
Under review as a conference paper at ICLR 2024

UGC: UNIVERSAL GRAPH COARSENING

Anonymous authors
Paper under double-blind review

ABSTRACT

In the era of big data, graphs have emerged as a natural representation for intricate
relationships. However, graph sizes often become unwieldy, leading to storage,
computation, and analysis challenges. A crucial demand arises for methods that
can effectively downsize large graphs while retaining vital insights. Graph coars-
ening seeks to simplify large graphs while maintaining essential features. Most
published methods are suitable for homophilic datasets, limiting their universal
use. We propose Universal Graph Coarsening (UGC), a framework equally suit-
able for homophilic and heterophilic datasets. UGC integrates node attributes and
adjacency information, leveraging the dataset’s heterophily factor and is a first
ever linear time-complexity framework. Results on benchmark datasets demon-
strate that UGC preserves spectral similarity while coarsening. In comparison to
state of the art methods, UGC is 4x to 15x faster, has lower eigen-error, and yields
superior performance on downstream processing tasks even at 70% coarsening
ratios.

1 INTRODUCTION

Graphs have emerged as highly expressive tools to represent diverse structures and knowledge in
various fields such as social networks, bioinformatics, transportation, and natural language process-
ing. They are essential for tasks like community detection, drug discovery, route optimization, and
text analysis. With the growing importance of graph-based solutions, dealing with large graphs has
become a challenge. Graph coarsening, a widely used technique to simplify graphs while retaining
vital information, making them more manageable for analysis Kumar et al. (2020). It has been ap-
plied successfully in various tasks Hendrickson & Leland (1995); Karypis & Kumar (1999); Kushnir
et al. (2006); Dhillon et al. (2007); Wang et al. (2014). Preserving the structural information of the
graph is crucial in graph coarsening algorithms to ensure the fidelity of the coarsened graphs. A
high-quality coarsened graph retains essential features and relationships, enabling accurate results
for downstream tasks. Additionally, computational efficiency is equally vital for scalability, as large-
scale graphs are common in real-world applications. Efficient coarsening method should ensure that
the reduction in graph size does not come at the expense of excessive computation time but existing
graph coarsening methods often face trade-offs between scalability and the quality of the coarsened
graph. Our method draws inspiration from hashing techniques, which provides us with advantages
in terms of computational efficiency. As a result, our approach exhibits a linear time complexity,
making it highly efficient even for large graphs.
Graph datasets often exhibit a blend of homophilic and heterophilic traits Zhu et al. (2020); Pei et al.
(2020). GC has been widely explored on homophilic datasets, but, to the best of our knowledge,
has never been applied on heterophilic graphs. We propose Universal Graph Coarsening UGC, an
approach that works well on both. Figure 1 illustrates how UGC uses a graph’s adjacency matrix
as well as the node feature matrix. UGC relies on hashing, lending computational efficiency. UGC
exhibits linear time complexity, enabling fast processing of large datasets. UGC enhances the per-
formance of Graph Convolutional Networks (GCN) in classification tasks, indicating its suitability
for downstream processing. UGC coarsened graphs retain essential spectral properties, and show
low eigen error, hyperbolic error, and ϵ-similarity measure. In a nutshell, UGC is fast, universally
applicable, and information preserving.
Outline: The paper is organized as follows: Section 2 briefly describes the related background and
our problem formulation. We explain our framework in Section 3. We then provide assurances for
quality similarities for coarsened graph in Section 4. Section 5 demonstrates the effectiveness of
our algorithm with extensive experimentation. And then finally, the conclusion in Section 6.

1

Under review as a conference paper at ICLR 2024

Figure 1: This figure illustrates our framework UGC, which depicts a) Generation of an augmented
matrix by incorporating feature and adjacency matrices, while using heterophily measure α. b)
Coarsening the original graph using augmented features via Hashing. c) Validating reduced graph’s
quality and its utilization in subsequent downstream tasks.

2 BACKGROUND AND PROBLEM FORMULATION

A graph G = (V,E,A,X) where V = {v1, v2, · · · , v|N |} is the set of N vertices, E is the set of
edges (vi, vj) ⊆ (V × V) . A ∈ RN×N is the adjacency matrix. A non-zero entry Aij indicates
there is an edge between nodes i and j. The i-th row of the feature matrix X ∈ RN×d, vector
Xi ∈ Rd, is the vector of features associated with the i-th node of G. The degree matrix D is
diagonal, with D = diag (Di,i), where Dii =

∑
j Aij . The Graph Laplacian matrix L = D − A

Kipf & Welling (2016). L ∈ RN×N is a Laplacian matrix if it belongs to the set SL =
{
L ∈

RN×N |Lji = Lij ≤ 0, ∀i ̸= j;Lii = −
∑

j ̸=i Lij

}
.

Figure 2: Toy graph coarsening example.

2.1 Problem Formulation The objective is
to reduce an input Graph G into a new graph
Gc(Ṽ , Ẽ, Ã, X̃), with n-nodes and X̃ ∈ Rn×d

where n << N nodes. The GC problem may
be thought of as learning a coarsening matrix
C ∈ RN×n, which is a linear mapping from
V → Ṽ . A linear mapping ensures that similar
nodes in G are mapped to the same super-node in Gc, s.t. X̃ = CTX . Every non-zero entry in Cij

in C denotes the merger of the ith node of G to the jth supernode. This C matrix belongs to the
following set:

S =

{
C ∈ RN×n, Cij ∈ {0, 1}, ∥CT

i ∥ = 1, ⟨Ci, Cj⟩ = 0,∀i ̸= j, ⟨Cl, Cl⟩ = di, ∥Ci∥0 ≥ 1

}
(1)

CT =

[
1 1 1 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 1 1

]
(2)

where di is the degree of the ith-node. The condition
⟨Ci, Cj⟩ = 0 ennsures that each node of G is mapped
to a unique super-node. The constraint ∥Ci∥0 ≥ 1 re-
quires that each super-node contains at least one node.
Consider the 8-node graph in Fig. 2. Nodes 1, 2, 3, and
4 are mapped to supernode A, while nodes 6, 7, and 8 are
mapped to supernode C. Hence, the loading matrix C is given as Equation 2.

2.2 Homophilic and Heterophilic datasets Graph datasets may demonstrate homophily and
heterophily properties Zhu et al. (2021); Du et al. (2022); McPherson et al. (2001); Shalizi & Thomas
(2011); a heterophily factor 0 ≤ α ≤ 1 may be used to denote the degree of heterophily. α is
calculated as the fraction of edges between nodes of different classes. Homophily refers to the
tendency of nodes to be connected to other nodes of the same class or type, while heterophily
signifies the tendency of nodes to connect with nodes of different classes. A strongly heterophilic
graph (α→ 1) has most edges between nodes of different classes, suggesting a diverse network with

2

Under review as a conference paper at ICLR 2024

mixed interactions. Conversely, weak heterophily, or strong homophily (α→ 0) occurs in networks
where nodes predominantly connect with others of the same class.

2.3 Locality Sensitive Hashing Locality Sensitive Hashing (LSH) is a linear time, efficient sim-
ilarity search technique for high dimensional data Indyk & Motwani (1998); Kulis & Grauman
(2009b); Buhler (2001); Satuluri & Parthasarathy (2012). It maps high dimensional vectors to lower
dimensions, while ensuring that similar vectors collide with high probability. LSH uses a family of
hash functions to map vectors to buckets, enabling fast retrieval and similarity search. It has found
applications in image retrieval Kulis & Grauman (2009a), data mining Ravichandran et al. (2005),
and similarity search algorithms Chum et al. (2007). LSH is defined as

Definition 2.1 Let d be a distance measure, and let d1 < d2 be two distances. A family of functions
F is said to be (d1, d2, p1, p2)−sensitive if for every f ∈ F the following two conditions hold

• If d(x, y) ≤ d1 then probability [f(x) = f(y)] ≥ p1

• If d(x, y) ≥ d2 then probability [f(x) = f(y)] ≤ p2

UGC uses LSH with a set of random projectors to map similar nodes to the same super node. The
projection is computed as hi(x) =

⌊
<x,ai>−bi

w

⌋
, where ai is randomly selected from a distribution

(such as Gaussian); x represents the original high dimensional data sample, and w is the width of
each quantization bin.

2.4 Related Works The literature is replete with graph reduction methods, that aim to shrink
a graph through deleting nodes by using vertex selection, re-combination schemes, or aggregation.
Loukas proposed advanced spectral graph coarsening algorithms based on local variation, to pre-
serve the original graph’s spectral properties Loukas (2019). Two variants, viz. edge-based local
variation and neighborhood-based local variation, select contraction sets with small local variation in
each stage, but have limitations in achieving arbitrary coarsening levels Loukas (2019). Heavy edge
matching (HEM), determines the contraction family by computing a maximum-weight matching
based on the weight of each contraction set Dhillon et al. (2007); Ron et al. (2010). The Algebraic
Distance method calculates the weight of each candidate set using an algebraic distance measure
Ron et al. (2010); Chen & Safro (2011). The affinity method, inspired by algebraic distance, uses
a vertex proximity heuristic Livne & Brandt (2011). The Kron reduction method Dorfler & Bullo
(2013) was originally proposed for electrical networks, but is too slow for for large networks. Most
of the above mentioned methods ignore node features during graph coarsening, and are usually
memory intensive. UGC efficiently utilizes node features to achieve fast coarsening.

3 PROPOSED FRAMEWORK UNIVERSAL GRAPH COARSENING (UGC)

Figure 3: A toy example the computation of aug-
mented features of a given graph.

The proposed UGC framework comprises three
main components, i) First, obtaining an aug-
mented feature matrix containing both node
feature and the structural information, ii)
locality-sensitive hashing to derive the coarsen-
ing matrix, iii) finally, obtaining the coarsened
graph adjacency matrix and coarsened features.

3.1 Augmented Feature The concepts of
homophily and heterophily in graphs are pri-
marily concerned with whether the edges be-
tween two nodes align with their respective features. Therefore, in order to create a universal frame-
work for graph coarsening suitable for all, it is important to consider both the node-level features
and the structure-level features, such as the neighborhood structure of any given node, together. In
this regard we create an augmented feature matrix F , where each node’s feature vector Xi is aug-
mented with its one-hot adjacency vector Ai, with the heterophily hyperparameter α balancing the
emphasis between feature and adjacency information. The augmented feature vector of each node is
given by Fi =

{
(1− α) ·Xi ⊕ α ·Ai

}
.. Figure 3 provides a toy example of the augmented feature

vector. While larger graphs may result in long vectors, efficient implementations, and sparse tensor

3

Under review as a conference paper at ICLR 2024

methods may alleviate this hurdle. A motivating example demonstrating the need for augmented
features while doing graph coarsening is discussed in the Appendix A.8, See figure 11.

3.2 Proposed framework UGC Let Fi ∈ Rd represent node vi’s augmented feature vector. Let
P ∈ RL×d and b ∈ RL be the hashing matrices used in UGC, with L denoting the number of
projectors. The hash value given to the graph node is its most frequent hash index generated across
all hash functions. Node vi’s hash value is hi = maxOccured{⌊ 1r ∗ (P ·Xi + b)⌋}, where r is the
bin-width. This hyperparameter controls the coarsened graph Gc’s size. Empirically, we find that
increasing r shrinks Gc. All nodes assigned the same hash value map to the same supernode in Gc.

Algorithm 1 UGC: Universal Attributed Graph Coarsening via Hashing

Require: Input G(V,A,X), L ← # of Projectors, r ← bin-width, α ← heterophilic factor, n ←
of supernodes.

1: F = (α)(X)⊕ (1− α)(A) is now our augumented feature matrix.
2: for every projector ℓ ∈ {1, 2,, L} do
3: hℓ ← N size array for Hash indices, P ℓ ← d dimensional Projection weight, bℓ ← bias
4: end for
5: for ℓ ∈ {1, 2,, L} do
6: P ℓ

i ∼ U [0, 1] ∀i ∈ {1, 2, 3,, d}, bℓ ∼ U [−r, r]
7: hℓ

i ← ⌊ 1r × (
∑j=d

j=1(F
j
i × P ℓ

j) + bℓ)⌋ ∀i ∈ {1, 2, 3,, N}
8: end for
9: hi ← maxOccurence{hℓ

i ; ℓ ∈ {1, 2, 3, ..., L}}∀i ∈ {1, 2, 3,, N}
10: π ← Dictionary mapping every node in G to supernode ∈ {1, 2, ..., n} in Gc

11: for every node v in V do
12: C[v, π[v]]← 1
13: end for
14: Ac(i, j)←

∑
(u∈π−1(ṽi),v∈π−1(ṽj))

Auv , ∀i, j ∈ {1, 2, ..., n}
15: Fc(i)← 1

|π−1(ṽi)|
∑

u∈π−1(ṽi)
Fu, ∀i ∈ {1, 2, ..., n}

16: return Gc(Vc, Ac, Fc) , n

When G is coarsened to Gc, any supernode pair (ṽi, ṽj), where ṽi, ṽj ∈ Gc, are joined by an edge,
if there exists at least one node u ∈ G that maps to ṽi, that shares an edge with at least one node
v ∈ G that is mapped to ṽj ∈ Gc. The weight of each edge in Gc,denoted by Ac(ij), embodies
the cumulative edge strength between the corresponding supernodes. This weight is determined
by the sum of Auv for all (u, v) pairs where u ∈ ṽi and v ∈ ṽj . The features of supernodes are
derived as the average of constituent node features: Fc(i) =

1
|(ṽi)|

∑
u∈(ṽi)

Fu. Notably, the label of
a supernode is assigned based on the most prevalent class within it. The reader may like to refer to
Algorithm 1 for the steps in UGC. A matrix C ∈

{
0, 1

}N×n
represents the partition of nodes, with

N as the count of nodes in the initial graph. The element Cij equals 1 if vertex vi is associated with
supernode ṽj . Crucially, every node is assigned a unique hi value, ensuring an exclusive mapping to
a supernode. This constraint harmonizes with the formulation of supernode guarantees at least one
node per supernode. Thus, each row of C contains only one non-zero entry, leading to orthogonal
columns. This matrix C satisfies the conditions specified in equation 1.

3.3 Edge Assignment and bin-width By utilizing C, we calculate the adjacency matrix Ac for
Gc by Ac = AC. As each super-edge consolidates multiple edges from the original graph, the total
edge count in the coarsened graph is notably fewer than m. This results in a considerably sparser
adjacency matrix Ac compared to A. The parameter bin-width r decides the size of the coarsened
graph Gc. For a particular coarsening ratio R, we find the corresponding r by divide and conquer
approach on the real axis, which is similar to binary search. Algorithm 2 shows the method by which
we find the r for any given R for Gc. Figure 8 shows the relation of r with R for two datasets: Cora
& Coauthor CS. It is observed that the R increases as the r increases. For each dataset Bin-width
finder is a hyper-parameter that needs to be run only once, and hence it is not included in the reported
time complexity.

3.4 Time Complexity Analysis of UGC UGC achieves an efficient O(NLd) time complexity,
where N is the node count, L is the number of projectors, and d is the feature vector dimension.
Key contributions come from three phases: hashing nodes(Line 1-7), aggregating bins(Line 8-12),

4

Under review as a conference paper at ICLR 2024

and computing supernode features(Line 14- 18). This analysis demonstrates UGC’s scalability for
large-scale graph coarsening tasks while maintaining vital structural characteristics. For detailed
anaylsis please refer Appendix A.10.

4 QUALITY OF THE COARSENED GRAPH

It is desired that coarsened graph Gc is similar to the original graph G. In this section, we have
introduced various measures to assess the quality of coarsened graphs from multiple perspectives.
Even though each of these characteristics has a unique sense of similarity, coarsening is better when
these error levels are lower across all of them.

Spectral similarities: REE compares the Laplacian matrices of the coarsened and the original
graph, as it measures the similarity between the eigenspace of G and Gc. A low value of REE
is desired for higher spectral similarity. REE is defined as REE(L,Lc, k) =

1
k

∑k
i=1

|λ̃i−λi|
λi

where
λi and λ̃i are top k eigenvalues of Laplacian original (L) and Laplacian coarsened graph(Lc) matrix
respectively. Please refer to Section 5.3 for results.

Structural similarities: When moving from a Gc representation back to the G, we quantify
the disparity between the original and projected data using the Hyperbolic Error (HE). HE
indicates the structural similarity between G and Gc with the help of a lifted matrix along with
the feature matrix X of the original graph. HE Bravo Hermsdorff & Gunderson (2019) defined as
HE = arccosh(

||(L−Llift)X||2F ||X||2F
2trace(XTLX)trace(XTLliftX)

+ 1) where L and X ∈ RN×d are the Laplacian, and
X is the feature matrix of the original input graph, and Llift is the lifted Laplacian matrix defined in
Loukas & Vandergheynst (2018) as Llift = CLcC

T where C ∈ Rn×N is the coarsening/loading
matrix and Lc is the Laplacian of Gc.

LSH ensuring intra supernode similarity: The LSH family used in our framework is based on
p-stable distributions, which ensures that the probability of two nodes going to the same supernode
is directly related to the distance between their features (augmented features for UGC). This is
expressed in the below Theorem from Indyk & Motwani (1998):

Theorem 4.1 The probability that two nodes v and u will collide and go to a supernode under a
hash function drawn uniformly at random from a 2-stable distribution is inversely proportional to
c = ||v − u||2.

p(c) = Pra,b [ha,b(v) = ha,b(u)] =

∫ r

0

1

c
fp

(
t

c

)(
1− t

r

)
dt (3)

The above result will be used to check if the mapping of the nodes to the supernode ensures the
distance and hence similarity property.
Proof : The proof is deferred to appendix A.4

ϵ-similarity: The previously discussed metrics primarily utilize either the adjacency matrix or
the feature matrix independently. However, as we are using augmented feature matrix for hash-
ing, it becomes essential to introduce a measure that takes both feature and adjacency information
into account simultaneously. The Dirichlet energy (DE), employed to measure the smoothness of
graph signals, is defined utilizing the graph Laplacian matrix L ∈ SL and the feature matrix X as
DE(L,X) = tr(XTLX) = −

∑
i,j Lij∥xi − xj∥2 . Loukas (2019) suggested to use the follow-

ing induced semi-norms ∥X∥L =
√
xTLx, ∥Xc∥Lc

=
√

xT
c Lcxc and defined ϵ−similarity via

Theorem 4.2.

Theorem 4.2 Given a Graph G and a coarsened graph Gc they are said to be ϵ similar if there
exists some ϵ ≥ 0 such that:

(1− ϵ)∥X∥L ≤ ∥Xc∥Lc
≤ (1 + ϵ)∥X∥L (4)

where L and Lc are the Laplacian matrices of G and Gc respectively.

Proof: The proof is deferred in the Appendix A.6

5

Under review as a conference paper at ICLR 2024

This definition is directly applied to our framework UGC as our loading matrix C discussed in sec-
tion 2.1 follows constraints discussed in equation 1 making Lc an laplacian matrix(Lc = CTLC).
The coarsened graph Gc generated through UGC exhibits a high degree of similarity, within the
range of ϵ, to the original graph G. It has been empirically demonstrated that this coarsened repre-
sentation performs exceptionally well across various downstream tasks. Nonetheless, for the purpose
of achieving a more refined and stringent upper limit on the permissible ϵ value (where ϵ ≤ 1), a
potential step involves introducing modifications to the feature learning procedure of the supernodes
Gc.

Bounded ϵ−similarity: It is important to note that the ϵ-similarity measure introduced in Loukas
(2019) does not incorporate features. Instead, it relies on the eigenvector of the Laplacian ma-
trix to compute similarity, which limits its ability to capture the characteristics of the associated
features along with the graph structure. Kumar et al. (2023) re-define Theorem 4.2 but with fea-
ture matrix. Once we get the loading matrix C using UGC as discussed in Section 3.2 we used
Fc(i) =

1
|π−1(ṽi)|

∑
u∈π−1(ṽi)

Fu to learn the new feature-vectors of our super-nodes, where Fu is
the augmented feature vector of node u from G. To give a bound on the ϵ similarity(≤ 1) we suggest
to update Fc (F̃) by minimizing the term

min
F̃

f(F̃) = tr(F̃TCTLCF̃) +
α

2
∥CF̃ − F∥2F (5)

Proof: The proof is deferred in the Appendix A.7.

Using the new update rule of ∥F̃∥Lc
we have F̃Lc

≤ ∥F∥L, we get ϵ = |∥F∥L−∥F̃∥Lc |
∥F∥L

≤ 1 where
ϵ ≤ 1 refer Kumar et al. (2023) for more details.
Scalable Training of GNNs: In addition to above comprehensive analysis, we have rigorously
assessed the practical utility of our coarsened graph in downstream tasks. The coarsened graph is
employed for training a Graph Convolutional Network (GCN) model, which is subsequently utilized
to make predictions on the test data of the original nodes. It is important to emphasize that the
intricacies of the Graph Neural Network (GNN) architectures fall outside the scope of this paper,
as our primary focus remains the validation of our coarsened graphs. To this end, we adopted a
standardized 2-layer GCN model, with detailed parameters conforming to the guidelines outlined
in Huang et al. (2021). This study advocated the utilization of coarsened graphs for scalable GNN
training. Results are discussed in Section 5.5.

5 EXPERIMENTS

Table 1: Summary of the datasets. H.R shows het-
erophily factor.

Data Nodes Edges Features Class H.R
Cora 2,708 5,429 1,433 7 0.81
Citeseer 3,327 9,104 3,703 6 0.74
DBLP 17,716 52,867 1,639 4 0.82
CS 18,333 163,788 6,805 15 0.80
PubMed 19,717 44,338 500 3 0.80
Phy. 34,493 247,962 8,415 5 0.93
Flickr 89,250 899,756 500 7 0.31
Reddit 232,965 114.615M 602 41 0.75
Yelp 716,847 13.954M 300 100
Texas 183 309 1703 5 0.09
Cornell 183 295 1703 5 0.3
Film 7600 33544 931 5 0.22
Squirrel 5201 217073 2089 5 0.22
Chameleon 2277 36101 2325 5 0.25

In this section, we conduct extensive experi-
ments to evaluate the proposed UGC against the
existing graph coarsening algorithms. The con-
ducted experiments showcase the performance
of our framework concerning computational ef-
ficiency, preservation of spectral properties, and
potential extensions of the coarsened graph into
real-world applications.

5.1 Experimental Protocol We compare
our proposed algorithm with the following
coarsening algorithms as discussed in Section
2.4, two variation methods based on edges
and neighborhood Loukas & Vandergheynst
(2018), Algebraic Distance Chen & Safro
(2011), Affinity Livne & Brandt (2011), Heavy
Edge Dhillon et al. (2007); Ron et al. (2010)
and Kron Dorfler & Bullo (2013). We show that time complexity wise UGC is substantially better
than all of these methods. We have also shown that the quality of the Gc is on par with these algo-
rithms. Our experiments cover widely adopted benchmarks, including Cora, CiteSeer, Coauthor CS,
Coauthor Physics, DBLP, and PubMed. Additionally, UGC effectively coarsens large datasets like
Flickr, Reddit, and Yelp, previously challenging for existing techniques. We also present datasets
like squirral, Chameleon, Texas, Film, and Wisconsin, characterized by dominant heterophilic fac-
tors. Table 1 provides comprehensive dataset details, including the heterophilic factor (H.R). All the

6

Under review as a conference paper at ICLR 2024

Table 2: Summary of run-time in seconds averaged over 5 runs to reduce the graph to 50% coarsen-
ing ratios. It can be seen that for massive datasets where all methods are not even able to run, UGC
is giving a coarsened graph in a matter of seconds.

Data/Method Cite. PubMed DBLP Physics Reddit Yelp Squirrel Cham. Cor. Texax Film
Var. Neigh. 8.72 24.38 22.79 58.0 OOM OOM 33.26 12.2 1.34 0.63 27.67
Var. Edges 7.37 18.69 20.59 67.16 OOM OOM 46.45 12.65 1.31 0.76 26.6
Var. Cliq. 9.8 61.85 38.31 69.80 OOM OOM 28.91 10.55 1.56 1.14 33.04
Heavy Edge 1.41 12.03 8.39 39.77 OOM OOM 18.08 5.41 1.62 1.17 11.79
Alg. Dist 1.55 10.48 9.67 46.42 OOM OOM 18.03 5.24 1.58 0.81 12.65
Affinity GS 2.53 168.3 110.9 924.7 OOM OOM 20.00 5.83 1.81 1.24 20.65
Kron 1.37 0.63 7.09 34.53 OOM OOM 20.62 7.25 1.73 0.97 12.29
UGC 0.71 1.62 1.86 6.4 16.17 170.91 2.14 0.49 0.04 0.03 1.38

Table 3: Relative Eigen Error at 50% coarsening ratio

Data/Method Cite. PubMed DBLP Physics Reddit Yelp Squirrel Cham. Cor. Texax Film
Var. Neigh. 0.180 0.108 0.117 0.273 OOM OOM 0.871 0.657 0.501 0.391 32.87
Var. Edges 0.136 0.965 0.135 0.042 OOM OOM 0.298 0.597 0.485 0.489 21.8
Var. Cli. 0.064 1.208 0.082 0.039 OOM OOM 0.369 0.456 0.550 0.463 22.95
Hea. Edge 0.043 0.834 0.086 0.031 OOM OOM 0.256 0.333 0.554 0.464 5.69
Alg. Dist. 0.111 0.403 0.047 0.117 OOM OOM 0.245 0.413 0.552 0.465 5.71
Aff. GS 0.057 0.063 0.073 0.052 OOM OOM 0.226 0.413 0.569 0.489 5.56
Kron 0.028 0.378 0.060 0.064 OOM OOM 0.246 0.413 0.554 0.491 6.12
UGC(fea.) 0.340 0.179 0.145 0.016 EOOM EOOM 13.8 7.594 0.420 0.534 9.83
UGC(fea+Ad) 0.070 0.004 0.004 0.018 EOOM EOOM 0.546 0.429 0.215 0.204 0.075

experiments conducted for this work were performed on an Intel Xeon W-295 CPU and 64GB of
RAM desktop using the Python environment.

5.2 Experiments for Run-time analysis. The primary focus of our algorithm’s contribution lies
in computational efficiency. The findings of this section provide empirical support for our assertions
regarding time complexity. The time required to derive the coarsening matrix C using UGC is sum-
marized in Table 2. By referring to this Table, it becomes evident that UGC exhibits a remarkable
advantage, surpassing all current algorithms across diverse datasets. Our model outperforms exist-
ing methods by a substantial margin. While other methods struggles at large datasets like physics,
UGC is able to coarsen down massive datasets like Yelp, which was previously not possible. It
should be emphasized that the time taken by UGC on the Reddit dataset which has 7× more num-
ber of nodes compared to Physics is one-third the time taken by the fastest state-of-the-art methods
on the Physics dataset. This Table also encompasses heterophilic datasets, computational efficancy
is clearly visible with these datasets as well.

(a) (b) (c) (d)

Figure 4: Top 100 eigenvalues of the original and coarsened graph at three different coarsening
ratios: 30%, 50%, and 70%. We can observe that the spectral property is maintained across all
coarsening ratios for all coarsened graphs. For a lower coarsening ratio, this approximation (REE)
is more accurate.

5.3 Spectral properties preservation. As mentioned in section 4, we use relative eigen error
(REE) and hyperbolic error (HE) as the evaluation metrics to measure the spectral and structural
similarity of our coarsened graph. Eigenvalues preservation can be clearly seen in Figure 4 where
we have plotted the top 100 eigenvalues of original and of coarsened graphs. We can see that spectral
property is preserved even for 70% coarsened graph for most of the datasets. This approximation is

7

Under review as a conference paper at ICLR 2024

Table 4: Accuracy of GCN model when trained with 50% coarsen graph

Data/Method Cite. Cora CS DBLP PubMed Physics Squirrel Cham. Cor. Texax Film
Var.Neigh. 69.54 79.75 87.90 77.05 77.87 93.74 19.67 20.03 52.49 34.51 15.67
Var.Edges 70.60 81.57 88.74 79.93 78.34 93.86 20.22 29.95 55.32 30.59 21.8
Var.Clique 68.81 80.92 85.66 79.15 73.32 92.94 19.54 31.92 58.8 33.92 20.35
Heavy Edge 71.11 79.90 69.54 77.46 74.66 93.03 20.36 33.3 54.67 29.18 19.16
Alg. Dis. 70.09 79.83 83.74 74.51 74.59 93.94 19.96 28.81 59.91 18.61 19.23
Aff. GS 70.70 80.20 87.15 78.15 80.53 93.06 20.00 27.58 54.06 21.18 20.34
Kron 69.00 80.71 85.35 77.79 74.89 92.26 18.03 29.1 55.02 31.14 17.41
UGC(fea.) 66.97 83.92 77.19 75.50 85.65 94.70 20.71 29.9 55.6 52.4 22.6
UGC(fea+Ad) 74.55 89.30 93.02 75.50 84.77 96.12 31.62 48.7 54.7 57.1 25.4

more accurate for a lower coarsening ratio i.e smaller the graph the bigger is Relative Eigen Error
(REE). The Relative Eigen Error for all approaches across all datasets is shown in Table 3 for a fixed
50% coarsening ratio. REE value of UGC is comparable with most of the algorithms. Although
we also have coarsened Graphs for large datasets like Yelp and Reddit, eigen error calculation for
these datasets was out of memory so we have used EOOM while other methods fail to find even the
coarsened graph hence the term OOM. Figure 5 illustrates how, for different techniques, the eigen
error, hyperbolic error, and GCN accuracy change as the coarsening ratio is altered.

(a) (b) (c)

Figure 5: This figure shows the comparison of all graph
coarsening methods in terms of REE, HE, and GCN accu-
racy on the PubMed dataset.

5.4 LSH similarity and
ϵ-bounded results In our ex-
periments, we empirically validated
the equation 3. We achieved this
validation by utilizing a distance
matrix derived from node features.
We examined if the distance between
any node pair was below a specific
threshold, and then using the parti-
tion matrix given by UGC we verified
if they shared the same supernode
or not. Our evaluation involved
counting successful matches, where
nodes belonged to the same supernode, and failures, where they did not. We subsequently calculated
a probability measure based on these counts. Part a) and b) of Figure 6 plots this probabilistic
function for two datasets, namely Cora and Citeseer as a function of distance between two nodes.
Re-visting the Definition 2.1 for Cora dataset, we denote our LSH family as H(1,3,100,0.20). Part
c) of Figure 6 which plots different values of ϵ at different coarsening ratios. As mentioned we got
ϵ ≤ 1 similarity guarantees for the coarsened graph. Hence proving the bounded version Theorem
4.2.

0.5 1.0 1.5 2.0 2.5 3.0

Pairwise Distance(c)

0

20

40

60

80

100

Pr
ob

ab
ilit

y
of
 S
am

e
Su

pe
rn
od

e

(a)

1 2 3 4 5 6 7

Pairwise Distance(c)

0

20

40

60

80

100

Pr
ob

ab
ilit

y
of
 S
am

e
Su

pe
rn
od

e

(b)

30 40 50 60 70 80 90
Coarsening ratio

0.5

0.6

0.7

0.8

0.9

1.0

Ep
sil
on

 V
al
ue

Cora
Citeseer
CS

(c)

Figure 6: Figure a) Cora and b) Citeseer demonstrates the inverse relationship between the proba-
bility of two nodes belonging to the same supernode as distance between them increases. Figure c)
plots the ϵ values(≤ 1) for Cora, Citeseer and CS datasets.

5.5 Scalable Training of Graph Neural Networks. Graph neural networks (GNNs), tailored
for non-Euclidean data Bruna et al. (2013); Chen et al. (2020); Defferrard et al. (2016), have shown
promise in various applications Li & Goldwasser (2019); Paliwal et al. (2019). However, scalability

8

Under review as a conference paper at ICLR 2024

remains a challenge. Building on Huang et al. (2021), we investigate how our graph coarsening ap-
proach can enhance GNN scalability for training, bridging the gap between GNNs and efficient pro-
cessing of large-scale data. UGC(feat) represents a specific scenario within our framework, wherein
only the feature values are considered for hashing, thereby obtaining the mapping of supernodes.
To comprehend the significance of incorporating the adjacency vector, we have added the results for
both UGC(feat) and UGC(augmented feat).

Experimental Details. We employed a single hidden layer GCN model with standard hyper-
parameters values Kipf & Welling (2016). Coarsened data is used to train the GCN model and
all the prediction is being done on original graph data. The learned weights on the coarsened graph
Gc, are then used for making predictions on the original graph, G. The relation between coarsening
ratio and accuracy can be clearly seen from the Table 6 i.e if we reduce the graph more and more
we starts to see a slight decrease in accuracy values. Hence there will always be a trade-off when it
comes to coarsening ratio and quality of reduced graph. We have included a Figure 7 which shows
how much we have gained in computational time and what is the change in the accuracy values
when compared to the existing best model for different datasets. Table 4 compares the accuracy
among all the approaches with all datasets when they are coarsened down by 50%. We have used
t-SNE van der Maaten & Hinton (2008) algorithm for visualization of predicted node labels shown
in Figure 9. It is evident that even with 70% coarsened data training GCN model is able to maintain
its accuracy. Very few of the data points are miss-classified(mostly outliers) when we increase our
coarsening ratio to reduce the original graph.

Figure 7: The figure illustrates the effectiveness
of our algorithm concerning computational gains
and accuracy improvement in comparison to the
current state-of-the-art methods for each dataset.
In the bar plot, dashed bars represent the gain
or loss in accuracy when compared to the best-
performing method, while plain bars indicate the
computational gains achieved. All datasets are
coarsened down by 50%

5.6 Gained performance on Heterophilic
Graphs Building upon the observations
made in Table 3 and Table 4. Our methods,
UGC(feat) and UGC(aug. feat.), demonstrate
significant enhancements in node classification
accuracy and REE values across heterophilic
datasets. Comparing these results, we observe
that traditional approaches exhibits moderate
performance in terms of accuracy. However,
when employing our method UGC(features),
we achieve notable improvements in accuracy,
surpassing the performance of these traditional
approaches. Moreover, the true potential of
our approach is unleashed when incorporating
both features and adjacency information i.e
augmented features. This combined approach
showcases remarkable accuracy gains, outper-
forming all other methods by a considerable
margin. Our method not only yields compet-
itive results in the homophilic graph scenario but also exhibits substantial improvements when
applied to heterophilic datasets.

6 CONCLUSION

In this paper, we present a framework UGC for reducing a larger graph to a smaller graph. We use
hashing of augmented node features inspired by Locality Sensitive Hashing (LSH). As expected,
the benefits of LSH are also reflected in the proposed coarsening algorithm. UGC has linear time
complexity with respect to the number of nodes. To the best of our knowledge, it is the fastest algo-
rithm for graph coarsening. Through extensive experiments, we have also shown that our algorithm
is not only fast but also preserves the spectrum and smoothness properties of the original graph. Fur-
thermore, it is worth noting that UGC represents a first work in the domain of graph coarsening for
heterophilic datasets. This framework addresses the unique challenges posed by heterophilic graphs
and has demonstrated a significant increase in node classification accuracy following graph coars-
ening. This is a significant accomplishment, as it opens up new possibilities for training GNNs on
large and complex graphs. In conclusion, we believe that our framework, is a major contribution to
the field of graph coarsening and offers a fast and effective solution for simplifying large networks.
Our future research goals include the exploration of different hash functions and novel applications
for the framework.

9

Under review as a conference paper at ICLR 2024

REFERENCES

Gecia Bravo Hermsdorff and Lee Gunderson. A unifying framework for spectrum-preserving graph
sparsification and coarsening. Advances in Neural Information Processing Systems, 32:12, 2019.

Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann LeCun. Spectral networks and locally
connected networks on graphs, 2013. URL https://arxiv.org/abs/1312.6203.

Jeremy Buhler. Efficient large-scale sequence comparison by locality-sensitive hashing. Bioinfor-
matics, 17(5):419–428, 2001.

John M Chambers, Colin L Mallows, and BW4159820341 Stuck. A method for simulating stable
random variables. Journal of the american statistical association, 71(354):340–344, 1976.

Jie Chen and Ilya Safro. Algebraic distance on graphs. SIAM J. Scientific Computing, 33:3468–3490,
12 2011. doi: 10.1137/090775087.

Ming Chen, Zhewei Wei, Zengfeng Huang, Bolin Ding, and Yaliang Li. Simple and deep graph
convolutional networks, 2020. URL https://arxiv.org/abs/2007.02133.

Ondřej Chum, James Philbin, Michael Isard, and Andrew Zisserman. Scalable near identical image
and shot detection. In Proceedings of the 6th ACM international conference on Image and video
retrieval, pp. 549–556, 2007.

Mayur Datar, Nicole Immorlica, Piotr Indyk, and Vahab S Mirrokni. Locality-sensitive hashing
scheme based on p-stable distributions. In Proceedings of the twentieth annual symposium on
Computational geometry, pp. 253–262, 2004.

Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional neural networks on
graphs with fast localized spectral filtering. In Proceedings of the 30th International Conference
on Neural Information Processing Systems, NIPS’16, pp. 3844–3852, Red Hook, NY, USA, 2016.
Curran Associates Inc. ISBN 9781510838819.

Inderjit S. Dhillon, Yuqiang Guan, and Brian Kulis. Weighted graph cuts without eigenvectors a
multilevel approach. IEEE Transactions on Pattern Analysis and Machine Intelligence, 29(11):
1944–1957, 2007. doi: 10.1109/TPAMI.2007.1115.

Florian Dorfler and Francesco Bullo. Kron reduction of graphs with applications to electrical net-
works. IEEE Transactions on Circuits and Systems I: Regular Papers, 60(1):150–163, 2013. doi:
10.1109/TCSI.2012.2215780.

Lun Du, Xiaozhou Shi, Qiang Fu, Xiaojun Ma, Hengyu Liu, Shi Han, and Dongmei Zhang. Gbk-
gnn: Gated bi-kernel graph neural networks for modeling both homophily and heterophily. In
Proceedings of the ACM Web Conference 2022, pp. 1550–1558, 2022.

Bruce Hendrickson and Robert Leland. A multilevel algorithm for partitioning graphs. In Proceed-
ings of the 1995 ACM/IEEE Conference on Supercomputing, Supercomputing ’95, pp. 28–es,
New York, NY, USA, 1995. Association for Computing Machinery. ISBN 0897918169. doi:
10.1145/224170.224228. URL https://doi.org/10.1145/224170.224228.

Zengfeng Huang, Shengzhong Zhang, Chong Xi, Tang Liu, and Min Zhou. Scaling up graph neural
networks via graph coarsening, 2021. URL https://arxiv.org/abs/2106.05150.

Piotr Indyk. Stable distributions, pseudorandom generators, embeddings, and data stream computa-
tion. Journal of the ACM (JACM), 53(3):307–323, 2006.

Piotr Indyk and Rajeev Motwani. Approximate nearest neighbors: Towards removing the curse of
dimensionality. In Proceedings of the Thirtieth Annual ACM Symposium on Theory of Comput-
ing, STOC ’98, pp. 604–613, New York, NY, USA, 1998. Association for Computing Machin-
ery. ISBN 0897919629. doi: 10.1145/276698.276876. URL https://doi.org/10.1145/
276698.276876.

10

https://arxiv.org/abs/1312.6203
https://arxiv.org/abs/2007.02133
https://doi.org/10.1145/224170.224228
https://arxiv.org/abs/2106.05150
https://doi.org/10.1145/276698.276876
https://doi.org/10.1145/276698.276876

Under review as a conference paper at ICLR 2024

George Karypis and Vipin Kumar. Kumar, v.: A fast and high quality multilevel scheme for parti-
tioning irregular graphs. siam journal on scientific computing 20(1), 359-392. Siam Journal on
Scientific Computing, 20, 01 1999. doi: 10.1137/S1064827595287997.

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
works, 2016. URL https://arxiv.org/abs/1609.02907.

Brian Kulis and Kristen Grauman. Kernelized locality-sensitive hashing for scalable image search.
In 2009 IEEE 12th international conference on computer vision, pp. 2130–2137. IEEE, 2009a.

Brian Kulis and Kristen Grauman. Kernelized locality-sensitive hashing for scalable image search.
In 2009 IEEE 12th international conference on computer vision, pp. 2130–2137, Kyoto, Japan,
2009b. IEEE, IEEE.

Manoj Kumar, Anurag Sharma, and Sandeep Kumar. A unified framework for optimization-based
graph coarsening. Journal of Machine Learning Research, 24(118):1–50, 2023. URL http:
//jmlr.org/papers/v24/22-1085.html.

Sandeep Kumar, Jiaxi Ying, José Vinı́cius de Miranda Cardoso, and Daniel P Palomar. A unified
framework for structured graph learning via spectral constraints. J. Mach. Learn. Res., 21(22):
1–60, 2020.

Dan Kushnir, Meirav Galun, and Achi Brandt. Fast multiscale clustering and manifold identification.
Pattern Recognition, 39(10):1876–1891, 2006. ISSN 0031-3203. doi: https://doi.org/10.1016/j.
patcog.2006.04.007. URL https://www.sciencedirect.com/science/article/
pii/S0031320306001580. Similarity-based Pattern Recognition.

Chang Li and Dan Goldwasser. Encoding social information with graph convolutional networks
forPolitical perspective detection in news media. In Proceedings of the 57th Annual Meet-
ing of the Association for Computational Linguistics, pp. 2594–2604, Florence, Italy, July
2019. Association for Computational Linguistics. doi: 10.18653/v1/P19-1247. URL https:
//aclanthology.org/P19-1247.

Oren E. Livne and Achi Brandt. Lean algebraic multigrid (lamg): Fast graph laplacian linear solver,
2011. URL https://arxiv.org/abs/1108.0123.

Andreas Loukas. Graph reduction with spectral and cut guarantees. Journal of Machine Learning
Research, 20(116):1–42, 2019. URL http://jmlr.org/papers/v20/18-680.html.

Andreas Loukas and Pierre Vandergheynst. Spectrally approximating large graphs with smaller
graphs. In Jennifer Dy and Andreas Krause (eds.), Proceedings of the 35th International Confer-
ence on Machine Learning, volume 80 of Proceedings of Machine Learning Research, pp. 3237–
3246, PMLR 80:3237-3246, 2018, 10–15 Jul 2018. PMLR. URL https://proceedings.
mlr.press/v80/loukas18a.html.

Miller McPherson, Lynn Smith-Lovin, and James M Cook. Birds of a feather: Homophily in social
networks. Annual review of sociology, (1), 2001.

JP Nolan. An introduction to stable distributions. In on web, 2005.

Aditya Paliwal, Felix Gimeno, Vinod Nair, Yujia Li, Miles Lubin, Pushmeet Kohli, and Oriol
Vinyals. Reinforced genetic algorithm learning for optimizing computation graphs, 2019. URL
https://arxiv.org/abs/1905.02494.

Hongbin Pei, Bingzhe Wei, Kevin Chen-Chuan Chang, Yu Lei, and Bo Yang. Geom-gcn: Geometric
graph convolutional networks. arXiv preprint arXiv:2002.05287, 2020.

Deepak Ravichandran, Patrick Pantel, and Eduard Hovy. Randomized algorithms and nlp: Using
locality sensitive hash functions for high speed noun clustering. In Proceedings of the 43rd Annual
Meeting of the Association for Computational Linguistics (ACL’05), pp. 622–629, 2005.

Dorit Ron, Ilya Safro, and Achi Brandt. Relaxation-based coarsening and multiscale graph organi-
zation, 2010. URL https://arxiv.org/abs/1004.1220.

11

https://arxiv.org/abs/1609.02907
http://jmlr.org/papers/v24/22-1085.html
http://jmlr.org/papers/v24/22-1085.html
https://www.sciencedirect.com/science/article/pii/S0031320306001580
https://www.sciencedirect.com/science/article/pii/S0031320306001580
https://aclanthology.org/P19-1247
https://aclanthology.org/P19-1247
https://arxiv.org/abs/1108.0123
http://jmlr.org/papers/v20/18-680.html
https://proceedings.mlr.press/v80/loukas18a.html
https://proceedings.mlr.press/v80/loukas18a.html
https://arxiv.org/abs/1905.02494
https://arxiv.org/abs/1004.1220

Under review as a conference paper at ICLR 2024

Venu Satuluri and Srinivasan Parthasarathy. Bayesian locality sensitive hashing for fast similarity
search. Proc. VLDB Endow., 5(5):430–441, jan 2012. ISSN 2150-8097. doi: 10.14778/2140436.
2140440. URL https://doi.org/10.14778/2140436.2140440.

Cosma Rohilla Shalizi and Andrew C Thomas. Homophily and contagion are generically con-
founded in observational social network studies. Sociological methods & research, (2), 2011.

Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of Ma-
chine Learning Research, 9(86):2579–2605, 2008. URL http://jmlr.org/papers/v9/
vandermaaten08a.html.

Lu Wang, Yanghua Xiao, Bin Shao, and Haixun Wang. How to partition a billion-node graph. In
2014 IEEE 30th International Conference on Data Engineering, pp. 568–579, Chicago, IL, USA,
2014. IEEE. doi: 10.1109/ICDE.2014.6816682.

Jiong Zhu, Yujun Yan, Lingxiao Zhao, Mark Heimann, Leman Akoglu, and Danai Koutra. Be-
yond homophily in graph neural networks: Current limitations and effective designs. In
H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), Advances in Neu-
ral Information Processing Systems, volume 33, pp. 7793–7804. Curran Associates, Inc.,
2020. URL https://proceedings.neurips.cc/paper_files/paper/2020/
file/58ae23d878a47004366189884c2f8440-Paper.pdf.

Jiong Zhu, Ryan A Rossi, Anup Rao, Tung Mai, Nedim Lipka, Nesreen K Ahmed, and Danai
Koutra. Graph neural networks with heterophily. In Proceedings of the AAAI conference on
artificial intelligence, volume 35, pp. 11168–11176, 2021.

V Zolatarev. One-dimensional stable distributions, vol. 65 of” translations of mathematical mono-
graphs,”. American Mathematical Society. Translation from the original, 1983.

12

https://doi.org/10.14778/2140436.2140440
http://jmlr.org/papers/v9/vandermaaten08a.html
http://jmlr.org/papers/v9/vandermaaten08a.html
https://proceedings.neurips.cc/paper_files/paper/2020/file/58ae23d878a47004366189884c2f8440-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/58ae23d878a47004366189884c2f8440-Paper.pdf

Under review as a conference paper at ICLR 2024

A APPENDIX

A.1 Stable Distribution A distribution D over R is called p-stable, if there exists p ≥ 0 such
that for any n real numbers v1....vn and i.i.d. variables X1....Xn with distribution D, the random
variable

∑
i viXi has the same distribution as the variable (

∑
i |vi|p)1/pX where X is a random

variable with distributionD Datar et al. (2004). It is known Zolatarev (1983) that stable distributions
exists for p ∈ (0,2].

• Cauchy distribution Dc, defined by the density function c(x) = 1
π

1
1+x2 , is 1-stable.

• Gaussian (normal) distribution Dg , defined by the density function g(x) = 1√
2π

e
−x2

2 is
2-stable.

However, it is known Chambers et al. (1976) that one can create p-stable random variables
effectively from two independent variables distributed uniformly across [0,1] despite the lack of
closed form density and distribution functions.

Stable distributions have diverse applications across various fields (see survey Nolan (2005) for
details). In computer science, they are utilized for ”sketching” high-dimensional vectors, as
demonstrated by Indyk (Indyk (2006)). The key property of p-stable distributions, mentioned in
the definition, enables a sketching technique for high-dimensional vectors. This technique involves
generating a random vector w of dimension d, with each entry independently chosen from a p-stable
distribution. Given a vector v of dimension d, the dot product w · v is also random variable. A small
collection of such dot products, corresponding to different w’s, is termed as the sketch of the vector
v and can be used to estimate ||v||p Indyk (2006). However, instead of using the sketch to estimate
the vector norm we are using it to assign hash values to each vector. These values map each vector
to a point on the real line, which is then splitted into equal width segments to represent buckets. If
two vectors v and u are close, they will have a small difference between lp norms ∥v − u∥p, and
they should collide with a high probability.

A.2 Additional experiments for LSH scheme We have further validated our theoretical re-
sults through a secondary experiment. This LSH family which we discussed above says as the
distance between two nodes increases, the likelihood of them being assigned to the same bin
decreases, hence we will have more number of supernodes now. By increasing the bin-width,
we can effectively reduce the number of supernodes. This phenomenon is evident when con-
sidering the average distance between node pairs in various graphs and the corresponding bin-
width required to achieve a 30% coarsening ratio. The table below illustrates these findings:

Table 5: Average Distance and Bin-Width for 30%
Coarsening

Dataset Average Distance Bin-Width
Citeseer 7.748 0.0029

Cora 5.810 0.0021
Dblp 3.168 0.000068

Pubmed 0.540 0.000025

The results in the table clearly demonstrate
that as the average distance between nodes in-
creases, the required bin-width also increases
when maintaining the same coarsening ratio.
This observation highlights the importance of
considering the distance metric and bin-width
selection during the graph coarsening process
to effectively control the number of supernodes
and achieve desired coarsening ratios. Fig-
ure 8 shows trend of coarsening ratio when we
change bin-width.

A.3 Bin-width This section discusses the impact of bin-width on the coarsening ratio see Figure
8. Algorithm 2 outlines the procedure for determining the appropriate bin-width value that corre-
sponds to a desired coarsening ratio.

13

Under review as a conference paper at ICLR 2024

Figure 8: This figure shows the trend of coarsening ratio as the bin-width increases on two datasets:
Cora and Coauthor CS.

Algorithm 2 Bin-width Finder

Require: Input G(V,A,X) , L←# of Projectors, R← Desired Coarsening Ratio, p← precision
of coarsening, N ←# of nodes in the graph G, n←# of nodes in the graph Gc

Ensure: bin-width h
1: r ← 1, ratio← 1
2: while |c− ratio| > p do
3: if ratio > R then
4: r ← r ∗ 0.5
5: else
6: r ← r ∗ 1.5
7: end if
8: , n← UGC(G,L, h,N)
9: ratio← (1− n

N)
10: end while
11: return r

A.4 Proof of Theorem 4.1 Let fp(t) denote the probability density function of absolute value of
our stable distribution(Normal distribution), and let c = ||v − u||p for two node vectors v, u and r is
the bin-width. Since we have a random vector w from our stable distribution, v.w−u.w is distributed
as cX where X is a random variable from our stable distribution. Therefore our probability function
is

p(c) = Pra,b [ha,b(v) = ha,b(u)] =

∫ r

0

1

c
fp

(
t

c

)(
1− t

r

)
dt (6)

For a fixed bin-width r the probability of collision decreases monotonically with c = ||v−u||2. For
Defination, 2.1 the hash family will be (r1, r2, p1, p2)-sensitive where p1 = p(1) and p2 = p(c) for
r2
r1

= c.

For 2-stable distribution fp(x) =
2√
2π

e−x2/2. Equation 3 will be

p(c) =
2√
2π

∫ r

0

1

c
e−(

1
c)

2
/2dt− 2√

2π

∫ r

0

1

c
e−(

1
c)

2
/2 t

r
dt (7)

= S1(c)− S2(c)

Note that S1(c) ≤ 1.

S2(c) =
2√
2π
· c
r

∫ r

0

e−(
t
c)

2
/2 t

c2
dt (8)

S2(c) =
2√
2π
· c
r

∫ r2

(2c2)

0

e−ydy (9)

S2(c) =
2√
2π
· c
r
[1− e

− r2

(2c2)] (10)

We have p(1) = S1(1)−S2(1) ≥ 1− e
r2

2 − 2√
2πr
≥ 1− A

r , for some constant A > 0. This implies

that the probability that u collides with v is at least (1 − A
r) ≈ e−A. Thus the algorithm is correct

14

Under review as a conference paper at ICLR 2024

with the constant probability.
If c2 ≤ r2

2 , then we have

p(c) ≤ 1− 2√
2π

c

r
(1− 1

e
) (11)

A.5 Application of coarsened graph for GNNs This section contains additional results related
to the scalable GNN training. Figure 10 shows the GNN training pipeline. Figure 9 shows Visual-
ization of GCN predicted nodes when training is done using the coarsened graph. Table 6 illustrates
a direct correlation between accuracy and coarsening ratio. As the graph is coarsened more aggres-
sively, we observe a corresponding decrease in the classification accuracy of the GCN model.

Table 6: We report the accuracy of GCN on node classification after coarsening by UGC at different
ratios.

Ratio/Data Cite. Cora CS DBLP Pub. Phy.
30 74.89 89.30 93.02 75.50 85.65 96.70
50 74.55 89.30 93.02 75.50 84.77 96.12
70 71.27 84.63 88.29 74.82 80.57 92.43

(a) Original (b) 30% coarsen (c) 50% coarsen (d) 70% coarsen

Figure 9: Visualization of GCN predicted nodes when training is done using the coarsened graph.

Figure 10: GCN training pipeline

A.6 Proof of ϵ−similarity Theorem 4.2

Theorem A.1 Given a Graph G and a coarsened graph Gc they are said to be ϵ similar if there
exists some ϵ ≥ 0 such that:

(1− ϵ)∥x∥L ≤ ∥x∥Lc
≤ (1 + ϵ)∥x∥L (12)

where L and Lc are the Laplacian matrices of G and Gc respectively.

Proof: Let S be defined such that L = STS. By triangle inequality:

15

Under review as a conference paper at ICLR 2024

|∥x∥L − ∥xc∥Lc
= |∥Sx∥2 − ∥SP+Px∥2 (13)

≤ ∥Sx− SP+Px∥2 = ∥x− x̃∥L ≤ ∥x∥L (14)

A.7 Proof of Bounded Theorem 4.2

min
F̃

f(F̃) = tr(F̃TCTLCF̃) +
α

2
∥F̃C − F∥2F (15)

Here we have replaced partition matrix P with C = P † as discussed in Section 2.1. The above
equation is a convex optimization problem from which we get a closed form solution by putting the
gradient w.r.t to F̃ equal to zero.

2CTLCF̃ + αCT (CF̃ − F) = 0, (16)

Update rule for F̃

F̃ t+1 = (
2

α
CTLC + CTC)−1CTF (17)

Using F, F̃ and re-writing Theorem 4.2 as

|∥F∥L − ∥F̃∥Lc
| = |

√
tr(FTLF)−

√
tr(F̃TLcF̃)| (18)

As L is a positive semi-definite matrix we can write L = STS using Cholesky’s decomposition and
by writing Lc = CTLC we get,

= |
√
tr(FTSTSF)−

√
tr(F̃TCTSTSCF̃)| (19)

= |∥SF∥F − ∥SP †PF∥|F (20)

≤ |∥SF − SP †PF∥|F (21)

≤ ϵ∥F∥L (22)

Using the new update rule of ∥F̃∥Lc
we have F̃Lc

≤ ∥F∥L, we get

ϵ =
|∥F∥L − ∥F̃∥Lc |

∥F∥L
≤ 1 (23)

where ϵ ≤ 1 refer Kumar et al. (2023) for more details. See Figure 6 which plots different values of
ϵ at different coarsening ratios. As mentioned for fixed values of α we got ϵ ≤ 1 similarity gaurntees
for the coarsened graph.

A.8 Importance of Augmented Features See Figure 11 which showcase the importance of con-
sidering the augmented feature vector. It can be seen from the figure that when coarsened using
Augmented features supernodes have more intra-node similarity.

A.9 Additional Results Table 7 and Table 8 contains Run-time and REE results for Cora, CS
and Flickr datasets.

16

Under review as a conference paper at ICLR 2024

Figure 11: This figure highlights the significance of the augmented vector and showcases coarsening
outcomes, specifically when coarsening is performed solely using the adjacency or feature matrix
compared to when the augmented matrix is taken into account.

Table 7: Additional results for Run Time.

Ratio/Data Cora CS Flickr
Var. Neigh. 6.64 23.43 OOM
Var. Edges 5.34 16.72 OOM

Var. Cliques 7.29 24.59 OOM
Heavy Edge 0.70 7.50 OOM

Alg. Distance 0.93 9.63 OOM
Affinity GS 2.36 169.05 OOM

Kron 0.63 5.81 OOM
UGC 0.41 3.1 8.9

A.10 Detailed Time Complexity Analysis We have three phase for our framework. In the first
phase(Algo 1 Line 1-7), we can see Line 7 is driving the complexity of the algorithm where we
multiply two F ∈ RN×d and W ∈ RL×d matrices which results to O(NLd). In the second pass,
the supernodes for the coarsened graphs are constructed with the help of the accumulation of nodes
in the bins. The main contribution of UGC is up to these two phases i.e., Line 1-10. Till now, time-
complexity is O(NLd) ≡ O(NC) where C is a constant. Hence, the time complexity for getting
the partition matrix is O(N).

In the third phase, Line 14-15, we calculate the adjacency and features of the supernodes of the
coarsened graph Gc. For this we iterate over the edges of the original graph and use the edge nodes
along with the surjective mapping π : V → Vc to increment the weight of the corresponding edge
between the supernodes in Gc. The computational cost of this operation is O(m), where m is the
number of edges in the original graph, and this is a one time step. Indeed, the overall time complexity
of all three phases combined is O(N+m) where m is the number of edges. However, it’s important to
note that the primary contribution of UGC lies in the process of finding the partition matrix whose

Table 8: Additional results for Eigen Error

Ratio/Data Cora CS Flickr
Var. Neigh. 0.1211 0.2488 OOM
Var. Edges 0.1293 0.0498 OOM

Var. Cliques 0.0850 0.0263 OOM
Heavy Edge 0.0713 0.0467 OOM

Alg. Distance 0.1079 0.0872 OOM
Affinity GS 0.0950 0.0633 OOM

Kron 0.0695 0.0564 OOM
UGC 0.1309 0.0570 0.0153

17

Under review as a conference paper at ICLR 2024

Table 9: UGC is model-agnostic

Model/Data Cora Pubmed Physics Squirrel
GCN 89.30 84.77 96.12 31.62

GraphSage 69.39 85.72 94.49 61.23
GIN 67.23 84.12 85.15 44.72
GAT 74.21 84.37 92.60 48.75

time complexity is O(N). We have compared the partition matrix computational of all other methods
with ours.

A.11 UGC is model-agnostic While our initial validation utilized GCN to assess the quality of
our coarsened graph but our framework is not bound to any specific graph convolutional network
(GCN) architecture. We extended our evaluations to include other prominent graph neural network
models. Results from three diverse models, namely GraphSage, GIN (Graph Isomorphism Net-
work), and GAT (Graph Attention Network), have been incorporated into our analysis. We have
provided empirical evidences in Table 9. These additional experiments demonstrate the robustness
and model-agnostic nature of our framework. We believe this flexibility further enhances the appli-
cability and utility of our proposed framework in various graph-based applications.

18

	Introduction
	Background and Problem Formulation
	Problem Formulation
	Homophilic and Heterophilic datasets
	Locality Sensitive Hashing
	Related Works

	Proposed Framework Universal Graph Coarsening (UGC)
	Augmented Feature
	Proposed framework UGC
	Edge Assignment and bin-width
	Time Complexity Analysis of UGC

	Quality of the Coarsened Graph
	Experiments
	Experimental Protocol
	Experiments for Run-time analysis.
	Spectral properties preservation.
	LSH similarity and -bounded results
	Scalable Training of Graph Neural Networks.
	Gained performance on Heterophilic Graphs

	Conclusion
	Appendix
	Stable Distribution
	Additional experiments for LSH scheme
	Bin-width
	Proof of Theorem 4.1
	Application of coarsened graph for GNNs
	Proof of -similarity Theorem 4.2
	Proof of Bounded Theorem 4.2
	Importance of Augmented Features
	Additional Results
	Detailed Time Complexity Analysis
	UGC is model-agnostic

