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Abstract001

All natural languages are structured hierarchi-002
cally. In humans, this structural restriction is003
neurologically coded: when two grammars are004
presented with identical vocabularies, brain ar-005
eas responsible for language processing are006
only sensitive to hierarchical grammars. Using007
large language models (LLMs), we investigate008
whether such functionally distinct hierarchical009
processing regions can arise solely from expo-010
sure to large-scale language distributions. We011
generate inputs using English, Italian, Japanese,012
or nonce words, varying the underlying gram-013
mars to conform to either hierarchical or lin-014
ear/positional rules. Using these grammars, we015
first observe that language models show dis-016
tinct behaviors on hierarchical versus linearly017
structured inputs. Then, we find that the com-018
ponents responsible for processing hierarchical019
grammars are distinct from those that process020
linear grammars; we causally verify this in ab-021
lation experiments. Finally, we observe that022
hierarchy-selective components are also active023
on nonce grammars; this suggests that hierar-024
chy sensitivity is not tied to meaning, nor in-025
distribution inputs.026

1 Introduction027

In 1861, Broca found evidence that language pro-028

cessing functions are localized in specific brain029

regions. Since then, our mapping of the brain has030

advanced tremendously; we now know that func-031

tional specialization can arise not only from bio-032

logically coded mechanisms, but also from experi-033

ence (Baker et al., 2007). More recently, there has034

been significant interest in understanding the mech-035

anisms of language processing in large language036

models (Olsson et al., 2022; Hanna et al., 2023; Yu037

et al., 2023; Todd et al., 2024), whose inductive038

biases are more general than those of humans.039

Sensitivity and functional selectivity toward the040

hierarchical structure of language is a hallmark041

of human language processing (Chomsky, 1957,042

1965). Hierarchical grammars follow the structure 043

of natural language, where elements of a sentence 044

are arranged according to syntactic rules and depen- 045

dencies. These grammars reflect how languages are 046

naturally processed by humans: they often incor- 047

porate recursion and create dependencies between 048

words based on grammatical roles rather than their 049

position in the sentence. In contrast, linear gram- 050

mars arrange elements based on fixed positional 051

rules or relative word ordering. Importantly, brain 052

regions that are selective for hierarchical grammars 053

are disjoint from those that process linear struc- 054

tures, as well as from those involved in hierarchi- 055

cal but non-linguistic domains such as music or 056

programming languages, or sentences constructed 057

from nonce words (Malik-Moraleda et al., 2023; 058

Fedorenko et al., 2016; Ivanova et al., 2020; Liu 059

et al., 2020; Varley and Siegal, 2000; Varley et al., 060

2005; Apperly et al., 2006; Fedorenko and Varley, 061

2016; Monti et al., 2009; Fedorenko et al., 2011; 062

Amalric and Dehaene, 2019; Ivanova et al., 2021; 063

Chen et al., 2023). 064

Despite large quantities of evidence from hu- 065

mans for language selectivity, it is not clear whether 066

language models would acquire similar selectiv- 067

ity from exposure to natural language data in the 068

absence of human-like learning biases. Kallini 069

et al. (2024) recently find that autoregressive 070

Transformer-based models (Vaswani et al., 2017) 071

can more easily learn grammars that accord with 072

the structures found in human language. While that 073

study provides evidence from language acquisition, 074

we are primarily interested in language processing 075

in models trained on large text corpora. 076

Do large language models (LLMs) demonstrate 077

distinct mechanisms for processing hierarchically 078

structured vs. non-hierarchically structured sen- 079

tences that are otherwise superficially identical? 080

We derive inspiration from Musso et al.’s (2003) 081

experiment testing hierarchical and linear selectiv- 082

ity in human language processing. We replicate 083
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this experiment, to the extent possible,1 on a series084

of large pretrained language models (§2). We de-085

sign a series of superficially similar but structurally086

distinct grammaticality judgment tasks. We gen-087

erate hierarchical grammars that accord to natural088

language structure, as well as linear grammars that089

are explained by positional insertion or transfor-090

mation rules. Using these models and stimuli, we091

investigate the following research questions:092

RQ1. Do models process hierarchically-093

structured inputs in a distinct manner from linearly-094

structured inputs? We find that LLMs demonstrate095

distinct behaviors and mechanisms for grammars096

defined by hierarchical versus linear structure.097

RQ2. Which model components judge gram-098

maticality in hierarchical vs. linear inputs, and to099

what extent are they shared? We find strong over-100

lap among hierarchical grammars and low over-101

laps between hierarchical and linear ones. Remov-102

ing hierarchy-sensitive components significantly103

reduces accuracy for hierarchical grammars while104

having a smaller effect on linear grammars.105

RQ3. Are the findings from RQ1 and RQ2106

dependent on grounding in the lexicon of the lan-107

guage(s) of the training corpus? Or do these dis-108

tinctions also hold given grammars generated us-109

ing nonce words? We observe that the natural-110

language hierarchy-sensitive components also have111

significant influence on nonce grammars, suggest-112

ing that these components are more selective for hi-113

erarchical structure than in-distribution language.114

These results provide evidence that model re-115

gions responsible for processing hierarchical lin-116

guistic structure are localizable and distinct. Fur-117

ther, these regions are selective for hierarchically118

structured language more broadly, and are not de-119

pendent on meaning nor in-distribution language120

inputs. This suggests that functional specialization121

toward hierarchical linguistic structure can arise122

solely from exposure to language data. Thus, even123

in the absence of strong human-like inductive bi-124

ases, language-selective regions can emerge.2125

1Musso et al.’s (2003) experiment required that subjects
be fluent in their native language (German, in their case) and
not have prior exposure to the foreign languages (Italian and
Japanese). LLMs’ training distributions contain documents in
non-English languages—though orders-of-magnitude fewer
documents than for English. Thus, while we cannot fully
satisfy this condition for LLMs, we can distinguish dominant
and non-dominant languages of the model’s training corpus.

2Data and code are available at this anonymous Zenodo
repository. This will be replaced with a GitHub link in the
final version.

2 Methods 126

2.1 Models 127

We use Mistral-v0.3 (7B; Jiang et al., 2023), QWen 128

2 (0.5B and 1.5B; Yang et al., 2024), Llama 2 (7B; 129

Touvron et al., 2023), and Llama 3.1 (8B and 70B; 130

Grattafiori et al., 2024). We select these models be- 131

cause they are open-weights, relatively commonly 132

used, and are currently among the best-performing 133

open models. In all experiments, we use nucleus 134

sampling (temperature = 0.1, p = 0.9). We run 135

experiments on a node with 4 A100s (80G). 136

2.2 Data 137

We define 3 classes of hierarchical and linear gram- 138

mars respectively in English, Italian, and Japanese, 139

yielding 18 grammars total. The choice of lan- 140

guages aligns with the original Musso et al. study, 141

which examined German, Italian, and Japanese. In 142

Musso et al., the human participants’ native lan- 143

guage was German; as the LLMs we use are pri- 144

marily trained on English, we substitute German 145

with English while retaining Italian and Japanese. 146

These represent a minimal sample of non-English 147

languages that are typologically similar (Italian) 148

and typologically distinct (Japanese) from the pri- 149

mary language of the LLMs we investigate. 150

Hierarchical and linear grammars differ in 151

whether the grammaticality is explained by a hier- 152

archical or positional rule. Hierarchical grammars 153

contain rules that conform to the hierarchical struc- 154

ture of natural language (Chomsky, 1957; Everaert 155

et al., 2015) while linear grammars, argued to be 156

impossible in human language (Chomsky, 1957, 157

1965), contain rules that are defined by word po- 158

sitions or relative word orderings—e.g., insert a 159

word at position 4. 160

We generate positive and negative examples for 161

all grammars. A positive example follows the 162

grammar rule, while a negative example violates 163

it.3 For hierarchical grammars, negative examples 164

are created by swapping the final two words of a 165

positive example. For linear grammars involving 166

word insertion, negative examples result from in- 167

serting the word at the final position. For linear 168

grammars that invert word order, negative exam- 169

ples are formed by swapping the final two words 170

after reversing the input. For the linear grammar 171

Italian last-noun agreement, a positive example 172

3Negative examples do not aim to convert hierarchical
inputs into linear ones or vice versa; they simply violate the
defined grammar rule.
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Grammar Positive Example Negative Example
H

ie
ra

rc
hi

ca
l Declarative. Subject, verb, object. a woman reads a chapter a woman reads chapter a

Subordinate. Subject, verb taking a
relative clause complement.

Sheela thinks that the woman reads the
chapter

Sheela thinks that the woman reads chapter the

Passive. Like Declarative, but in
the passive voice.

a chapter is read by a woman a chapter is read by woman a

L
in

ea
r

Negation. Insert “doesn’t” or “don’t”
at position 5.

a
1

woman
2

reads
3

a
4

doesn’t
5

chapter
6

a
1

woman
2

reads
3

a
4

chapter
5

doesn’t
6

Inversion. Invert the word order of
Declarative.

chapter
5

a
4

reads
3

woman
2

a
1

chapter
5

a
4

reads
3

a
1

woman
2

Wh-word. Insert wh-word at posi-
tion 6.

did
1

a
2

woman
3

reads
4

a
5

when
6

chapter?
7

did
1

a
2

woman
3

reads
4

a
5

chapter
6

when?
7

Table 1: Dataset. Hierarchical and linear grammars, descriptions of the rule defining each grammar, and positive
(grammatical) and negative (ungrammatical) examples for each. We provide only English examples here for space;
see App. A.1 for descriptions and examples for all grammars. Also see § 2.2 for detailed descriptions of hierarchical
and linear grammars, and the details of positive and negative example construction.

aligns the determiner’s gender with the last noun,173

while a negative example incorrectly matches the174

determiner to the first noun. Sentences are gener-175

ated using templates based on Musso et al. (2003).176

Each grammar, its rule, and examples are provided177

in Tables 1 and 2. Our dataset includes 7 verbs178

with at least 5 subjects and objects each, yielding179

1106 positive-negative pairs per grammar. We use180

a 50/50 train-test split (553 pairs per grammar).181

3 Experiments182

We conduct four experiments to evaluate the be-183

haviors and mechanisms of six LLMs when pro-184

cessing hierarchical and linear grammars in an185

in-context learning setup. These models are pre-186

trained primarily on English but also include sub-187

stantial amounts of other high-resource languages.188

While the exact training composition remains un-189

known, LLMs are typically trained on web-scraped190

data,4 suggesting a predominance of English text191

(W3Techs, 2024), alongside significant content192

from other widely used languages.193

Experiment 1 evaluates pre-trained LLMs on194

grammaticality judgment tasks for hierarchical and195

linear grammars (§3.1). Experiment 2 identifies196

model components crucial for processing these197

structures by treating hierarchical and linear in-198

puts as counterfactuals (§3.2). Experiment 3 tests199

the causal role of these components by ablating200

them and measuring changes in grammaticality201

judgments (§3.3). Experiment 4 examines whether202

these components reflect mere in-distribution gen-203

eralization or a broader sensitivity to hierarchical204

and linear structure using nonce sentences (§3.4).205

4Relevant discussion on Huggingface.

The input prompt in our in-context learning 206

setup comprises ten demonstrations, followed by a 207

test example (details in §3.1). In all experiments, 208

we conduct four trials, presenting mean results 209

across four random seeds; demonstrations in the 210

input prompt are randomized between trials, while 211

test examples remain consistent. The format of the 212

prompts remain consistent across experiments. 213

3.1 Experiment 1: Are language models 214

significantly more accurate at classifying 215

the grammaticality of sentences from 216

hierarchical grammars? 217

We evaluate LLM accuracy on grammaticality judg- 218

ments across different grammars. Musso et al. 219

(2003) found that humans classify hierarchical 220

grammars more accurately, even without prior flu- 221

ency in the test languages. If LLMs contain func- 222

tionally specialized regions for hierarchical pro- 223

cessing, we expect a similar pattern. As described 224

in §2, we generate 1106 examples for each of the 18 225

grammars and perform a uniform 50/50 train/test 226

split. Each LLM is prompted with an instruction 227

describing the task (see Appendix B.1.1), followed 228

by 10 in-context demonstrations sampled from the 229

training set. These demonstrations use the format 230

“Q: {sentence}\nA: {answer}”, where answer 231

is Yes for positive and No for negative examples. 232

Each prompt contains exactly 5 positive and 5 neg- 233

ative examples in random order. The model then 234

performs a metalinguistic judgment task, generat- 235

ing “ Yes” or “ No” for test examples.5 We extract 236

probabilities for “ Yes” and “ No” to assess correct- 237

ness, reporting accuracy in Figure 1. 238

5The leading space in the answer tokens is intentional,
matching the expected tokenization.
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Figure 1: Few-shot accuracy on the grammaticality judgment task on hierarchical and linear inputs. On average,
all models are better at the grammaticality judgment task on hierarchical inputs as compared to linear inputs. On
hierarchical grammars, models are best at processing English inputs followed by Italian and Japanese. Model-wise
accuracy on this task is shown in Figure 5 in App. B.1. Grammar-wise accuracy is shown in Table 5 in App. B.1.

Hypothesis. Natural language is largely ambigu-239

ous with respect to linear versus hierarchical struc-240

ture (Chomsky, 1957); human brains have biologi-241

cal preferences for hierarchical structures (Musso242

et al., 2003), but LLMs do not have this prefer-243

ence built into their architecture (Min et al., 2020;244

McCoy et al., 2018; Mueller et al., 2022), so it is245

not clear a priori whether they would treat these246

structures in the same way. Given results from247

Kallini et al. (2024), we hypothesize that models248

will be significantly more accurate when labeling249

sentences from hierarchical than linear grammars.250

We also expect larger models to be more accurate.251

Results. We find (Figure 1) that for English and252

Italian grammars, models are better at distinguish-253

ing positive and negative examples in hierarchical254

grammars than linear grammars (p < .001; see Ta-255

ble 4). This difference is greater for larger models256

than smaller ones, perhaps indicating greater func-257

tional specialization with scale. This provides ini-258

tial support for our hypothesis that hierarchical and259

linear grammars are processed in distinct manners.260

3.2 Experiment 2: Are the model components261

implicated in processing hierarchical262

structures disjoint from those implicated263

in processing linear structures?264

Our behavioral evaluations suggest that LLMs are265

more accurate on grammaticality judgment tasks266

with hierarchical inputs, but this does not dis-267

ambiguate whether models have separate mecha-268

nisms6 for processing hierarchical and linear gram-269

6We use “mechanism” to refer to a causal chain proceeding
from an initial cause to a final effect. In language models, this
refers to a set of causally implicated model components that

mars. If a model has specialized mechanisms 270

for processing hierarchical and linear grammars, 271

we hypothesize that the set of model components 272

causally responsible for correct grammaticality pre- 273

dictions on hierarchical inputs should be different 274

from those responsible for correct predictions on 275

linear inputs. 276

To test this, we locate neurons in the model that 277

are most sensitive towards processing hierarchical 278

syntax. Specifically, we investigate dimensions of 279

the output vector of the MLP and attention sub- 280

modules in each layer.7 We test whether there is 281

significant overlap between the neurons responsible 282

for processing hierarchical and linear structures. 283

Recall that we prompt the model with a task in- 284

struction followed by 10 uniformly sampled demon- 285

strations of positive and negative examples. Given 286

this prompt, we quantify the importance of each 287

neuron z in increasing the logit difference m be- 288

tween the correct and incorrect answer tokens y 289

and y′ for a test sentence t. In other words, given 290

a language model M, m = M(t)y′ − M(t)y; 291

M(t)y and M(t)y′ are the logits corresponding to 292

the correct and incorrect answer tokens. We com- 293

pute the component z’s indirect effect (IE; Pearl, 294

2001; Robins and Greenland, 1992) on m given the 295

test sentence t, and a minimally different sentence 296

t′ that flips the correct answer from y to y′.8 Acti- 297

explain how inputs are transformed into the observed output
behavior m, which we define below.

7For MLPs, we use the output of the down-projection after
the non-linear transformation. For attention, we use the output
of the out projection.

8If t is a positive example, then t′ is the corresponding
negative example formed by swapping the appropriate word(s)
or modifying the sentence. If t is a negative example, then t′

is the corresponding positive example.
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vation patching (Vig et al., 2020; Finlayson et al.,298

2021; Geiger et al., 2020; Meng et al., 2022), a299

common procedure for computing the IE of model300

components, entails computing the IE as follows:301

IE(m; z; t, t′) = m(t|do(zt = zt′))−m(t) (1)302

Activation patching is computationally expen-303

sive, as the number of required forward passes304

scales linearly with the number of neurons. There-305

fore, we instead use attribution patching (Kramár306

et al., 2024; Syed et al., 2024), a first-order Taylor307

approximation of the IE:308

ÎE(m; z; t, t′) = ∇zm|t (zt′ − zt) (2)309

ÎE can be computed for all z using only 2 forward310

passes and 1 backward pass; i.e., the number of311

passes is constant with respect to the number of312

neurons. While not a perfect approximation, ÎE313

correlates almost perfectly with IE in typical cases314

(Kramár et al., 2024; Marks et al., 2024).9315

We select the top 1% of both attention and MLP316

neurons in the model by ÎE. We compute the pair-317

wise overlap of this top 1% neuron subset for each318

pair of grammars to measure mechanistic overlap.319

Hypothesis. If there are distinct mechanisms for320

processing hierarchical and linear grammars, there321

should be significant overlap between pairs of hi-322

erarchical structures, and significant overlap be-323

tween pairs of linear structures. However, overlaps324

across linear and hierarchical structures should be325

significantly lower than overlaps between pairs of326

hierarchical grammars or pairs of linear grammars.327

Results. We first observe that all mean pairwise328

component overlaps are significantly different from329

0 (Figure 2). However, this overlap is significantly330

higher (p < 0.001) between pairs of hierarchical331

grammars than across pairs of hierarchical and lin-332

ear grammars (See Table 8 in App. B.2 and Fig-333

ure 2). This holds across English, Italian, and334

Japanese. This supports the hypothesis that LLMs335

use specialized components for processing hierar-336

chical syntax that are distinct from those responsi-337

ble for processing linear syntax.338

We also observe that linear structures that share339

a rule across languages, such as inversions, show340

stronger overlaps than arbitrary pairs of linear struc-341

tures (Figures 8 and 11 in Appendix B.2). This342

serves as a sanity check that the component over-343

laps correlate with structural similarities.344

9Except at the first and last layer, where the correlation is
still strong but significantly lower.

Figure 2: Mean pairwise overlap percentage of the top
1% of neurons from hierarchical (H) or linear (L) gram-
mars. We show means across models (error bars are
standard errors); see Figure 7a in App. B.2 for model-
wise results. Overlaps are significantly (p < 0.001,
Table 8) different between hierarchical-hierarchical
pairs and linear-linear pairs, and between hierarchical-
hierarchical pairs and hierarchical-linear pairs.

3.3 Experiment 3: Does ablating 345

hierarchy-sensitive components affect 346

performance on linear grammars, and 347

vice versa? 348

We have located neurons responsible for processing 349

hierarchical and linear grammars. If these neurons 350

are selective for only hierarchical or linear struc- 351

ture, then ablating them should selectively impact 352

the model’s performance on the grammaticality 353

judgment tasks from §3.1. We now perform an ab- 354

lation experiment to causally verify this prediction. 355

Let āi be the mean activation of neuron a at to- 356

ken position i across training examples. We first 357

cache āi for each MLP and attention output dimen- 358

sion. We then run three additional iterations of 359

the grammaticality judgment task from §3.1, each 360

while ablating a different set of components. (i) 361

We ablate the union of the top 1% of neurons by 362

ÎE across hierarchical grammars. (ii) We take the 363

union of the top 1% of neurons across linear gram- 364

mars, subsample to the same number of neurons as 365

in the hierarchical union (subsampling procedure 366

described below), and ablate this set. Finally, (iii) 367

we ablate a random uniform subsample of neurons, 368

where the number of ablated neurons is the same 369

as in (i) and (ii). Sets (i) and (ii) are derived from 370

§3.2. We call the hierarchy-sensitive neuron set H 371

and the linearity-sensitive neuron set L. 372

Due to the strong overlaps between components 373

responsible for processing hierarchical syntax and 374

only minimal overlaps between components re- 375

sponsible for processing linear syntax, we observe 376
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that |L| ≈ 2|H|. We therefore subsample L to be377

the same size as H by (1) sorting components in L378

by their effect size (as found in §3.2) and (2) keep-379

ing the top |Hℓ| components from layer ℓ, where380

|Hℓ| is the size of H at layer ℓ. When ablating381

the uniform subsample, we uniformly sample and382

ablate |Hℓ| components in each layer ℓ.383

Hypothesis. If H and L are functionally distinct,384

then ablating H should reduce performance on385

hierarchical grammars more than ablating L and386

more than ablating random components. Ablating387

L should reduce performance on linear grammars388

more than ablating H and more than ablating ran-389

dom components.390

Figure 3: Mean relative change in accuracy across mod-
els (error bars are standard errors) after ablating the top
1% of neurons from hierarchical (H) or linear (L) gram-
mars. We compare to a random ablation baseline. For
model-wise ablations, see Figure 12a in App. B.3.

Results. Ablating components from H decreases391

the models’ accuracy on hierarchical structures sig-392

nificantly more than ablating components in L (Fig-393

ure 3; see Table 9 in App. 3.3 for significance tests).394

Ablating components from L decreases the model’s395

accuracy on linear structures more than ablating H .396

Ablating uniformly sampled components causes a397

lower decrease in performance compared to abla-398

tions from the H or L sets.399

These results are further mediated by model and400

language. Llama-3.1, Mistral-v0.3, and QWen-2401

(1.5B) show larger decreases in relative accuracy402

on hierarchical and linear inputs when ablating the403

H and L sets, respectively. Llama-2 and QWen-2404

(0.5B) show similar changes in performance under405

ablations, though not in the selective manner we ob-406

serve for other models. At the language level, these407

trends are consistent across English and Italian, but408

only sometimes generalize to Japanese. Overall,409

our results suggest that for Llama-3.1, Mistral-v0.3,410

and QWen (1.5B), the components discovered in 411

§3.2 selectively reduce model performance in an 412

expected manner in English and Italian. For other 413

models, there is more mechanistic overlap in how 414

grammatically judgments are performed for hierar- 415

chical and linear inputs. Thus, we largely find sup- 416

port for the hypothesis of hierarchical functional 417

selectivity. Exceptions include smaller models, and 418

results in Japanese (a less frequent language in the 419

training corpora of these models); this provides pre- 420

liminary evidence that greater functional special- 421

ization may emerge with scale, both with respect 422

to dataset size and number of parameters. 423

3.4 Experiment 4: Are these neurons sensitive 424

to hierarchical structure or in-distribution 425

language? 426

Thus far, our results have been confounded by the 427

fact that hierarchical sentences are commonly at- 428

tested in the natural language corpora that LLMs 429

are trained on, whereas linear sentences would be 430

unlikely to appear. Thus, it is unclear if we have 431

observed functional selectivity toward hierarchi- 432

cal language, or merely toward in-distribution lan- 433

guage. To address this confound, we propose ad- 434

ditional experiments using sentences constructed 435

from nonce words—what Fedorenko et al. (2016) 436

call Jabberwocky sentences (abbreviated ZZ). 437

We define a bijective mapping from all words 438

in the English grammars to nonce words; see Ta- 439

ble 3 for examples. Then, we replicate our previ- 440

ous experiments on this set of out-of-distribution 441

Jabberwocky sentences. By preserving the distinc- 442

tion between hierarchical and linear grammars and 443

using a meaningless lexicon, we can disentangle 444

hierarchy-sensitive mechanisms from mechanisms 445

that are merely sensitive to natural language distri- 446

butions resembling those in the training corpus. 447

Hypotheses. In humans, Jabberwocky sentences 448

cause a smaller increase in neural activity as com- 449

pared to natural sentences (Fedorenko et al., 2016), 450

implying that the language processing regions of 451

the brain are not sensitive to Jabberwocky sen- 452

tences. If language models are similarly selec- 453

tive for meaningful inputs—and therefore, if the 454

H neurons from previous experiments are actu- 455

ally in-distribution-language neurons, and if the L 456

neurons are actually out-of-distribution language 457

neurons—then we expect the following three trends. 458

(1) There should not be significant differences in 459

model performance on grammaticality judgments 460
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(a) (b) (c) (d)

Figure 4: Results on Jabberwocky grammars. We show grammaticality judgment task performance (a), mean neuron
overlap percentages between Jabberwocky hierarchical and linear grammars (b), neuron overlaps between English
and Jabberwocky grammars (c), and the mean relative changes in accuracy as measured on Jabberwocky grammars
after ablating top 1% of neurons corresponding to English grammars (d). See App. B.4 for model-wise results.

for hierarchical and linear Jabberwocky grammars.461

(2) There should be little overlap between the hier-462

archical English and Jabberwocky neurons; by im-463

plication, ablating neurons discovered from natural464

language inputs should not affect performance on465

Jabberwocky sentences. (3) It is not clear whether466

we should expect distinct mechanisms for process-467

ing H and L Jabberwocky grammars; if there is an468

abstract acceptability judgment circuit that is not469

tied to natural language, then it should be present470

in the linear natural-language neurons. Thus, we471

hypothesize that the L neurons from previous ex-472

periments will affect performance on Jabberwocky473

sentences more than the H neurons.474

Results. In behavioral experiments using Jabber-475

wocky sentences, we find (Figure 4a) that the gap476

in performance from hierarchical to linear gram-477

mars is significantly lower than that for English478

grammars—but still consistently present across479

models. The lower gap could be because perfor-480

mance is closer to chance than for natural gram-481

mars. The small gap in performance partially con-482

tradicts Hypothesis 1, but does not provide strong483

enough evidence to confidently reject it. Attribu-484

tion patching results (Figure 4b) suggest that the485

components used to correctly judge hierarchical486

and linear Jabberwocky inputs are largely disjoint:487

overlaps between pairs of hierarchical structures488

are significantly higher than overlaps across pairs489

of hierarchical and linear grammars. Moreover,490

the components used to process hierarchical En-491

glish grammars are strongly shared with the com-492

ponents that are used to process hierarchical Jab-493

berwocky grammars (Figure 4c), while overlaps494

between linear English grammars and hierarchical495

Jabberwocky grammars is low. This contradicts496

Hypotheses 2 and 3, suggesting that the hierarchy- 497

sensitive mechanisms we have observed in LLMs 498

may be more abstract and generalized than those 499

in humans. Thus, Jabberwocky and English gram- 500

mars share LLM hierarchy-sensitive components, 501

whereas humans show a smaller neural response to 502

Jabberwocky compared to English sentences. 503

Lastly, we observe (Figure 4d) that ablating the 504

top 1% of neurons from the English hierarchical 505

grammars causes a significant decrease in accuracy 506

when processing hierarchical Jabberwocky inputs; 507

similar decreases in linear Jabberwocky accuracy 508

result from ablating English linear components. 509

This suggests that the causally relevant natural- 510

language and Jabberwocky neuron sets are shared 511

to a significant extent (see Table 11 in App. B.4). 512

Further, ablations to English hierarchical compo- 513

nents causes selective decreases in Jabberwocky 514

hierarchical accuracy; selectivity is lower when 515

ablating English linear components. 516

Taken together, these results provide evidence 517

that LLMs’ hierarchy-sensitive and linearity- 518

sensitive component sets are sensitive primarily 519

to the structure of the grammar, and only depend 520

on grounding in meaning or in-distribution lan- 521

guage to a minor extent. This provides significant 522

(p < .05) and causal evidence against Hypothesis 523

2, which we reject. Results from Figure 4d and 524

Table 11 also give sufficient evidence to reject Hy- 525

pothesis 3. Thus, there exist grammaticality judg- 526

ment mechanisms that are selective for hierarchical 527

structure in a highly abstract manner, and that do 528

not merely select for in-distribution language. That 529

said, there are components are selective to both 530

hierarchical and in-distribution language, but these 531

do not make up the majority of the components 532

found in previous experiments. 533
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4 Discussion and Related Work534

Acquiring syntax-selective subnetworks. We535

find behavioral and causal evidence supporting the536

hypothesis that hierarchical and linear grammars537

are processed using largely disjoint mechanisms in538

large language models. Thus, as in humans (Baker539

et al., 2007), general-purpose learners such as lan-540

guage models can acquire functionally specific re-541

gions. To some extent, linguistic functional selec-542

tivity in LLMs is surprising: humans process many543

more modalities and signal types than language544

alone, so functional specialization toward linguis-545

tic signals may be sensible as one among many546

modal specializations (Kanwisher, 2010). How-547

ever, unimodal language models like those we test548

are exposed only to text. While not all of this text549

is natural language, one might expect a larger por-550

tion of the model to be responsible for processing551

hierarchical structure. These as well as our behav-552

ioral results extend prior evidence that pretraining553

induces preferential reliance on syntactic features554

over positional features (Mueller et al., 2022; Murty555

et al., 2023; Ahuja et al., 2024),10 and supports556

prior findings that there exist syntax-selective—and557

more broadly, language-selective—subnetworks in558

LLMs (AlKhamissi et al., 2024; Sun et al., 2024).559

Human-likeness and learnability. Note that hi-560

erarchical functional specialization is not evidence561

that humans and LLMs process language in the562

same manner. Fedorenko et al. (2016) find that563

language processing circuits in the brain acti-564

vate significantly less on Jabberwocky sentences,565

whereas we observe significant overlaps (albeit566

not complete) in these circuits in LLMs. This567

suggests some degree of selectivity for natural568

in-distribution language, as in humans, but the569

hierarchy-sensitive mechanisms are also more ab-570

stract and not tied to meaning as in humans.571

There is evidence that hierarchical grammars are572

easier to learn than grammars that do not occur573

in human languages (Kallini et al., 2024; Ahuja574

et al., 2024). This could provide an explanation for575

why language models are so attuned to this struc-576

ture and learn to explicitly represent it: it is easier577

10Note, however, that these behavioral results may be ex-
plainable using teleological approaches such as those in Mc-
Coy et al. (2024): linear grammaticality judgment is a low-
probability task and contains low-probability inputs (assum-
ing a pretraining distribution based on Internet text), and will
therefore be more difficult for a language model to perform,
even if the model used a shared mechanism to perform each
grammaticality judgment task in this study.

to learn a hierarchical organization than flat orga- 578

nization of a vocabulary, and it may simply be a 579

more efficient explanation of the distribution. That 580

said, randomly shuffling input data does not seem 581

to destroy downstream performance (Sinha et al., 582

2021), despite destroying performance on struc- 583

tural probing tasks (Hewitt and Manning, 2019). 584

Future work should investigate the relationship be- 585

tween the syntax-sensitive components we discover 586

and performance on downstream NLP tasks. 587

Mechanistic interpretability. Using causal lo- 588

calizations to investigate the mechanisms under- 589

lying model behaviors has recently become more 590

popular (e.g., Wang et al., 2023; Hanna et al., 2023; 591

Prakash et al., 2024; Merullo et al., 2024; Bayazit 592

et al., 2024). While localization is not equivalent 593

to explanation, it can reveal distinctions in where 594

and how certain phenomena are encoded in activa- 595

tion space. Future work could employ techniques 596

from the training dynamics and mechanistic inter- 597

pretability literature to better understand how and 598

when these components arise during pretraining, 599

as well as the (presumably numerous) functional 600

sub-roles of these distinct component sets. 601

More broadly, this work suggests a less-explored 602

direction in interpretability based on high-level 603

coarse-grained abstractions. Much recent work 604

has aimed to discover more fine-grained and single- 605

purpose units of causal analysis (e.g., sparse au- 606

toencoder features; Bricken et al., 2023; Cunning- 607

ham et al., 2024; Marks et al., 2024); we believe 608

that a parallel direction based in functionally coher- 609

ent sets (or subgraphs) of components would yield 610

equally interesting insights. For example, effective 611

representations of syntax are a necessary condition 612

for robust language understanding and generation; 613

thus, we would expect the hierarchy-sensitive com- 614

ponents we discover to be implicated in any NLP 615

task if the model were robustly understanding the 616

inputs. Therefore, not relying on these components 617

could be a signal that models have learned to rely 618

on some mixture of heuristics. 619

5 Conclusion 620

We have investigated whether there exist localiz- 621

able and functionally distinct sets of components 622

for processing hierarchically versus linearly struc- 623

tured language inputs. We find behavioral and 624

causal evidence that these component sets are dis- 625

tinct, both in location and in their functional role 626

in the network. 627
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Limitations628

We acknowledge that our work could be improved629

in several respects. First, neurons and attention630

outputs are problematic units of analysis due to631

polysemanticity (Elhage et al., 2022); i.e., observ-632

ing the activations of a component is often not633

informative, as they are sensitive to many features634

simultaneously. Further, the component sets we an-635

alyze are unordered sets, which means that we do636

not yet understand how many distinct mechanisms637

are responsible for the behaviors we observe, nor638

what these mechanisms qualitatively represent.639

We have also not evaluated the effect of these640

components on tasks outside of grammaticality641

judgments. Thus, we do not yet understand how642

selective nor how robust these behaviors or local-643

izations are under different settings. Further, the644

grammaticality judgment task may prime the model645

to be sensitive to valid linguistic structures more646

generally, rather than the structures that we present647

to the models; we therefore cannot confidently con-648

clude that the significant accuracy differences we649

observe will generalize to other task settings or650

prompt formats given the same grammars.651

References652

Kabir Ahuja, Vidhisha Balachandran, Madhur Panwar,653
Tianxing He, Noah A. Smith, Navin Goyal, and Yulia654
Tsvetkov. 2024. Learning syntax without planting655
trees: Understanding when and why transformers656
generalize hierarchically. In ICML 2024 Workshop657
on Mechanistic Interpretability.658

Badr AlKhamissi, Greta Tuckute, Antoine Bosselut,659
and Martin Schrimpf. 2024. The LLM language660
network: A neuroscientific approach for identify-661
ing causally task-relevant units. arXiv preprint662
arXiv:2411.02280.663

Marie Amalric and Stanislas Dehaene. 2019. A distinct664
cortical network for mathematical knowledge in the665
human brain. NeuroImage, 189:19–31.666

Ian A Apperly, Dana Samson, Naomi Carroll, Shazia667
Hussain, and Glyn Humphreys. 2006. Intact first-and668
second-order false belief reasoning in a patient with669
severely impaired grammar. Social neuroscience,670
1(3-4):334–348.671

Chris I. Baker, Jia Liu, Lawrence L. Wald, Kenneth K.672
Kwong, Thomas Benner, and Nancy Kanwisher.673
2007. Visual word processing and experiential ori-674
gins of functional selectivity in human extrastriate675
cortex. Proceedings of the National Academy of Sci-676
ences, 104(21):9087–9092.677

Deniz Bayazit, Negar Foroutan, Zeming Chen, Gail 678
Weiss, and Antoine Bosselut. 2024. Discovering 679
knowledge-critical subnetworks in pretrained lan- 680
guage models. In Proceedings of the 2024 Confer- 681
ence on Empirical Methods in Natural Language 682
Processing, pages 6549–6583, Miami, Florida, USA. 683
Association for Computational Linguistics. 684

Trenton Bricken, Adly Templeton, Joshua Batson, 685
Brian Chen, Adam Jermyn, Tom Conerly, Nick 686
Turner, Cem Anil, Carson Denison, Amanda Askell, 687
Robert Lasenby, Yifan Wu, Shauna Kravec, Nicholas 688
Schiefer, Tim Maxwell, Nicholas Joseph, Zac 689
Hatfield-Dodds, Alex Tamkin, Karina Nguyen, Bray- 690
den McLean, Josiah E Burke, Tristan Hume, Shan 691
Carter, Tom Henighan, and Christopher Olah. 2023. 692
Towards monosemanticity: Decomposing language 693
models with dictionary learning. Transformer Cir- 694
cuits Thread. 695

Paul Broca. 1861. Remarques sur le siége de la faculté 696
langage articulé; suives d’une observation d’aphémie. 697
Bulletins et mémoires de la Société Anatomique de 698
Paris, 6:330–357. 699

Xuanyi Chen, Josef Affourtit, Rachel Ryskin, Tamar I 700
Regev, Samuel Norman-Haignere, Olessia Jouravlev, 701
Saima Malik-Moraleda, Hope Kean, Rosemary Var- 702
ley, and Evelina Fedorenko. 2023. The human lan- 703
guage system, including its inferior frontal compo- 704
nent in “broca’s area,” does not support music per- 705
ception. Cerebral Cortex, 33(12):7904–7929. 706

Noam Chomsky. 1957. Syntactic structures. De 707
Gruyter Mouton. 708

Noam Chomsky. 1965. Aspects of the theory of syntax. 709
The MIT Press. 710

Hoagy Cunningham, Aidan Ewart, Logan Riggs, Robert 711
Huben, and Lee Sharkey. 2024. Sparse autoencoders 712
find highly interpretable features in language models. 713
In The Twelfth International Conference on Learning 714
Representations. 715

Nelson Elhage, Tristan Hume, Catherine Olsson, 716
Nicholas Schiefer, Tom Henighan, Shauna Kravec, 717
Zac Hatfield-Dodds, Robert Lasenby, Dawn Drain, 718
Carol Chen, Roger Grosse, Sam McCandlish, Jared 719
Kaplan, Dario Amodei, Martin Wattenberg, and 720
Christopher Olah. 2022. Toy models of superpo- 721
sition. Transformer Circuits Thread. 722

Martin BH Everaert, Marinus AC Huybregts, Noam 723
Chomsky, Robert C Berwick, and Johan J Bolhuis. 724
2015. Structures, not strings: Linguistics as part of 725
the cognitive sciences. Trends in cognitive sciences, 726
19(12):729–743. 727

Evelina Fedorenko, Michael K Behr, and Nancy Kan- 728
wisher. 2011. Functional specificity for high-level lin- 729
guistic processing in the human brain. Proceedings 730
of the National Academy of Sciences, 108(39):16428– 731
16433. 732

9

https://openreview.net/forum?id=YwLgSimUIT
https://openreview.net/forum?id=YwLgSimUIT
https://openreview.net/forum?id=YwLgSimUIT
https://openreview.net/forum?id=YwLgSimUIT
https://openreview.net/forum?id=YwLgSimUIT
https://arxiv.org/abs/2411.02280
https://arxiv.org/abs/2411.02280
https://arxiv.org/abs/2411.02280
https://arxiv.org/abs/2411.02280
https://arxiv.org/abs/2411.02280
https://doi.org/10.1073/pnas.0703300104
https://doi.org/10.1073/pnas.0703300104
https://doi.org/10.1073/pnas.0703300104
https://doi.org/10.1073/pnas.0703300104
https://doi.org/10.1073/pnas.0703300104
https://doi.org/10.18653/v1/2024.emnlp-main.376
https://doi.org/10.18653/v1/2024.emnlp-main.376
https://doi.org/10.18653/v1/2024.emnlp-main.376
https://doi.org/10.18653/v1/2024.emnlp-main.376
https://doi.org/10.18653/v1/2024.emnlp-main.376
https://transformer-circuits.pub/2023/monosemantic-features/index.html
https://transformer-circuits.pub/2023/monosemantic-features/index.html
https://transformer-circuits.pub/2023/monosemantic-features/index.html
https://openreview.net/forum?id=F76bwRSLeK
https://openreview.net/forum?id=F76bwRSLeK
https://openreview.net/forum?id=F76bwRSLeK
https://transformer-circuits.pub/2022/toy_model/index.html
https://transformer-circuits.pub/2022/toy_model/index.html
https://transformer-circuits.pub/2022/toy_model/index.html


Evelina Fedorenko, Terri L. Scott, Peter Brunner,733
William G. Coon, Brianna Pritchett, Gerwin Schalk,734
and Nancy Kanwisher. 2016. Neural correlate of the735
construction of sentence meaning. Proceedings of736
the National Academy of Sciences, 113(41):E6256–737
E6262.738

Evelina Fedorenko and Rosemary Varley. 2016. Lan-739
guage and thought are not the same thing: evidence740
from neuroimaging and neurological patients. Annals741
of the New York Academy of Sciences, 1369(1):132–742
153.743

Matthew Finlayson, Aaron Mueller, Sebastian744
Gehrmann, Stuart Shieber, Tal Linzen, and Yonatan745
Belinkov. 2021. Causal analysis of syntactic746
agreement mechanisms in neural language models.747
In Proceedings of the 59th Annual Meeting of748
the Association for Computational Linguistics749
and the 11th International Joint Conference on750
Natural Language Processing (Volume 1: Long751
Papers), pages 1828–1843, Online. Association for752
Computational Linguistics.753

Atticus Geiger, Kyle Richardson, and Christopher Potts.754
2020. Neural natural language inference models755
partially embed theories of lexical entailment and756
negation. In Proceedings of the Third BlackboxNLP757
Workshop on Analyzing and Interpreting Neural Net-758
works for NLP, pages 163–173, Online. Association759
for Computational Linguistics.760

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri,761
Abhinav Pandey, Abhishek Kadian, Ahmad Al-762
Dahle, Aiesha Letman, Akhil Mathur, Alan Schel-763
ten, Alex Vaughan, Amy Yang, Angela Fan, Anirudh764
Goyal, Anthony Hartshorn, Aobo Yang, Archi Mi-765
tra, Archie Sravankumar, Artem Korenev, Arthur766
Hinsvark, Arun Rao, Aston Zhang, Aurelien Ro-767
driguez, Austen Gregerson, Ava Spataru, Baptiste768
Roziere, Bethany Biron, Binh Tang, Bobbie Chern,769
Charlotte Caucheteux, Chaya Nayak, Chloe Bi,770
Chris Marra, Chris McConnell, Christian Keller,771
Christophe Touret, Chunyang Wu, Corinne Wong,772
Cristian Canton Ferrer, Cyrus Nikolaidis, Damien Al-773
lonsius, Daniel Song, Danielle Pintz, Danny Livshits,774
Danny Wyatt, David Esiobu, Dhruv Choudhary,775
Dhruv Mahajan, Diego Garcia-Olano, Diego Perino,776
Dieuwke Hupkes, Egor Lakomkin, Ehab AlBadawy,777
Elina Lobanova, Emily Dinan, Eric Michael Smith,778
Filip Radenovic, Francisco Guzmán, Frank Zhang,779
Gabriel Synnaeve, Gabrielle Lee, Georgia Lewis An-780
derson, Govind Thattai, Graeme Nail, Gregoire Mi-781
alon, Guan Pang, Guillem Cucurell, Hailey Nguyen,782
Hannah Korevaar, Hu Xu, Hugo Touvron, Iliyan783
Zarov, Imanol Arrieta Ibarra, Isabel Kloumann, Is-784
han Misra, Ivan Evtimov, Jack Zhang, Jade Copet,785
Jaewon Lee, Jan Geffert, Jana Vranes, Jason Park,786
Jay Mahadeokar, Jeet Shah, Jelmer van der Linde,787
Jennifer Billock, Jenny Hong, Jenya Lee, Jeremy Fu,788
Jianfeng Chi, Jianyu Huang, Jiawen Liu, Jie Wang,789
Jiecao Yu, Joanna Bitton, Joe Spisak, Jongsoo Park,790
Joseph Rocca, Joshua Johnstun, Joshua Saxe, Jun-791
teng Jia, Kalyan Vasuden Alwala, Karthik Prasad,792
Kartikeya Upasani, Kate Plawiak, Ke Li, Kenneth793

Heafield, Kevin Stone, Khalid El-Arini, Krithika Iyer, 794
Kshitiz Malik, Kuenley Chiu, Kunal Bhalla, Kushal 795
Lakhotia, Lauren Rantala-Yeary, Laurens van der 796
Maaten, Lawrence Chen, Liang Tan, Liz Jenkins, 797
Louis Martin, Lovish Madaan, Lubo Malo, Lukas 798
Blecher, Lukas Landzaat, Luke de Oliveira, Madeline 799
Muzzi, Mahesh Pasupuleti, Mannat Singh, Manohar 800
Paluri, Marcin Kardas, Maria Tsimpoukelli, Mathew 801
Oldham, Mathieu Rita, Maya Pavlova, Melanie Kam- 802
badur, Mike Lewis, Min Si, Mitesh Kumar Singh, 803
Mona Hassan, Naman Goyal, Narjes Torabi, Niko- 804
lay Bashlykov, Nikolay Bogoychev, Niladri Chatterji, 805
Ning Zhang, Olivier Duchenne, Onur Çelebi, Patrick 806
Alrassy, Pengchuan Zhang, Pengwei Li, Petar Va- 807
sic, Peter Weng, Prajjwal Bhargava, Pratik Dubal, 808
Praveen Krishnan, Punit Singh Koura, Puxin Xu, 809
Qing He, Qingxiao Dong, Ragavan Srinivasan, Raj 810
Ganapathy, Ramon Calderer, Ricardo Silveira Cabral, 811
Robert Stojnic, Roberta Raileanu, Rohan Maheswari, 812
Rohit Girdhar, Rohit Patel, Romain Sauvestre, Ron- 813
nie Polidoro, Roshan Sumbaly, Ross Taylor, Ruan 814
Silva, Rui Hou, Rui Wang, Saghar Hosseini, Sa- 815
hana Chennabasappa, Sanjay Singh, Sean Bell, Seo- 816
hyun Sonia Kim, Sergey Edunov, Shaoliang Nie, Sha- 817
ran Narang, Sharath Raparthy, Sheng Shen, Shengye 818
Wan, Shruti Bhosale, Shun Zhang, Simon Van- 819
denhende, Soumya Batra, Spencer Whitman, Sten 820
Sootla, Stephane Collot, Suchin Gururangan, Syd- 821
ney Borodinsky, Tamar Herman, Tara Fowler, Tarek 822
Sheasha, Thomas Georgiou, Thomas Scialom, Tobias 823
Speckbacher, Todor Mihaylov, Tong Xiao, Ujjwal 824
Karn, Vedanuj Goswami, Vibhor Gupta, Vignesh 825
Ramanathan, Viktor Kerkez, Vincent Gonguet, Vir- 826
ginie Do, Vish Vogeti, Vítor Albiero, Vladan Petro- 827
vic, Weiwei Chu, Wenhan Xiong, Wenyin Fu, Whit- 828
ney Meers, Xavier Martinet, Xiaodong Wang, Xi- 829
aofang Wang, Xiaoqing Ellen Tan, Xide Xia, Xin- 830
feng Xie, Xuchao Jia, Xuewei Wang, Yaelle Gold- 831
schlag, Yashesh Gaur, Yasmine Babaei, Yi Wen, 832
Yiwen Song, Yuchen Zhang, Yue Li, Yuning Mao, 833
Zacharie Delpierre Coudert, Zheng Yan, Zhengxing 834
Chen, Zoe Papakipos, Aaditya Singh, Aayushi Sri- 835
vastava, Abha Jain, Adam Kelsey, Adam Shajnfeld, 836
Adithya Gangidi, Adolfo Victoria, Ahuva Goldstand, 837
Ajay Menon, Ajay Sharma, Alex Boesenberg, Alexei 838
Baevski, Allie Feinstein, Amanda Kallet, Amit San- 839
gani, Amos Teo, Anam Yunus, Andrei Lupu, An- 840
dres Alvarado, Andrew Caples, Andrew Gu, Andrew 841
Ho, Andrew Poulton, Andrew Ryan, Ankit Ramchan- 842
dani, Annie Dong, Annie Franco, Anuj Goyal, Apara- 843
jita Saraf, Arkabandhu Chowdhury, Ashley Gabriel, 844
Ashwin Bharambe, Assaf Eisenman, Azadeh Yaz- 845
dan, Beau James, Ben Maurer, Benjamin Leonhardi, 846
Bernie Huang, Beth Loyd, Beto De Paola, Bhargavi 847
Paranjape, Bing Liu, Bo Wu, Boyu Ni, Braden Han- 848
cock, Bram Wasti, Brandon Spence, Brani Stojkovic, 849
Brian Gamido, Britt Montalvo, Carl Parker, Carly 850
Burton, Catalina Mejia, Ce Liu, Changhan Wang, 851
Changkyu Kim, Chao Zhou, Chester Hu, Ching- 852
Hsiang Chu, Chris Cai, Chris Tindal, Christoph Fe- 853
ichtenhofer, Cynthia Gao, Damon Civin, Dana Beaty, 854
Daniel Kreymer, Daniel Li, David Adkins, David 855
Xu, Davide Testuggine, Delia David, Devi Parikh, 856
Diana Liskovich, Didem Foss, Dingkang Wang, Duc 857

10

https://doi.org/10.1073/pnas.1612132113
https://doi.org/10.1073/pnas.1612132113
https://doi.org/10.1073/pnas.1612132113
https://doi.org/10.18653/v1/2021.acl-long.144
https://doi.org/10.18653/v1/2021.acl-long.144
https://doi.org/10.18653/v1/2021.acl-long.144
https://doi.org/10.18653/v1/2020.blackboxnlp-1.16
https://doi.org/10.18653/v1/2020.blackboxnlp-1.16
https://doi.org/10.18653/v1/2020.blackboxnlp-1.16
https://doi.org/10.18653/v1/2020.blackboxnlp-1.16
https://doi.org/10.18653/v1/2020.blackboxnlp-1.16


Le, Dustin Holland, Edward Dowling, Eissa Jamil,858
Elaine Montgomery, Eleonora Presani, Emily Hahn,859
Emily Wood, Eric-Tuan Le, Erik Brinkman, Este-860
ban Arcaute, Evan Dunbar, Evan Smothers, Fei Sun,861
Felix Kreuk, Feng Tian, Filippos Kokkinos, Firat862
Ozgenel, Francesco Caggioni, Frank Kanayet, Frank863
Seide, Gabriela Medina Florez, Gabriella Schwarz,864
Gada Badeer, Georgia Swee, Gil Halpern, Grant865
Herman, Grigory Sizov, Guangyi, Zhang, Guna866
Lakshminarayanan, Hakan Inan, Hamid Shojanaz-867
eri, Han Zou, Hannah Wang, Hanwen Zha, Haroun868
Habeeb, Harrison Rudolph, Helen Suk, Henry As-869
pegren, Hunter Goldman, Hongyuan Zhan, Ibrahim870
Damlaj, Igor Molybog, Igor Tufanov, Ilias Leontiadis,871
Irina-Elena Veliche, Itai Gat, Jake Weissman, James872
Geboski, James Kohli, Janice Lam, Japhet Asher,873
Jean-Baptiste Gaya, Jeff Marcus, Jeff Tang, Jen-874
nifer Chan, Jenny Zhen, Jeremy Reizenstein, Jeremy875
Teboul, Jessica Zhong, Jian Jin, Jingyi Yang, Joe876
Cummings, Jon Carvill, Jon Shepard, Jonathan Mc-877
Phie, Jonathan Torres, Josh Ginsburg, Junjie Wang,878
Kai Wu, Kam Hou U, Karan Saxena, Kartikay Khan-879
delwal, Katayoun Zand, Kathy Matosich, Kaushik880
Veeraraghavan, Kelly Michelena, Keqian Li, Ki-881
ran Jagadeesh, Kun Huang, Kunal Chawla, Kyle882
Huang, Lailin Chen, Lakshya Garg, Lavender A,883
Leandro Silva, Lee Bell, Lei Zhang, Liangpeng884
Guo, Licheng Yu, Liron Moshkovich, Luca Wehrst-885
edt, Madian Khabsa, Manav Avalani, Manish Bhatt,886
Martynas Mankus, Matan Hasson, Matthew Lennie,887
Matthias Reso, Maxim Groshev, Maxim Naumov,888
Maya Lathi, Meghan Keneally, Miao Liu, Michael L.889
Seltzer, Michal Valko, Michelle Restrepo, Mihir Pa-890
tel, Mik Vyatskov, Mikayel Samvelyan, Mike Clark,891
Mike Macey, Mike Wang, Miquel Jubert Hermoso,892
Mo Metanat, Mohammad Rastegari, Munish Bansal,893
Nandhini Santhanam, Natascha Parks, Natasha894
White, Navyata Bawa, Nayan Singhal, Nick Egebo,895
Nicolas Usunier, Nikhil Mehta, Nikolay Pavlovich896
Laptev, Ning Dong, Norman Cheng, Oleg Chernoguz,897
Olivia Hart, Omkar Salpekar, Ozlem Kalinli, Parkin898
Kent, Parth Parekh, Paul Saab, Pavan Balaji, Pe-899
dro Rittner, Philip Bontrager, Pierre Roux, Piotr900
Dollar, Polina Zvyagina, Prashant Ratanchandani,901
Pritish Yuvraj, Qian Liang, Rachad Alao, Rachel902
Rodriguez, Rafi Ayub, Raghotham Murthy, Raghu903
Nayani, Rahul Mitra, Rangaprabhu Parthasarathy,904
Raymond Li, Rebekkah Hogan, Robin Battey, Rocky905
Wang, Russ Howes, Ruty Rinott, Sachin Mehta,906
Sachin Siby, Sai Jayesh Bondu, Samyak Datta, Sara907
Chugh, Sara Hunt, Sargun Dhillon, Sasha Sidorov,908
Satadru Pan, Saurabh Mahajan, Saurabh Verma,909
Seiji Yamamoto, Sharadh Ramaswamy, Shaun Lind-910
say, Shaun Lindsay, Sheng Feng, Shenghao Lin,911
Shengxin Cindy Zha, Shishir Patil, Shiva Shankar,912
Shuqiang Zhang, Shuqiang Zhang, Sinong Wang,913
Sneha Agarwal, Soji Sajuyigbe, Soumith Chintala,914
Stephanie Max, Stephen Chen, Steve Kehoe, Steve915
Satterfield, Sudarshan Govindaprasad, Sumit Gupta,916
Summer Deng, Sungmin Cho, Sunny Virk, Suraj917
Subramanian, Sy Choudhury, Sydney Goldman, Tal918
Remez, Tamar Glaser, Tamara Best, Thilo Koehler,919
Thomas Robinson, Tianhe Li, Tianjun Zhang, Tim920
Matthews, Timothy Chou, Tzook Shaked, Varun921

Vontimitta, Victoria Ajayi, Victoria Montanez, Vijai 922
Mohan, Vinay Satish Kumar, Vishal Mangla, Vlad 923
Ionescu, Vlad Poenaru, Vlad Tiberiu Mihailescu, 924
Vladimir Ivanov, Wei Li, Wenchen Wang, Wen- 925
wen Jiang, Wes Bouaziz, Will Constable, Xiaocheng 926
Tang, Xiaojian Wu, Xiaolan Wang, Xilun Wu, Xinbo 927
Gao, Yaniv Kleinman, Yanjun Chen, Ye Hu, Ye Jia, 928
Ye Qi, Yenda Li, Yilin Zhang, Ying Zhang, Yossi Adi, 929
Youngjin Nam, Yu, Wang, Yu Zhao, Yuchen Hao, 930
Yundi Qian, Yunlu Li, Yuzi He, Zach Rait, Zachary 931
DeVito, Zef Rosnbrick, Zhaoduo Wen, Zhenyu Yang, 932
Zhiwei Zhao, and Zhiyu Ma. 2024. The Llama 3 933
herd of models. arXiv preprint arXiv:2407.21783. 934

Michael Hanna, Ollie Liu, and Alexandre Variengien. 935
2023. How does GPT-2 compute greater-than?: In- 936
terpreting mathematical abilities in a pre-trained lan- 937
guage model. In Thirty-seventh Conference on Neu- 938
ral Information Processing Systems. 939

John Hewitt and Christopher D. Manning. 2019. A 940
structural probe for finding syntax in word represen- 941
tations. In Proceedings of the 2019 Conference of 942
the North American Chapter of the Association for 943
Computational Linguistics: Human Language Tech- 944
nologies, Volume 1 (Long and Short Papers), pages 945
4129–4138, Minneapolis, Minnesota. Association for 946
Computational Linguistics. 947

Anna A Ivanova, Zachary Mineroff, Vitor Zimmerer, 948
Nancy Kanwisher, Rosemary Varley, and Evelina Fe- 949
dorenko. 2021. The language network is recruited 950
but not required for nonverbal event semantics. Neu- 951
robiology of Language, 2(2):176–201. 952

Anna A Ivanova, Shashank Srikant, Yotaro Sueoka, 953
Hope H Kean, Riva Dhamala, Una-May O’reilly, Ma- 954
rina U Bers, and Evelina Fedorenko. 2020. Compre- 955
hension of computer code relies primarily on domain- 956
general executive brain regions. elife, 9:e58906. 957

Albert Q Jiang, Alexandre Sablayrolles, Arthur Men- 958
sch, Chris Bamford, Devendra Singh Chaplot, Diego 959
de las Casas, Florian Bressand, Gianna Lengyel, Guil- 960
laume Lample, Lucile Saulnier, et al. 2023. Mistral 961
7b. arXiv preprint arXiv:2310.06825. 962

Julie Kallini, Isabel Papadimitriou, Richard Futrell, 963
Kyle Mahowald, and Christopher Potts. 2024. Mis- 964
sion: Impossible language models. In Proceedings 965
of the 62nd Annual Meeting of the Association for 966
Computational Linguistics (Volume 1: Long Papers), 967
pages 14691–14714, Bangkok, Thailand. Association 968
for Computational Linguistics. 969

Nancy Kanwisher. 2010. Functional specificity in the 970
human brain: a window into the functional archi- 971
tecture of the mind. Proceedings of the national 972
academy of sciences, 107(25):11163–11170. 973

János Kramár, Tom Lieberum, Rohin Shah, and Neel 974
Nanda. 2024. AtP*: An efficient and scalable method 975
for localizing LLM behaviour to components. arXiv 976
preprint arXiv:2403.00745. 977

11

https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.21783
https://openreview.net/forum?id=p4PckNQR8k
https://openreview.net/forum?id=p4PckNQR8k
https://openreview.net/forum?id=p4PckNQR8k
https://openreview.net/forum?id=p4PckNQR8k
https://openreview.net/forum?id=p4PckNQR8k
https://doi.org/10.18653/v1/N19-1419
https://doi.org/10.18653/v1/N19-1419
https://doi.org/10.18653/v1/N19-1419
https://doi.org/10.18653/v1/N19-1419
https://doi.org/10.18653/v1/N19-1419
https://pubmed.ncbi.nlm.nih.gov/37216147/
https://pubmed.ncbi.nlm.nih.gov/37216147/
https://pubmed.ncbi.nlm.nih.gov/37216147/
https://elifesciences.org/articles/58906
https://elifesciences.org/articles/58906
https://elifesciences.org/articles/58906
https://elifesciences.org/articles/58906
https://elifesciences.org/articles/58906
https://arxiv.org/abs/2310.06825
https://arxiv.org/abs/2310.06825
https://arxiv.org/abs/2310.06825
https://doi.org/10.18653/v1/2024.acl-long.787
https://doi.org/10.18653/v1/2024.acl-long.787
https://doi.org/10.18653/v1/2024.acl-long.787


Y Liu, J Kim, C Wilson, and M Bedny. 2020. Computer978
code comprehension shares neural resources with for-979
mal logical inference in the fronto-parietal network.980
biorxiv, 2020.05. 24.096180.981

Saima Malik-Moraleda, Maya Taliaferro, Steve Shan-982
non, Niharika Jhingan, Sara Swords, David J Peter-983
son, Paul Frommer, Marc Okrand, Jessie Sams, Ram-984
sey Cardwell, et al. 2023. Constructed languages are985
processed by the same brain mechanisms as natural986
languages. bioRxiv.987

Samuel Marks, Can Rager, Eric J. Michaud, Yonatan Be-988
linkov, David Bau, and Aaron Mueller. 2024. Sparse989
feature circuits: Discovering and editing interpretable990
causal graphs in language models. arXiv preprint991
arXiv:2403.19647.992

R. Thomas McCoy, Robert Frank, and Tal Linzen. 2018.993
Revisiting the poverty of the stimulus: hierarchical994
generalization without a hierarchical bias in recurrent995
neural networks. In Proceedings of the 40th Annual996
Meeting of the Cognitive Science Society, CogSci997
2018, Proceedings of the 40th Annual Meeting of998
the Cognitive Science Society, CogSci 2018, pages999
2096–2101. The Cognitive Science Society.1000

R. Thomas McCoy, Shunyu Yao, Dan Friedman,1001
Mathew D. Hardy, and Thomas L. Griffiths. 2024.1002
Embers of autoregression show how large language1003
models are shaped by the problem they are trained1004
to solve. Proceedings of the National Academy of1005
Sciences, 121(41):e2322420121.1006

Kevin Meng, David Bau, Alex Andonian, and Yonatan1007
Belinkov. 2022. Locating and editing factual associ-1008
ations in gpt. Advances in Neural Information Pro-1009
cessing Systems, 35:17359–17372.1010

Jack Merullo, Carsten Eickhoff, and Ellie Pavlick. 2024.1011
Circuit component reuse across tasks in transformer1012
language models. In The Twelfth International Con-1013
ference on Learning Representations.1014

Junghyun Min, R. Thomas McCoy, Dipanjan Das,1015
Emily Pitler, and Tal Linzen. 2020. Syntactic1016
data augmentation increases robustness to inference1017
heuristics. In Proceedings of the 58th Annual Meet-1018
ing of the Association for Computational Linguistics,1019
pages 2339–2352, Online. Association for Computa-1020
tional Linguistics.1021

Martin M Monti, Lawrence M Parsons, and Daniel N1022
Osherson. 2009. The boundaries of language and1023
thought in deductive inference. Proceedings of1024
the National Academy of Sciences, 106(30):12554–1025
12559.1026

Aaron Mueller, Robert Frank, Tal Linzen, Luheng Wang,1027
and Sebastian Schuster. 2022. Coloring the blank1028
slate: Pre-training imparts a hierarchical inductive1029
bias to sequence-to-sequence models. In Findings of1030
the Association for Computational Linguistics: ACL1031
2022, pages 1352–1368, Dublin, Ireland. Association1032
for Computational Linguistics.1033

Shikhar Murty, Pratyusha Sharma, Jacob Andreas, and 1034
Christopher Manning. 2023. Grokking of hierarchi- 1035
cal structure in vanilla transformers. In Proceedings 1036
of the 61st Annual Meeting of the Association for 1037
Computational Linguistics (Volume 2: Short Papers), 1038
pages 439–448, Toronto, Canada. Association for 1039
Computational Linguistics. 1040

Mariacristina Musso, Andrea Moro, Volkmar Glauche, 1041
Michel Rijntjes, Jürgen Reichenbach, Christian 1042
Büchel, and Cornelius Weiller. 2003. Broca’s area 1043
and the language instinct. Nature neuroscience, 1044
6(7):774–781. 1045

Catherine Olsson, Nelson Elhage, Neel Nanda, Nicholas 1046
Joseph, Nova DasSarma, Tom Henighan, Ben Mann, 1047
Amanda Askell, Yuntao Bai, Anna Chen, Tom Con- 1048
erly, Dawn Drain, Deep Ganguli, Zac Hatfield-Dodds, 1049
Danny Hernandez, Scott Johnston, Andy Jones, Jack- 1050
son Kernion, Liane Lovitt, Kamal Ndousse, Dario 1051
Amodei, Tom Brown, Jack Clark, Jared Kaplan, 1052
Sam McCandlish, and Chris Olah. 2022. In-context 1053
learning and induction heads. Transformer Circuits 1054
Thread. 1055

Judea Pearl. 2001. Direct and indirect effects. In Pro- 1056
ceedings of the Seventeenth Conference on Uncer- 1057
tainty in Artificial Intelligence, pages 411–420. Mor- 1058
gan Kaufmann. 1059

Nikhil Prakash, Tamar Rott Shaham, Tal Haklay, 1060
Yonatan Belinkov, and David Bau. 2024. Fine-tuning 1061
enhances existing mechanisms: A case study on en- 1062
tity tracking. In The Twelfth International Confer- 1063
ence on Learning Representations. 1064

James M. Robins and Sander Greenland. 1992. Identi- 1065
fiability and exchangeability for direct and indirect 1066
effects. Epidemiology, 3(2):143–155. 1067

Koustuv Sinha, Robin Jia, Dieuwke Hupkes, Joelle 1068
Pineau, Adina Williams, and Douwe Kiela. 2021. 1069
Masked language modeling and the distributional hy- 1070
pothesis: Order word matters pre-training for little. 1071
In Proceedings of the 2021 Conference on Empiri- 1072
cal Methods in Natural Language Processing, pages 1073
2888–2913, Online and Punta Cana, Dominican Re- 1074
public. Association for Computational Linguistics. 1075

Haiyang Sun, Lin Zhao, Zihao Wu, Xiaohui Gao, Yutao 1076
Hu, Mengfei Zuo, Wei Zhang, Junwei Han, Tianming 1077
Liu, and Xintao Hu. 2024. Brain-like functional 1078
organization within large language models. arXiv 1079
preprint arXiv:2410.19542. 1080

Aaquib Syed, Can Rager, and Arthur Conmy. 2024. 1081
Attribution patching outperforms automated circuit 1082
discovery. In The 7th BlackboxNLP Workshop. 1083

Eric Todd, Millicent L. Li, Arnab Sen Sharma, Aaron 1084
Mueller, Byron C. Wallace, and David Bau. 2024. 1085
Function vectors in large language models. In Pro- 1086
ceedings of the 2024 International Conference on 1087
Learning Representations. 1088

12

https://arxiv.org/abs/2403.19647
https://arxiv.org/abs/2403.19647
https://arxiv.org/abs/2403.19647
https://arxiv.org/abs/2403.19647
https://arxiv.org/abs/2403.19647
https://doi.org/10.1073/pnas.2322420121
https://doi.org/10.1073/pnas.2322420121
https://doi.org/10.1073/pnas.2322420121
https://doi.org/10.1073/pnas.2322420121
https://doi.org/10.1073/pnas.2322420121
https://openreview.net/forum?id=fpoAYV6Wsk
https://openreview.net/forum?id=fpoAYV6Wsk
https://openreview.net/forum?id=fpoAYV6Wsk
https://doi.org/10.18653/v1/2020.acl-main.212
https://doi.org/10.18653/v1/2020.acl-main.212
https://doi.org/10.18653/v1/2020.acl-main.212
https://doi.org/10.18653/v1/2020.acl-main.212
https://doi.org/10.18653/v1/2020.acl-main.212
https://doi.org/10.18653/v1/2022.findings-acl.106
https://doi.org/10.18653/v1/2022.findings-acl.106
https://doi.org/10.18653/v1/2022.findings-acl.106
https://doi.org/10.18653/v1/2022.findings-acl.106
https://doi.org/10.18653/v1/2022.findings-acl.106
https://doi.org/10.18653/v1/2023.acl-short.38
https://doi.org/10.18653/v1/2023.acl-short.38
https://doi.org/10.18653/v1/2023.acl-short.38
https://transformer-circuits.pub/2022/in-context-learning-and-induction-heads/index.html
https://transformer-circuits.pub/2022/in-context-learning-and-induction-heads/index.html
https://transformer-circuits.pub/2022/in-context-learning-and-induction-heads/index.html
https://openreview.net/forum?id=8sKcAWOf2D
https://openreview.net/forum?id=8sKcAWOf2D
https://openreview.net/forum?id=8sKcAWOf2D
https://openreview.net/forum?id=8sKcAWOf2D
https://openreview.net/forum?id=8sKcAWOf2D
http://www.jstor.org/stable/3702894
http://www.jstor.org/stable/3702894
http://www.jstor.org/stable/3702894
http://www.jstor.org/stable/3702894
http://www.jstor.org/stable/3702894
https://doi.org/10.18653/v1/2021.emnlp-main.230
https://doi.org/10.18653/v1/2021.emnlp-main.230
https://doi.org/10.18653/v1/2021.emnlp-main.230
https://arxiv.org/abs/2410.19542
https://arxiv.org/abs/2410.19542
https://arxiv.org/abs/2410.19542
https://openreview.net/forum?id=RysbaxAnc6
https://openreview.net/forum?id=RysbaxAnc6
https://openreview.net/forum?id=RysbaxAnc6


Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-1089
bert, Amjad Almahairi, Yasmine Babaei, Nikolay1090
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti1091
Bhosale, et al. 2023. Llama 2: Open founda-1092
tion and fine-tuned chat models. arXiv preprint1093
arXiv:2307.09288.1094

Rosemary Varley and Michael Siegal. 2000. Evidence1095
for cognition without grammar from causal reasoning1096
and ‘theory of mind’in an agrammatic aphasic patient.1097
Current Biology, 10(12):723–726.1098

Rosemary A Varley, Nicolai JC Klessinger, Charles AJ1099
Romanowski, and Michael Siegal. 2005. Agram-1100
matic but numerate. Proceedings of the National1101
Academy of Sciences, 102(9):3519–3524.1102

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob1103
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz1104
Kaiser, and Illia Polosukhin. 2017. Attention is all1105
you need. Advances in Neural Information Process-1106
ing Systems, 30.1107

Jesse Vig, Sebastian Gehrmann, Yonatan Belinkov,1108
Sharon Qian, Daniel Nevo, Yaron Singer, and Stu-1109
art Shieber. 2020. Investigating gender bias in lan-1110
guage models using causal mediation analysis. In1111
Advances in Neural Information Processing Systems,1112
volume 33, pages 12388–12401. Curran Associates,1113
Inc.1114

W3Techs. 2024. Usage statistics and market share of1115
content languages for websites, may 2024. Accessed:1116
2024-05-18.1117

Kevin Ro Wang, Alexandre Variengien, Arthur Conmy,1118
Buck Shlegeris, and Jacob Steinhardt. 2023. Inter-1119
pretability in the wild: A circuit for indirect object1120
identification in GPT-2 small. In The Eleventh Inter-1121
national Conference on Learning Representations.1122

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng,1123
Bowen Yu, Chang Zhou, Chengpeng Li, Chengyuan1124
Li, Dayiheng Liu, Fei Huang, Guanting Dong, Hao-1125
ran Wei, Huan Lin, Jialong Tang, Jialin Wang,1126
Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin1127
Ma, Jianxin Yang, Jin Xu, Jingren Zhou, Jinze Bai,1128
Jinzheng He, Junyang Lin, Kai Dang, Keming Lu, Ke-1129
qin Chen, Kexin Yang, Mei Li, Mingfeng Xue, Na Ni,1130
Pei Zhang, Peng Wang, Ru Peng, Rui Men, Ruize1131
Gao, Runji Lin, Shijie Wang, Shuai Bai, Sinan Tan,1132
Tianhang Zhu, Tianhao Li, Tianyu Liu, Wenbin Ge,1133
Xiaodong Deng, Xiaohuan Zhou, Xingzhang Ren,1134
Xinyu Zhang, Xipin Wei, Xuancheng Ren, Xuejing1135
Liu, Yang Fan, Yang Yao, Yichang Zhang, Yu Wan,1136
Yunfei Chu, Yuqiong Liu, Zeyu Cui, Zhenru Zhang,1137
Zhifang Guo, and Zhihao Fan. 2024. Qwen2 techni-1138
cal report. arXiv preprint arXiv:2407.10671.1139

Qinan Yu, Jack Merullo, and Ellie Pavlick. 2023. Char-1140
acterizing mechanisms for factual recall in language1141
models. In Proceedings of the 2023 Conference on1142
Empirical Methods in Natural Language Processing,1143
pages 9924–9959, Singapore. Association for Com-1144
putational Linguistics.1145

A Methods 1146

A.1 Grammar rule descriptions 1147

We define a series of hierarchical sentences in En- 1148

glish, Japanese, and Italian. 1149

• Declarative sentence: For English sentences, 1150

subjects and objects can be singular or plural 1151

nouns. Verbs agree with their subjects. IT 1152

sentences are Italian translations of the En- 1153

glish sentences. Unlike Italian and English 1154

which have SVO word order, Japanese trans- 1155

lations (JP sentences) have SOV word order. 1156

• Subordinate sentence: In each language, ma- 1157

trix subjects, subordinate subjects, matrix ob- 1158

jects, and subordinate objects can be singular 1159

or plural nouns. In English and Italian, verbs 1160

of the subordinate subject and the subject 1161

agree with their respective subjects in num- 1162

ber. We generate subordinate clauses by using 1163

verbs which take complementizer phrases as 1164

objects (e.g., “Tom sees that the dog carries 1165

the fish”). English and Italian both place the 1166

main clause’s verb before the start of the sub- 1167

ordinate clause, whereas Japanese places the 1168

main verb after the end of the clause. 1169

• Passive sentence: Subjects and objects can 1170

be singular or plural nouns. Verbs are always 1171

in the passive form. Like in (Musso et al., 1172

2003), in the passive construction, we include 1173

the agent of a transitive verb in a prepositional 1174

phrase. 1175

• Null subject sentence: This structure is re- 1176

stricted to Italian. We use the verb and object 1177

without the subject, since the use of the sub- 1178

ject is not a strict requirement in Italian.11 1179

Linear Grammars Similar to Musso et al. 1180

(2003), the linear sentences we test are constructed 1181

by breaking the hierarchical order between the sub- 1182

ject and the nominal words. While our linear sen- 1183

tences use English, Italian, and Japanese lexicons, 1184

they break the hierarchical relationship between 1185

11Italian verbal morphology provides all person and num-
ber information needed to understand the subject of a sen-
tence, whereas English morphology does not provide this in-
formation. That said, there exist languages without the verbal
person/number inflection that optionally allow dropping the
subject of the sentence if it is the topic of that sentence, such
as Mandarin and Japanese; thus, this structure is still attested
and therefore still qualifies as a hierarchical (UG-compliant)
structure.
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the subject, verb, and object, using the strategies1186

described below.1187

• Negation: We break the hierarchical order1188

by inserting a negation word “doesnt́” after1189

the fifth word in English sentences. In Italian,1190

we insert ‘non’ (IT ) after the third word. In1191

Japanese, we insertない (JP ) after the third1192

word.1193

• Inversion: We invert the order of the words1194

in a sentence (before tokenization) to form the1195

second construction.1196

The third construction varies between languages.1197

• Wh-word (English): We include a question1198

in the subordinate clause of the sentence by1199

inserting a ‘wh-’ word (who, why, what etc.)1200

at the penultimate token position.1201

• Last noun agreement (Italian): We change1202

the subject term’s gender to always match that1203

of the final noun in the sentence.1204

• Past Tense (Japanese): The Japanese past1205

tense construction was built by adding the1206

suffix -ta, not on the verb element as in the hi-1207

erarchical grammatical rule for Japanese, but1208

on the third word, counting from right to left.1209

A.2 Dataset Description and Examples1210

Examples of all the grammars we construct in En-1211

glish, Italian, and Japanese may be found in Table 2.1212

Examples of Jabberwocky sentences may be found1213

in Table 3.1214

B Experiments1215

B.1 Experiment 1: Few-shot learning1216

accuracy1217

Experiment 1 (§3.1) assesses the model’s perfor-1218

mance on grammaticality judgments of hierarchical1219

and linear structures. Here we share statistical com-1220

parisons of the accuracy distributions (Table 4),1221

accuracy values by language (Figure 5 and Table 5)1222

and grammar-wise accuracy values (Table 5).1223

B.1.1 Example Prompts1224

We present example prompts from one of the hier-1225

archical structures for each language. The prompt1226

skeleton is in English, regardless of the language1227

used for the examples. We intentionally strip the1228

final whitespace after A:, as the model expects a1229

leading space within the answer token (and thus, it1230

should not be present in the prompt).1231

English example. "Here are English 1232

sentences that either follow or break a 1233

grammar rule. Each sentence is labeled 1234

’Yes’ if it follows the rule and ’No’ if 1235

it doesn’t. Label the final sentence as 1236

’Yes’ or ’No’ based on whether it follows 1237

the same rule. 1238

1239

Q: Is this sentence grammatical? Yes or 1240

No: a woman drinks espresso the 1241

A: No 1242

1243

Q: Is this sentence grammatical? Yes or 1244

No: the architects touch a mouse 1245

A: Yes 1246

1247

Q: Is this sentence grammatical? Yes or 1248

No: the women eat cucumber the 1249

A: No 1250

1251

Q: Is this sentence grammatical? Yes or 1252

No: the writers drink a lemonade 1253

A: Yes 1254

1255

Q: Is this sentence grammatical? Yes or 1256

No: a teacher touches a lightbulb 1257

A: Yes 1258

1259

Q: Is this sentence grammatical? Yes or 1260

No: the actress touches toy a 1261

A: No 1262

1263

Q: Is this sentence grammatical? Yes or 1264

No: a boy kicks bottle a 1265

A: No 1266

1267

Q: Is this sentence grammatical? Yes or 1268

No: the woman pushes toy a 1269

A: No 1270

1271

Q: Is this sentence grammatical? Yes or 1272

No: a professor reads a poem 1273

A: Yes 1274

1275

Q: Is this sentence grammatical? Yes or 1276

No: the orators read a story 1277

A: Yes 1278

1279

Q: Is this sentence grammatical? Yes or 1280

No: the doctor drinks milkshake the 1281

A:" 1282

1283
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Language Grammar Positive Example Negative Example
H

ie
ra

rc
hi

ca
l

English (EN)

Declarative a woman reads a chapter a woman reads chapter a

Subordinate Sheela thinks that the woman reads the
chapter

Sheela thinks that the woman reads chapter the

Passive a chapter is read by a woman a chapter is read by woman a

Italian (IT)

Declarative una donna legge un capitolo una donna legge capitolo un

Subordinate Sheela pensa che una donna legge un
capitolo

Sheela pensa che la donna legge capitolo un

Passive un capitolo è letto da una donna un capitolo è letto da donna una

Japanese (JP)

Declarative 女性は章を読む 女性は章読むを

Subordinate シーラ は 女性 が 章 を 読む と 考
える

シーラは女性が章を読む 考えると

Passive 章は女性に読まれる 章は女性読まれるに

L
in

ea
r

English (EN)

Negation. Insert “doesn’t” or “don’t”
at position 5.

a
1

woman
2

reads
3

a
4

doesn’t
5

chapter
6

a
1

woman
2

reads
3

a
4

chapter
5

doesn’t
6

Inversion. Invert the declarative
word order.

chapter
5

a
4

reads
3

woman
2

a
1

chapter
5

a
4

reads
3

a
1

woman
2

Wh-word. Insert wh-word at posi-
tion 5.

did
1

a
2

woman
3

reads
4

a
5

when
6

chapter?
7

did
1

a
2

woman
3

reads
4

a
5

chapter
6

when?
7

Italian (IT)

Negation. Insert “no” at position 5. una
1

donna
2

legge
3

un
4

no
5

capitolo
6

una
1

donna
2

legge
3

un
4

capitolo
5

no
6

Inversion. Invert the declarative
word order.

capitolo
5

un
4

legge
3

donna
2

una
1

capitolo
5

un
4

legge
3

una
1

donna
2

Last-noun agreement. Make all de-
terminers agree with the gender of
the final noun.

una un
1

donna
2

legge
3

un
4

capitolo
5

una
1

donna
2

legge
3

un
4

capitolo
5

Japanese (JP)

Negation. Insert a negation word at
position 4.

女性
1
は

2
章

3
ない

4
を

5
読む

6
女性

1
は

2
章

3
を

4
読む

5
ない

6

Inversion. Invert the declarative
word order.

読む
5
を

4
章

3
は

2
女性

1
読む

5
を

4
章

3
女性

1
は

2

Past tense. Insert the past tense
marker at position 4.

女性
1
は

2
章

3
をた

4
読む

5
女性

1
は

2
章

3
読む

4
をた

5

Table 2: Dataset. List of grammars, descriptions of the rule defining each grammar, and corresponding positive and
negative examples.

Italian example. "Here are Italian1284

sentences that either follow or break a1285

grammar rule. Each sentence is labeled1286

’Yes’ if it follows the rule and ’No’ if1287

it doesn’t. Label the final sentence as1288

’Yes’ or ’No’ based on whether it follows1289

the same rule.1290

1291

Q: Is this sentence grammatical? Yes or1292

No: una donna beve espresso il1293

A: No1294

1295

Q: Is this sentence grammatical? Yes or1296

No: l’ architette toccano il topo 1297

A: Yes 1298

1299

Q: Is this sentence grammatical? Yes or 1300

No: le donne mangiano cetriolo il 1301

A: No 1302

1303

Q: Is this sentence grammatical? Yes or 1304

No: le scrittrici bevono la limonata 1305

A: Yes 1306

1307

Q: Is this sentence grammatical? Yes or 1308

No: un’ insegnante tocca una lampadina 1309
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Grammar Positive Example Negative Example
H

ie
ra

rc
hi

ca
l Declarative. Subject, verb, object. a wug ungos the snorfle a wug ungos snorfle the

Subordinate. Subject, verb taking a
relative clause complement.

Gomu herdles that the blincos stoffle
the pelunko

Gomu herdles that the blincos stoffle reads
pelunko the

Passive. Like Declarative, but in
the passive voice.

the gunzle is snugoed by the wugen the gunzle is snugoed by wugen the

L
in

ea
r

Negation. Insert “doesn’t” or “don’t”
at position 5.

the
1

arcuplos
2

ungo
3

a
4

doesn’t
5

blorft
6

the
1

arcuplos
2

ungo
3

a
4

blorft
5

doesn’t
6

Inversion. Invert the word order of
Declarative.

snorfle
5

the
4

ungos
3

wug
2

a
1

snorfle
5

the
4

ungos
3

a
1

wug
2

Wh-word. Insert wh-word at posi-
tion 5.

Did
1

a
2

knurkle
3

gurdles
4

a
5

when
6

skerpo?
7

Did
1

a
2

knurkle
3

gurdles
4

a
5

skerpo
6

when?
7

Table 3: Jabberwocky dataset. List of grammars, descriptions of the rules defining each grammar, and positive
(grammatical) and negative (ungrammatical) examples for each. We use similar prompt constructions as in the
English examples (Also see §B.1.1).

A: Yes1310

1311

Q: Is this sentence grammatical? Yes or1312

No: l attrice tocca giocattolo un1313

A: No1314

1315

Q: Is this sentence grammatical? Yes or1316

No: un ragazzo calcia bottiglia una1317

A: No1318

1319

Q: Is this sentence grammatical? Yes or1320

No: la donna spinge giocattolo un1321

A: No1322

1323

Q: Is this sentence grammatical? Yes or1324

No: una professoressa legge un poema1325

A: Yes1326

1327

Q: Is this sentence grammatical? Yes or1328

No: gli oratori leggono la storia1329

A: Yes1330

1331

Q: Is this sentence grammatical? Yes or1332

No: la dottoressa beve frappè il1333

A:"1334

Japanese example. "Here are Japanese1335

sentences that either follow or break a1336

grammar rule. Each sentence is labeled1337

’Yes’ if it follows the rule and ’No’ if1338

it doesn’t. Label the final sentence as1339

’Yes’ or ’No’ based on whether it follows1340

the same rule.1341

1342

Q: Is this sentence grammatical? Yes or1343

No: 女性はエスプレッソ飲むを1344

A: No1345

1346

Q: Is this sentence grammatical? Yes or 1347

No: 建築家たちはマウスを触る 1348

A: Yes 1349

1350

Q: Is this sentence grammatical? Yes or 1351

No: 女性たちは胡瓜食べるを 1352

A: No 1353

1354

Q: Is this sentence grammatical? Yes or 1355

No: 作家たちはレモネードを飲む 1356

A: Yes 1357

1358

Q: Is this sentence grammatical? Yes or 1359

No: 教師は電球を触る 1360

A: Yes 1361

1362

Q: Is this sentence grammatical? Yes or 1363

No: 女優は玩具触るを 1364

A: No 1365

1366

Q: Is this sentence grammatical? Yes or 1367

No: 少年はボトル蹴るを 1368

A: No 1369

1370

Q: Is this sentence grammatical? Yes or 1371

No: 女性は玩具押すを 1372

A: No 1373

1374

Q: Is this sentence grammatical? Yes or 1375

No: 教授は詩を読む 1376

A: Yes 1377

1378

Q: Is this sentence grammatical? Yes or 1379

No: 演説家たちは小説を読む 1380

A: Yes 1381

1382
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Q: Is this sentence grammatical? Yes or1383

No: 医者はミルクセーキ飲むを1384

A:"1385

B.2 Experiment 2: Identify MLP and1386

Attention Components with the highest ÎE1387

Experiment 2 locates MLP and Attention neurons1388

that are implicated in processing hierarchical and1389

linear structures, and investigates if these compo-1390

nents are disjoint. The language-level pairwise1391

overlaps for all models across English, Italian and1392

Japanese hierarchical and linear inputs, as well as1393

Jabberwocky hierarchical and linear inputs is given1394

in Figures 7. Grammar wise overlaps for MLP1395

and attention components for English, Italian, and1396

Japanese grammars are shown in Figures 8 and 11,1397

respectively. Grammar wise overlaps for MLP and1398

attention components for Jabberwocky grammars1399

are shown in Figures 8 and 11, respectively. We1400

also share results testing whether the pairwise mean1401

overlaps of H, L, and HxL structures are signifi-1402

cantly different among grammars using English,1403

Italian, and Japanese versus Jabberwocky tokens in1404

Tables 8 and 7.1405

B.3 Experiment 3: Ablations of top 1% of1406

Attention and MLP Components1407

Experiment 3 considers selective ablations of hi-1408

erarchy and linearity sensitive components, and1409

evaluates how these ablations impact the accuracy1410

of the model on the in-context learning task. We1411

share ablation results by model in Figure 12a for1412

English, Italian, and Japanese grammars. Through1413

model-wise comparisons, we find that relative accu-1414

racy decreases on hierarchical grammars are signif-1415

icantly different for English, Italian and Japanese1416

grammars depending on whether hierarchical, lin-1417

ear, or uniformly sampled components are ablated1418

(see Table 9). However, the same is not true for1419

linear grammars—relative accuracy decreases are1420

not significantly different between ablations of hi-1421

erarchical/linear components. In the case of Italian1422

structures, ablating hierarchy-sensitive components1423

appears akin to ablating uniformly sampled com-1424

ponents.1425

Additionally, we also run ablation experiments1426

on jabberwocky grammars using components that1427

are sensitive to hierarchical or linear jabberwocky1428

grammars. We share ablation results by model for1429

jabberwocky grammars in Figure 12b. Here also1430

we find that ablating hierarchy versus linearity sen-1431

sitive components can cause a significant difference1432

in the decrease in accuracy on jabberwocky hier- 1433

archical grammars relative to the no ablation case. 1434

This is not true for jabberwocky linear grammars 1435

(See Table 10). 1436

B.4 Experiment 4: Are neurons identified in 1437

experiment 3 sensitive to hierarchical 1438

structure or in-distribution lexical 1439

tokens? 1440

Experiment 4 considers selective ablations of the 1441

top 1% of hierarchy and linearity sensitive compo- 1442

nents, and evaluates how these ablations impact the 1443

accuracy of the model on the in-context learning 1444

task, when processing Jabberwocky grammars. If 1445

the neurons discovered in Experiment 3 are not sen- 1446

sitive to hierarchical structure and instead sensitive 1447

to in-distribution tokens, these ablations should not 1448

cause a decrease in model performance on Jabber- 1449

wocky grammars which are composed of meaning- 1450

less words. Alternatively, any decreases in model 1451

performance on Jabberwocky grammars should be 1452

caused by neurons in the L set which are, say, sen- 1453

sitive to out of distribution inputs. Ablation re- 1454

sults by model are in Figure 13. We also present 1455

grammar-wise overlaps of the top 1% of attention 1456

and MLP neurons for hierarchical and linear En- 1457

glish and Jabberwocky grammars in Figures 15 1458

and 14 respectively, and show that the difference 1459

in overlaps between these grammars is statistically 1460

significant in Table 11. Then, we test the relative 1461

change in accuracy in Jabberwocky grammars after 1462

ablating components sensitive to hierarchical and 1463

linear English structures as well as uniformly sam- 1464

pled components. Ablating hierarchy vs. linearity 1465

sensitive components that are sensitive to the En- 1466

glish task, causes a significantly different decrease 1467

in model performance on Jabberwocky hierarchi- 1468

cal grammars. However, the same is not true for 1469

linear Jabberwocky grammars where ablating hi- 1470

erarchy sensitive components is no different from 1471

ablating linearity-sensitive or uniformly sampled 1472

components (see Table 12. This suggests that the 1473

components identified in Experiment 3 are at least 1474

partially sensitive to the structure of the inputs. 1475
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Figure 5: Experiment 1. Model-wise accuracy on the grammaticality judgments task given hierarchical and linear
inputs from English, Italian and Japanese(See § 3.1 and Tables 5 and 2)

Figure 6: Experiment 1. Model-wise accuracy on the grammaticality judgments task given hierarchical and linear
Jabberwocky inputs (See § 3.1 and Tables 6 and 3)

(a) English, Italian, and Japanese grammars

(b) Jabberwocky grammars.

Figure 7: Experiment 2. Mean pairwise neuron overlaps, by model, for the top 1% of MLP and attention neurons
by ˆIE between hierarchical and linear inputs. (See § 3.2)
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Figure 8: Experiment 2. MLP neuron overlaps by model for English, Italian and Japanese grammars.
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Figure 9: Experiment 2. Attention neuron overlaps by model for English, Italian and Japanese grammars.
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Figure 10: Experiment 2. MLP neuron overlaps by model for Jabberwocky grammars.
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Figure 11: Experiment 2. Attention Overlaps by model for Jabberwocky grammars.
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Language Test-Statistic P-value

EN 5.92 p < 0.001
IT 271.5 p < 0.001
JP 203 0.2

Table 4: Experiment 1. Results from a Mann-Whitney U-Test testing if the model accuracy on the grammaticality
judgment task of hierarchical inputs is significantly different from that on linear inputs, when including English,
Italian, and Japanese hierarchical and linear inputs (p < 0.05).

Grammar Llama-2-7B Llama-3.1-8B Llama-3.1-70B Qwen-2-0.5B Qwen-2-1.5B Mistral-v0.3

EN Declarative (H) 0.80 0.94 0.96 0.68 0.85 0.91
EN Subordinate (H) 0.68 0.92 0.98 0.67 0.76 0.83
EN Passive (H) 0.83 0.93 0.96 0.70 0.78 0.87
EN Negation (L) 0.76 0.83 0.81 0.65 0.39 0.60
EN Inversion (L) 0.65 0.55 0.61 0.69 0.65 0.62
EN Wh-word (L) 0.61 0.61 0.62 0.54 0.55 0.63

IT Declarative (H) 0.74 0.81 0.89 0.63 0.90 0.76
IT Subordinate (H) 0.64 0.71 0.78 0.52 0.87 0.69
IT Passive (H) 0.73 0.84 0.82 0.66 0.87 0.73
IT Negation (L) 0.73 0.87 0.80 0.60 0.60 0.85
IT Inversion (L) 0.61 0.53 0.52 0.59 0.46 0.50
IT Gender Agreement (L) 0.48 0.48 0.50 0.51 0.38 0.44

JP Declarative (H) 0.72 0.95 0.99 0.54 0.67 0.78
JP Subordinate (H) 0.68 0.72 0.80 0.57 0.65 0.58
JP Passive (H) 0.83 0.99 0.98 0.59 0.71 0.90
JP Negation (L) 0.63 0.94 0.99 0.61 0.64 0.75
JP Inversion (L) 0.62 0.65 0.63 0.55 0.61 0.63
JP Past-tense (L) 0.73 0.84 0.99 0.50 0.64 0.58

Table 5: Experiment 1. Model accuracies on the grammaticality judgment task for English, Italian, and Japanese
hierarchical and linear inputs.

Grammar Llama-2-7B Llama-3.1-8B Llama-3.1-70B Qwen-2-0.5B Qwen-2-1.5B Mistral-v0.3

Declarative (H) 0.68 0.64 0.70 0.57 0.69 0.61
Subordinate (H) 0.64 0.62 0.61 0.53 0.63 0.58
Passive (H) 0.71 0.77 0.89 0.60 0.71 0.62
Negation (L) 0.70 0.73 0.70 0.54 0.45 0.54
Inversion (L) 0.66 0.57 0.59 0.59 0.60 0.52
Wh-word (L) 0.55 0.50 0.55 0.46 0.45 0.48

Table 6: Experiment 1. Model accuracies on the grammaticality judgment task for Jabberwocky grammars.

Components (Test-Statistic, P-value)

H-H vs L-L (8424, p < 0.001)
H-H vs H-L (11594, p < 0.001)
L-L vs H-L (7792, p < 0.001)

Table 7: Experiment 2. Results from a Mann-Whitney U-Test investigating whether the overlap percentages for
different components across 7 models is significantly different for Jabberwocky grammars. We compare distributions
of the mean overlap percentages for the top 1% of MLP and attention components (p < 0.05, N = 108).
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Language Components Test Statistic P-value

English
H-H vs L-L 74794.0 p < 0.001
H-H vs H-L 101160.0 p < 0.001
L-L vs H-L 65649.0 p < 0.001

Italian
H-H vs L-L 74794.0 p < 0.001
H-H vs H-L 101160.0 p < 0.001
L-L vs H-L 65649.0 p < 0.001

Japanese
H-H vs L-L 74794.0 p < 0.001
H-H vs H-L 101160.0 p < 0.001
L-L vs H-L 65649.0 p < 0.001

Table 8: Experiment 2. Results from a Mann-Whitney U-Test investigating whether the overlap percentages for
different components across 7 models are significantly different for English, Italian, and Japanese grammars. We
compare distributions of the mean overlap percentages for the top 1% of MLP and attention components (p < 0.05,
N = 108).

Ablation on Ablation comparisons (Top 1% of components) Test-statistic P-Value

EN (H) H-components vs L-components 31.5 < 0.001
EN (H) H-components vs R-components 0.0 < 0.001
EN (H) L-components vs R-components 76.5 0.01
EN (L) H-components vs L-components 173.5 0.73
EN (L) H-components vs R-components 52.5 < 0.001
EN (L) L-components vs R-components 40.0 < 0.001
IT (H) H-components vs L-components 65.0 < 0.001
IT (H) H-components vs R-components 15.5 < 0.001
IT (H) L-components vs R-components 76.5 0.01
IT (L) H-components vs L-components 193.0 0.33
IT (L) H-components vs R-components 155.5 0.85
IT (L) L-components vs R-components 91.5 0.03
JP (H) H-components vs L-components 77.0 0.01
JP (H) H-components vs R-components 17.0 < 0.001
JP (H) L-components vs R-components 41.0 < 0.001
JP (L) H-components vs L-components 102.0 0.06
JP (L) H-components vs R-components 25.0 < 0.001
JP (L) L-components vs R-components 43.5 < 0.001

Table 9: Experiment 3. Results from a Mann-Whitney U-test investigating whether ablating uniformly sampled
model components, as well as components used in the grammaticality judgment tasks of hierarchical and linear
grammars containing natural language lexicons significantly differ in how they suppress performance on English,
Italian, and Japanese hierarchical and linear grammars. Mean ablations are applied from the structure being judged
in the task.
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Language Ablation Test-statistic P-Value

ZZ (H) ZZ(H) vs ZZ(L) 33.0 < 0.001
ZZ (H) ZZ(H) vs ZZ(R) 14.5 < 0.001
ZZ (H) ZZ(L) vs ZZ(R) 131.5 0.34
ZZ (L) ZZ(H) vs ZZ(L) 197.0 0.27
ZZ (L) ZZ(H) vs ZZ(R) 84.5 0.01
ZZ (L) ZZ(L) vs ZZ(R) 44.5 < 0.001

Table 10: Experiment 3. Results from a Mann-Whitney U-test investigating whether ablating uniformly sampled
model components, as well as components used in the grammaticality judgment tasks of jabberwocky hierarchical
and linear grammars significantly differ in how they suppress performance on jabberwocky hierarchical and linear
grammars. Mean ablations are applied from the structure being judged in the task.

(a) English, Italian, and Japanese grammars

(b) Jabberwocky grammars.

Figure 12: Experiment 3. Mean relative change in accuracy by model, when ablating the top 1% of attention and
MLP neurons by ˆIE between hierarchical and linear inputs. (See § 3.3)

Ablation Structure Type Test-statistic P-Value

EN (H) vs EN (L) ZZ (H) 69.5 0.004
EN (H) vs EN (Random) ZZ (H) 11.0 < 0.001
EN (L) vs EN (Random) ZZ (H) 68.5 0.003

EN (H) vs EN (L) ZZ (L) 188.5 0.41
EN (H) vs EN (Random) ZZ (L) 104.0 0.07
EN (L) vs EN (Random) ZZ (L) 87.5 0.02

Table 11: Experiment 4. Results from a Mann-Whitney U-test investigating whether ablating uniformly sampled
model components, as well as components used in the grammaticality judgment tasks of hierarchical and linear
English grammars significantly differ in how they suppress performance on jabberwocky hierarchical and linear
grammars.

Components (Test-Statistic, P-value)

H(ZZ x EN) vs L(ZZ x EN) (9678, p < 0.001)
H(ZZ x EN) vs H(ZZ) x L(EN) (11344, p < 0.001)
L(ZZ x EN) vs H(ZZ) x L(EN) (7096, p < 0.01)

Table 12: Experiment 4. Results from a Mann-Whitney U-Test investigating whether the overlap percentages
for different components across 7 models is significantly different for Jabberwocky and English hierarchical and
linear grammars. We compare distributions of the mean overlap percentages for the top 1% of MLP and attention
components (p < 0.05, N = 108)
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Figure 13: Experiment 4. Mean relative change in accuracy by model, when ablating the top 1% of attention and
MLP neurons pertaining to English hierarchical and linear grammars. Model is tested on Jabberwocky grammars
post ablation, and performance decrease is measured on hierarchical and linear inputs. (See § 3.4)

Figure 14: Experiment 4. MLP Overlaps by model between English and Jabberwocky grammars
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Figure 15: Experiment 4. Attention Overlaps by model between English and Jabberwocky grammars
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