and approximate moment matching. We leverage this technical result in the following
subsection to prove our main SQ lower bounds for Multi-Index Models.

To be compatible with more general label spaces, we start with the following definitions generalizing
the relativized hidden-subspace distribution of and the hypothesis testing version of
RNGCA of [Definition 3.2} The main difference here is that we replace the space R", appearing in
[Definition 3.1|and [Definition 3.2] with a general space ).

Definition C.1 (Relativized Hidden-Subspace Distribution; Generalization of [Definition 3.1). For a
joint distribution A of (z,y) supported on R¥ x ) and a matrix U € Oy, we define the distribution
P as the joint distribution of (z’,y’) supported on R% x ) such that

1. the joint distribution of (UTz’,y’) is A; and
2. zj;, is distributed according to A/(0,1I;;. ) independent of the value of (UTz',y/), where U is
the column space of U and AV (0, II;; 1 ) is the standard Gaussian projected onto U~ .

We next give the generalization of

Definition C.2 (Hypothesis Testing Version of RNGCA; Generalization of ). Let
d > k > 1 be integers. For a joint distribution A of (x,y) supported on R* x ), one is given
access to a distribution D such that either: Hy: D = Ny ® Ay, or Hy: D is given by P{_‘], where
U ~ U(Og,). The goal is to distinguish between these two hypotheses Hy and H.

For the hidden distribution A in the definition of RNGCA, the lower bound construction here re-
quires that the conditional distribution of Ay, is well-defined for every y. In order to ensure that
this conditional distribution is well-defined, we first introduce the following technical condition.
Definition C.3 (Regular Distribution). Let A be a joint distribution of (x, ) supported on R¥ x ).
We say that A is regular if there is a family of distributions A, on R* for each iy € ) such that for
any measurable set S of A, Pr(x ,a[(x,y) € S] = fAu Pry.a,,[(x,y) € Sldy . We will call
such distributions A, the conditional distributions of x given y.

Remark C.4. Note that A is always regular if )V = R"™, which is a Polish space.

Our SQ lower bound construction crucially relies on the assumption that the conditional dis-
tributions Ay, approximately match their low-degree moments with the standard Gaussian,
ie., that A has similar low-degree moments with A, ® A,. Roughly speaking, for each
conditional distribution Ax|y, we characterize the mismatch between Ax‘y and the standard
Gaussian as sup,, (Ex~ Ay [P(X)] = Exn, [p(x)]), where p is any low-degree polynomial with
Ex-n;, [p(x)?] < 1. Then we take the L? norm of this quantity over the marginal distribution A, as
the overall mismatch between A and NV}, ® A, as described in the following definition (generalizing

the exact moment-matching in [Definition T.9).
Condition C.5 (Relatively v-Matching Degree-m Moments; Generalization of [Definition 1.9). Let
0<v <2 méEN, and A be a regular distribution of (x,y) supported on R* x Y. We say that A

v-matches degree-m moments with the standard Gaussian relative to' Y if for any f : RF x Y — R
such that
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1. the function f(-,y) is a polynomial of degree at most m for any y € Y; and

2. Iflinvea, <1, where Ay is the y-marginal of A and Ny, ® A, is the product distribution of Ny,
and A,,

it holds that |Ex ) alf (%,9)] — Bxy)nioa, [f(x,9)]] <v.

With this context, we are ready to state our main SQ lower bound theorem for RNGCA. Roughly
speaking, we show that for any regular distribution A that satisfies there is an SQ
lower bound for RNGCA using A as the hidden distribution.

Theorem C.6 (SQ Lower Bound for RNGCA; Generalization of [Theorem 3.3). Let A € (0,1)
and d,k,m € N with m even and k,m < d*. Let0 < v < 2 and A be a regular distribution
over R¥ x Y such that A v-matches degree-m moments with the standard Gaussian relative to ).
Let 0 < ¢ < (1 — \)/4 and d be at least a sufficiently large constant depending on c. Then any
SQ algorithm solving the d-dimensional RNGCA problem with hidden distribution A, as defined

in with 2/3 success probability requires either a query to STAT (T), where 7 <
O (d=((=N/4=am) 4 (1 4 o(1))v, or 24" many queries.

To prove the desired lower bound, we need to show that for any query function f the algorithm
selects, over the choice of the hidden subspace U ~ U(Og,), the expectation E( ) pa [f(x,y)] is
concentrated around E(y ), 04, [f (X, y)]. Therefore, the algorithm cannot tell if the distribution
is the alternative hypothesis distribution Pé or the null hypothesis distribution Ny ® A,.

Such a concentration result is given in the following proposition.

Proposition C.7. Let A € (0,1) and d,k,m € N with m even and k,m < d*. Let0 < v < 2
and A be a regular distribution over RF x Y such that A v-matches degree-m moments with the
standard Gaussian relative to ). Let 0 < ¢ < (1 — \)/4, d be at least a sufficiently large constant
depending on c, and f : R? x Y — [0, 1]. Then it holds that

_q%(e)
PrUNU(Od‘k) HE(x,y)NP{} [f(Xa y)] - E(X,y)NNd®Ay [f(x,y)}‘ > T] <2 ¢ )

Given the proof of is straightforward. We just need to show that for
all the queries the algorithm makes, with high probability, the expected values E, ) pa [f(x,y)]
and E(x )04, [f(X,y)] are always close to each other for any query function f. Therefore,

the SQ oracle can always answer the queries with E, ) 7,04, [f(X,y)] and the algorithm cannot
differentiate between the alternative and null hypotheses.

where

Proof 0 Suppose there is an SQ algorithm A using ¢ < 9d™® many queries of accu-
I'(m

racy 7 > #d_((l_’\)/‘l_c)m + (14 o(1))v and succeeds with at least 2/3 probability.

We prove by contradiction that such an A cannot exist. Suppose that the input distribution is
Ng ® A,, and the SQ oracle always answers E(x,y)~N,@4, [f(X,y)] for any query f. Then the
assumption on .4 implies that it answers “null hypothesis” with probability o > 2/3. Now consider
the case that the input distribution is P{_‘] and U ~ U(Oy). Suppose the SQ oracle still always
answers By ) n,04, [f (X, y)] whenever possible. Let fi,..., f; be the queries the algorithm

makes, where ¢ = 247 for a sufficiently small implied constant in the big-O. By
and a union bound, we have

Pru (0,3 € [d], [Eyy~pa [fi(x,9)] = Egcyymnusa, [fi(x,9)]] = 7] = o(1) .

Therefore, with probability 1 —o(1), the oracle will be able to always answer E|[f;(N;®.A,)]. From
our assumption on A, the algorithm needs to answer the “alternative hypothesis” with probability at
least 2(1 — o(1)).

But since the oracle always answers E(y ,)~Ar 04, [fi(X,y)] (Which is the same as in the above
discussed null hypothesis case), we know that the algorithm will return “null hypothesis™ with prob-
ability o > 2/3. This gives a contradiction and completes the proof of O
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The rest of the section is devoted to proving [Proposition C.7] In the next subsection, we will first
show that in order to prove |Proposition C.7/} it suffices for us to apply Fourier analysis on the dis-
tribution A’, a modification of A (for convenience of the analysis) that has bounded total variation
distance with A. The approach here shares similarities with [DKRS23])). Then, in[Section C.1.2} we

put everything together and establish

C.1.1 Fourier Analysis using Hermite Polynomials

We will first try to use Fourier Analysis to analyze the value of E(x,y)Npé [f(x,y)]. We can calculate
ExNP{} [f(x,y)] by its Hermite decomposition as stated in the following lemma.

Lemma C.8 (Fourier Decomposition Lemma). Let A be a regular joint distribution (x,y) supported
onRF x Y, UeR>F and UTU =1y, Thenforany f :R?* x Y — Rand ¢ € N,

14
I’E(x,y)wP{}T [f(X, y)] - Z<U®2Al (y)7 T; (y)>Ay + :E(x,y)NP{_*I [f>e(xa y)] )

where Ai(y) = Exwa,,[Hi(x)] and Ti(y) = Exn,[f(xy)Hi(x)] and [>(x,y) =
(f ()7 (x).

Proof of[Lemma C.8] The proof of the theorem directly follows by applying the law of total expec-
tation on Lemma 3.3 from [[DKRS23||. We first state Lemma 3.3 from [DKRS23|| below.

x|y

Fact C.9 (Lemma 3.3 of [DKRS23]). Let A be any distribution supported on R*, U € R¥* gnd
U'U = 1,. Then for any { € N,

L

Epalf(¥)] = Z(U@EmA[Hi(X)LEXNNd [f)H;(x)]) + B yypa [f71)] -

Applying the law of total expectation, we get
E(x,y)NP{} [f(x,9)]

—B,, EXN(Pé)x‘y[f(x, y)]}

=E,.4, |E
. L

=Eyen, | (U¥Ees,, [H, (X)],EXNNd[f(x,y)Hi(X)D+E( e
0 oy

Y7 (x, yn]

x~P( x|y

) [ 0]

%

=Eya, (U®'A4(y), Ti(y)) + E (Aniy
0 (xvy)NP

~ |l

Li=

4
Z U®1AzaT A + E(x y)~PH [f>€(x7 y)] .
=0

This completes the proof of O
We note that, ideally, we would like to have
E(yopa[f(%9)] =D (UPA; T4, - (1)
i=0

However, is not true in general for technical reasons. Namely, it is possible that
Y2 (AN, @ A,) is infinite (this is true even assuming Ax = N},); therefore, the convergence in
may not hold (see Remark 3.4 of [DKRS23] for a more detailed discussion). Instead,
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we will show that for a sufficiently large I, we can have || || x, o A, be arbitrarily close to 0. Com-
bining this with some other technical facts will suffice to obtain that E(, ) pa [f>4(x,y)] is also
arbitrarily close to 0. Now notice that

(U?PA0, To)a, = By, [Exwni [f(x.9)]] = Eieyymniea, [F(x9)] -
Therefore, the quantity we want to bound is just

14

E(x,y)~Pé [f(xa y)] - E(x,y)NNd®Ay [f(xa y)] = Z<U®’LA17 Ti>Ay + E(x,y)NPé [f>z(x7 y)} .
=1

As we have mentioned above, for sufficiently large [, the second term E(xﬁy)Npé [ f7(x, y)] will
be arbitrarily close to 0. Therefore, we just need to bound the first term Zle (U®A;, Ty)a,

To bound Y_¢_ (U®A,, T;) 4, notice that

4 4 4
% ®1 1
S (U AL T A, <D (AL (U Ti)a, | <D (Al (U7 T4, -
i=1

=1 i=1

To proceed, we just need to bound the terms ||A;[|4, and |\(UT)®iTi|| 4, for all i. We first es-
tablish the following fact, which can be derived from Lemma 3.7, Lemma 3.8 and Corollary 3.9

of [DKRS23]. This fact bounds from above the ath moment ||(UT)®iTi|\‘zy and implies that
I (UT)®lTi | 4, is o(1) with high probability.

Fact C.10. Leti,k,d € Z withk < d, a € Zy be even and i’ = ai/2. Let D be a distribution
overYand T :) — Rd@. Then

Evu~v(0..) [”(UT)@ZT( Newp] =

) ITW)lg~p -

Furthermore,

Bu~v(0. (U T(W)5.p] = O2"/*(d/ max(k, "))~ /*) | T(y)ll~p -

In addition, if there exists some constant ¢ € (0, 1) such that k < d° < 4/, then

T\ ®i dc +d (d—k)/2
Buvion (100 T0l5.0) = ep(-2a oz  (555) ) ITW50-
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Proof of[Fact C.10] Notice that
Eu 0.0 (U T ()5 p]

r . a/2
“Bu~vios [B [ 0T 0] "]

a/2
. 2
:EUNU(Od,k) Eyl,---,ya/2~D®”/2 H H(UT)@)ZT(:UJ)HQ
j=1
i [ a/2 2
:EUNU(Od,k) Eyh--' Yaj2~D8a/2 (UT)®az/2 ® T(y
Jj=1 2
i i a/2 ®2
:EUNU(Od,k) Ey17"' Yay2~ DB/ <U®az/2 UT ®az/2 ® T y] >

®2
_ i a/2
g EUNU(Od,k) _U®‘“/2(UT)®‘“/2— spectral Eylz“'vya/ZND®a/2 ®T(y])
- 2
[ ai ai/2) ®a/2
- EUNU(Od’k) _U® /2(UT)® /2. spectral EyND [T(y)®2 / H
I ai ai/2) a/2
=|[Bu~v(o,,) (U2 (UT)5/2 [Eyn [T,
L 4 llspectral
[r1@ai/2p1T\®ai/2] 219/2
< [Bucvion [UE 20T ]| By [IT)E]
= [Bunvioun [U5 2@ T, |

where we used the notation ||Ey~u(0,,,) [US*/2(UT)®*/2][| . for the spectral norm of

Eu~v(04) [U®ai/2(UT)®a/2], which we consider as a (RX)®9%/2 x (RK)®41/2 symmetric ma-
trix.

Therefore, we just need to bound ||Ey~i (o, ,) [UP¥/2(UT)®%/2]|| . The calculation

spectral

here follows Lemma 3.7 of [DKRS23]. Namely, let A = Ey.y(o,,)[U%*/2(UT)®/2],
Ty be the eigenvector associated with the largest absolute eigenvalue, and let u =
argmax,csi—1 |(To, u®/2)|. Then, we have

|A]l2 =|(ATo, u®9/2)|/|(To, u®¥/2)| = |(To, Au®/2)| /|(To, u®e/2)|
=|{To, Eu~v (0, ..) [(UUTu)®4/2))| /[(Tg, u®/?)|
~[Ey-0(0,..)[(To, (UUTw)™*/2)]|/| (To, u®/2)|
<Buu(0,,)[|(To, (UUTW)®4/2)[|/|{To, u®*i/2)
<Eunp(0, 0 [[(UUTw) 24|y (T, u®/2) | /|(Tp, u®/?)
=Eun0(0,) [[(UUTw)#*/2|5]

=Eu~v(0,..) {HUTUH(LZ/Q} ;

where we used u = argmax,cga—1/(To, u®%/2)| in the second inequality. Plugging everything
back into the representation for Ey~y (o, (UT)® T[4 p], we get

i a ai/2 a
B0 [l (U T3] < Bup(o,. [IUTals"2] [Tl

Therefore, it only remains to bound the term Ey .y (o, ,) {||UTu||(2”/ 2] , which can be bounded by
Lemma 3.8 of [DKRS23] as stated below.
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Fact C.11 (Lemma 3.8 of [DKRS23])). Forany eveni € N, and u € S*~!, we have that

| T (&R T (4
EUTNU(Od,k)[HUuHE} =0 (W) .

bl
~—

Plugging it back into the equation right before this fact gives

. P )
Eu~v©.nl(U )" TWlspl =0 | =757 | ITWlly~n -
o ! 9T (3) !
N | — OO |
The remaining statements follow directly by simplifying the term e d)l“ (&) which follows via
2 2
the exact same calculation as in Corollary 3.9 of [DKRS23]. O]

Given that ||(UT)®iTi|| A, is o(1) with high probability as discussed above, we just need to
show that [|A;[|a, = ||[Ex~a,,, [Hi(x)]||a, does not grow too fast with respect to i compared to

I (UT)®ZTi [| 4, » so that the summation converges. However, for a general hidden distribution A, the
quantity ||A,]| A, is not bounded. To overcome this obstacle, we leverage an idea from [DKRS23].
Specifically, we can truncate the x part of A inside a ball to obtain a distribution A’. This incurs
negligible total variation distance error between A and A’ and forces || Ex~ AL, [H;(x)]]| 4, to not
grow too fast with respect to . We can then proceed with the analysis with respect to A’ instead of

A.

However, this naive approach of directly truncating x will not work in our context for the following
reason: this truncation also changes the marginal distribution of y and the norm we need to bound
(we now need to bound || - || 4 , instead of [| - ||4,). To overcome this issue, we will do a proper im-
portance sampling on y after the truncation, so that the new distribution A’ is close in total variation
distance to A and has |[|Ey.. AL, [H;(x)]|| a; bounded. Since the total variation distance between

A and A’ is small, if we can show an SQ lower bound for the RNGCA problem with the hidden
distribution A’, this implies an SQ lower bound for the RNGCA problem with hidden distribution
A.

def

For B € R, we use B¥(B) C R” to denote the ball defined as B¥(B) = {x € R* | ||x||» < B}.
We first give the following definition and lemma about A’.

x|y

Definition C.12 (Truncated and Reweighted Distribution inside a Ball). Let A be a regular joint
distribution of (x,y) over R¥ x J and B € R . We define the truncated and reweighted distribution
A’ as the joint distribution of (x’,y’) supported on B*(B) x ) obtained by the following process.
We first sample ' ~ A, then we reject the sample with probability 1 —Pryx. 4 [x € B*(B )] 2,
If the sample is not rejected, then we sample x’ ~ Ax|y=y' AxEBF (B)-

x|y=y’

We note that A’ is by definition a regular distribution since it is defined by A;Iy for each y and A’y is

also well defined. We now give the following lemma, which shows that A and A’ are close in total
variation distance and || Ex~ 4/ ‘ [H,;(x)]|| 4, is bounded.

x|y
Lemma C.13. Let k,m € N with m be even. Let 0 < v < 2 and A be a regular distribution on
R* x Y that v-matches degree-m moments with the standard Gaussian relative to Y. Let B € R
such that B™ > ¢ (27”/ 2 %), where c1 is at least a sufficiently large universal constant.

Let A’ be the truncated and reweighted distribution over B¥(B) x ), as defined in|Definition C.12

Then we have that

1 dyv (A, A) = 0 (27 /TR B and
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2. Foranyi € Z,

20(1) (Qm/Z F(m+k/2)) Bi—m

T(k/2)
_ T(m+k/2)\ p— . )
B, 60N, =S (140 (22 /B2 ) B i<
' O(i m I'(m+k/2) i—m ;
200) (gm/2, [Leey2) ) pi-m, i>m.
Proof of[Lemma C.13] We first bound drv (A, A"). For convenience of the analysis, we define the

distribution A as the distribution of (x,y) ~ A conditioned on x € BX (B). Since drv (A, A’) <
drv (A, A) + drv (A, A), it suffices for us to bound each term separately.

We first bound drv (A, A) using the fact that A v-matches degree-m moments with the standard
Gaussian relative to ). Namely, we have that

E ey allX]157] <Exons (%115 + VB, [[1x]15™]2
:EtNXQ(k) [tm/z] + VEt~X2(k) [tm]1/2

=2 W+2 / \ T T2
o (7 )

where c5 is a universal constant. Using Markov’s inequality and the union bound, we have

PI’(x’y)NA[X € Bk(B)] < co <2m/2 IW) B-™

By the definition of A, we have that dpv(A,A) < Priyalx € B™(B)] <
m T'(m+k/2 —-m
e (272 /R 2 ) B,

Then, for dpv (A, A’), notice that /_lx|y and A] |y are the same for any y. Therefore,

drv(A,A") <drv(Ay, A)) < drv(Ay, Ay) + dov(A),, Ay)

=cy (2177,/2 M

o0 2) ) B vy ).

So we just need to bound drv (A}, A,). From the definition of A’, notice that

drv (A}, Ay) <Eyoa,[1 — Preoa,, [x € BY(B))]
<Ey-,[2Prxoa, [x ¢ B"*(B)]]

§2Pr(x,y)~A [X g Bk(B)] < 2cy <2m/2 W) B~

Combining the above, we get drv (4, A’) < 4cy (2’”/2 %) B—™,

It remains to verify the bound on HEXN A [H;(x)] HA . We will analyze the cases 1 < ¢ < m and
x|y ’

1 > m respectively. We first prove the following bound that will be convenient for the analysis that
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follows. Notice that, by the definition of A’, we have that for any function f : RF — R,

ZEyNA; ‘

By, [f(x)]\

A/

2] 1/2
XNA/ ‘

2

—Eyy [ [Bxnan, [F01 (x € B (B)])] /PrXNAx‘y x e B*(B)]|I;]

x|y

)L (
:EyNAy :HEwaXIy [ ]l (X € Bk )] H :| yNAy [PrxNA
< Hf(x)]l (x S Bk )||A (1 —2Pr« )~ Axly [x g IB’“(B)])_1

B o [Tt 8/2)\
(1*0(2 “Vran )B >Hf<x>n<xeBk<B>DHAy’

where the last equality follows from the earlier bound that

Prixy)~a [x € BY(B)] < <2m/2 T'(k/2)

I'(m+ k:/2)> -

911/2

m

and the assumption that B™ > ¢; (2m/ 2 M) Given |[Equation (2), we have

T(k/2)

Exa,, [H()

I

[x € B*(B)]’] -

:<1+0<2m/2 W) B—m) B, [HG01 (x € B¥(B)] ||, -

T(k/2)

Therefore, we just need to bound || Ex~,,, [H(x)1 (x € B¥(B))]||

x|y

Ay
For the case 1 < k£ < m, notice that
[Exa,, HEL (x € BY(B))]],

S HEXNA

x|y

<t [Bana,, [IHE T (xe BB, -

To bound the second term, we will use the following fact from [DKRS23|].

o OO, B, (OO (x 2B B)]

2

Fact C.14 (Fact B.1 of [DKRS23l)). Let H; be the i-th Hermite tensor in k dimensions. Suppose

that ||x||2 > kY4, Then ||H;(x)|]2 = 290 ||x||3.

Given that B™ > ¢ (2””2 %/’;/)2)), we have B2 > k. Therefore, using [Fact C.14} we get
[ B, [IHGI, T (x # B4 B))]]|,
< B, 20O IxlEL (< 2 BEB))]| |
<290 [ Exeay, [Ixl3L (x € B*B)]|,
<200) Pry.a,, [||x||2 >uNX g Bk(B)] du’
Al/
. o0
<200 / [Prea, [Ixls > unx ¢ BE(B)]||, du
0 Y
where
1Pracay, lxllz 2 wlll, < [[Exmay, U181 /0™, = [Bxma, UxIF],, /o™
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Therefore, using the earlier bound on || Ex. Ay, XI5 I Ao We get
; Y

B, )1 (g BYB))],

<200 /0 h (2’"/2 P(?L(;/;; 2)> min(B~", u”")du’

O(17) m/2 F(m+k/2) B —-m ui Oou—m ui
o o [ (o, [

<900) <2m/2 F(?(Z/;)ﬂ)) Bi-m

Plugging this back in the ealier equation for HEXN AL, [H(x)] HA/ , we get that for 1 < i < m,
Y
; I'(m+k/2) i
EXN , = ‘ :20(2) 2m/2 VT RA) ) giem
H Ay, [HE)] 4 T(k/2)

mye [Tm+k/2)\ .,
+<1+0<2 /2 W)B >u

Now we bound ||Ex 4/ [H;(x)]||a; fori > m. For an order-i tensor A, we use A™ to denote the
x|y Y

matrix A;rl o =A

n 7(irre i) and [|Al2 = [[A™[]2. From the definition of the Hermite tensor, we
have

| L ) oo\
Hx) \FZ 2 20t1(7 — 2t)! ((71) x )

t=0 Permutation 7 of [4]

This implies that
By, [Hi ()]

Li/2] w
1AL X oy (0B, )

t=0 Permutation 7 of [7]

’
Ay

Ay

li/2] .
Z \ﬁ | ®t|| E, . {X®(i72t)} H
- 2tt| X x|y A;

J

L/2J \/7
®t , ®(i—2t)
_Zztt, 1Tz | B, [Hx

’
A Y

Li/2] \/*
=3 s — g [ By, Dl

y

li/2] .
Z \/7’7' kt/2Bmax(z m—2t,0) E , ||X||mm m,i—2t)
= L 901(i — 2t)! X

Ay

Lz/zJ Vi
& min i—m max(t—m— max i+m min ml 2t
<3 gl o[ ]|

’L — Zt) x|y A;

)

B2
i— (& max i+m min(m,i—2
B it V4 By, 113 I,
y

(i — 2t)!

where the last inequality follows from the fact that B2 > k (which, as already noted, is implied by

the fact that B™ > ¢; <2m/2 %) )
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min(m’i_%)] H For convenience of the analysis, let

We now bound the term HEXNAfl [HXH2
x|y

m’ = min(m,i— 2t) and f(y) = Exwa,, [||x||§”/] Notice that the quantity we want to bound

is || f||.a; . Furthermore, using the fact that A" v-matches degree-m moments relative to ) with the
standard Gaussian, we have that

1713, = By [F@lix]3]

< Biegyonvoy [F@IXIE ]+ 1 F @I Iien,

o’ 1/2
Ay B [IX13™]
1/2

=By [f (1) Exons (1[5 + v £]

= Bt (115 B L1115 ] + 1712y B (1137 |

!’ 7 1/2 ’ ’ 1/2
= (B I3+ B[] ") B 11T 4 01ty B, 11"

m/ m/ 1/2 m/ m/ 1/2
= B X512 + VB [IKI3™ ] B, 11115 + w114y B, [ 1113
Since ¥ = O(1), we must have
m’ 2m’ 1/2
1713, = O (s (Bl ) B, [Ix13] ) )

Notice that both quantities can be calculated using the x? distribution. From previous calculations,
we have that

m’ 2m/’ 1/2 min(m,i—2t)/2
B [IX15"] < B, [[xI37] 7 = 2minm

I(min(m,i — 2t) + k/2)
I'(k/2)

Therefore, we get || f|[a; = O (2“‘i“(’”»i—2t)/2\/F(Inin(?(’;;;)t)%/z) ) Plugging it back in the ealier

representation for HEXN AL
x|y

[Hi(x)}H% gives

T

Ay
& Vi D (min(m, i — 2t) + k/2
<Bi7m Z & kmax(0,2t7i+m)/40 Qmin(m,i72t)/2 (mln(mvlf t)+ /)
=5 L i — ! T(k/2)

li/2] .

I'(k/2) — 20t1(i — 2t)!
where the second inequality follows from the elementary fact max (0, 2t —i+m)+min(m,i—2t) =
m. One can see that the denominator is minimized when ¢ = i/2 — O(+/7). Then it follows that the

sum is at most 20() Bi—m (2’”/2. / 7F(1?z;/k2/)2) ) .

This completes the proof of O

Recall that the quantity we want to bound is [E ) pa[f(x,9)] — Exy)~niea, lf(x,9)]]-
Given that A’ and A are close in total variation distance, we have that for any U €
Oy, the distributions P{‘] and P‘{‘J/ are close in total variation distance. Therefore, for
any query function f : R? x Y — [-1,1], Ey~palf(x,9)] — Eynpa [f(x,y)] is
small and Ex ) n,04, [f (% 9)] = Eayonuea, [f(x,y)] is small.  Thus, we can bound
|E(x,y)~P{‘}’ [f(X7 y)] - E(x,y)NNd®A’y [f(X7 y)” instead.

For that it suffices for us to apply the Hermite decomposition (Lemma C.8) to A’ instead of A
and analyze Ele (U®TA,, T;) Ay, where A;(y) = Exar  [H;(x)]. We give the following upper
bound on Y_¢_ (U¥IA,, T;)A,.

ly
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Lemma C.15. Under the conditions of Proposition and further assuming m,k < d*/logd,
v < 2 and (W) d—(A=N/4=)m < 9 the following holds: For any d that is at least a
sufficiently large constant depending on c, there is a B < d such that the truncated and reweighted

distribution A" over B¥(B) x Y, defined|Definition C.12| satisfies

dTv(A,A’) < <W> d—((1=N)/a=cm

Furthermore for any ¢ € 7., except with probability at most 2= yith respect to U ~ U(Ogq 1),
it holds

4
D (AL (U T) 4

i=1

where A;(y) = EXNA;

THL0)] and T(y) = Bxeor, [ () (1))

Proof. For convenience in the relevant calculations, we will break the summation into four ranges.
We can write

4 )
; (A (VD)™ TZ->A;

=1 A'/y
m—1 ® a* ®
_ , T\ ®1 ) T\ ®1
S« S m),
T 0
F 3 (A v e S (A (v L
i=d 1 Ay i=T+1 Ay

where 7T is a value we will later specify. To analyze each ‘<Ai, (VT)@ T,->

‘<A"’ (vh)* T">A;,

(not depending on the randomness of V). For H (VT) @ T;

, recall that
Al

Y

(VT) ®1 Ti

< HAz‘HA; ’

n where A; = EXNA/‘ [H;(x)] is a constant
’ x|y

, we can show it is small by bound-
Al

ing its a-th moment for even a using We will apply this strategy on the four different
ranges of 7.

Without loss of generality, we will assume that A > 4c. Suppose that A < 4c. Then we can
simply consider a new pair A, ¢/, where A’ = X\ 4+ 2c and ¢ = ¢/2. Notice that (1 — \)/4 — ¢ =
(1= X) /4 — ¢; therefore, the SQ lower bound in the statement remains unchanged.

We start by picking the following parameters (the “sufficiently close” here only depends on ¢):

* We require m, k < d/\/ log d;

* B =d* where o < (1 — A3) /4 and (1 — A3) /4 — « is a sufficiently small constant fraction of
(6%

« T — dmax(2a,/\);

* Welet A3 > Ay > A1 > A to be sufficiently close (the difference between these quantities will be
a sufficiently small constant fraction of c).

‘We now bound the summation Zle as follows:

(v

~1
i

<Ai’ (VT)@ Ti>A’

Y

is small with high probability:
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Since (%) d=((1=2/4=e)m < 9 and B = d*, where « is sufficiently close to (1 — \)/4,

the parameters satisfy the condition B™ = w (2m/ 2 \/ M) in|[Lemma C.13| Since 1 < m,

I'(k/2)
by [Cemma C.T3) we have

Let a be the largest even number such that ai/2 < d*, where m = o (d/\) implies @ > 2. Then

using[Fact C.10] we have

EVNU(Od,k) |: ’ (VT)®i T;

a ] _0 (2ai/4d7(17)\)ai/4> -0 (d7(17,\1)ai/4) '

’
Y

Using Markov’s Inequality, this implies the tail bound

Pr H(VT)®Z TiHA/ > d—(l—Az)i/4:| < 2—Q(cd*) _ 2_d9(c) .
y

Therefore, we have

except with probability 2-4".

(A vy

Yy

is small with high probability:

aA
Zi:m

In the previous case, we have argued that the parameters satisfy the condition B™ =

w (2’””%%) in |[Lemma C.13| Since & > m, by |[Lemma C.13| we have ||A4|, =
Y

20(1) (2’"/2\/%) Bi=™_ Let a be the largest even number that ai/2 < d*, where

m = o (d*) implies a > 2. App]yingyields

Ev v, [H(VT)@ T, :] -0 (Qm/4d—(1—x)m/4) _0 (d—(l—/\l)ai/4) .

Therefore, we have

d* )
Z-;n ‘<A“ v~ Ti>A;,

(VT ) ®1 T,L

’

>
<Al
i=m k4

>

(1 ; I'(m+k/2) -
< d (1 )\2)2/420(1) 2m/2 Bi—™
<2 I (k/2)

_ 90(m) g=((=2a)/H)m _ g=((1=33)/4)m
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except with probability 2~ (the first equality above follows from B = d® = o (dA=N/4) =
o (d1-2)/4)),

ZZT: Pl <A7;7 (V") @ Ti>A’ is small with high probability: We assume without loss of gen-

erality that d* < T, since otherwise, this term is just 0. Notice that this implies that A < 2a. We
will then use Fact 3.5 of [DKRS23]| to bound ||A,|| Al

Fact C.16 (Fact 3.5 of [DKRS23l)). Let H; be the i-th Hermite tensor in k dimensions. Suppose
that | x||2 < B. Then |H;(x)||2 < 2°k"/4B%~"/?exp ((1)/B?).

Using|[Fact C.16] we have

1ALy = || By, (L (0)) = B [ ()]

= By, H:()]|

Ay
< 21/ BI1/2 oxp ((;) /B2> < 90 Ri/Agi;=i/2

where the last inequality follows from (;) /B? <iT/B? < id**/B? = i. Then, let a be the largest
even number such that ai/2 < T, where ¢ < T implies a > 2. Applying yields

i ] = 0 (2/4(ai/20)"%) = O (d) - ,

®1
EvNU(od,k) |:H(VT) Ti A’ al

which implies the tail bound
Pr [H(VT)@M‘ T"H >d((1A)/4)i(Z-i/4)] < i/t < 9= UT) — —(d2) _ 9-d?)
AL =

Therefore, we have

T T o
< > Ay (v

i=d*+1 v

< Z QO(k)ki/4Bii—i/4d—((l—)\)/4)i
i=d 41

T
< Z 9O0(k) gi g—((1=X)/4)i
i=d +1
—0 (de+1d—((1—,\)/4)(dx+1)) — —(cd*) _ g-Qemlogd) o g-m ,

< B VT 1>A/

Y

except with probability 24" where the third line follows from i > d* > k.

Zf:T-‘rl <Ai’ <VT)®i Ti>A;

We will first need Fact 3.6 of [DKRS23] to bound || A, 4, .

is small with high probability:

Fact C.17 (Fact 3.6 of [DKRS23l|). Let H; be the i-th Hermite tensor in k dimensions. Then

itk —1\"?
[ H(x) |2 §2O(’“>< 1 > exp(||x]|3/4) .

Combining with the fact that A’ is bounded inside B*(B), we have that

ALy, = [Bne, 0O = By LG, = [P, L0

’
A Y

) N 1/2
< 20(k) (l —;]i 1 1) exp (32/4) .

36



We pick a = 2. Note that ai/2 > T = d™**(2*N) Applying|Fact C.10|yields

:;] = exp (—Q(T'logd)) O ((M)(dk)/2> |

®1
EVNU(Od,k) |:H(VT) T; i+d

Applying Markov’s inequality yields the tail bound

(d—k)/5
> oe@esag T +d < T RLAPEFLCH
A t+d t+d

Pr|[[(v1)®

Therefore, we have

¢

2.

i=T+1

<Ai, (vH® T,»>
S (A, (V)* > (v,
1=T+1
> itk —1\"? ot T+d\' 0"
< Z 20(k)< ol > eXp(B2/4)2 Q(Tlgd)0<(i+d)

i=T+1

e’} 1/2 . k/2 d—1)/5
o gariogay (TR i+ k2 (T4 a\
- 2 k T+ k i+ d

1

=T

[e'S) , k/2 d/8
<Z —Q(Tlogn) (1 F 2 r4d\?Y
2 - )
T = T+k 1+d

Ay

Z Al

1=T+1

’

where the last inequality follows from our choice of parameters. Therefore, we have that

) o\ B2 i\ Y8
< —Q(T log d) ¢ 1
<> 2 L Ay Y Tra

<Ai’ (VT)@ Ti>A’

i=T+1 v i=T
00 . (k/2)(2d/T) . —d/8
-T i1—T

< 9—QTlogd) ¢ 1
= ; T T Ta

0 i\ —d/8+dk/T

—Q(T log d) —

< ;2 (1 + 7 d)

00 .\ —d/16
< Z 9~ Q(T log d) d+i
- T+d

=T

/16
< 9-ATlogad) /OO d+i ) "
i=r—1 \T +d
—d/16

_ 9—ATlogd) (T +d) /

(d/16 — 1) (T +d — 1)“/157!
— 9—9(d*)

9
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except with probability >, (fjfj ) 92-d™? — 94" Adding the four cases above together, we

get for any m, k < d*/logd and d at least a sufficiently large constant depending on c,

2

=1

(. (V)

Ay

P(m+k/2) _ o 3 of g2
< m/2 am ((1=X3)/4)m m Q(d*)
_(1+o(1))<2 T/2) d +u)+d +d™m 42

< (F(m/“’f/?)) 4-(=N/A=c/Dm | (1 4 o(1))

I'(k/2)
T(m/2+Ek/2)\ _1—x) /4
= d—((A=N)/4=e)m | ({ 1
(M LoDy
except with probability Q’dn(n), where the second line above follows from W >
om/2 % This completes the proof of [Lemma C.15 O

C.1.2  Proof of Proposition[C.7]

We are now ready to prove [Proposition C.7| which is the main technical ingredient of our lower

bound. [Proposition C.7| states that ‘E(&y)NPG [f (5, 9)] = Egxy)~nuwa, [f (X y)]‘ is small with

high probability. The main idea of the proof is to use Fourier analysison E, , pa[f(x,y)] as we
) U
discussed in the last section, where A’ is the distribution obtained by truncating and reweighting A

(see[Definition C.12)) and is close to A in total variation distance.

Proof of [Proposition C.7} For convenience, we let ( = (1 — \)/4 — ¢. We will first truncate and
reweigh A, as defined in [Definition C.12] and then apply Notice that
additionally assumes m,k < d*/logd, v < 2 and (W d=¢™ < 2. We show that all
these three conditions can be assumed true without loss of generality. If either the second or the
third condition is not true, then our lower bound here is trivialized and is always true since f is
bounded between [—1, +1]. For m,k < d*/logd, consider a \’ > X such that (1 — \')/4 — ¢ =

%. Then it is easy to see that for any sufficiently large d depending on (1 — \)/4 — ¢, we

have m, k < d* /logd and ¢ < (1 — \)/4 — (. Therefore, we can apply|[Lemma C.15|for \.

Now let B = d®, where a < (1 — \)/4 is the constant in [Lemma C.15] Then we consider the
truncated and reweighted distribution A’, as defined in [Definition C.12| By|Lemma C.15} we have

drv(A,A") < (W) d~¢™. Given that f is bounded between [—1, 1], this implies

By 115 0)] = By opi L (5,0

T(m/2 + k/2)> i

<drv(PE, PY) = drv (A, A') < ( I'(k/2)

Similarly, we have
|E(X,y)~Nd®Ay [f(x, y)] - E(X,y)NNd®A§J [f(X7 y)“

T 24+k/2
<drv (N ® Ay Na @ ALY = doy (Ay, AL) < dpy (A, A') < (<m/+/>) a-om.

I'(k/2)

Therefore, by the triangle inequality, it suffices for wus to analyze the dif-

ference  [B( ) pu [F069)] ~ Bixyyonuon, [[(x,9)]|  instead  of  the difference
5 U Y

[Eeyopg [, 0)] = Eoeyonion, £ )]
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Let ¢ = £¢(d) € N be a function depending only on the query function f and the dimension d (¢ to
be specified later). By Lemmal|C.8] we have that

4

E(x,y)Npg’ [f(x,9)] = Z (A, (UT)®iTi>Afy| + E(x,y)mpé, [f>£(x, ),
i=0

where A;(y) = Exea,,[Hi(x)] and Ti(y) = Exn,[f(x,9)Hi(x)] and f>(x,y) =
(f(-,4))>*(x). Recall that we want to bound
‘E(x,y)Npé' Lf(x,9)] — E(x,y)NNd(X)A’y [f(x, y)]’
with high probability, where we note that E(x ) nyea; [f(%,9)] = (Ao, To)a,. Therefore,
. L i
we can write [B, ) p /(5. 9)] ~ By onion, [0 w)l| < [T (A (US| +
Eqyopy [f>4(x, y)]’ . For the first term, by Lemma [C.15| we have that

_ <F(mr/(2k/+2;€/2)) A= 4 (1 + o)),

14

S (AL (UT)OI Ty,

i=1

except with probability 9—d™,

It now remains for us to show that ’E(x’ PP [f>4(x,9)] ‘ is also small with high probability.

Consider the distribution D = Ey.y(0,.,) [Pé/]. We then use Lemma 3.11 of [DKRS23|] to show

that Dy, is continuous for any y and X2(D,Ng ® A;) is at most a constant only depending on d
(independent of the choice of the distribution A).

Fact C.18 (Lemma 3.11 of [DKRS23])). Let A be any distribution supported on B*(d) for d € Z.,
which is at least a sufficiently large universal constant. Let D = Ey.y(o,.,) [Pé]. Then, D is a

continuous distribution and x*(D,Ny) = O4(1).

Now for our regular distribution A’ supported on B*(d) x ), by applying [Fact C.18|for each Axlys
we get that

2 —0(1).

’ Al
XQ (EUNU(Od,k) |:P61| ,./\/d ®A;/) — HX2 (EU~U(Od,k) |:PUx|y:| ,Nd)
Ay

Therefore, we have that
Ev~v©0.) HE(X,y)NPIA}’ 7% 0)]]] < Bucvou [E(x,y)Npg/ 17 0)1]]
< Ey)~nllf(x,9)7"])
< XD, Na® A2 vway
< 3@ vaga, -

We can take ¢ = £;(d) (¢ only depends on the query function f and dimension d) to be a sufficiently
large function such that ||f>£||Nd®A; < (ﬂ) <M> d~¢™. Then we get

5(d) T'(k/2)
(T2 62 e
By~ (000 [[Boyyopy 06 0)]]] < 8@ oy < 27 <F(k/2) gom

This gives the tail bound Pry.u(o, ) [|E(x7y)NPé, [F4x,y)]| > (W) d—m] <274,

Using the above upper bounds, we have

E e yyop [ ()] = Eoegyonoa )] < | S0 (A (UT)T)

L (T(m/2+ k/2)
‘2< T'(k/2)

+ By p [/ )]

) d=™ + (14 0(1))v,
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except with probability 9—d™ using the fact that ¢ = O(1). Therefore,

T(m/2+ k/2)

—¢m o(1))v
XOP) >d + (1 4+o0(1))v,

B 00~ Blapoion, 10 < 6

except with probability 9—d™

In summary, notice that the above argument remains true if we take ¢’ > ¢ such that (1—\)/4—¢' =

%. Using the above argument for ¢’, and given d is a sufficiently large constant depending
n (1= A)/4—C=2((1-X)/4- '), we get

e 00 = B, [0 < (5

—m o(1))v
T/2) )d +(14+o0(1))v,

AN /4=CD o gfe)

except with probability 2~ . Replacing ¢ with (1 — X\)/4 — ¢ completes the
proof of Propositon C.7. 0

C.2 SQ Lower Bounds for Learning Multi-index Models

In this section, we prove our SQ lower bound for learning Multi-index Models, as an application of

We first give the formal statement of below.

Theorem C.19 (SQ Lower Bound for Learning K -MIMs; Formal Version of [Theorem 1.10). Let C
be a class of rotationally invariant K-MIMs on R®. Suppose there exist m € 7, T > 0, and a joint
distribution D of (x,y) supported on R x R with Dy equal to Ny such that for some subspace
V C R% we have:

1. The distribution D v-matches degree-m moments relative to the subspace V X R, where the extra
R contains the label;

2. Any function h : R? — R has E(x ,)~p[(h(xv) — y)*] > 7, and

3. There exist B, 6 € Ry such that E,[y*1(|y| > B)] < 6.

Then, for m, K < d* for some \ € (0,1), dim(V) < d/2, ¢ € (0,(1 — \)/4) and d at least
a sufficiently large constant depending on c, the following holds: any SQ algorithm that learns C
within error 7 — 78 — 3¢ B? given OPT < inf.cc errp(c) requires either a query to STAT (¢) or

24" many queries, where ¢ = O m (di((li)\)/zlfc)m) + (1 +o(1))v.

Some comments regarding the difference between [Theorem 1.10| and [Theorem C.19|are in order
here. We first note that Condition (I)) in [Theorem C.19| generalizes Condition (I)) in
with approximate moment matching, as defined in We then note that Condition (3]
in [Theorem C.19Y|is required for technical reasons, namely assuming that the extreme values of y
(i.e., |y] > B) have contribution at most ¢ to the variance. Without such a condition, it is possible
that almost all the variance of the label comes from an arbitrarily small mass of the input distribu-
tion. For most applications, we will have B = O(LK'/?w(d)) and 6 = 2-“(?), where L is the
Lipschitzness of the functions in the concept class. Under such circumstances, rules
out any algorithm that outperforms the best function in subspace V' by some additive factor of o(1)
(with respect to d).

Proof of[Theorem C.19) The proof follows directly by embedding an RNGCA problem to agnostic
‘

PAC learning of the class C. Let A’ be the distribution D supported on R? x R in[Theorem C.19|and
W be the K-dimensional relevant subspace of a K-MIM ¢ € C that minimizes the error err 4. (c).

Let V be the subspace satisfying the conditions in|{Theorem C.19and U = W, ., where Wy, . Lef

{wyi:we W} Let U € R¥xdmU) apnd V € R*4m(V) be matrices whose column vectors are
arbitrary orthonormal basis vectors that span the subspaces U and V respectively.

Let (x,5) ~ A’. We define the distribution A for RNGCA as the joint distribution of
(x, (x",5)) over RIMV) 5 RAMVI+L (with ) = RN+ \where x' = UTx and x” = V'x,
i.e., x' contains the part of the relevant subspace (of the optimal hypothesis) outside V' and (x”,y)
contains V" and the label y. Then we consider the RNGCA problem of with hidden
distribution A and input distribution supported on R¢~dm(V) 5 Rdim(V)+1 = By Condition |1| in
[Theorem C.19]and [Theorem C.6] by choosing the parameters A, ¢ in to be the same
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as the parameters A, ¢ in [Theorem C.19] we have that any SQ algorithm that solves this RNGCA

problem must use either a query to STAT(() or 2(d=dim(V)™ _ o) many queries, where

¢ =Odtim(vy,m (@ = dim (V)= (=029 4 (14 o(1))w
=Okr,m (d_((l_’\)/4_c)7") +(14o0(1))r.

Therefore, we just need to show that the K-MIM learning algorithm described in can
solve this RNGCA problem.

Let A be such an algorithm for learning Multi-index models and D’ be the input distribution of
(x’,y") supported on R4=dim(V)  RAm(V)+1 for the RNGCA problem. First notice that D’ can be
equivalently thought of as a labeled distribution supported on R? x R, where we treat the coordinate
corresponding to the y part as the label. Namely, we define the new input distribution D as the joint
distribution of (x, ) supported on R? x R, where x contains x’ and all except the last coordinate
of y’ and y is the last coordinate of y’. We then give D as the input distribution to the algorithm
A (notice that any SQ query on D can be answered with an SQ query on D’). Let h : R — R
be the output hypothesis of the algorithm. Then we will check the value of Ex ,y..p[(h(x) —

y)?1(y € [-B, B])] to error at most ( B%. Notice that this can be done by using the query function
q(x,y) = (h(x) — y)*1(y € [-B, B])/B? with query tolerance (.

Now suppose that the original D’ is from the null hypothesis distribution. Then, by the definition of
RNGCA, we have that for (x’,y’) ~ D’, x" and y’ are independent and y’ has the same distribution
as the marginal distribution of Ay, which is the marginal distribution of (V Tx, y) for (x,y) ~ A’
Notice that for any A the algorithm satisfies that

E(x y)~pl(h(x) —y)*1(y € [-B, B])] > g:ﬁgigRE(x,ywA/[(g(VTX) —y)*1(y € [-B, B))] .

To bound this quantity, we will use the following fact, which states that if the squared error of a
function f is large and the labels outside of [—B, B] only have bounded variance, then there is a
lower bound on the squared error of f on the labels inside [— B, B.

Fact C.20. Let A be a joint distribution of (x,y) over X X R such that for any function f : X — R,
Ex,y~al(y — [(x))?] > 7 and By a,[y*1(ly| > B)] < 8. Then for any g : X — R we have

Exy~ally —9(x))*1(y € [-B,B))] > 7176 .

Proof of[Fact C.20} Notice that

g:r)f(li_QR E(x y)~al(9(x) —y)*1(y € [-B, B])]

=Ex~a, [Pry~a, [y € [-B, B]|Var(4yxrye(-5.5))] -

Therefore, we just need to consider the distribution of A, . For convenience of analysis, we give
the following intermediate fact.

Fact C.21. Let D be a distribution of y over R such that Var(D) > 71 and
E,.p[l(y & [-B, B])y?] < 6. Then Pry.ply € [-B, B]|Var(D |y € [-B,B]) > 7 — 74.

Proof of[Fact C.21] Applying the law of total variance and the fact that Pr,.ply ¢ [-B, B]] <
§/B2, we have that

Pry-ply € [ B, BVar(D | y € [ B, B)
—Var(D) - Pryply & |- B, B]|Var(D | y ¢ [ B, B))

—Pry.ply € [-B, B|Pry.ply & [~B, B]] (Ey~pjye- 5,5 Y] — Ey~Dlygl-5,5)[Y)
>7 — 0 —Pryply € [~ B, Bl]Ey~p|ye[-B,B] [y]?

—2Pry ply ¢ [~ B, BllEy<pjye[-B,B][YIEy~Dlyg(- BB [V]

—Pry.ply ¢ [-B, BllEy~pjy¢|-B,5] [y)?
>7 — 3§ —Pryply & [-B, Bl|B* = 2|Ey~p[l(y & [~ B, B)y]|B| — Ey~p[l(y & [-B, B])y’]
27 =36 = 2|Ey~p[l(y ¢ [-B, B])y|B]| .

2
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So it only remains to bound |E,.p[l(y ¢ [—B, B])y]|. Notice that by Markov’s inequality, we
have

|Ey~p[l(y & [-B, B])y]| < Eyallyll(y & [-B, B])] < /0 §/B*dt + /OOO §/t*dt < 26/B .

Plugging it back gives Pr,..ply € [-B, B]|Var(D | y € [-B, B]) > 7 — 74. This completes the
proof of Fact C21] =

Now, using|Fact C.21] we get

g:r)r(li_I)lR E(x y)~al(9(x) —y)*1(y € [-B, B])]

=Ex~a, [Pry~a, [y € [-B, B]]|Var(4yxryei-5,5)))
ZEXNAx [Var(Aylx) - 7Ey~Ay\x[]l(y 4 [—B, BD?J2H
> —T6 .

This completes the proof of O

Applying gives that
E(xy)~nl(h(x) —y)*L(y € [-B,B])] 2 7 76 ,
if the original D’ is from the null hypothesis case.

Now suppose that the original D’ is from the alternative hypothesis. Then it is immediate that D is
the same as the product distribution A/4~4im(V)—=dim(U) ) A up to a rotation in the first d — dim(V")
coordinates. From the definition of A (A contains the part of x in the optimal relevant subspace W)
and C being rotation-invariant, we must have inf.cc err 4+ (¢) = inf.c¢c errp(c). Therefore, from the
definition of A, we must have

E(x)~p[(A(x) = 9)*1(y € [-B, B])] < E(xy)~pl(h(x) — y)*] < 775 - 3¢B*.

Given the analysis above, we can simply check if our estimate of
Ex,y)~p[(h(x) —y)*1(y € [-B,B])] (which has error at most 7B?) is greater than
T — 75 — 3¢B?%/2. If so, then it must be from the null hypothesis. Otherwise, it must be
from the alternative hypothesis. This completes the proof of O

C.3 Relation between Our Result and Other Complexity Measures

In this section, we discuss the relationship between our conditions on efficient learnability of MIMs
and other complexity measures.

As noted in the related work section, prior work [ABAM?23|| defined the notion of leap complexity
and showed that it characterizes the CSQ complexity of learning hidden junta functions over the
uniform distributions on the Boolean hypercube (these are discrete Multi-index models). We remind
the reader that CSQ lower bounds are in general strictly weaker compared to SQ lower bounds.

For the special case of SIMs under the Gaussian distribution, [DPLB24] defined the notion of gener-
ative exponent and showed that it essentially characterizes the complexity of parameter estimation.
It is important to remark that our work focuses on the related but distinct notion of (agnostic) PAC
learning, i.e., learning the label distribution to small error. Indeed, PAC learning can be feasible even
when parameter estimation is not. For instance, if we consider distributions where the conditional
distribution y | x is constant for all x, then parameter estimation is impossible (and the generative
exponent becomes infinity). In this case, while it is information-theoretically impossible to recover
the hidden direction, it is trivial to output a hypothesis achieving small squared error.

The structure of this section is as follows: In[Section C.3.1] we show that our techniques imply as
a corollary the main SQ lower bound of [DPLB24] for Single-Index models without a finite chi-
squared condition implicitly used in their work. In we show that for realizable PAC
learning of Singe-Index models, our condition is essentially equivalent to an appropriate adaptation
of the generative exponent.
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C.3.1 SQ Lower Bound for Parameter Estimation of SIMs

We begin by providing the definition of the generative exponent for parameter recovery of SIMs.
For convenience of the discussion, all the statements presented in this section are simplified for
exact moment matching, which—while qualitative the same as the full statements—will be weaker
quantitatively in some parameters.

Definition C.22 (Generative Exponent). For realizable learning of Single-Index models under the
Gaussian distribution, we define the Generative Exponent of the link function f : R — R as the
smallest m* € Z such that |[E¢va,, [l (t)]]|4, > 0, where A is the joint distribution of (¢, y)
on R x Rwith ¢ ~ Nj and y = f(t), and h; is the i-th normalized Hermite polynomial. For a SIM
g : R — R defined as g(x) = f(w - x) for some vector w € R? and link function f : R — R, we
define the generative exponent of g to be that of the link function f.

[DPLB24] gives the following lower bound on the problem.

Fact C.23 (Theorem 3.2 of [DPLB24]). Let w € S*~! be a 1-dimensional subspace unknown to the
algorithm and D be a joint distribution of (x,y) over R? x R such that x ~ Ny and y only depends
on Xy (i.e, Dyx = Dy for any X, = Xy,). Let m* be the generative exponent for the joint
distribution of (X ,y), where (x,y) ~ D, and assume that x*(D, Ny @ D,) is finite E] Then any
SQ algorithm that returns a W such that |w - Ww| > &(d~1/?) with probability at least 2/3 requires

either a query to STAT(Q,« (d=0-24(m"=1))), or 24" many queries.

We note that since requires the condition x?(D, N;® D) being finite, it cannot be applied
to the setting of realizable Single-index models, where y = f(x) without noise, as this induces an
infinite x?(D, Ny @ D,).

As a corollary of our techniques, this condition can be removed. In particular, for our[Condition C.5|
the generative exponent m* for a distribution D is simply the smallest integer m* such that D does
not relatively match degree-m™ moments with the standard Gaussian. An application of
would give an SQ lower bound to the same decision problem that is used to reduce to
the subspace recovery problem in [DPLB24]. This in turn gives a similar lower bound on the sub-
space recovery problem as but without the assumption that x%(D, Ny ® D,) is finite.
Specifically, we obtain:

Corollary C.24 (SQ Lower Bound for Parameter Recovery in Single-index Model). Let w € S9!
be a 1-dimensional subspace unknown to the algorithm and D be a joint distribution of (X,y) over
R? x R such that x ~ Ny and y only depends on Xy (i.e., Dyx = Dy for any xy = XL )
Let m* be the generative exponent for the joint distribution of (Xw,y), where (x,y) ~ D, and
assume that m* < d° for a sufficiently small constant c. Then any SQ algorithm that returns a
w € S such that |w - W| > @(d~1/?) with probability at least 2/3 requires either a query to
STAT (25, (d_0'24(m*_1))), or 24" many queries.

Proof o Let A be the joint distribution of (xy,y) where (x,y) ~ D where

(x,y) ~ D. From the definition of generative exponent, we have that A must be (0, m* — 1)-
relatively matching moments with the standard Gaussian. Therefore, according to
any SQ algorithm that solve the RNGCA for input distribution over R x R with hidden distribu-
tion A with probability 2/3 requires either a query to STAT (Qm* (d’0'24(m**1))), or 247" many
queries. Therefore, it suffices for us to reduce the RNGCAdecision problem above to the parameter
recovery problem for Single-index model.

Let A be such an algorithm for parameter recovery in Single-index model and D be the input dis-
tribution of (x,y) over R% x R for the RNGCAproblem. We will sample a random rotation matrix
A ~ U(0Og,q), which applies an random rotation over R?. Then we give the joint distribution of
(Ax,y) (where (x,y) ~ D) to the algorithm A as the input distribution and let w be the output
vector. We will repeat the above process for t = d* times and let B be the empirical estimation of
(A='w)(A~'w) ", and let A be the max eigenvalue of B.

The assumption x* (D, Na® D)) being finite is required here in order for the Fourier expansion to converge
in L? norm, which is not explicitly stated in [DPLB24].
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Notice that if the original D is the null hypothesis distribution, then we must have
AW ~ U(S% ). Let w), --,w) be the value of A~!w for each round and let M =

Ew ~u(si-1) [W’W’T], then we have that

2

Ew, ... wi~U(si-1)et

t
Z w;W;T/t -M
i=1

F

t
1 T 1 T
:E]W/17 Wi ~U(Sd-1)®t [<t ; (W:W; — M) y E ; (W;W; — M) >‘|
1 T _
= Eupsi | [Ww' T = MI}] = 0(a™).

Notice that for any w € S9!, we must have (ww ', M) < d~! from the symmetry argument.

2
Given Ey/ .. wi u(si-1)er [“Zf_l wgng/t - MHF} = O(d=*), by Markov’s inequality, with

probability 1 — o(1), we have that HZle WQW;T/t - MH < d~!. Therefore, we must have
F
A = O(d~'/?) with probability at least 1 — o(1).

On the other hand, if D is from the alternative hypothesis, then since the algorithm succeeds with
probability at least 2/3 and outputs a W such that |w, | = w(d~'/?), we must have that w ' Bw =
w(d~1). Therefore, we must have the max eigenvalue \ = w(d~1/?).

Given the above analysis, we can simply check if A > cd'/? for a sufficiently large constant c. If
s0, the input distribution D must be from the alternative hypothesis. Otherwise, input distribution

D must be from the null hypothesis. This completes the proof of O

C.3.2 Near-Equivalence with Generative Exponent

We now show that, for realizable SIMs, the generative exponent and the conditions in our lower

bound result (Theorem 1.10) are essentially equivalent up to some minor technicality, as stated by
the proposition below. Notice that the first condition below is essentially the same condition in our

lower bound result (Theorem 1.10), but without the technical assumption that the extreme values of
labels have small contribution to the variance.

Proposition C.25. Let C be a class of rotational invariant SIMs on R?. Let 7 € R and m € Z,
then the following two conditions are equivalent:

1. There exists an f € C and a subspace V- C R< such that (a) the joint distribution of (x, f(x))
with x ~ Ny matches degree-m moments relative to the subspace V (with the standard Gaussian
projected onto V+); and (b) for any function h : V. — R, Exn, [(f(x) — h(xv))?] > 7.

2. There exists an | € C with Generative exponent strictly greater than m such that the variance of
f(x) withx ~ Ny is at least T.

Proof. Notice that it suffices for us to fix a f € C and prove the equivalence. For convenience of
analysis, let w € S?~! be the relevent direction of f and W be the 1-dimensional subspace spanned
by w. Let D be the joint distribution of (x,y) supported on R% x R with x ~ Ny and y = f(x)
and A be the joint distribution of (¢,y) supported on R x R with ¢ ~ N7 and y = f(tw). Then it
suffices for us to prove that the following two are equivalent.

1. There exists a subspace V' C R? such that (a) D matches degree-m moments relative to the
subspace V' (with the standard Gaussian projected onto V1); and (b) for any function h : V — R,

E(xy)~nl(y — h(xv))?] > 7.

2. f has Generative exponent strictly greater than m and the variance of f(x) with x ~ N is at
least 7.

The direction that Condition [2| implies Condition [I| is immediate. We simply take V' = {0}.
Then Condition b) follows directly from the fact that inf.cg E(; )al(y — ¢)?] > 7. Since
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the Generative exponent of f is greater than m, we get that |[Eiva,, [he(t)]a, = 0 =
[Einy [Pr ()]l 4, for any 1 < k < m, which is Eva,,[hr(t)] = Evon, [hi(t)] for almost
all y ~ A,. Notice that the matching degree-m moments condition (Definition 1.9) is the same
as the 0- matchlng degree-m moments condition (Condition C.5). Therefore, we just need show
that for any function f : R9t! — R such that f(-,y) is a polynomial for any fixed y, then

|E(x7y)ND[f(x, y)] — Ey)~Ny0D, [f (x, y)H = 0. To do so, notice that
E(xy)~p[f (%, 9)] = Eyup, [Ex~p,, [f (%, 9)]] = Eyup, [Einp,, [Ex~nrom, ) [f Ew+x,y)]]] -

Let f' : R* — R be the function of f'(t,y) = Ex v, ,)[f(tw+,y)]. Notice that f'(-, y) is
a polynomial for any fixed y. Then using the fact that Hermite polynomials form an orthornomal
basis, we have

E(x,y)ND[f(Xv y)] = E(t,y)NA[fl(t7 y)] = E(t,y)NN1®Ay [f,(ta y)]
- Eway [EtNNl [Ex’NN(O,HWl ) [f(tW + Xla y)]]] = E(x,y)NNd®Dy [f(X, y)] ’

where we use the Generative exponent condition in the second equality. This proves Condition|[T](b)
and completes the proof that Condition 2)implies Condition T}

For the direction that Condition [T] implies Condition 2} we prove its contraposmve Assume that
Condition 2| does not hold, then we must either have inf.cg E(; )~a[(y — ¢)?] < 7 or f has Gen-
erative exponent at most m. If infecr E(; ) a[(y — ¢)?] < 7, then taking the & in Condltlonl 1 (b)
to be the function h(x) = ¢ would imply that Condition I 1| (b) does not hold for any subspace V.
If f has Generative exponent at most m, then we get that there must be a 1 < k£ < m such that
1Et,y)~a,, [r®)]]|a, > 0. Now, suppose V' C R is any subspace and we will analyze the
following cases.

1. If W C V, then taking h(Xy) = fx,, is well-defined and we have Ex.n, [(f(x)—h(xv))?] = 0,
which implies that Condition[I](b) does not hold.

2. W €V, we assume that Condition [T] (b) holds for the purpose of contradiction. Let u =
wy 1 /|wyi|l2 and w' = uy/||uyw||2. We now consider the polynomial p : V- — R deﬁned
as p(xy 1) = hi({(u,x)). Notice that

Ex~Dy,_,, P(Xy1)]
=Ex~Dy,_,, [he((u,x))]
:EXONN(O,Hv) [ P <ad [hk

p [he({(w, %)) | xv = %0 Ay = yo]
D [ha

(
=Ex,n(0,11) [Ex~p [ (W, u)(w,x) + (W', u)(w', %)) | xv = x0 Ay = y0]]

=E.n ()~ [ (W, u)(w, x) + (W', 1) 2) |y = yo

=E.n (b~ [ (W, w)t + (W u)2) |y = yo

=B y)ma [(Upw,uwyhi) (1) [y = yo]

=(w,0)"E( y)ua [he(t) |y = vo] ,
where U, is the Ornstein-Uhlenbeck operator. Therefore, we get

1By, [p(ey ), = (w0 [ By, (@)1, > 0.

Now notice that p(xy.) = > () Ai (xy2)®" for some linear maps Ay, : (Vl)®k - R
Given Condition[T](b) holds, we have

EXNDX\y [p(le )] :EXNDx‘y Z A; (XvL )®i

1€ [m]

=3 ABsn,, |(xv)®]

i€[m]

> AE.w, [(XVL)@}

i€[m]
=Exn,[p(xv )] = Exony [hr ({0, %))} = 0,

y~D
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where = denotes equivalence for almost all y ~ D,. Therefore, ||p(x)|[p, = 0, which
Y~y

contradicts the fact that ||p(x)||p, > 0. Thus, Condition (b) does not hold.

This proves the direction that Condition [I]implies Condition 2]and completes the proof of
=

D Algorithms for Learning Real-valued MIMs

In this section, we establish[Theorem 1.4] [Theorem 1.6] and [Corollary 1.7

Organization. In[Section D.I] we present our agnostic learning algorithm (Algorithm 3)), along
with the formal conditions that a MIM must satisfy for the algorithm to succeed (see[Definition D.1)).

In we demonstrate that our algorithm exhibits improved efficiency when the labels de-
pend only on a low-dimensional subspace—a regime that encompasses the realizable setting as well
as cases with added random noise. Finally, in we describe our applications to positive-
homogeneous Lipschitz functions (including homogeneous ReLLU networks) and polynomials on a
few relevant directions.

D.1 Agnostically Learning Real-Valued MIMs
D.1.1 Agnostic Learning Algorithm and Results

In this section, we present an algorithm that agnostically learns MIMs that satisfy a well-defined
set of assumptions. The set of conditions we require is given in the following definition, which is a
formal version of

Definition D.1 (Well-Behaved MIMs). We denote by F(m,(,a, K, M, L, B, p,7,0) the class of
all functions f : R? — R satisfying the following conditions:

1. There exists a K -dimensional subspace W of R such that f(x) = f(xy ) for all x € R

2. f is continuous everywhere and continuously differentiable almost everywhere, with
2
Exn [IVF)IT] < L.

3. f has bounded norm Ey/,[f2(x)] < M and is p-close to a B-bounded function, i.e., there
exists f5 : RY — [~ B, B] such that Ex;, [(f(x) — f5(x))?] < p.f]

4. For any subspace V of R? and any distribution D on R? x R with Dy = N such that
E(x,y)~p[(f(x) — y)?] < ( the following hold:

(a) either Exn, [(f(x) — g(xv))?] < 7 forsome g : V — R.

(b) or with probability « over z ~ N independent of x there exists a degree at most
m, zero-mean, unit variance polynomial p : U — R, where U = Wj,. such that
Eyon (D, xy=2v) [Ex~nu [P(x0)|xv = 2v,y = 90]?] > 0.

A Well-Behaved MIM is a bounded variation MIM function that exhibits distinguishing moments
despite the presence of arbitrarily small L3 adversarial noise. Using this robustness property, one
can show that for a sufficiently fine partition of a subspace V' into cubes and of the real line R into
intervals, there exists a constant fraction of the partition elements for which distinguishing moments
are observable. In other words, conditioning on x belonging to a particular cube and y lying within
a particular interval, distinguishing moments persist.

Before presenting our algorithm and results, we first introduce several key concepts used by the
algorithm.

One of the crucial components of our algorithm is the discretization of the space of examples (x, y)
into thin regions. To achieve this, we partition x and y separately into small, equal-width cubes and
intervals, respectively.

3This is a mild assumption which is satisfied for example when the function has bounded 2.1-degree mo-
ment, that is E[f?!(x)] is appropriately bounded.
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In particular, to efficiently approximate distributions over a subspace V', we partition V into equal-
width cubes, excluding the region where any coordinate exceeds +/log(k /). This approach ensures
that we retain nearly all of the mass of the distribution while maintaining regions that are both
sufficiently fine and can be sampled efficiently.

Definition D.2 (e-Approximating Partition). Let V be a k-dimensional subspace of R? with an
orthonormal basis v(!), ..., v(¥) andlet e € (0,1). An e-approximating partition with respect to V'
is a collection of sets S defined as follows: For each multi-index j = (j1,...,jx) € [M]*, define
S;={x €R%: 2,1 <vW.x < z,,i € [k]} where z;’s are defined as z; = —+/2log(k/e)+ie+t,
fori € {0,...,M.},t € (0,¢/2) and M, = [(2 210g(k/6)>/6—‘.

Moreover, we also discretize the label space R into thin, equal-sized intervals, and refer to the pair
of these partitions as an approximating discretization of V' x R.

Definition D.3 (Approximating Discretization). Let V' be a subspace of R%. We define an
(€1, €2, B)-approximating discretization of V' x R as a pair (S,Z) where

(1) S is an e;-approximating partition of V;

(ii) Z is the set of intervals {[iea — €3/2,i€2 + €2/2] : i € Z,|i] < B/es — 1} U
{[—OO,BL[B,—FOO]}.

We use the term (e, €3)-approximating discretization to refer to the special case where B = 1/¢3.
Moreover, when €; = €5 = ¢, we simply refer to (S,Z) as an e-approximating discretization.

Note that [DIKZ25] does not use a discretization over the label domain and instead obtains a com-
plexity that scales with the number of its elements. As a result, their approach becomes vacuous in
the real-valued setting. In contrast, we bin the values of the label domain using a thin but reasonably
efficient partition, thereby circumventing this issue.

In order to construct an approximation after identifying the appropriate subspace W, we approxi-
mate y using a piecewise constant function defined on the projection xy,. For this, we start with a
partial partition S of W, and define a function that is constant on each element (region) in S and
minimizes the Lo loss. In particular, given the partition S, the function assigns to each region S € S
the value E[y | x € S]|. We formalize this definition as follows:

Definition D.4 (Piecewise Constant Approximation). Let D be a distribution over R? x R, let V/
be a subspace of R? and let ¢ € (0,1). Let S be a partial partition of V. A piecewise constant
approximation of the distribution D, with respect to S, is the function hs : R? — R such that for
each S € Sand x € S, hs is defined as hs(x) = E(x )~p[y | x € S]. Furthermore, for any point
outside the partition x ¢ ( Jg.g S, we define hs(x) = 0.

We set hs(x) = 0 for all points outside the partition to simplify variance control, since these regions
will carry negligible probability mass do not need to be approximated.

We now present the main result of this section, which establishes that the aforementioned class of
well-behaved distributions can be learned efficiently using

Theorem D.5 (Agnostically Learning MIMs). Let f : R® — R be a function from the class
F(m,(, o, K, M,L,B,e/M,7,0). Let D be a distribution over R* x R whose x-marginal is

N and let OPT % Ex,)~p|(f(x) — y)?] with { > OPT + O(c). Then, draws at

most N = dO(m)gpoly2" BELM/(ec)) 160(1/§) ii.d. samples from D, runs in time poly(N), and
returns a hypothesis h such that, with probability at least 1 — ¢, it holds

E(x.y)~nl(h(x) —y)?] < (VT + e+ VOPT)? + €.

D.1.2 Finding a Relevant Direction

First, we show that if there exists a sufficiently accurate approximation of our function within V,
then a piecewise constant approximation over a sufficiently fine partition of V' yields comparable
error.
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Learn-MIMs: Robustly Learning Well-Behaved MIMs

Input: Accuracy ¢ > 0, failure probability § € (0, 1), sample access to a distribution D over R? x R
with Dy = Ny for which there exists f € F(0) for some § = (m, OPT+e¢,a, K, M,L,B,p,7,0)
known to the algorithm.

Output: A hypothesis h such that, w.p. 1 — 8§ E(x ) p[(h(x) —9)?] < (VT + €+ VOPT)? +e.

1. Let T be a sufficiently large constant-degree polynomial in 1/, 1/¢,1/0, K, L, M, B, 2™, and
let C be a sufficiently large universal constant..

2. Let Ly + 0, N < d°m27 log(1/5), e + 1/T,n + 1/T, €3 + €2/(CM),
A+ (aoe/(MBK2™))C.
3. Fort=1,....T

(a) Draw a set S; of N i.i.d. samples from D.
(b) & « 1, €1, €2, B, A\, span(L;), St, ).
(©) Liy1 < Ly U&:.
4. Construct S, an €;-approximating partition with respect to span(L;) (see[Definition D.2).

5. Draw N i.i.d. samples from D and construct the piecewise constant function hgs as follows: For
each S € S, assign the median of O(log(1/d)) means of the labels from the samples falling in
S.

6. Return hgs.

Algorithm 3: Robustly Learning Well-Behaved MIMs

FindDirection: Estimating a relevant direction
Input: 7, €1, €2, B, \>0, a subspace V C R?, samples {(x?,y;)} Y, from a distr. D over R? x R.
Output: A set of unit vectors .

1. Construct an (1, €2, B)-approximating discretization of V' x R, (S, Z) (see Definition D.3))
2. Foreach S € S and each I € Z, find a polynomial pg ;(x) such that

Exy~pl(L(y € I) = psr(xy2))® | x € 5]

< p,nggl Eiy~nl(Ly € I) —p'(xy2))* | x € S+ 7%

3. Let U =Y gcs ez Bxnnn [Vps,r(xvs) Vpsr(xye) T | x € SPr, ) 5lS).

4. Return the set £ of unit eigenvectors of U with corresponding eigenvalues at least \.

Algorithm 4: Estimating a relevant direction
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Lemma D.6 (Piecewise constant approximation suffices). Let e, L, M,7 € R, k,d € Z,
with 7 < M and ¢ > 0 be a sufficiently small absolute constant. Let f : R® — R be an
almost everywhere continuously differentiable function such that Exx,[|Vf(x)|?] < L and
Exn,[f2(x)] < M. Moreover, assume that there exists a B > 0 and fg : R — [-B, B]
such that B[(f(x) — f5(x))?] < c€2/M. Let V be a k-dimensional subspace of R? and let S be an
n-approximating partition of V with n < ce? /(M BLk). If there exists a function g : V — R such
that Exn,[(f(x) — g(xv))?] < 7, then we have that Exn,[(f(x) — hs(x))?] < T + ¢, where
hs denotes any piecewise constant approximation of f.

Proof. Note that for any function g : V' — R the following holds
Exo, [(f(%) = Ban,[f(2) | 2v = xv])?] < Bxen, [(£ (%) — 9(xv))?] -

. def .
Therefore, we have that the function s(xy) = E,n;,[f(2z) | zv = xv] achieves squared error at
most 7. Note that since xy and xy,. are independent for x ~ Ay, we have that

s(xv) = Epun,[f(2) | 2v = xv] = Ex, [f(xv +xp1)].
Hence from the linearity of the derivative operator and Jensen’s inequality we have that
[Vs(xv)|? < Ex,, [Hvaf(xv +xp2)? } Consequently

B, [IV5000)I12] < Bty [ IV £Gev +3x00) 7] < B [IVF )] < 2.

Moreover by Jensen’s inequality we have that
Exn,[(s(xv) = Ex,, [f(xv +%xv0)])’] = Exan[(Bx,  [f(xv +xv 1) = fe(xv +xy0)])%]

< Exn, [(f(x) — fB(x))*] < p.

Therefore, s is close to a bounded function. Let h be an approximation to s that achieves squared
error . We have that the function h(x)1(x € A¢) achieves squared error 2B%¢ + 2p + o ,where A
is any region of R? with mass less than e.

As a result we can apply for the function s have that the piecewise constant function

hg(xv)dgE[s(xvﬂx € S|=E[f(x)|x € S]forallx € Sand S € S and hs(xy) = 0 otherwise
achieves error Ex. v, [(s(xv) — hs(xv))?] < 4p +n + 2nB2.

Finally, we have that Ex. 7, [(f(x) — hs(x))?] = T + €, which concludes the proof of
U

Moreover, under the conditions defined in[Definition D.T] we show that there exists a non-negligible
fraction of finite-width cubes over xy and intervals over y where distinguishing moments can be
observed. Furthermore, we demonstrate that if a direction of the target model is learned to accuracy
€, then there exists an observable moment that depends only on the remaining directions.

Intuitively, the proof proceeds as follows. Since f is a well-behaved MIM, we can round y to some
small accuracy while maintaining distinguishing moments. This discretizes the label space into
intervals, and so with non-trivial probability over xy, there is a degree-m moment that correlates with
the rounded label. Next, because f has bounded variation, f(x) and f(x’)—where x’ is obtained
by averaging xy within x’s cube in S—remain close in mean-squared error. This insensitivity lets
us discretize over V' as well. Finally, for any direction with small projection onto W, bounded
variation and the well-behaved MIM condition imply that averaging along that direction preserves
the distinguishing moment, yielding a moment independent of these directions.

Lemma D.7 (Cube-interval Discretization Suffices). There exists a sufficiently large constant C' > (
such that the following holds. Let d,k,m € Z,, and L,M,(,o, 7,0, > 0 with ( < M. Let
f:RY = Rbein F(m,( + Ce,a, K, M, L,B,e®/(CM), T,0) and let W be a K-dimensional
subspace such that f(x) = f(xw). Let D be a distribution over R? x R such that D, = Ny and
Ex,)~p[(f(x) —y)?] < (. Let V be a k-dimensional subspace, k > 1 and denote by U = Wy ...
Let (S,T) be an (e, €2, B)-approximating discretization of V. x R, with ¢; < 2 /(2LM?V'k) and
€2 < €2/(CM). Moreover, let E C V* be a subspace such that | vy || < ¢/(CKLM) for every
unit vector v € E.
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IfE[(f(x) — g(xv))?] > 7 forall g : V — R, then there exists T C S with Y g+ Pr[S] > «
such that for all S € T there exist I € T and zero mean variance one polynomial p : U — R of
degree at most m such that the following hold:

i) Elp(xp)l(y € I) | xy € S] > poly(ce/(MB3™)).
ii) Vp(xy)-v =0forallv € E and x € R%

Proof of[Lemma D.7} We prove the two items in order. Specifically, we first show that there exists a
sufficiently fine discretization (S,Z) of V' x R such that, for a fraction of cubes S € S, there exists
a degree-m polynomial that correlates nontrivially with the boolean function 1(y € I) conditioned
on x € S. Then, we show that averaging each such polynomial over the subspace E preserves its
correlation on S while forcing all directional derivatives along E to vanish.

Existence of correlating polynomials Without loss of generality, we can let y be the random

variable obtained by truncating the original random variable y to [— B, B] (meaning that we assign

the value Bsign(y) if |[y| > B) and rounding to the nearest multiple of ;. Indeed, let yp ef

sign(y) min(|y|, B) be the truncation of the original random variable y, by expanding the square and
applying Cauchy-Schwarz E[(f5(x) — y)?] < ¢ + O(¢). Hence, E[(f5(x) —y5)?] < E[(fB(x) —
y)?] < ¢+ O(e), which by a similar argument implies that E[( f(x) — y5)?] < ¢ + O(e). Similarly,
rounding yp to multiples of €5 < €2/(C'M) also keeps the random variable (¢ + O(e))-close to f
in squared error. Therefore, for the new random variable y it holds that E[(f(x) — y)?] = ( + O(e).

For any x € R?, denote by Sy the set S € S such x € S. We define a random vector x’ such
that x{,, = xy 1 and xy, is the sampled from the standard Gaussian over V' conditioned on Sy,
i.e., Ny | Sx. Note that x" also follows the standard normal distribution over R< because its V-
component is resampled from N;. Define ' such that for all z € R?, the distribution of 3 given
x’ = z is the same as the distribution of y given x = z. Notice that 3/’ and 3 have the same support,
i.e., ¢’ is also a multiple of €. Denote by D’ the joint distribution of (x, y').

By applymgwe have that E[(f(x) — f(x’))?] < €2/M. Moreover, it holds that E[(f(x) —

Y )2] E[(f(x ] Therefore, by expanding the square we obtain
E[(f(x) —¥)%] = E[(f*(x) = 9)’] = 2E[(f(x) — ) (f(x) = F()] + E[(f (%) — f(X))?]

where in the last inequality we used Cauchy-Schwarz and the assumption that ( < M.
Consequently, by Condition (4) of we have that with probability « over
z ~ Ny there exist a zero mean, variance one polynomial p : U — R such that

EyON(D',\xv=zv) [Exyn~p [p(xv)xv = 2zv,y’ = yo]*] > 0.

Fix a z such that the aforementioned statement is satlsﬁed Note that E[y"?] = O(M). Recall
that by the Gaussian hypercontractivity inequality (Fact E.4), we have that E[¢*(x)] < 3?™, for
any zero-mean, unit-variance polynomial ¢ : R? — R of degree at most m. Letn € (0,1) be a
parameter to be quantified later and denote by ), the set of all yo in the support of 3 such that
Pry/N(D;,\xV:zv) [y = yo] < . For alabel a € ), we have that

Eyu~(D;,\XV=zv)[]l(Z/0 = a)Epy)~p [p(xu)xy = 2vy = yo)?]
S EyDN(D;/‘Xv:zv)[]l(yO = CL)EJ(x,y’)ND’ [p2(XU)|XV - ZVay/ = yOH
< VIV Exen, [P (x0) [xv = 2zv]]

S /n32m ,

where in the first inequality we used Jensen and in the second inequality Cauchy-Schwarz and in the
last inequality the hypercontractivity bound along with the fact that U C V.

Note that the number of different values in the support of y’ are at most O(B/ez). As a result, we
have that

By, (D!, Ixy =2v) By [P(x0) v = 2v3" = 10]’]
< Eyon(n! xv=2v) [LW0 & V) Eiey)~nr [p(xv)lxv = 2v.y = o]*] + O(B/e2)v/n3*™ .
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Setting the parameter 7 = (e20/(2BM3™))? results to O(B/ez)y/n32™ <  0o/2,
and thus By, (D jxy =) [L(yo & Vo) By~ p(xv)lxv =2v.y' = 90]?] > /2.
Therefore, there exists a yo with Pryo(p |xy—z)l¥’ = %] > 7 such that

Ex,y)~p' [p(Xv)|xv = 2zv,y’ = yo] > \/0/2. Hence, for the aforementioned yo it holds
that E(x . [p(x0)1(y' = yo)|xv = zv] > poly(oe/(BM3™)).

Finally, since y’ is independent of zy when conditioned on its cube S,, we have that
Ex,y)~p' P(xv)1(y" = yo) | xv € S] > poly(oe/(BM3™)). Noticing that the moments with
respect to U on each S € S are the same for y and 3’ we have that also E(x )~ p[p(xv)1(y = yo) |
xy € S| > poly(oe/(BM3™)). Therefore we have that the first part of the statement follows as
conditioning on the truncated and rounded label to equal 7e5 is the equivalent as conditioning on the
intervals [ieq — €2/2,i€2 + €3/2] for |i| < B/e — 1 and [—oc0, —B], [B, o¢].

Using a similar strategy, we show that there exists a polynomial satisfying the second part of the
statement also.

Averaging over £ Define the parameter § L e /(CLK M). Recall that for all unit vectors v € E,
it holds that |vyy | < 4. Letx' = zg + xg1, where z ~ A independent of x.

In the following claim we show that f(x) is very close to f(x’), to do this we simply integrate the
change of f across a path from x to x’. Since f is a function of bounded variation and || IIy (x —x')||
this change is small.

Claim D.8. It holds that E[(f(x) — f(x'))?] < L(K6)2
Proof| Note that since we want to utilize the fact that E[||V f(x)[|?] < L we want inte-

grate at along a rotation from x to x’ to preserve the all intermediate points in the path to be standard
Gaussian.

For that purpose let u() = (xg cos(6) + zg sin(0)) + xg.. Note u(0) = x and u(n/2) = x'.
Now by the Fundamental Theorem of Calculus

w/2
F) = ) = [ VHGat0)) - Gwa(o)as
/2
= /0 V((9)) Iy (zg cos(f) — xg sin())do
w/

2
S/ IV (u(@)[[Tw (2 cos(0) — x sin(0))||d6 ,
0

where in the last inequality we used Cauchy-Schwarz. Hence,

/2 2
(f(x') = f(x))* < (/0 IV £ ((0)) | Tw (zE cos(6) — xp Sin(e))Hd@)

7/2
= (/2)° (/O @2/m)IV f (@)l Tw (25 cos(f) — xpg Sin(9))||d9>

/2
< (W/Q)/ IV.f (a(8))]1?[Mw (2 cos(8) — xgsin(8))]*d6
0
where in the last inequality we used Jensen. Taking the expectation and noticing that u(f) and
zp cos(f) —x g sin(f) are independent (since they are jointly normally distributed and uncorrelated),
we get
/ 2 "/ 2 . 2
E[(f(x) - fx)7] < ; E[|[V £ (u(0))["|[Mw (2 cos(0) — x sin(6))]"]
/2 ) . )
S/O E[[[V f(a(0))[I"]E[[|Tlw (25 cos(f) — x g sin(6))["]

< LExeon, [ Tw x|
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NOthll‘lg that EXN_/\[d[HH{/VHEXH } = ||HwﬂE||%‘ < (rank(HWHE)||HWHE||2)2 < (K5)2 com-
pletes the proof of O

Hence byMwehavethatE[( f(x)— ( ))]
,ie.,

1/’ supported on R that is distributed like y for x’
allz € R4, p € R.

Note that E[(f(x) — %')?] = E[(f(x’) — y)?], which, similarly to before, can be shown—by ex-
panding the square and applying Cauchy—Schwarz—to be less than ¢ + € for a sufficiently large
constant C. As a result, we have that by applying part (i) of the statement to 3’ there exists
T C S with 3 4 Pr[S] > a such that for each S € T there exists a zero-mean, variance-
one polynomial p : U — R of degree at most m along with an interval I € Z such that
Ex’g/ [p(7>SU)]l(y’ €l)|x €8] > o, where U = (V + W) NV, However, we have that for
all S e

Ex ., [p(xu)l(y €I)|x € S] =E[Ex,[p(xv) | xp:|Ex,[l(y €I) | xp] | x € S]] .

/(CM ) C0n51der the random variable
Pl

S (e
D(y'=p|x' =2)=D(y=p|x=z),for

Notice that p’(xyr) def Ex,[p(xv) | xg1] is a mean-zero polynomial of degree at most m with
variance at most one by Jensen’s inequality. Furthermore, as p’ is independent of x we have that
Vp'(xy)-v=0forany v € F and x € R?, O

Before proceeding with the proof of we establish the following proposition, which
states that in each iteration, as long as the current subspace V' yields an insufficient approximation

of the labels, it is possible to extract a direction that is correlated with the remaining subspace.

Proposition D.9 (Finding a Relevant Direction). Letd, k,m,K € Z, §,a € (0,1), n,e, M, L >0
and let C > 0 be a sufficiently large universal constant. Let f : R — R be a function from
the class F(m,(,a, K,M,L,B,e*/(CM),T,0) and denote by W C R? with dim(W) = K

the hidden subspace of f. Let D be a distribution over R x R whose x-marginal is Ny and let

opT ¥ E(x,y)~p[(f(x) = y)?] with ¢ > OPT + O(e). Let V C R* be a k-dimensional subspace

and let (S,T) be an (€1, €5, B)-approximating discretization of V- x R, with ¢; < 2 /(CLM?*\/k)
and e; < €2 /(CM). Additionally, let hs be a piecewise constant approximation of D, with respect
to S. There exists N = (dm)®(™ (k/e;)O*) 10g(B/(662))/770(1 such that, if B )~ p[(hs(x) —
y)?] > (VT + €+ VOPT)? then 4| given N ii.d. samples from D and parameters
n < (oe/(MB2™))C €1, €2, \ = (cwe/(MBKZm))C, runs in poly (N) time, and with probability
at least 1 — 6, returns a list of unit vectors & of size |E| = poly (2™ K M B/(ao¢es)), such that: For
some v € & and unit vector w € W it holds that wy,1. - v > poly(eoeaa/ (K LM B2™)) .

Proof of[Proposition D.9) Let w'V), ..., w¥) be an orthonormal basis for the subspace W. For
each pair S € Sand I € 7, let pg 1 denote the regression polynomial of degree at most m computed

at Line |2 I of m Further, let U be the matrix computed at Line 3| of |Algorithm 4} and let
n? denote the L3 error chosen in the polynomial regression step (see Line [2| of [Algorithm 4)).

We begin by proving the following general lemma, which states that if a fraction of the discretization
cubes exhibit non-trivial moments, then—with a sufficiently large number of samples—the output
set £ will be non-empty and will contain only a small number of vectors.

Lemma D.10 (Existence of Correlating Vectors). Let (S,Z) be an (€1, €2, B)-approximating dis-
cretization of V x R. Assume that there exists a subset T C S with ) g+ Pr[S] > «, such that for
each S € T there exists an interval I € T and a zero-mean, variance-one polynomial qs : U — R of
degree at most m such that By )~plqs(xv)1(y € I) | x € S| > 0 > 2n for some subspace U of
VL. Furthermore, assume that the eigenvalue threshold )\ = (a0 /K)Y, for some sufficiently large
universal constant C' > 0. Then, there exists N = (dm)°™) (k/e1)°®) log(|Z|/6)/n°Y) such that
with probability at least 1 — 6 the output set £ has cardmallty at most |E| = poly(mK/(ao|Z|))
and contains at least one vector v € & such that u - v > poly(ao|Z|/(mK) for some u € U.

Proof of[Lemma D10} Let u),... u*) denote an orthonormal basis of the subspace U.

We prove the lemma in two stages. First, we analyze each cube S that exhibits

. . . .o . def
non-trivial moments by evaluating the quadratic forms of its influence matrix Mg ; =
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Ex-p, [Vps,1(xy1)Vps(xy2)T | x € S] on the vectors ul). Then, we extend the analysis
by averaging over all such cubes and examining the eigenvectors of the aggregated influence matrix,
U.

In the following claim, we leverage the existence of non-trivial moments over U for the regions
S € T, to show that if the sample size is sufficiently large then for each region S € T, there exists
an interval I € Z, such that the associated influence matrix, Mg 1, has large quadratic form for at
least one of the u(")’s.

Claim D.11 (Quadratic form of the Influence Matrix). Let C' > 0 be a sufficiently large universal
constant. Fix, S € T. If the number of samples that fall in S is Ng > (dm) ™ log(1/(de2))/n°,

then with probability at least 1 — § there exists i € [k'] and I € T such that (u®))T Mg rul >
o?/(2K) .

Proof of[Claim D11} Notice that membership of a point x in a cube S depends solely on its projec-
tion onto V/, i.e., on xy. Therefore, the error guarantee obtained in the polynomial regression step

Ey)~pl(1(y € 1) — pss(xy))2lx € S| mingep, Epeynl(Lly € 1) — o (xy1))*x €
S] + n? is equivalent to E(xy)~DS [(I(y € I) — ps1(x))?|<minyep,, E(xy)~ps | [(L(y €
I) — p'(x))?] + n?, where Dj} . is the marginal obtained by averaging D over V' conditioned on S,
ie, Dy (xy1,y) =Ex, [D(x,y) | x € 5].

Moreover, by the properties of the Gaussian distribution, we have that the x-marginal of DVL

a standard Gaussian. Therefore, since |Z| = poly(1/ez) if Ng > (dm) ™ log(1/(de3))/n® for a
sufficiently large universal constant C' > 0, then by applying the union bound and [Fact E.9] we have
that with probability at least 1 — §:

Bey)~ps, (10 € 1) = psr(x)’) < min Bieyyops (1€ 1)~ () + 07

for all I € Z. Furthermore, by the orthogonality of Hermite polynomials, we have that
B y~ns, (L € 1) = ps.1(x))%]

= Z (]-:C(x,y)r\zD‘S/'L [H,@(X)Il(y € I)] - :E(x,y)ND‘S/L [Hﬁ(x)pS,I(X)])2 :
BCNd

In particular, if we decompose the error into its Hermite polynomial components of degree ¢, we
have that 7", By ps | [(1(y € DI = plg)y (x))2] < n?.

From the rotational invariance of the Gaussian without loss of generality, we can denote by
e1,..., e the orthonormal vectors u(®), ..., u*). Furthermore, since U is a subset of V1 we
similarly have that E(x,y)NDiL l[gs(xp)1(y € I)] > o for some I € Z. Decomposing gs(xy) to
the basis of Hermite polynomials we have that gs(xv) = > _gcnar 1<)18ll,<m Gs(B)Ha(xy) where
d" = dim(U). Moreover, note that since gg has no component outside eq, ..., e we have that
qs(xv) = D gy ds(B)Hp(xu), where J denotes the set of 3 € N? such that 8; > 1 for some
i € [K']. Considering the correlation of ¢g with the label interval I, we have that

Ety)~ns, lgs(xv)1(y € I)] Z 4s(8)E(x,y) )~DS | [Hp(xu)1(y € 1)]
BeJ
1/2

Z Etcy)~ns | [Hp(xu)1(y € I)]? ;
geJ

where we used the fact that ||¢s||2 = 1 and the Cauchy-Schwarz inequality. Hence, we have that the

sum of the squares of the Hermite coefficients for of the degree m restriction the random variable
1(y € I) is at least 0.
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Now evaluating the quadratic form of Mg ; using gives us

% % %
> e/ Mg e =) Exy)~ns, [(VPs:(x) - )] = > (O B)(ps.:(B))
i=1 i=1 BeNd i=1
> Exy)~ps | [Ha(xu)l(y € N* —2n
BeJ
>0 — 2> 02/2

for n < 0/2. Thus, since dim(U) < K we have that e; TMg se; > 02/(2K) for some j € [K].

This concludes the proof of [Claim D.11] _ O

Now note that by the definition of an approximating partition (see [Definition D.2)) and [Fact E.2] for
all S € S we have that Prp[S]= (e1/k)**), hence |S|= (k/e1)°*). Therefore, by union bound
and Hoeffding’s inequality, it holds that if N > (k/e1)%%log(|S|/0) = (k/e1)°™ log(1/8) for
a sufficiently large constant C' > 0, then with probability at least 1 — ¢ we have that |[Prz[S] —
Prp[S]| < Prp[S]/2forall S € S. Hence, it is true that Pr5[S] > Prp[S]/2, i.e., the number

of samples that fall in each set S € S is at least NPrp[S]/2 = N(e; /k)?*).

Therefore, for N > (dm)“™ (k/e1)“* log(|Z|/5)/n® for a sufficiently large universal constant C' >
0, by applying we have that for all S € 7 it holds that (u?)" Mg ;u®® > 02/(2K)
for some ¢ € [K'],T € Z. Hence, since k¥’ < K, we have that there exists a subset 7/ C T and
i € [K'] with Y g Prs[S] > > g PrplS]/2 = Q(a/K) such that for all S € T we have

that (u)"Mg rul® > o2 /(2K) for some I € T.
Thus, for some i € [K] we have that

()T Tu® > %02 /(2K) > poly(ac/K) ,

where we used the fact that U is PSD.

Moreover, note that from [Fact E.10] we have that tr(Mg ;) = O(m). Therefore, we have that
< E[||Vps.i||’] = tr(Mg). As a result, by the triangle inequality we can see that

IAJH < ] < :
[o].< > IMsil Prslsi <O 3 Pryls] <miz
SeS,IeT SeS,IeT

Hence, by , we have that there exists a unit eigenvector v of U with eigenvalue at least
poly(ao/K) for a sufficiently small polynomial, such that u(® - v > poly(ao/(mK|Z|) for some
i € [K]. Moreover, the number of such eigenvectors, ||, is at most poly(mK|Z|/(ao)). Which

O

concludes the proof of

We now leverage the assumption that hs exhibits large error, along with the previously established
lemmata, to complete the proof.

Define the subspace ol span({v e&:|vwll < p/VIE, where p = 62/(CKLM) Notice
that ||vy || < p holds for every unit vector v € FE. Also denote by U def Wy,

Since E(x )~p[(hs(x) — y)?)] > (/7 + €+ VOPT)? and f is assumed to be in the class
F(m,OPT +¢,a, K, M, L, B,e?/(CM), 7,0) we have that[Lemmas D.6 andtogether imply
that there exists a subset 7 C S with ) | SeT Pr[S] > «, such that for each S € T there exists an
interval I € 7 and a zero-mean, variance-one polynomial ¢s : U — R of degree at most m such that
Ex,y)~plgs(xv)l(y € I) | x € S] > t for some t = poly(ce/(MB2™)) and Vrqs(xy) = 0.

Denote by u(®, ... ,u(k/) an orthonormal basis of the space U projected onto E+. We have that
k' > 1, otherwise we would not have the existence of gg that is defined over this space.

Finally, note that for C' a sufficiently large constant 7 < ¢/2 and also A\ = (ta/K)®. There-
fore, since N = (dm)°™) (k/e1)°") log(B/(dez))/n°M) applying [Lemma D.10| for the space

54



U projected onto E+, we have that |€] = poly(2™ KM B/(acees)) and there exists at least
one vector v € & such that u” - v # 0 for some i € [K]. However, note that since
u® . v #£ 0, we have that v can not belong in E. Thus there exists a unit vector w € W such that
|v-w| > p/VE > poly(ecesa /(K LM B2™)) which completes the proof of [Proposition D.9| [

D.1.3 Proof of Theorem [D.3
In this section, given [Proposition D.9] we proceed to the proof of Recall that, in

Proposition D.9, we have shown that if our current approximation to the hidden subspace is not
accurate enough to produce a function that has sufficiently small error, then efficiently
finds a direction that has non-trivial correlation to the hidden subspace. In the proof that follows,
we iteratively apply this argument to show that, after a moderate number of iterations,
outputs a function with sufficiently small error.

Proof of[Theorem D.3} Denote by W* the K -dimensional subspace defining f. We show that[Algo-
rithm 3|, with high probability, returns a hypothesis » with L2 error at most (/7 + € ++v/OPT)? +e.

Denote by w*(1) ... w*(5) ¢ R? an orthonormal basis of W*. Let L; be the list of vectors up-
dated by the algorithm (Lineof Algorithm 3)) and V; = span(L;), dim(V;) = k;. Also, let S;

for t € [T be arbitrary €;-approximating partitions of V; where €; the value set at Line [I| Let
hy : R — [K] be a piecewise constant functions, defined as h; = hs, according to [Definition D.4

for the distribution D.

To prove the correctness of |Algorithm 3| we need to show that if h; has significant error, then the
algorithm improves its approximation V; to W*. For quantifying the improvement at every step, we

consider the following potential function ®; = Zl 1 H *()

We will use the following fact that quantifies how much addlng a correlating direction decreases ®;.

Fact D.12 (Potential Decrease, e.g., see Claim 2.16 [DIKZ25] ). Let 8 > 0. If there exists a unit
vectors v(t) ¢ Viy1 and w € W* such that w - v(t > B, then ®; 1 < &y — 2

We next prove the following claim which shows that the error of the functions h; decreases as we
add more vectors.

Claim D.13 (Error Decrease). For each t € [T, it holds E[(hi+1(x) — v)?] < E[(ht(x) — y)?].

Proof. Since the statement of holds for any e, -partitions Sy, t € [T'], independent of
the choice of basis and threshold points, we can assume that all the approximations h; are computed
with respect to extensions of a common orthonormal basis and that all threshold points are aligned.
Hence, S;;1 is a subdivision of S;. Thus, each set S € S; can be written as a union of sets
Sl, ey Sl S St+1, i.e., S = UiZISZ

By definition, for any set S € S; we have hy(x) = Ex,,)~ply | x € S] forx € S, and similarly,
forany S; € Syy1, hi11(x) = Exy)~ply | x € Si] forx € S;. Thus, for any S € S;,

E(x,y)wD[(hH»l(X) , X € S ZPI‘ E(x y)ND[(h/tJrl( ) )2 | X € Sl]

= 3PS By (Beesroly | < 51— 0)’ [ 5]

i=1
l

< Pr(Si] By~ [(E@c,yw \XeS]—y)Q‘xeSi]

=1
= Exy)~pl(hi(x) —y)*, x € 5],

where we used the fact that E, . p[(x — E[z])?] < E,~p[(z — 2)?] for any z € R and distribution
P supported on R. Summing over all S € S;, completes the proof of O
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Finally, we prove the following claim which shows that the population piecewise constant functions
are close to the corresponding empirical ones.

Claim D.14 (Concentration of Piecewise Constant Approximation). Ler €,€¢',6 € (0,1) and
kK € Zy withe < ¢€/2. Let V C R? be a k-dimensional subspace, and consider a piece-
wise constant approximation h : R — [K] of D, with respect to an €'-approximating parti-
tion of V. Let D be the empirical distribution obtained from N i.i.d. samples drawn from D,
and let h be a piecewise constant approximation of D defined with respect to the same parti-
tion. If 1 is computed using the median of means estimator for each S € S, then
there exists N = (k/eNOR) (M /€)M log(1/8) such that, with probability at least 1 — §, we have
E[(h(x) — y)’] < E[(h(x) —y)?*] + €.

Proof. Denote by S the approximating partition for the functions h,ﬁ. First, note that by the def-
inition of an approximating partition (Definition D.2) and by [Fact E.2| we have that Prp[S] =
(¢ /k)**) and hence |S| = (k/e')OF).

Fix S € S. Note that since Prp[S] is lower bounded we have that the second moment of y condi-

tioned on S can not be arbitrarily large. Specifically, E[y? | x € S] = E[y?*1(x € S)]/Prp[S] =
ﬁ

M (k/e")O®) Therefore, for any S € S by applying [Fact E.13|{we have that, if the number of sam-
ples that fall in S'is Ng = C(k/e')“*M? /e 1og(1/) for a sufficiently large constant C' > 0, then
with probability 1 — & it holds |h(x) — E[y | x € S]| < ¢ for all x € S. Noting that by definition
h(x) = Ely | x € S] forall x € S, we have that \E(x) — h(x)| <eforallx € S.

Hence, by union bound and Hoeffding’s inequality, if N > (k/€)“Flog(|S|/6) =
(k/€)°®) log(1/8) for a sufficiently large constant C, then with probability 1 — § we have that
|Pry[S] — Prp[S]| < Prp[S]/2 forall S € S. Hence, it is true that Pr5[S] > Prp[S]/2, ie.,
the number of samples that fall in each set S € S is at least NPrp[S]/2 = N (¢ /k)**). Therefore,
if N > C(k/e")“*M?/e?1og(1/6) for a sufficiently large constant C, then with probability at least

1 — ¢ forall S € S itholds that m(x) — h(x)| < eforall x € R%.
As aresult, by Cauchy-Schwarz E[(h(x) — y)?] < E[(h(x) —y)2] + €2 + e\/E[(h(x) — y)?]. More-
over, by Jensen’s inequality E[y?], E[h%(x)] < M, hence \/E[(h(x) — y)2] < V2M. Therefore,

it N > C(k/e')C* M3 /e2log(1/5), with probability at least 1 — § it holds that E[(h(x) — y)?] <
E[(h(x) — y)?] + €. Which completes the proof of [Claim D.14| O

Note that from Lines [1| and |3| of [Algorithm 3| we perform at most poly(BK LM2™ /(exo)) itera-
tions. Furthermore, in each iteration, we update the vector set with at most poly(BK M2™ /(eao))

vectors. Hence, it follows that k; < poly(BKLM?2™ /(eao)), forallt =1,...,T.

Assume that Ey ,yp[(ht(x) — y)?] > (/T+€e+ VOPT)? forall t = 1,...,T. Using the
fact that N = dCm2(BKLM2"/(ca0)) 64(1/6) for a sufficiently large universal constant C' > 0

(Line [2] of [Algorithm 3), we can apply and conclude that, with probability 1 — §,
there exists unit vectors v(¥) € V;,; and unit vectors w(*) € W* for t = [T] such that w(®) -

v, > poly(eca/(BMKL2™)). Thus, by [Fact D.12| we have that with probability 1 — 4, for

all t € [T], ®; < ®;_1 — poly(eca/(BMKL2™)). After T iterations, it follows that & <

&y — Tpoly(eca/(BMKL2™)) = K — Tpoly(eoa/(BM KL2™)). However, since T is set

to be a sufficiently large polynomial of 2™, B, M, L, K,1/¢,1/a, and 1/0 we would arrive at a

contradiction, since ®7 > 0. Hence, we have that E(x ) p[(h:(x) — y)?] < (/7 + €+ VOPT)?,

for some t € {1,...,T}. Since the error of h; can only be decreasing by[Claim D.13|and h; is close
Cuimp 14

to its sample variant by|Claim D.14] we have that Ex ) p[(h(x) —9)?] < (/7 + €+ VOPT)?*+e.

Sample and Computational Complexity: From the analysis above we have that the algorithm
terminates in poly(BKLM2™ /(eao)) iterations and at each iteration we draw of the order of
dO(m)gpoly(BELM2™ /(eao)) 1og(1 /§) samples. Hence, we have that the total number of samples
is @O (m)gpoly(BKLM2™ /(ca0)) |oo(1 /§). Moreover, we use at most poly(N) time as all operations
can be implemented in polynomial time. O
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Remark D.15. While our algorithm is sufficient to obtain a polynomial dependence on d for any
constant values of m and the other parameters, it is worth looking closer at the exponent of this poly-
nomial. The algorithm that we have presented requires d’™ samples in order to accurately estimate
the degree-m parts of the relevant indicator functions in Line [2] of Observe that there
is a quadratic gap between this bound and our SQ lower bound. Recall that our SQ lower bound
requires either exponentially many queries or a query of accuracy d~"*/, which in turn requires
roughly d”/? samples to simulate.

We believe that this gap can be closed with a slightly different algorithm. In particular, instead
of finding the polynomial approximation pgs ; for each S and I in our discretizing approximation,
and combining them into a matrix U to find directions that are often influential, we instead merely
sample (S, I) pairs and find the influential directions for each sampled pair (and note that with high
probability we should find one which correlates with 1). Then instead of estimating pg 7 in Lo-
norm (which requires roughly d” samples), we can treat it as an m-tensor T, which in turn we
flatten into a dl™/2)) x d[™/2] matrix M. Since by assumption T has a large component in the -
directions, M must have some singular vectors with relatively large singular values that themselves
correspond to polynomials in which the W-directions are influential. We can again find these if
we estimate a suitable approximation to MM, but importantly for our purposes, we only need to
estimate IM to small error in operator norm rather than small error in Frobenius norm. This allows
the algorithm to succeed with only around d/™/2! samples.

D.2 Learning Real-Valued MIMs: Realizable and Random Label Noise

In this section, we demonstrate that our algorithmic approach becomes more efficient when the label
y depends only on the projection of x to a low-dimensional subspace.

Specifically, we assume that there exists a /-dimensional subspace W such that y depends on x
only through its projection onto W that is, Prly = z | x = u] = Pr[y = z | xyv = uy| for all
u € R, z € R. This is a setting that captures both the realizable and the independent noise settings.
We refer to this as the MIM distribution setting, indicating that the random variable y is a MIM, i.e.,
it depends only on a low-dimensional subspace.

This structural assumption implies that all non-zero moments of the joint distribution are entirely
within . Consequently, our algorithm achieves a constant correlation gain in each iteration (unlike

the agnostic setting analyzed in [Proposition D.9)), resulting in only O(K) iterations overall. This
leads to significant improvements in sample and computational complexities.

We begin by formally defining the class of distributions for which our algorithm guarantees a sat-
isfactory solution. In[Section D.3] we will demonstrate that for several MIM function classes, their
distribution of examples belongs to this class.

Definition D.16 (Well-Behaved MIM Distributions). Fix d, K,m € Z;, a € (0,1) and
M,7,0,e1,e5 > 0. We say that a distribution D over R? x R whose marginal is N is a
(m,a, K, M, T,0,€1,€3)-well-behaved MIM distribution, if the following conditions hold:

1. There exists a subspace W C R< of dimension at most K such that y depends on x only through
the projection onto W, i.e., Prix ,yply = 2 | x = u] = Pri yoply = 2z | xw = uw], for
allu e R% z € R.

2. The label has bounded variance, i.e., E(x ) ~p[y*] < M.

3. For any subspace V' C R? with dim(V') < K and for any (7;, 72 )-approximating discretization
(S, Z) withm < e1,m2 < €2

(a) either E(x )~ p[(hs(xv) —y)?] < 7, where hs denotes the piecewise constant approxima-

tion of D according to [Definition D.4]
(b) or there is a subset 7 C & such that ) ¢+ Pr[S] > a and for U = Wy, ., there ex-
ists a polynomial p : U — R of degree at most m and an interval I € Z such that

Ex )~pp(xv)l(y € I) | x € S] > o||p(xv)||2 and Ex [p(xy)] = 0.

We now present the main theorem of this section, which shows that[Algorithm 3]achieves improved
complexity in this setting.
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Learn-MIM-Distributions: Learning Well-Behaved MIM distributions

Input: Accuracy € € (0, 1), failure probability 6 € (0, 1), sample access to a distribution D over
R? x R, and parameters § = (m,a, K, M,T,0,¢;,¢) for which D is a §-well-behaved MIM
distribution.

Output: A hypothesis h such that, with probability at least 1 — 8, E(x ,)~p[(h(x) —y)?] < T+ e

1. Let C be a sufficiently large universal constant.
2. Let Ly =0, N + (dm)cm(mK/(elega))CK(M/(ea))C log(1/4).
3. Fort=1,...,T

(a) Draw aset Sy of N i.i.d. samples from D.

(b) & <+ |Algorithm 4((K|Z|/(cea))C, e1/K*, €a,1/€2, (ca/ K)C  span(Ly), Sy, 0).
(c) Construct Ly by adding one vector of &; to L.
4. Construct S, an e;-approximating partition with respect to span(L;) (see[Definition D.2)).

5. Draw N i.i.d. samples from D and construct the piecewise constant function h s as follows: For
each S € S, assign the median of O(log(1/d)) means of the labels from the samples falling in
S.

6. Return hg.

Algorithm 5: Learning Well-Behaved MIM distributions.

Theorem D.17 (Learning Well-Behaved MIM Distributions). Let D be a (m,a, K, M, 7,0, €1, ¢€3)-
well-behaved MIM distribution supported on R? x R.  Then, draws N =
(dm)o(m)QPOIY(K) (m/(e162a))°F) (M) (e0))° MV log(1/6) i.i.d. samples from D, runs in time
poly (), and returns a hypothesis h such that, with probability at least 1 — 6,

E(y)~nl(h(x) —9)?] <7 +€.

We now prove the following proposition, which demonstrates that—compared to the agnostic setting
(see [Proposition D.9)—improved correlation can be achieved in the MIM distribution setting.

Proposition D.18 (Correctness of Learning Well-Behaved MIM Distributions). There exists a
sufficiently large universal constant C > 0 such that the following holds. Let D be a
(m, o, K, M, T,0,¢1,€3)-well-behaved MIM distribution supported on R? x R and let W C R¢
with dim(W) = K be the hidden subspace of D. Let V. C R? be a k-dimensional subspace with
k < K such that |[vyy || < € < e(ere2a0/K)C, for all unit vectors v € V. Also, let (S,T) be
an (e1/K*, e3)-approximating dicretization of V x R. Additionally, let hs be a piecewise constant

approximation of D, with respect to S. There exists N = idm)o(m)(K/el)O(k) log(|Z|/5)/n°™

such that if E(x )~ p[(hs(x) —y)?] > T +¢, then|Algorithm 4| when given N i.i.d. samples from D
and parameters 1 < (eoeaa/(mK))%, e1/K*, 2, A = (ca/K)C, runs in time poly(N) and, with
probability at least 1 — 0, returns a list of unit vectors € of size |E| = poly(mK/(eaac)), such that
for every vector v € &, there exists a unit vector w € W withw -v > 1 —¢€.

Proof. Let U be the matrix computed in Line [3|of [Algorithm 4]and let 52 be the L2 error chosen in
the polynomial-regression step, i.e., Line [2] of |[Algorithm 4]

In the next claim, we show that if the sample size for a cubic region S € S is sufficiently large, then
for every I € 7 the influence matrix, Mg ; & Exp, [Vps 1(xy1)Vps (xy1)" | x € 9], (see
Line [3{of |Algorithm 4)) has small quadratic form when evaluated for any unit vector in W+ + V.

Lemma D.19 (No Bad Vector). Fix S € S. Suppose that the number of samples falling in S is
Ng > (dm)“™log(1/(de2))/n for a sufficiently large universal constant C > 0. Then, for any
unit vector v € (V + WL) N VL we have that v Mg v < (K%€' /e1)? + mn?.

Proof of[Lemma D.19, Let Ng,S € S, be the number of samples that land in the set S. First,
observe that the guarantee obtained at the regression step

E(xy)~pl(L(y € =psr(xv1))* | x € 8] < Jmin B~ pl(Ly € I—p(xy+))* | x € S]+7*
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is equivalent to

Bey~ps, (10 € 1) = ps.r(x)?) < min Boeyyops (1€ 1) =9 ()] + 02

where D‘é;L is defined to be the marginal obtained by averaging D over V conditioned on S,
ie, DY, (xy1,y) = Ex,[D(x,y) | x € S]. Moreover, by the properties of the Gaus-
sian distribution, we have that the x-marginal of D2, is a standard Gaussian and denote by
e dim(V1) = d — k. Hence, by applying and the union bound, we have that with

Ng = (dm)°™ log(1/(de))/n°M i.i.d. samples and runtime poly (N, d), we can compute poly-
nomials pg ; that satisfy the aforementioned condition with probability at least 1 — 6.
For 3 € N* the Hermite coefficients of ps,; and 1(y € I) are defined by pgs r(0) Lt

~ def .
E(x7y)ND5L[Hﬁ(X)pS$](X)] and g;(B) = E(x7y)ND5l[Hﬁ(x)]l(y € I)]. By the orthogonality

of Hermite polynomials, we have
E(x,y)NDgL (M(yel)— pS,I(X))2] = Z (Ps,1(8) — 91(3))? .
BENK
Thus, restricting the sum to multi-indices 8 with 1 < ||B|l1 < m, it follows that
ZBeNk’,1g\|5||lgm(PS,I(5) —91(8))* <.
Note that g7 (8) = Ezn, [Hp(2y 2 )Prx y)ply € I | xv € S,z = xy1]]. For z € V7 define
the function g(z) def Pry~ply €l |xy € S,z =xy.1].

In the following claim, we show that the directional derivative of the function g in directions within
V + W+ is small. This implies that the quadratic form of Mg ; in these directions is also small,
since g and pg,; match Hermite coefficients.

Claim D.20 (Directional-derivative bound on the averaged indicator). Fix an interval I € T and
cube S € S. Letu € (V + W) NV~ be a unit vector. Then for all x € V* it holds that
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d_
—g(x +tu)

<
dt -

€1

Proof of [Claim D.20, Define the function g(z) = Pr( ,).ply € I | x = z] and note that for all
z € R%itholds that §(zy 1) = Exn,[9(xv + 2y 1) | Xy € S, Xy = zy1].

Letu=a+b,wherea € Vandb € W+. Since u € V=, it holds that ||al|? +a-b=u-a=0.
Note that by assumption |la — ay/|| < ¢ ||a||, thus a = ay, + ¢’ ||a| v, for some unit vector v € R,
Hence, we have that ||a||>+a-b = ||a||?+¢' ||a]| (v-b) which implies that ||a|| < ¢ ||b]|. Therefore,
by triangle inequality ||b|| < ||lal| + 1 as aresult ||a]| = O(¢).

Since y depends on x only through the projection onto W, we have that g(x + tu) = g(x + ta).
Thus, shifting x by tu is equivalent to shifting by ta.

Denote by y a standard normal random variable over V' and by x a standard normal random variable
over V. From the fact that g is invariant in changes in W we have that
Eylg(x+y+tu)l(y € S)] _ Ey[g(x+y+ta)l(y € 9)]

glx+tu) = Prly € 5] - Prly € 5]

Now define the new random variable z < y + ta. By a change of variables we have that
E.[lg(x + 2z)1(z — ta € S)]
Prly € 9]

Therefore, shifting the argument by ¢u results to shifting the box by —ta. Thus, in order to bound
the derivative, it suffices to bound Pr[SA(S — ta)], where A denotes the symmetric difference of
the two sets.

Gx+ tu) =

Recall that the edge width of each cube is ¢;/K*, as defined in the statement of the proposition.
Denote by ¢ : V' — R the density function of a standard Gaussian random variable in V' and by
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v, . v() the orthonormal basis of V used to define S. Note that from the anti-concentration
of the Gaussian distribution, it suffices to bound the volume of the symmetric difference. To this
end define the following sequence of sets S = Sy, S1,...,5r = S — ta, where S; is equal to

S — t(Zle (a-v(D)v(), By the triangle inequality and a simple volume calculation we have that
Pr[SA(S —ta)] =Pr[l(x € S) # 1(x € (S — ta))]
k

< ZPI‘[]I(X € Si—1) # L(x € ;)]

i=1

< (/K D) S d i v)| s 6(x)
ic[k] x€SU(S—ta)

< /KU)Wl sup o 6(x),
x€SU(S—ta)

where in the last inequality we used the Cauchy-Schwarz inequality. Define the following ratio

def SUPxesu(S—ta) P(x)
infxes ¢(x)

ps(t)

Therefore, we have that

Pr[SA(S — ta)] < K* infycs ¢(x)

q tu) — g < P A(S —t
e e r[SA(S - ta)
=1k it
S K461 - H Hps(t)
€]
VE|t|e
R

where in the second equation we used the fact that Pr[x € S] > infyes ¢(x)e;/K** and in
the third one we substituted our prederived upper bound for Pr[SA(S — ta)]. Finally, note that
ps(t) =exp((x—y) - (x+y)/2) forsomex € Sandy € SU (S — ta). Hence, lim,;_,¢ ps(t) <
exp(e1 K~*k3/2,/log(k®/e1)) which is bounded by a constant since k& < K. This concludes the
proof of O

Let a unit vector u € (V + W) N V+, from|Claim D.20| we have that [u - Vg(xy )| < K°€/e;
for all x € R?. From the rotational invariance of the standard gaussian, let us for simplicity denote

u by e;. By applying[Fact E.6] we have that

51\ 2
> man2 s (50)

BENK

Consequently,

N K5\ 2
e By, (VP (Vs () ey = 3 ﬂlpsm)?s( ) —3

€
BENK !

This completes the proof of O

First note that by the definition of an approximating partition (Definition D.2) and [Fact E.J]

for all S € S we have that Prp[S] = (e1/(Kk))**) and |S| = (kK/e;)?®). Therefore,
by the union bound and Hoeffding’s inequality, it holds that if N > (kK/e;)“*log(|S|/6) =

(kK /e1)®®) log(1/6) for a sufficiently large constant C' > 0, then with probability at least 1 — &
we have that [Pr5[S] — Prp[S]| < Prp[S]/2 forall S € S. Hence, Prs[S] > Prp[S]/2, ie.,

the number of samples that fall in each set S € S is at least NPrp[S]/2 = N(e; /(Kk))F).

Therefore, if N > (dm)“™ (kK /e;)“*log(1/(0e2))/nC for a sufficiently large universal constant
C > 0, then by applying we have the following: with probability 1 — ¢, for any unit
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vectorv e (WL +V)nvt

N K5\ 2 K5\ 2
v Uv < E << < ) —|—mn2> Prz[S] < |Z] (( < ) +m772> .
€1 €1
Ses 1eT

Hence, since U is a symmetric PSD matrix, applying |[Fact E.8 we have that for all u € £ and unit
vectors v € (WL + V) N V=L it holds that [u - v| < /mn? + (K5 /e1)?/poly(cea/K) <
(mn? + K°€'/e1)/+/poly(ceaa/K). As a result, substituting ¢’ and 7, since C is a sufficiently
large constant, we have that for all u € £ and any unit vector v € (W+ + V) n V1 it holds
|u-v| < e. Note that the subspace space (W= + V)NV~ is the subspace constructed by projecting

every vector of W= to V. Consequently, for any unit vector v € W+ and any u € &, we have

that [vy 1 - u/ ||[vyo||| <€ which implies that |v - u| < ¢, since ||vy .| < 1.

Consequently, by applying [Lemma D.10] we have that if N >

(dm)“™ (kK /e1)C*log(1/(dez))/nC for a sufficiently large universal constant C' > 0, the set & in

non-empty. Thus, as any u € £ is a unit vector and ||uy, . || < e, we have [[uw || > V1 —€? > 1—e.
O

This completes the proof of [Proposition D.18]

Now we are ready to prove [Theorem D.17] Our proof is similar to the proof of The
difference is that we are going to use [Proposition D.18| which provides improved correlation when

compared to

Proof ofm We show that [ATgorithm 5| with high probability, returns a hypothesis h
with L3 error at most 7 + €. Let W be the K -dimensional subspace that y depends on. Let L; be the

set of vectors maintained by the algorithm (Line [3d) and V; = span(L;), dim(V;) = k. Also let

€1 be the partition width parameter (see [Definition D.16)), and for ¢ € [T'] let S; be arbitrary 1 / K*-

approximating partitions with respect to V; (see [Definition D.2)). Let h; : R — [K] be piecewise
constant functions, defined as h; = hgs, according to|[Definition D.4|for the distribution D.

Note that from Lines |1 l Iof Algorithm 5| we perform T ¢ K iterations. Furthermore, in each
iteration, we update the vector set by adding one vector. Hence, k; < K for all ¢ € [T].

Assume that E(x ) p[(ht(x) — y)?] > 7 +¢/2 forall t = [T]. Denote by v{) € V1 NVt t €
[T] the unit vectors added at each iteration and let C' be a sufficiently large universal constant.
Note that in order to add a new vector v(¥) € Vi, N V;* with [|(v®)W]| > 1 — p by applying
we need to already have that every unit vector v € V;_; satisfies HVWH >
1—p(ere2a/(mK))C . Moreover, since v(*) are orthonormal in this case, for all unit vectors v € V;
it holds that ||v"'|| > 1 — p(e1e2c/(mK))€. Thus, if the number of samples is sufficiently large,
for all iterations ¢ € [T'] applying the proposition for p = (1/(2K))(e1e2a/(mK))“K (in place of
¢) would result to orthonormal vectors v(*) with H(V(t))WH >1—1/2K forallt € [K].

Therefore, using the fact that N = (dm)°™ (mK/(e1e20))°K (M/(e0))C log(1/6) (Line |1] of
[ATgorithm 3)), we can iteratively apply [Proposition D.I§| and conclude that, with probability
1 — 4, there exist unit vectors v(! € V,,; and unit vectors w(¥) € W for ¢t € [T] such that
w®) . VS)L > 1—1/(2K). Thus, from [Fact D.12| we have that with probability 1 — 4, for all

te[T)], P <Py —1+1/(2K). After T iterations, it follows that &7 < &g — T + T/(2K).
However, if T is set to be K + 1 we would arrive at a contradiction, since 7 > 0. Hence, we have
that E(x y)~p|(he(x) — y)? ] < 7+ ¢€/2, forsome t € {1,...,T}. Since the error of h; can only
be decreasing (see [Claim D.13)), and h; is close to its sample variant by [Claim D.14] we have that
E(xy~pl(h(x) —y) | < e

Sample and Computational Complexity: Note that the algorithm ter-
minates in  O(K) iterations and at each iteration we draw N =
(dm)C ™ 22l () (1 (€16500)) O ) (M / (€0))O (V) 1og(1/5) samples.  Hence, the total sam-
ple size is (dm)C™ 20 () (m/ (€16200)) O (M / (€0))O M) log(1/5). Moreover we use at most
poly (V) time, as all operations can be implemented in polynomial time. O

61



D.3 Algorithmic Applications to Structured Multi-Index Model Classes

In this section, we show that our general algorithm can be leveraged to obtain state-of-the-art guar-
antees for learning positive-homogeneous Lipschitz MIMs and polynomials in a few relevant direc-
tions. The former result is new and subsumes prior work on homogeneous ReLU networks.

D.3.1 Learning Positive-Homogeneous Lipschitz MIMs

For each application, we show that the resulting distribution D over examples (x,y) is a well-
behaved MIM distribution with favorable parameters, and we consequently apply

First, we recall the target class definition.
Definition D.21 (Positive-Homogeneous Lipschitz MIMs). For K € Z, and L > 0, we define
H x.1, to be the class of all L-Lipschitz K-MIMs f : R? — R such that f is positive-homogeneous,

meaning f(tx) = tf(x) forall ¢ > 0 and x € R%, and f has unit L2 norm under the Gaussian
distribution, that is, Exar, [f2(x)] = 1.

This class generalizes the class of Lipschitz and homogeneous ReLU networks of arbitrary depth,
since the ReLU activation is itself positive-homogeneous. We prove that by applying our algorithm
we can learn the aforementioned class efficiently. Specifically, note the following theorem.

Theorem D.22 (PAC Learning Hx,1). Let f : R¢ — R be a function in H K,1 and let D be the joint
distribution of (x, f(x)), where x ~ Ny. Then, draws N = d220(K°L*/<*) log(1/9)

i.i.d. samples from D, runs in time poly(N), and returns a hypothesis h such that, with probability
at least 1 — 9, it holds Ex )~ p[(h(x) — y)? <e.

Moreover, consider the following class of bounded depth ReLU Networks.

Definition D.23 (Lipschitz and Homogeneous ReLU Networks). Let Fg i denote the concept

class of L-Lipschitz, homogeneous (feedforward) ReLU networks over R¢ of size S that depend
only on the projection onto a subspace of dimension at most K. Specifically, f € Fs k. if f is
L-Lipschitz, Ex, [f2(x)] = 1 and there exist weight matrices W; € R¥i+1%ki j ¢ [D — 1] with
k1 =dand kp = 1, rank(W;) < K, for which f(x) = Wpodp(Wp_1(---d(W1ix)---)), where
¢(z) = max{z,0} is the ReLU activation applied entrywise, and k1 + - -- + kp_1 = S.

Since the class of ReLU Networks we defined is positive homogeneous we can apply [Theorem D.27]
and obtain the following implication.

Corollary D.24 (Learning Homogeneous ReLU Networks). Let f : R? — R be a ReLU network in
the class Fs. i and let D be the joint distribution of (x, f(x)), where x ~ Njy. Then, [Algorithm 5|
draws N = d220(K°L*/<) log(1/0) i.i.d. samples from D, runs in time poly(N), and returns a
hypothesis h such that, with probability at least 1 — 6, it holds Ex ) ~p[(h(x) —y)?] < €.

We remark that our primary result about learning general positive-homogeneous Lipschitz functions
is not achievable by the algorithm of [CKM22], as it is a proper algorithm that always outputs a
homogeneous ReLLU network. The fact that we use a general approximation of Lipschitz functions
by piecewise constant ones makes this result possible. Furthermore, the complexity
of [CKM22]| depends exponentially on the size of the network S, which can be significantly larger
than the rank K of the first layer.

Before we prove we first present a key structural result for the class Hy . For a
distribution D over R¢ x R, a function f : R* — R, ascalar 7 > 0, and a subspace V' C R9, define
the following matrix:

MY By [T(xv,y) (kv (xv) T = Thys) |, Tlxvsy) = 1y = F(xv)[ > 7). 3)

The following lemma states that this filtered second moment matrix has large correlation with some
direction in WV,

Lemma D.25 (Generalization of Lemma 5.5 in [CKM22])). Let V,W be subspaces of R?® with
dim(W) = K,dim(V) = kand V C W. Let f : R? — R be a function in Hy,, such

that f(xw) = f(x). Suppose that Exn, [(f(x) — f(xv))Q] > €% for some ¢ > 0. For
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7> 2VK — kL, and MY € R¥ the matrix defined in|Equation (3)| we have that there exists a

i . 2, 2
unit vector w € W such that w MY w > e 73K /€ ﬁ

Proof of[Lemma D.23] Let U denote the projection of the subspace W onto V. Note that since f
is L-Lipschitz the condition | f(x) — f(xv)| > 2v/K — kL implies that ||xy||> > 2(K — k). Asa
result, by taking the trace inner product with the projection matrix onto W, we have that there exists
a unit vector w € W such that

w' MYw > (K — k)Pr[|f(x) — f(xv)| > 2VK — kL] .

Note that since f is a positive-homogeneous function we have that f(x) — f(xy) is positive-
homogeneous. Moreover, because f depends only on the projection of x onto W and V' is a subspace
of W, the function f(x) — f(xy) depends also only on the projection of x onto . Thus in or-
der to complete the proof it suffices to prove an anticoncetration result about positive-homogeneous
functions:

Claim D.26 (Anticoncetration of Positive-Homogeneous Functions). If G : RK — R is positive-
homogeneous and L-Lipschitz and E[G?] > o2, then for any s > 0,

SO

Proonie[[000)] > ] 2 exp(-3K+*/0%) 27

Proof of [Claim D.26] Note that if x ~ N then it can be decomposed as x = /rv where r ~ x2,
and v is drawn uniformly from S¥ ! independent of 7. First note that by independence of r and v
we have that

0% = Exn [G*(x)] = E[F]E[G?(v)] = KE[G*(v)] .
Thus, E[G?(v)] = 02 /K. Hence, by elementary anticoncetration we have that

Pryn, [|G(x)| > 5] > Pr[rG?(v) > s?] > Pr[r > 2K % /0?|Pr[|G(v)| > 0/V2K |

> Prr > 2]&92/(72]210([/2
so
VKL?'

where we used the well-known fact that Pr..2 [r > x| > erfc(1/y/z) and erfc(z) >

g2
V2/ w%, for all x > 0. Which concludes the proof of [Claim D.26 O

> exp(—3Ks*/o?)

Therefore, we can apply [Claim D.26|for the function f(x) — f(xy ), which concludes the proof of
ILemma D.25 O

Now following this structural result, in order to show that the class Hf 1, leads to well-behaved
MIM distributions and allows the application of it suffices to establish the existence
of non-trivial moments for a cube-interval pair.

We prove this result in two stages. First, we show that if it is possible to obtain distinguishing
moments by conditioning on a region of V' x R that is well-approximated by cubes and intervals,
then there exists a specific cube-interval pair exhibiting distinguishing moments. Consequently, we
prove that the region T defined in can indeed be well-approximated by such cube-
interval pairs.

Lemma D.27 (Label Transformation Approximation). Let D be a distribution supported on R x R,
whose x-marginal is Ny, and let V' be a subspace of R%. Suppose that T'(xy,y) : V x R — {0,1}
is a label transformation function and that p : R* — R is a zero mean, variance one polynomial
such that B, ~p[p(x)T(xv,y)] > 0. Let P be a partition of V x R, and let P' C P. Define the

LA def - -
approximation T(xv,y) = Y pcp L((xv,y) € R). If ProcyypnlT(xv,y) # T(xv,y)] < %

~D
then there exists some R € P’ such that E[p(x)1((xv,y) € R)] > ST
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Proof. First we can write

Ex,y)~0 [P(X)T(xv,y)] = Exy)op [P(X)f(xw Y)] + Ex,y)~p [p(x)(T(xv,y) — f(xv, y))].
Therefore, we have that
By [POOT00v, )] 2 0 = [Beyyn (000 (T e y) — Ty, )] |

Since p(x) has variance one, by Cauchy—Schwarz,

‘E(X;y)~D[p(X)(T(XVay) (xv,y ‘<\/E (T(xv,y) — T(xv, )2 < Vo/2.

Thus, ~
E(x,y)~p [pX)T(xv,y)] > 0 /2.
We can write

E(x,y)ND [p( ) XV? Z E(x y)wD ) ((vay) € R)]
REP’

Hence, by the pigeonhole principle, there exists some R € P’ such that

~ o
E(x,y)ND [p(x)]l((XVa ) € R)] |P,| E(x y)wD [ (X)T(XV7 y)] > 2|P,| .
This completes the proof of O

In the following lemma we show that the label transformation defined in can be ap-
proximated arbitrary well by a piecewise constant function over a discretization of V' x R in cubes
and intervals.

Lemma D.28 (Cube-Interval Approximation of T'). Let d,k € Zy,e,n € (0,1), 7, L € Ry with
T > L > e Let V,W be subspaces of R with V. C W, dim(V) = k and dim(W) = K. Let
f : RY — R be function in Hx 1, such that f(x) = f(xw), and let D be the joint distribution of
(x, f(x)) where x ~ Ny. Denote by T : V x R — {0, 1} the function defined in Let

(S,T) be an n-approximating discretization of V. x R, with ) < €*/(LVEK).

There exists a subset of the discretization P C S x 1T such that for the function f(xv, y) =
Z(S,I)eP 1(xy € S,y € I) it holds that Pr (. ,y.p[T (xv,y) # T(xv,y)] Se.

Proof. Without loss of generality, we can assume that the discretizations S and Z of the spaces
V and R, extend to their entire respective domains (see [Definition D.3] m This is justified because
the partition S is defined over the subset of R? whose coordinates, in an orthonormal basis of V/,
are at most v/log(k/n). By the union bound, the probability mass outside this region is at most
7. Similarly, the same holds for Z, since Ex,[f2(x)] = 1, there is at most an ¢ fraction of the
probability mass outside the relevant interval when |y| > 1/ €2. As a result, by the union bound, we
have

Pr T(xv,y);&f(xv,y), x ¢ U SVyé UI < 2e.

Ses IeT

Define the set A = {(xv,y) : |y — f(xv)| = 7} to be the boundary set of boolean function
T. We set P to be the subset of the discretization regions (S, 1) with S € S and I € Z such
that for all points in (xy,y) € (S,I) it holds that |y — f(xy)| > 7. Note the diameters of the

sets S and I are /kn and 7 for all regions (S, 1) with S € S and I € Z respectively. Hence,
we have that Pry ) p[T(xv,y) # T(xv,y)] < Priy)~pl(xv,y) € EJ], where we define

def
E= {(xv,y) | A}, y) € A |xv — 2t | < VEn, |y —y'| <n}.

Note that for every (xv,y) € E since f is L-Lipschitz we have that |y — f(xv)| = 7 &+ 2LVkn.
Therefore, it suffices to upper bound Pr(x ,)~p[ly — f(xv)| = 7 = 2LVkn] or in other words to
show anticoncetration of the random variable y — f(xy) = f(x) — f(xv).
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Define the parameter 6 = 2L+/k7. Since f depends only on the projection onto the & -dimensional
subspace W, the function g(xy) = f(x) — f(xy) also depends only on xy,. Moreover, because
f is positive-homogeneous, so is g. Hence we may define an induced function g : RX — R by
9(z) = f(z) — f(zv), which is likewise positive-homogeneous, and observe that g(x) = g(xw ).
Under x ~ N, the projected vector xyy is distributed as M. Therefore Pry.ar,[g(x) = 7+6] =
Pr,n[g(z) = 7 £ &), and one can carry out the anticoncentration analysis on the positive-
homogeneous function g : RX — R.

We show anticoncetration of the function g. We do this in two stages. First we show anticoncetration
over fibers, i.e. fixed lines that go through the origin, and then we take the expectation over fibers.

We can rewrite a gaussian vector x as rv, where v as a uniform unit random vector and r a scalar
random variable independent of v such that r? ~ yx. Note that for any fixed direction v it holds
that

Prlg(x) =746 |v=2]=Prlrg(z) =7=+4].

Let o > 0 be a parameter to be quantified later. First, consider the case where |g(z)| > « in this
case by the Carbery-Wright inequality (see [Fact E.5)) we have that

1 1 V7o
N _ —— < —
Prirg(z)=7+0|v=2] <Pr {7" a(Tié)} ~ oo K1/4

Second, we consider the case where |§(z)| < «.. We have that
Prirg(z) =740 | v=2] <Prlr >7/(2a)],

since 7—8 > 7/2. Note that setting & = 0'/47/(2v/K) by the Gaussian Annulus theorem (Fact E.3)
we have that Pr[rg(z) =746 |v=12] < e VK’ < /§/K.
Thus in both cases we have that Pr[rg(z) = 7 + 6] < (K§)'/%. Taking the expectation over v

completes the proof of O

Moreover, we can also show that f is very close in squared error to a bounded function. This is
needed in order for us to be able to approximate f using a finite collection of cubes.

Lemma D.29 (Functions in H g, are almost bounded). Let f : R? — R be a function in H K,L
then for any B > C\/K LIn(LK /€), for a sufficiently large constant C' > 0, there exists a function
f5 : R4 — [—B, B] such that Exn,[(f(x) — fB(x))?] < e

Proof. Define the function fp(x) = sign(f(x)) min(|f(x)|, B). Note that since f € Hx r from
we have that for ¢ > Lv/K and some universal constant C’ > 0

Pr(|f(x)| > 1] < Pr[l|xw| > t/L] < eV EVE)

Therefore, by applying this tail bound, we have

o0

E[(f(x) - f5(x))*] < E[f2(x)1(f(x)| > B] = B*Pr]|f(x)| = B] + /32 Pr(|f(x)]* > t]dt

_ B2e-C'B/(LVE) | 2/ tPr[|f(x)| > t]dt
B

— ¢~ C'B/WVE) (B2 BLVEK/C' + IVE/C").

Choosing B to be C/K LIn(LK /¢), for a sufficiently large constant C' > 0, completes the proof.
O

Finally, before proceeding to the proof of our theorem, we make the following remark concerning
the precise dependence of our algorithm’s sample complexity on the dimension.

Remark D.30. We remark that the sample complexity bound in[Theorem D.17|is O(d° (™)), since at
Fact E.9)

each step we perform polynomial regression of degree m (see[Fact E.9). In the special case m = 2,
we can reduce this to O(d?) by noticing that the polynomial regression task is directly reducible
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to covariance estimation in the Frobenius norm. Furthermore, achieving O(d) sample complexity
is possible by replacing the regression in Line 2] with a simple covariance-estimation step since
covariance estimation in the operator norm requires O(d) samples. Concretely, for each interval I €
T and region S € S, define Mg 1 = E(x ,)~p[l(y € I)(xx I) | x € 5], and let us g be its top
eigenvector. Then, following the filtering in Llne | set U = ZIGI Ses HVL ur.s uI sy . Pr[S].
By essentially the same argument as in the proof of |P | U provides an arbitrarily
accurate projection onto W, while it requires only O(d) samples

Given we now prove the main theorem of this section, which shows that the class
‘H k1. can be learned efficiently using our algorithmic approach.

Proof of[Theorem D.22] Let V C R? be a subspace of W, and let (S, Z) denote an n-approximating
discretization of V x R, where 7 def (~CK?L*/¢ (see [Definition D.3).

The proof consists of showing that Disa (2, e~ CK°L*/¢* K 1, ¢, e CK°L*/¢* o~CK*L?/* (=CK?L?/e*)_
well-behaved MIM distribution, as in[Definition D.16] for a sufficiently large constant C' > 0, and

then simply applying [Theorem D.17]

First, observe that for the distribution D Conditions (1) and (2) are satisfied with parameters
E(x,y)~N [¢?] = 1 and dimension of the low dimensional subspace equal to K.

Let W be a K dimensional subspace of R such that f(x) = f(x") (existence of W is guaranteed
since f € Hg 1) and let V' a subspace of W. Notice that since 1 has been chosen appropriately
small [Fact D.32|and lemmas D.27|and |D.28| together imply that if Ex.n, [(f(x) — f(xv))?] > ¢,
then there exists (5, 1) € (S,Z) and zero mean, unit variance polynomial p : Wy, — R of degree

at most 2 such that E(y ,yp[p(xw, , )1(y € I) | xv € 5] > o~ COK3L?/&

We can generalize the above statement for a general subspace V of R? with dim(V) < K by
noticing that f also depends only on W/ = W + V. Since V. C W’ and dim(W’) < 2K we have
that if Exn, [(f(x) — f(xv))?] > e, then there exists (S, I) € (S,Z) and zero mean, unit variance
polynomial p : W{,. — R of degree at most 2 such that E(x’y)ND[p(xw‘//l M(yel)|xy €S>

e~8COK*LP /e Noticing that W, , = Wy, . gives us the statement for a general subspace V' of R?
of dimension at most K.

Therefore, by the assumption that f is L-Lipschitz, to verify Condition (3), we can apply the

aforementioned statement along with [Cemmas D.6] and [D.29] imply that if for a piecewise con-

stant approximation hs (see [Definition D.4) it holds that E(x ,).p[(hs(x) — y)?)] < e, then

Exy~plpxw )iy € I) | xy € S| > e~320K°L*/¢* - Consequently, conclude that Condi-
\4

tion (3) is satisfied with the specified parameters.

Taking into account on the sample complexity of the algorithm, concludes the proof
of [Theorem D.22] 0

D.3.2 Polynomials in a Few Relevant Directions

In this section, we demonstrate an application of our algorithm to the problem of learning polyno-
mials that depend on only a few directions. Specifically, consider the class of a-non-degenerate,
low-rank polynomials.

Definition D.31. A polynomial ¢ : R? — R is a-non-degenerate if
M = Exn, [Va(x) Vg(x) "] satisfies M = a|M]L

We say a rank-K polynomial p : R® — R is non-degenerate if p is non-degenerate in the K-
dimensional subspace corresponding to the relevant directions. That is, there exist orthonormal
vectors w1 ... w(X) such that p(x) = ¢(wV - x,..., w5 . x) and ¢ is non-degenerate. We
denote by Py ,,, the class of o non-degenerate polynomials of rank K, degree at most m that have
zero mean and unit variance under the standard gaussian.

Note the assumption on the mean and the variance is without loss of generality as we can normalize
the samples and obtaining a variance dependency however we assume it for simplicity. We first
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present a key structural result of [CM20] for the aforementioned class of polynomials. Specifically,
for a distribution D of R% x R, a scalar 7 > 0 and subspace V' with orthonormal basis v(l), el vk,
dim (V') = k define the following matrix:

M, = (E(x’y)ND [T(Xwy)(XVL(XvL)T—Hvl)D’ T(xv,y)=1(ly| >, |V(i) x| < 1,i € [k])
“4)
The following fact states that this label transformation 7" leads to a non-trivial moment.

Fact D.32 (e.g., Lemma 4.2 [CM20]). Letd,m,K € Z, and o > 0. There exists constants T and
X that depend only on K, m and o such that the following holds. Let V and W be a subspaces of R

with dim (V') < dim(W) = K such that |[vy|| > 1 — X for all unit vectorsv € V. Letp : R* — R
be a polynomial in the class Py, (see|Definition D.31) with p(x) = p(xw ). There exists a unit
vector u € Wy, such that uTMYu >\,

In the following lemma we show that the label transformation defined in can be ap-
proximated arbitrary well by a piecewise constant function over a discretization of V' x R in cubes
and intervals.

Lemma D.33. Let d,k € Z4 and let € > 0 such that ¢ < ¢, for a sufficiently small constant
¢ > 0. Let p : R? — R be a polynomial of degree m that has mean zero and variance one under
Ny, and let D be the joint distribution of (x,p(x)) where x ~ Ny. Let V be a k-dimensional
subspace of R%, k > 1. Denote by T : V x R — {0, 1} the function defined in [@), and let (S,T)
be an e-approximating discretization of V' x R (see [Definition D.3). Assume that T and S are

defined with respect to the same orthonormal basis of V. There exists a subset of the discretization
P C 8 x T such that for the function T(xv,y) = > s ep L(xv € S,y € I) it holds that

Pr(xy)~n T(xv,y) # T(xv,y)] = O(ke +me'/™) .

Proof. Let vV ... v(*) be a basis of V used to define T’; this same basis is also used to construct
the e-approximating partition S. We construct P as a cartesian product of subsets S’ C S and
T CT.

Define R % {x : [v(?) - x| < 1,i € [k]}. Since 1 < \/log(k/e) for € < c, for a sufficiently small

constant ¢ > 0, it follows from the definition of an e-approximating partition (see [Definition D.2)
that for all x € R, there exists some S € S such that x € S.

We define S’ to be the union of the sets S € S such that S C R. Note that in order for ) © ¢ s 1(x €
S) and 1(x € R) to disagree on some point x € R%, it must be that [v(?) - x| € [1,1 — €] for some

i € [k]. Indeed, if x satisfies [v(") - x| < 1 — 2¢ for all 4 € [k], then the corresponding S € S that
contains x.5 must lie lie entirely within R

Using the union bound and the anti-concentration of the Gaussian distribution, we obtain the fol-
lowing bound on the disagreement probability

Pryon,[Ji € [k] : v x| € [1,1 — 2¢€]] < 2ke .

Next, since Exn,[p?(x)] = 1, by Markov’s inequality we have that Pryn,[|y| > 1/€?] < e
Hence, all but an ¢ fraction of the probability mass of y that satisfying the condition |y| > 7 lies
within the discretization J; .7 I.

We define Z’ to be the union of all I € Z such that for all y € I, we have that |y| > 7. Then, similar
to the argument above have that

Pr(l(y € Z') # 1(ly| > 7)] < Prlly| € (r — ¢, 7)] S me'/™

where the final inequality follows from the Carbery-Wright inequality (see[Fact E.3). Applying the
union bound concludes the proof of O

Now given[Lemma D.33]we can prove the following theorem which states that polynomials in a few
relevant directions can learned by using our algorithmic approach.
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Theorem D.34 (Learning Polynomials in a Few Relevant Directions). Let K, m,d € Z,,a > 0
and 6, € (0,1). There exists a constant C(K,m,«) that depends only on K, m and « such
that the following holds. Let p : R — R be a polynomial in Pk.m (see Beﬁnition D.31)
and let D be the joint distribution of (x,p(x)) where x ~ Ng. Then, |Algorithm 5| draws
N = d?log(1/8)C(K,m,a)/e?™K) iid. samples from D, runs in time poly(N), and returns
a hypothesis h such that, with probability at least 1 — 6, it holds E(x ;). p[(h(x) —y)?] < €.

Proof. The proof is very similar to the proof of Let W be a K-dimensional subspace
of R? such that p(x) = p(xw) (note that the existence of W is guaranteed by since p € Pf ).

First, observe that for the distribution D, Conditions (1) and (2) of are satisfied for
E(x,y)~D [4%] = 1 and dimension of the low dimensional subspace equal to K.

We can apply [Proposition D.18|together with[Lemma D.27]and [fact D.32iteratively K + 1 times to
obtain subspaces V;, each of dimension ¢ — 1 for ¢t € [K + 1], starting from V; = {0} (exactly as

in the proof of [Theorem D.17). Using N = d?log(1/6)C(K,m, a)/e?(™%) samples and poly(N)
time for all K iterations, we have that every unit vector in Vi 1 is arbitrarily /(K 2m)-close to
some unit vector in W

Using this we prove that ||IIyy — IIy|| < €/(mK). Denote by V e Vicr1, by {vIW} and
{w}K orthonormal basis of V and W respectively. Also denote by My and My, matrices that
have {v(¥}X and {w("} X as column vectors. We have that

K
My — Iy || < K — [MEMy[3 = K =Y v || < ¢/(mK) .

i=1
Hence, it also holds that | IIy Iy, o || = [|[Hw — Iy || < ¢/(mK).

Therefore, by applying we have that Ey.x,[|Vp(x)||?] < m. Hence, the difference
E[(p(xw) — E[p(z +xw,,, ) | 2 = xw,,])] can be bounded above by O(¢) using|Claim D.8} Thus,

we have that after K iterations that there exists a function g(xy ) that achieves error €.

Finally, note that from the well-known fact that for ¢ > 290" it holds that Pr[|p(x)| > t] <
exp(—O(mt?/™)) by simply integrating we can show that p is e-close in squared error to a function
bounded on [~ B, B] with B = m/e?(™). Hence, we can apply [Lemma D.6|and |claim D.14|for the
aforementioned number of samples we conclude that the difference E(x, )~ p[(h(x) — )| = O(e),
for the output hypothesis h. Taking into account [Remark D.30| on the sample complexity of the
algorithm, concludes the proof of [Theorem D.34] O

E Omitted Technical Facts

E.1 Basic Mathematical Facts

Fact E.1 (see e.g. Claim 2.3 in [DKRS23])). Let1 < m < n. Let B € R™*" with BBT =1,,. It
holds that Hy,(Bx) = B®*H,(x),x € R™.

Fact E.2 (Gaussian Density Properties). Let N be the standard one-dimensional normal distribu-
tion. Then, the following properties hold:

1. Foranyt >0, it holds e="/2/4 < Pr, y[z > t] < e /22,

2. Forany a,b € R with a < b, it holds Pr . n[a < z < b] < (b—a)/V/2m.
Fact E.3 (Gaussian Annulus Theorem see e.g., [Ver18]). If x ~ Ny, with probability at least 1 — T
we have that ‘HXHQ - d’ Slogd 4+ 4/dlog L .

Fact E.4 (Gaussian Hypercontractivity; see e.g., [Q’DI4]). Let p : R¢ — R be a polynomial of
degree at most m which has zero mean and variance one under the gaussian distribution. For every

real number q > 2, we have ||p||L« = (¢ — 1) 2 ||p|| .z -
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Fact E.5 (Carbery-Wright Inequality see e.g., [CWOI]). Let p : RY — R be a polynomial of degree
m. If Vargwn, [p(X)] = 1, then it holds that for any t € R and € > 0 Pry.on,[|p(x) —t] < € S

mel/m |

Fact E.6 (see, e.g., Lemma 6 in [KTZIOI). Let f € L*(R% N) with its k-degree Her-

~

mite expansion f(x) = 3 eyt |jafy<k (@) Ha(x). 1t holds that Exy, [(Vf(x)-€;)?] =
ZaENdHaﬂlgk Oéz‘(J?(Ol))Q-

E.2 Omitted Content from Section to Section

Fact E.7 (see e.g. Claim B.1 [DIKZ235[). Let M € Réxd 4 symmetric positive semi-definite (PSD)
matrix and let v € R? with ||v|| < 1 such that v Mv > «. Then there exists a unit eigenvector
u of M with eigenvalue at least /2 such that | - v| > (o/||M||r)3/? . Moreover, the number of
eigenvectors of M with eigenvalue greater than c/2 is at most 4||M||p/a? .

Fact E.8 (see e.g. Claim 4.12 [DIKZ25])). Let M € R**¢ be a symmetric, PSD matrix and let
v € R? be a unit vector such that v Mv < e. Let U denote the set of unit eigenvectors of M with
eigenvalue at least \. Then, for every u € U, it holds that |u - v| < \/6/7)\

Fact E.9 (see, e.g., Lemma 3.3 in [DKK*21l]). Let D be a distribution on R% x {+1} whose
x-marginal is Ny. Let k € Z, and ¢,6 > 0. There is an algorithm that draws N =
(dk)©") 1og(1/8)/€® samples from D, runs in time poly(N,d), and outputs a polynomial P(x)
of degree at most k such that E(x y).p[(y — P(x))?] < minpep, Ex )y — P'(x))%] + €, with
probability 1 — 6.

Fact E.10 (see, e.g., Lemma 3.3 in [DKK™21]). Fix ¢ € (0,1) and let P(x) be a degree-k
polynomial, such that Ex ,)p|(y — P(x))?] < minpep, Ex ponl(y — P'(x))?] + Oc). Let
M = Eyup, [VP(x)VP(x)"] and V be the subspace spanned by the eigenvectors of M with
eigenvalues larger than 1. Then the dimension of the subspace V is dim(V') = O(k/n) and more-
over tr(M) = O(k).

Fact E.11 (Approximation of a Bounded Variation Function using Cubes). There exists a sufficiently
small constant ¢ > 0 such that the following holds. Let f : R® — R continuous and continuous
differentiable almost everywhere such that Ex.y,[||[V f(x)||?] < L. Moreover, assume that there
exists a B > 0 and fp : R — [~B, B] such that Exn,[(f(x) — fB(x))?] < p. Denote by
h : R — R the piecewise constant approximation h(x) = Exn,[f(x) | x € S), forallx € S
and S € S, where S is a collection of consecutive cubes over R? of width n < ce/(Ldlog(B)), i.e.
S denotes all subsets of R? of the form {x : jie +t < x; < (ji + Ve +t},ji € Z9,t € [0,¢/2].

Then Ex, [(f(%) — h(x))?] < e+ 2p.

Proof. Denote by ¢(x) = (27)~ %2 exp(—||x[|?/2) and set pg(x) = ¢(x)/Pryn;,[x € S]. For
each cube S € S define fs = E,,4[f(z)] and ms = 1/|S| [4 f(z) dz, where we denote by |S]|
the geometric volume of the set S. Write

s

max

¢§1in = )irelfS (b(X), ¢glax = ;S(lelg QS(X)’ ks = ¢§11n

Fix R = y/dlog(B/¢)/c and let T = [J{S : minges ||x|| > R}. From the Gaussian Annulus
Theorem (Fact E.3)) we have that Prx € T < ¢/(8B?).

Moreover, note that since f is close to a bounded function, by Jensen’s inequality so is h. Indeed
E[(h(x) — Ex~n,[f5(x) | x € S])?] < p. Hence the tail error approximation error of / is bounded
the tail error E[(f(x) — h(x))?1(x € T)] < 2p + €/2.

Hence without loss of generality we can consider cubes with ||x|| < R for all x € S. Moreover, for
those cubes S Z T it holds that

ks <k exp(RnVd) .

From the fundamental theorem of calculus, for every x,y € S, it holds that

1
109~ 160 = [ VIl +tx-y) - -y
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Hence, using Jensen’s inequality we have

(f(x) = f(y)* < ||><—>’||2/0 IIVf(yth(x—y))ll%lltSd?f/0 IV f(y +tx—y))|dt

Averaging in y € S and then in x € S yields

—mg)?dx < dn? /Vf )1 dx .
|5\/ 5) ERANLGL

We can transfer the above bound to the gaussian case for all cubes S Z T'. Specifically,

E 2 < I?lax|S|E 2
,us[(ffmS) ] > PI’[S] Unif(S)[(ffmS) ]

s
musdSl oA
- Pr[9]

< wsdnEy [ VFI?].

Moreover, since fg minimizes E,,_[(f(x) — m)?], we have

Eus[(f(x) = f5)°] < Byus[(f(x) —ms)?] .
Averaging over cubes we have
E[(f(x) — h(x))?] < wd®E[[Vf(x)|*] + 2p + /2 < Ldsn® +2p+ ¢/2.

Setting 7 = c?¢/(Ldlog(B)) for a sufficiently small constant ¢ > 0 concludes the proof of
O

Fact E.12 (Discretization over a Subspace). Let f : RY — R is continuous, continuous differ-
entiable almost everywhere and satisfies Exn,[||Vf(x)||?] < L. Moreover, assume that there

exists a B > 0 and fp : RY — [—B, B] such that Exn,[(f(x) — f5(x))?] < p. Let V be a
k-dimensional subspace of R% and let vV | ..., v¥) be an orthonormal basis of V and let S be the
partition of V' into axis-aligned cubes ofwzdth e. Define h(x) = E,, [f(zv +xy.)|zy € S].

Then Bxon, [(f(x) — h(x))?] < Lk é2.

Proof. Let fp be the truncation of f to the interval [—B,B|, that is fp(x) =
sign(f(x)) min(|f(x)|, B). Note that E[(fz(x) — f(x))?] < p since fp is closer to f than any
other truncated function.

The function fp is continuous since we truncate at the level set B continuously. Moreover, fp is
non-differentiable at the points { f(x) = B}N{V f(x) # 0}. But by the implicit-function theorem,
whenever f(xo) = B and V f(xg) # O there is a neighborhood in which {z: f(z) = B} isa C!
submanifold of codimension 1 in R¢, hence of Lebesgue (and thus Gaussian) measure 0. Therefore
these extra non-differentiable points lie in a countable union, since each neighborhood contains at
least one point in Qd, of such submanifolds and so form a Gaussian-measure O set.

Moreover, almost everywhere
VIx), [fx)]<B,
Vip(x) = { .
0, |f(x)| > Bor (f(x) = +B with Vf(x) = 0),

and on the remaining set—namely { f(x) = £B} N {Vf(x) # 0} together with the set of origi-
nal non-differentiable points of f—the function fails to be differentiable but that set has Gaussian

measure 0. Hence
Exn, [IV/iBX)?] < E[IVI®)IP] < L

Denote by hp(x) = Eg, n, [fB(zv +xyL)|zy € S]. First, by the law of total expectation and
the independence of orthogonal components of the standard gaussian we have that

E((f5(x) = hp(x))*] = Ex, . [Bx, [(f5(x) — hp(x))*]l
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For each fixed xy 1, we can apply in the k—dimensional subspace V' to the func-
tion ¢x ,, (xv) def fB(x" + xy 1), which is always bounded by B. Noting that inequality
[Vxy &x, . (xv)[| < [V f(x)| gives us that that for any fixed xy+

Ex, [(f(x) = hp(x))*] < 2p +e.

Taking the outer expectation over xy, . yields
Ex[(f5(x) —hp(x))’] <20+
Finally, we have that
E[(f(x) — h(x))’]
< 2E[(f(x) — f5(x))*] + 2E[(f(x) — hp(x))?] + 2E[(hp(x) — h(x))*] Sp+e,
where we used that E[(h(x) — h(x))?] < 2p + € because of Jensen’s inequality. O

Fact E.13 (Median of Means Estimator see, e.g., [BLM13] ). Let x1,...,x, be iid. random
variables with mean 1 and variance 0. Suppose that n = mk, where m and k are positive integers.
Define the median-of-means estimator [i,, as the median of k = [8log(1/6)] independent sample

means. Then, with probability at least 1 — 6, we have |fi,, — p| < o4/ w.

Fact E.14 (see e.g. Fact 3.3 [CKM22)). If Z is a random variable for which |Z| < M almost surely,
and E[Z?] > 02, then Pr|Z| > t > 1+ (02 — ).
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