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Abstract001

Large Language Models often struggle with002
downstream task involving phonological aware-003
ness, despite increasing performance on natu-004
ral language understanding benchmarks. One005
leading hypothesis for this discrepancy in006
performance is that tokenization along non-007
phonologically informed boundaries results in008
an inability to acquire phonological informa-009
tion from orthographic input, which makes010
up the majority of text-based Large Language011
Model training data. In this paper, we inves-012
tigate this hypothesis by pretraining a Large013
Language Model on a Byte Pair Encoding to-014
kenized corpus and an identical model on a015
syllable tokenized corpus. We compare their016
performance on syllable segmentation task, and017
a word segmentation task, but find no signifi-018
cant improvement from syllable tokenization019
on either task.020

1 Introduction021

Tokenization is the process through which large022

language models break down input text and con-023

vert it into integer representations. Currently, Byte024

Pair Encoding (BPE) is the most prevalent form025

of tokenization, utilized by OpenAI’s GPT models,026

Deepseek, Eleuther’s GPT-NeoX, among many oth-027

ers (Brown et al., 2020; DeepSeek-AI et al., 2025;028

Black et al., 2022) . BPE is a method of compres-029

sion that recombines frequently occurring units into030

types; these types are indexed in a dictionary that031

is then used to segment text into corresponding ids032

(Figure 1; Gage 1994). Although there is active033

research on tokenizer-free models, most models034

still use a tokenizer (Clark et al., 2022; Pagnoni035

et al., 2024). This, in conjunction with the fact036

that tokenizer vocabularies are immutable once se-037

lected, means that the choice of tokenization is still038

an important part of LLM success.039

Despite BPE’s success as a subword tokeniza-040

tion algorithm, it has been criticized for not align-041

ing with recognizable morphological boundaries042

Figure 1: Character Level Byte Pair Encoding demon-
stration. The type vocabulary is on the right, starting
with the initial dictionary and showcasing 2 merges

(Bostrom and Durrett, 2020) and scrutinized as the 043

cause for LLMs subpar performance on phonologi- 044

cal recognition tasks (Suvarna et al., 2024). Much 045

prior work has attempted to address these issues; 046

Bostrom and Durrett (2020) show that unigram lan- 047

guage modeling (Kudo, 2018) produces types more 048

closely aligned with morphological boundaries in 049

English and Japanese. 050

In this work, we perform a comparative analy- 051

sis of BPE against English orthographic syllable 052

encoding, a tokenization strategy that uses phono- 053

logically informed syllable boundaries to break up 054

words into subwords. We evaluate two equivalently 055

trained GPT-2 sized models on NLI and Phono- 056

logical Benchmarks, testing the hypothesis that 057

phonologically informed tokenization strategies 058

will improve downstream performance on tasks 059

that require phonological awareness while preserv- 060

ing language understanding. This potential was 061

raised by the paper PhonologyBench: Evaluat- 062

ing the Phonological Skills of Large Language 063

Models by Suvarna et al. (2024) in their inves- 064

tigation of LLM phonological performance. Su- 065

varna et al. (2024) benchmark the phonological 066

abilities of several open and closed source large 067

language models: Llama-2-13B-Chat, Mistal-7B- 068

Instruct, Mixtral-8X7B-Instruct, GPT-3.5-Turbo, 069

GPT-4, and Claude3-Sonnet. Despite these mod- 070

els’ impressive sizes and performances on state of 071

the art natural language evaluation tasks, Suvarna 072
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et al. demonstrate that these LLMs demonstrate073

poor understanding of the phonology of English;074

Claude-3-Sonnet performs the best on the sentence075

level syllable counting task, but still significantly076

below the human baseline (55.3% against 90%).077

Their tentative hypothesis is that the method of078

tokenization is to blame for the models’ subpar079

performance. In response, we produce SYLGPT, a080

GPT-2 model trained on syllable segmented tokens.081

Our contributions are:082

• An open-source tool for syllabifying ortho-083

graphic English words according to their pho-084

netic boundaries1.085

• An analysis of orthographic syllable based tok-086

enization in comparison to byte pair encoding087

on phonologically related tasks.088

We find that there is no significant impact of089

syllable encoding on downstream performance on090

a syllable or word counting task.091

2 Prior Work092

Phonologically informed tokenization is not a093

purely novel idea; Mikolov et al. (2011) use naive094

syllable boundaries to tokenize words in a speech095

recognition task. Atuhurra et al. (2024) use syl-096

lable tokenization to improve translation accu-097

racy for low resource languages. Velayuthan and098

Sarveswaran (2024) evaluate large language model099

performance in Tamil, Sinhala, and Hindi with100

grapheme pair encoding (GPE), finding better com-101

pression ratios with GPE than BPE.102

In general, there is a push for more linguistically103

motivated tokenizers on the basis of improving104

performance on linguistic tasks and for improved105

model transparency. MorphPiece is a morpholog-106

ically motivated tokenizer developed by Jabbar107

(2024). See their work for a more extensive review108

of the literature behind morphologically informed109

tokenization. Similar research has been conducted110

in a variety of languages outside of English, in-111

cluding Korean (Jeon et al., 2023) and Sanskrit112

(Sandhan et al., 2022).113

3 Methods114

3.1 Training Corpus115

Byte Pair Encoding requires a tokenization training116

corpus to iterate over in order to build a vocabulary.117

1The URL of a Github repository containing the code and
data for this paper will appear here.

We select the RadioTalk corpus as our model pre- 118

training and tokenizer training corpus (Beeferman 119

et al., 2019). RadioTalk was selected for the ease 120

of pre tokenization and cleanliness; we choose to 121

use NLTK word_tokenize as our pre tokenization 122

method for both BPE and syllable encoding tok- 123

enizers (Loper and Bird, 2002). Pre tokenization 124

is the step before tokenization where text is seg- 125

mented into some simple-to-implement, presum- 126

ably useful intermediary form like words at whites- 127

pace boundaries, before tokenization occurs with 128

consideration to the pre tokenization boundaries 129

(Mielke et al., 2021). 130

3.2 Syllable Definition 131

Suvarna et al. (2024) define a syllable as “a unit 132

of pronunciation having one vowel sound, with or 133

without surrounding consonants forming the whole 134

or part of a word.” There is one additional quality of 135

syllables that is important to consider when trans- 136

ferring the archetypically phonological concept to 137

the realm of orthography; the Maximal Onset Prin- 138

ciple states that onsets should be as long as they can 139

be (Kahn, 1976). This phonological principle does 140

not typically align with the typical presentation of 141

syllables in orthography. Some words are typically 142

orthographically syllabified consistent to the max- 143

imal onset principle,e.g. “diploma” syllabified as 144

“di.plo.ma” from the Merriam-Webster dictionary2. 145

Other words are orthographically syllabified most 146

consistently with morphological boundaries,e.g. 147

“traumatic” syllabified as “trau.ma.tic” from the 148

Merriam-Webster dictionary (which would be syl- 149

labified as “trau.ma.tic” if consistent with the max- 150

imal onset principle)3. It is for this reason that we 151

opt to train our own syllabifier tool as a tokenizer 152

rather than opt for a dictionary lookup. Moving for- 153

ward, references to word syllabification will follow 154

the Maximal Onset Principle, even if the resulting 155

segmentation does not necessarily align with typi- 156

cal dictionary entries to preserve orthographic and 157

phonological alignment. 158

3.3 Tokenizers 159

In order to draw a fair comparison between the 160

syllable tokenizer and BPE tokenizer, we set the 161

max vocabulary size of the BPE tokenizer based on 162

the number of found types by the syllable tokenizer. 163

2https://www.merriam-webster.com/dictionary/
diploma, retrieved on 7/25/2025.

3https://www.merriam-webster.com/dictionary/
traumatic, retrieved on 7/25/2025.
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Condition Description

BPE Classifier Byte-Pair Encoding with
MLP output

Syllable Classifier Syllable Encoding with
MLP output

BPE Neuron Byte-Pair Encoding with
single neuron output

Syllable Neuron Syllable Encoding with
single neuron output

Table 1: Tested model descriptors and descriptions

The syllable tokenizer was trained on 1,000,000164

lines of the RadioTalk corpus set aside for tokenizer165

training. The syllable tokenizer identified 17,019166

types after a selection of numeral-related syllables167

were added (Appendix A).168

The BPE tokenizer was trained on the same169

1,000,000 lines of text, and merged to a vocab-170

ulary size of 17,019. The average type length in171

characters was 6.78. Merging was conducted in172

consideration of word and punctuation boundaries,173

with prepended spaces.174

3.4 Models175

We pre-train two parametrically identical GPT-2176

sized models (Appendix A). To evaluate the base177

models on our tasks, we add and finetune two types178

of wrappers to both base models: a classifier and179

single neuron output wrapper. The classifier wrap-180

per is a two layer network with a hidden layer of181

size 360 neurons and output linear layer size 31182

trained on logit outputs from the second to last183

transformer block and a softmax cross entropy loss184

function, while the single unit output wrapper is a185

two layer network with a hidden layer of size 360186

neurons and output size 1 trained on a mean square187

error loss function. The models with their wrappers188

will hereinafter be referred to by their tokenization189

paradigm and their wrapper (Table 1).190

4 Task191

4.1 Syllable Counting192

We finetune each model with the wrapper on a sam-193

ple of 794 sentences from the Syllable Counting194

task of PhonologyBench for 30 epochs (Suvarna195

et al., 2024). Performance after each epoch is eval-196

uated on a validation set of 99 sentences. After full197

finetuning, test accuracy is evaluated on a set of198

100 sentences.199

4.2 Word Counting 200

We also evaluate both models on a word counting 201

task to establish the degree to which the models 202

are capable of learning morphological segments be- 203

yond syllables. A word counting task establishes a 204

benchmark for the syllable model that extends per- 205

formance beyond a potential simple token counting 206

task. We use the same classifier and single neu- 207

ron wrappers trained on the same objective and 208

sentences as the syllable counting task, with target 209

values set to the number of words in the sentence 210

instead of the number of syllables. The finetuning 211

procedure is identical to the finetuning procedure 212

of the syllable counting task. 213

5 Results 214

We find that using syllable based tokenization does 215

not always result in better performance on the syl- 216

lable and wod counting tasks. However, we do find 217

an interaction between the type of wrapper used 218

and the resulting model performance on both the 219

syllable and word counting tasks. 220

5.1 Syllable Counting 221

5.1.1 Training and Validation Loss 222

Training and Validation Losses for each model are 223

presented in Figure 2. BPE Neuron achieves and 224

maintains the lowest Train and Validation losses 225

averaged across 30 runs with different seeds. 226

5.1.2 Test Accuracy 227

The BPE Neuron model achieves the highest 228

average test accuracy score of 0.43 (Figure 3). 229

This was significantly greater than the average 230

test accuracy of the Syllable Classifier model 231

(p<0.05, t=5.85, df=58), the Syllable Neuron 232

model (p<0.05, t=7.10, df=58), and the BPE Clas- 233

sifier model (p<0.05, t=15.30, df=58). The BPE 234

Classifier achieved the lowest average test accu- 235

racy score of 0.16, significantly lower than both the 236

Syllable Neuron model (p<0.05, t=-7.73, df=58) 237

and the Syllable Classifier model (p<0.05, t=-7.49, 238

df=58). 239

5.2 Word Counting 240

Training and Validation Losses for each model are 241

presented in Appendix B and C. 242

5.2.1 Test Accuracy 243

The BPE Classifier model achieves the highest 244

test accuracy score of 0.47 (Figure 4), signifi- 245

cantly greater than the BPE Neuron model (p<0.05, 246
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Figure 2: Training and validation loss across 30 epochs, averaged over 30 runs, for the syllable counting task.

Figure 3: Test accuracy on the syllable counting task for
each model averaged across 30 runs. Error bars display
95% CI.

t=2.12, df=58), the Syllable Classifier model247

(p<0.05, t=3.25, df=58), and the Syllable Neuron248

model p<0.05, t=5.51, df=58.249

5.3 Cross task Performance250

We also perform an analysis of each model’s perfor-251

mance between tasks. The Syllable Neuron model252

performs significantly worse on the Syllable Count-253

ing task than the Word Counting task (p<0.05, t=-254

2.47, df=58). The BPE Neuron model does not255

perform significantly differently between the two256

tasks in a two sided t-test (p>0.05, t=0.39, df=58).257

The Syllable Classifier model does not perform258

significantly differently between the two tasks in a259

two sided t-test (p>0.05, t=-4.30, df=58). The tex-260

titBPE Classifier model performs significantly dif-261

ferently between the two tasks (p>0.05, t=-15.73,262

df=58), performing significantly better on the word263

counting task (p<0.05, t=15.73, df=58).264

Figure 4: Test accuracy on the word counting task for
each model averaged across 30 runs. Error bars display
95% CI.

6 Discussion 265

Although we did not find that syllable tokeniza- 266

tion unilaterally improved syllable recognition, we 267

did find an interaction between wrapper types and 268

tokenization paradigm that resulted in lower per- 269

formance for BPE tokenization with the Classi- 270

fier wrapper, and higher performance for BPE tok- 271

enization with the Neuron wrapper. Although these 272

results do not necessarily show that syllable tok- 273

enization is more effective than BPE tokenization 274

in preserving phonological information, they do 275

demonstrate that the type of output wrapper used 276

may contribute significantly to the results of fine- 277

tuning. We did not find this same disparity in per- 278

formance between the two types of syllable models 279

trained on the syllable counting task, suggesting 280

that the preservation of phonological information 281

may be more stable with syllable tokenization. 282
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7 Limitations283

The broader generalizability of this study is limited;284

we examine a narrow definition of phonological to-285

kenization (syllable based tokenization). Our evalu-286

ation set is also limited in size, reducing the power287

of our conclusions. In the future, we might consider288

expanding the task to a larger evaluation set, and289

investigation alternative phonologically-based to-290

kenization paradigms, such as grapheme tokeniza-291

tion and morpho-phonological tokenization. Our292

study also only looks at English, a language with a293

deep orthographic structure. The results might be294

different for a language with shallower orthogra-295

phy like Spanish, or a language with logographic296

orthography such as Chinese.297
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A Model Parameters398

Each model consists of 12 transformer block layers,399

12 attention heads, embedding dimension of 768,400

and vocabulary size of 17,019. We use the AdamW401

optimizer with a learning rate of 6e-4, weight de-402

cay of 1e-1, beta1 and beta2 of 0.9, 0.95. Each403

model is trained for 4,000 iterations, training on404

2,211,840 tokens per iteration. The total number of405

parameters is 98.03M. Hyperparameters and code406

are adapted from Karpathy (2023).407

B Word Counting Training Loss Curves408

Figure 5: Training loss across 30 epochs, averaged over
30 runs, for the word counting task.

C Word Counting Validation Loss Curves 409

Figure 6: Validation loss across 30 epochs, averaged
over 30 runs, for the word counting task.
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