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Abstract

Large Language Models often struggle with
downstream task involving phonological aware-
ness, despite increasing performance on natu-
ral language understanding benchmarks. One
leading hypothesis for this discrepancy in
performance is that tokenization along non-
phonologically informed boundaries results in
an inability to acquire phonological informa-
tion from orthographic input, which makes
up the majority of text-based Large Language
Model training data. In this paper, we inves-
tigate this hypothesis by pretraining a Large
Language Model on a Byte Pair Encoding to-
kenized corpus and an identical model on a
syllable tokenized corpus. We compare their
performance on syllable segmentation task, and
a word segmentation task, but find no signifi-
cant improvement from syllable tokenization
on either task.

1 Introduction

Tokenization is the process through which large
language models break down input text and con-
vert it into integer representations. Currently, Byte
Pair Encoding (BPE) is the most prevalent form
of tokenization, utilized by OpenAI’s GPT models,
Deepseek, Eleuther’s GPT-NeoX, among many oth-
ers (Brown et al., 2020; DeepSeek-Al et al., 2025;
Black et al., 2022) . BPE is a method of compres-
sion that recombines frequently occurring units into
types; these types are indexed in a dictionary that
is then used to segment text into corresponding ids
(Figure 1; Gage 1994). Although there is active
research on tokenizer-free models, most models
still use a tokenizer (Clark et al., 2022; Pagnoni
et al., 2024). This, in conjunction with the fact
that tokenizer vocabularies are immutable once se-
lected, means that the choice of tokenization is still
an important part of LLM success.

Despite BPE’s success as a subword tokeniza-
tion algorithm, it has been criticized for not align-
ing with recognizable morphological boundaries

the lathe {t,h, e, |, a}
the lathe {t, h, e, |, a, th}
the lathe {t, h, e, |, a, th, the}

Figure 1: Character Level Byte Pair Encoding demon-
stration. The type vocabulary is on the right, starting
with the initial dictionary and showcasing 2 merges

(Bostrom and Durrett, 2020) and scrutinized as the
cause for LLMs subpar performance on phonologi-
cal recognition tasks (Suvarna et al., 2024). Much
prior work has attempted to address these issues;
Bostrom and Durrett (2020) show that unigram lan-
guage modeling (Kudo, 2018) produces types more
closely aligned with morphological boundaries in
English and Japanese.

In this work, we perform a comparative analy-
sis of BPE against English orthographic syllable
encoding, a tokenization strategy that uses phono-
logically informed syllable boundaries to break up
words into subwords. We evaluate two equivalently
trained GPT-2 sized models on NLI and Phono-
logical Benchmarks, testing the hypothesis that
phonologically informed tokenization strategies
will improve downstream performance on tasks
that require phonological awareness while preserv-
ing language understanding. This potential was
raised by the paper PhonologyBench: Evaluat-
ing the Phonological Skills of Large Language
Models by Suvarna et al. (2024) in their inves-
tigation of LLM phonological performance. Su-
varna et al. (2024) benchmark the phonological
abilities of several open and closed source large
language models: Llama-2-13B-Chat, Mistal-7B-
Instruct, Mixtral-8X7B-Instruct, GPT-3.5-Turbo,
GPT-4, and Claude3-Sonnet. Despite these mod-
els’ impressive sizes and performances on state of
the art natural language evaluation tasks, Suvarna



et al. demonstrate that these LLMs demonstrate
poor understanding of the phonology of English;
Claude-3-Sonnet performs the best on the sentence
level syllable counting task, but still significantly
below the human baseline (55.3% against 90%).
Their tentative hypothesis is that the method of
tokenization is to blame for the models’ subpar
performance. In response, we produce SYLGPT, a
GPT-2 model trained on syllable segmented tokens.
Our contributions are:

* An open-source tool for syllabifying ortho-
graphic English words according to their pho-
netic boundaries'.

* An analysis of orthographic syllable based tok-
enization in comparison to byte pair encoding
on phonologically related tasks.

We find that there is no significant impact of
syllable encoding on downstream performance on
a syllable or word counting task.

2 Prior Work

Phonologically informed tokenization is not a
purely novel idea; Mikolov et al. (2011) use naive
syllable boundaries to tokenize words in a speech
recognition task. Atuhurra et al. (2024) use syl-
lable tokenization to improve translation accu-
racy for low resource languages. Velayuthan and
Sarveswaran (2024) evaluate large language model
performance in Tamil, Sinhala, and Hindi with
grapheme pair encoding (GPE), finding better com-
pression ratios with GPE than BPE.

In general, there is a push for more linguistically
motivated tokenizers on the basis of improving
performance on linguistic tasks and for improved
model transparency. MorphPiece is a morpholog-
ically motivated tokenizer developed by Jabbar
(2024). See their work for a more extensive review
of the literature behind morphologically informed
tokenization. Similar research has been conducted
in a variety of languages outside of English, in-
cluding Korean (Jeon et al., 2023) and Sanskrit
(Sandhan et al., 2022).

3 Methods
3.1 Training Corpus

Byte Pair Encoding requires a tokenization training
corpus to iterate over in order to build a vocabulary.

'"The URL of a Github repository containing the code and
data for this paper will appear here.

We select the RadioTalk corpus as our model pre-
training and tokenizer training corpus (Beeferman
et al., 2019). RadioTalk was selected for the ease
of pre tokenization and cleanliness; we choose to
use NLTK word_tokenize as our pre tokenization
method for both BPE and syllable encoding tok-
enizers (Loper and Bird, 2002). Pre tokenization
is the step before tokenization where text is seg-
mented into some simple-to-implement, presum-
ably useful intermediary form like words at whites-
pace boundaries, before tokenization occurs with
consideration to the pre tokenization boundaries
(Mielke et al., 2021).

3.2 Syllable Definition

Suvarna et al. (2024) define a syllable as ‘““a unit
of pronunciation having one vowel sound, with or
without surrounding consonants forming the whole
or part of a word.” There is one additional quality of
syllables that is important to consider when trans-
ferring the archetypically phonological concept to
the realm of orthography; the Maximal Onset Prin-
ciple states that onsets should be as long as they can
be (Kahn, 1976). This phonological principle does
not typically align with the typical presentation of
syllables in orthography. Some words are typically
orthographically syllabified consistent to the max-
imal onset principle,e.g. “diploma” syllabified as
“di.plo.ma” from the Merriam-Webster dictionary?.
Other words are orthographically syllabified most
consistently with morphological boundaries,e.g.
“traumatic” syllabified as “trau.ma.tic” from the
Merriam-Webster dictionary (which would be syl-
labified as “trau.ma.tic” if consistent with the max-
imal onset principle)®. It is for this reason that we
opt to train our own syllabifier tool as a tokenizer
rather than opt for a dictionary lookup. Moving for-
ward, references to word syllabification will follow
the Maximal Onset Principle, even if the resulting
segmentation does not necessarily align with typi-
cal dictionary entries to preserve orthographic and
phonological alignment.

3.3 Tokenizers

In order to draw a fair comparison between the
syllable tokenizer and BPE tokenizer, we set the
max vocabulary size of the BPE tokenizer based on
the number of found types by the syllable tokenizer.

2https: //www.merriam-webster.com/dictionary/
diploma, retrieved on 7/25/2025.

3https: //www.merriam-webster.com/dictionary/
traumatic, retrieved on 7/25/2025.
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Condition Description

BPE Classifier Byte-Pair Encoding with
MLP output

Syllable Classifier ~Syllable Encoding with
MLP output

BPE Neuron Byte-Pair Encoding with
single neuron output

Syllable Neuron Syllable Encoding with

single neuron output

Table 1: Tested model descriptors and descriptions

The syllable tokenizer was trained on 1,000,000
lines of the RadioTalk corpus set aside for tokenizer
training. The syllable tokenizer identified 17,019
types after a selection of numeral-related syllables
were added (Appendix A).

The BPE tokenizer was trained on the same
1,000,000 lines of text, and merged to a vocab-
ulary size of 17,019. The average type length in
characters was 6.78. Merging was conducted in
consideration of word and punctuation boundaries,
with prepended spaces.

3.4 Models

We pre-train two parametrically identical GPT-2
sized models (Appendix A). To evaluate the base
models on our tasks, we add and finetune two types
of wrappers to both base models: a classifier and
single neuron output wrapper. The classifier wrap-
per is a two layer network with a hidden layer of
size 360 neurons and output linear layer size 31
trained on logit outputs from the second to last
transformer block and a softmax cross entropy loss
function, while the single unit output wrapper is a
two layer network with a hidden layer of size 360
neurons and output size 1 trained on a mean square
error loss function. The models with their wrappers
will hereinafter be referred to by their tokenization
paradigm and their wrapper (Table 1).

4 Task
4.1 Syllable Counting

We finetune each model with the wrapper on a sam-
ple of 794 sentences from the Syllable Counting
task of PhonologyBench for 30 epochs (Suvarna
et al., 2024). Performance after each epoch is eval-
uated on a validation set of 99 sentences. After full
finetuning, test accuracy is evaluated on a set of
100 sentences.

4.2 Word Counting

We also evaluate both models on a word counting
task to establish the degree to which the models
are capable of learning morphological segments be-
yond syllables. A word counting task establishes a
benchmark for the syllable model that extends per-
formance beyond a potential simple token counting
task. We use the same classifier and single neu-
ron wrappers trained on the same objective and
sentences as the syllable counting task, with target
values set to the number of words in the sentence
instead of the number of syllables. The finetuning
procedure is identical to the finetuning procedure
of the syllable counting task.

5 Results

We find that using syllable based tokenization does
not always result in better performance on the syl-
lable and wod counting tasks. However, we do find
an interaction between the type of wrapper used
and the resulting model performance on both the
syllable and word counting tasks.

5.1 Syllable Counting
5.1.1 Training and Validation Loss

Training and Validation Losses for each model are
presented in Figure 2. BPE Neuron achieves and
maintains the lowest Train and Validation losses
averaged across 30 runs with different seeds.

5.1.2 Test Accuracy

The BPE Neuron model achieves the highest
average test accuracy score of 0.43 (Figure 3).
This was significantly greater than the average
test accuracy of the Syllable Classifier model
(p<0.05, t=5.85, df=58), the Syllable Neuron
model (p<0.05, t=7.10, df=58), and the BPE Clas-
sifier model (p<0.05, t=15.30, df=58). The BPE
Classifier achieved the lowest average test accu-
racy score of 0.16, significantly lower than both the
Syllable Neuron model (p<0.05, t=-7.73, df=58)
and the Syllable Classifier model (p<0.05, t=-7.49,
df=58).

5.2 Word Counting
Training and Validation Losses for each model are
presented in Appendix B and C.

5.2.1 Test Accuracy

The BPE Classifier model achieves the highest
test accuracy score of 0.47 (Figure 4), signifi-
cantly greater than the BPE Neuron model (p<0.05,
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Figure 2: Training and validation loss across 30 epochs, averaged over 30 runs, for the syllable counting task.
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Figure 3: Test accuracy on the syllable counting task for
each model averaged across 30 runs. Error bars display
95% CI.

t=2.12, df=58), the Syllable Classifier model
(p<0.05, t=3.25, df=58), and the Syllable Neuron
model p<0.05, t=5.51, df=58.

5.3 Cross task Performance

We also perform an analysis of each model’s perfor-
mance between tasks. The Syllable Neuron model
performs significantly worse on the Syllable Count-
ing task than the Word Counting task (p<0.05, t=-
2.47, df=58). The BPE Neuron model does not
perform significantly differently between the two
tasks in a two sided t-test (p>0.05, ¢t=0.39, df=58).
The Syllable Classifier model does not perform
significantly differently between the two tasks in a
two sided t-test (p>0.05, t=-4.30, df=58). The tex-
titBPE Classifier model performs significantly dif-
ferently between the two tasks (p>0.05, t=-15.73,
df=58), performing significantly better on the word
counting task (p<0.05, t=15.73, df=58).
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Figure 4: Test accuracy on the word counting task for
each model averaged across 30 runs. Error bars display
95% CI.

6 Discussion

Although we did not find that syllable tokeniza-
tion unilaterally improved syllable recognition, we
did find an interaction between wrapper types and
tokenization paradigm that resulted in lower per-
formance for BPE tokenization with the Classi-
fier wrapper, and higher performance for BPE tok-
enization with the Neuron wrapper. Although these
results do not necessarily show that syllable tok-
enization is more effective than BPE tokenization
in preserving phonological information, they do
demonstrate that the type of output wrapper used
may contribute significantly to the results of fine-
tuning. We did not find this same disparity in per-
formance between the two types of syllable models
trained on the syllable counting task, suggesting
that the preservation of phonological information
may be more stable with syllable tokenization.



7 Limitations

The broader generalizability of this study is limited;
we examine a narrow definition of phonological to-
kenization (syllable based tokenization). Our evalu-
ation set is also limited in size, reducing the power
of our conclusions. In the future, we might consider
expanding the task to a larger evaluation set, and
investigation alternative phonologically-based to-
kenization paradigms, such as grapheme tokeniza-
tion and morpho-phonological tokenization. Our
study also only looks at English, a language with a
deep orthographic structure. The results might be
different for a language with shallower orthogra-
phy like Spanish, or a language with logographic
orthography such as Chinese.
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A  Model Parameters

Each model consists of 12 transformer block layers,
12 attention heads, embedding dimension of 768,
and vocabulary size of 17,019. We use the AdamW
optimizer with a learning rate of 6e-4, weight de-
cay of le-1, betal and beta2 of 0.9, 0.95. Each
model is trained for 4,000 iterations, training on
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Figure 5: Training loss across 30 epochs, averaged over
30 runs, for the word counting task.

C Word Counting Validation Loss Curves
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Figure 6: Validation loss across 30 epochs, averaged
over 30 runs, for the word counting task.
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