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Abstract001

Accurate and interpretable predictions of de-002
pression severity are essential for clinical de-003
cision support, yet existing models often lack004
uncertainty estimates and temporal modeling.005
We propose PTTSD, a Probabilistic Textual006
Time Series Depression Detection framework007
that predicts PHQ-8 scores from utterance-008
level clinical interviews while modeling uncer-009
tainty over time. PTTSD includes sequence-to-010
sequence and sequence-to-one variants, both011
combining bidirectional LSTMs, self-attention,012
and residual connections with Gaussian or013
Student’s-t output heads trained via negative014
log-likelihood. Evaluated on E-DAIC and015
DAIC-WOZ, PTTSD achieves state-of-the-art016
performance among text-only systems (e.g.,017
MAE = 3.85 on E-DAIC, 3.55 on DAIC) and018
produces well-calibrated prediction intervals.019
Ablations confirm the value of attention and020
probabilistic modeling, while comparisons with021
MentalBERT establish generality. A three-part022
calibration analysis and qualitative case studies023
further highlight the interpretability and clini-024
cal relevance of uncertainty-aware forecasting.025

1 Introduction026

Depression remains one of the leading causes of027

global disability, affecting over 300 million indi-028

viduals worldwide (WHO, 2017, 2022). Scalable,029

automated tools for assessing depressive symptom030

severity offer valuable support in digital therapy031

and remote care, where access to clinicians is lim-032

ited. Among these tools, text-based systems that033

process clinical interviews have shown strong po-034

tential for predicting standardized scores such as035

the PHQ-8 (Kroenke et al., 2009).036

Recent methods typically model interview tran-037

scripts as sequences of utterances and employ deter-038

ministic architectures such as LSTMs, Transform-039

ers, or large language models (LLMs) (Mandal040

et al., 2025; Fang et al., 2023a; Nykoniuk et al.,041

2025; Sadeghi et al., 2024). These utterance se- 042

quences naturally form a textual time series, where 043

each utterance provides a temporally ordered ob- 044

servation. However, most existing approaches pro- 045

duce scalar severity estimates without quantifying 046

uncertainty—an important limitation in high-stakes 047

clinical contexts. 048

We argue that modeling depression severity as 049

a probabilistic textual time series regression task 050

enables not only accurate predictions but also inter- 051

pretable confidence estimates. In this formulation, 052

each utterance contributes to an evolving poste- 053

rior over severity scores, allowing us to capture 054

aleatoric uncertainty—uncertainty arising from in- 055

herent noise or ambiguity in the input, such as 056

sparse, contradictory, or ambiguous language. This 057

uncertainty-aware perspective is crucial in clinical 058

natural language processing (NLP), where model 059

confidence can significantly affect downstream 060

decision-making. 061

We introduce PTTSD—a Probabilistic Textual 062

Time Series Depression Detection framework that 063

makes temporally grounded, calibrated predictions 064

over PHQ-8 scores from utterance-level sequences. 065

Unlike prior work, PTTSD addresses three key lim- 066

itations in the field: (1) it produces calibrated un- 067

certainty estimates rather than point predictions; 068

(2) it avoids prompt-based methods, improving re- 069

producibility; and (3) it leverages full transcripts 070

to capture temporal structure. Our model encodes 071

the input with a bidirectional LSTM, self-attention, 072

and residual connections, and produces distribu- 073

tional outputs using Gaussian or Student’s-t heads 074

trained via negative log-likelihood loss. 075

We evaluate PTTSD on the DAIC and E-DAIC 076

benchmarks using high-quality re-transcribed in- 077

terviews and demonstrate strong performance on 078

standard metrics (e.g., MAE = 3.55, RMSE = 4.77 079

on DAIC; MAE = 3.85, RMSE = 4.52 on E-DAIC), 080

outperforming recent text-only baselines without 081

relying on prompt engineering or handcrafted fea- 082
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tures. Ablation and sensitivity analyses further val-083

idate the contributions of probabilistic loss design,084

attention mechanisms, and calibration metrics.085

Our main contributions are:086

• We propose PTTSD, a fully probabilistic se-087

quence model that jointly predicts PHQ-8088

scores along with calibrated uncertainty from089

utterance-level textual time series.090

• We train and evaluate PTTSD end-to-end on091

full interviews without handcrafted prompts,092

yielding a simple, reproducible modeling093

pipeline.094

• We achieve state-of-the-art results on E-DAIC095

among text-only models, and provide thor-096

ough ablation, calibration, and sensitivity anal-097

yses to assess uncertainty quality and model098

robustness.099

2 Related Work100

Textual time series modeling has been central to101

recent efforts in automatic depression detection,102

especially within clinical interviews and therapy103

sessions. Prior work has predominantly relied on104

deterministic neural methods such as LSTMs and105

attention-based transformers to model temporal de-106

pendencies in textual data (Mandal et al., 2025;107

Fang et al., 2023a; Nykoniuk et al., 2025). These108

models capture sequential patterns but lack mech-109

anisms to quantify uncertainty over time. While110

LLMs extract richer textual features (Sadeghi et al.,111

2024; Chen et al., 2024), most systems remain112

heuristic or deterministic, focusing on structural or113

multimodal fusion rather than probabilistic reason-114

ing. In contrast, our fully probabilistic, end-to-end115

model captures uncertainty directly from raw utter-116

ances without handcrafted prompts, emphasizing117

simplicity and efficiency.118

Notably, Qureshi et al. (2019b) use multitask119

learning with attention mechanisms for joint re-120

gression and classification, but do not incorporate121

uncertainty modeling. Similarly, prompt-based122

methods such as those of Zhang and Guo (2024)123

transform depression detection into a few-shot clas-124

sification task via language model prompting, but125

still yield single-point predictions. Graph-based ar-126

chitectures (Burdisso et al., 2023; Chen et al., 2024)127

model discourse-level context across utterances and128

questions, offering enhanced interpretability and129

structural awareness, though they too typically omit130

calibrated uncertainty.131

A rare exception is Dia et al. (2024), who pro- 132

pose a stochastic transformer for post-traumatic 133

stress disorder detection, introducing probabilis- 134

tic components such as stochastic activations to 135

model uncertainty across modalities. However, 136

their work focuses on visual signals and does not 137

address textual time series or PHQ-8 regression. 138

More recently, Zhang et al. (2025) apply a multi- 139

instance learning (MIL) framework to estimate de- 140

pression severity from long transcripts, assigning 141

confidence scores to depressive cues at the sen- 142

tence level. While this provides instance-level in- 143

terpretability, the underlying model is not explicitly 144

probabilistic in the Bayesian sense. 145

Several recent works have explored fair or cali- 146

brated uncertainty estimation. Li and Zhou (2025) 147

propose Fair Uncertainty Quantification (FUQ) for 148

PHQ regression, producing conformal prediction 149

intervals with coverage guarantees across demo- 150

graphic groups. While effective for fairness, FUQ 151

operates at the distributional output level and does 152

not model temporal evolution within interviews. 153

Other systems, such as Mao et al. (2023) and Guo 154

et al. (2022), employ BiLSTMs or Transformers 155

with textual features, sometimes augmented by 156

topic signals, but focus solely on deterministic loss 157

objectives. 158

3 Probabilistic Textual Time Series 159

Depression Detection 160

3.1 Problem Formulation 161

We formalize PHQ-8 prediction as a probabilis- 162

tic regression task over utterance-level textual se- 163

quences. Given a clinical interview transcript con- 164

sisting of T utterances {u1, u2, . . . , uT }, the goal 165

is to predict a scalar depression severity score 166

y ∈ R (e.g., the participant’s PHQ-8 score), and 167

quantify uncertainty in that prediction. 168

p(y | e1:T ; θ) 169

3.2 Data and Preprocessing 170

We utilize the Distress Analysis Interview Corpus 171

(DAIC) (Gratch et al., 2014) and extended DAIC 172

(E-DAIC) (DAIC-WOZ Project, 2019) datasets, 173

which contain anonymized semi-structured inter- 174

view transcripts and associated PHQ-8 (Kroenke 175

et al., 2009) depression scores. Each participant’s 176

data consists of a sequence of utterances extracted 177

from transcript files, along with a PHQ-8 score 178

indicating depression severity. The PHQ-8 (Pa- 179
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Figure 1: Probabilistic Textual Time Series Depression Detection

tient Health Questionnaire-8) is a standardized self-180

report instrument with scores ranging from 0 to 24,181

used to assess depressive symptom severity. More182

details on the PHQ-8 and DAIC in Appendix A and183

Appendix B, respectively.184

To improve interview transcription fidelity, we185

reprocessed the original E-DAIC audio using Whis-186

perX (Bain et al., 2023), which provides more ac-187

curate word-level alignment and robust speaker di-188

arization compared to the baseline Whisper model189

(Radford et al., 2023) employed by Sadeghi et al.190

(2024). We organize utterances into temporal se-191

quences and split the data into training, validation,192

and test sets using the predefined partitions. During193

batching, utterances are padded to the batch’s max-194

imum length, and an attention mask is constructed195

to differentiate padded from valid tokens.196

3.3 Generating Utterance Embeddings197

We represent each utterance using pretrained sen-198

tence encoders. We represent each utterance199

using pretrained sentence encoders. Our pri-200

mary model uses the all-MiniLM-L6-v2 Sen-201

tence Transformer1 (Reimers and Gurevych, 2019),202

a compact model with only 22 million parame-203

ters that achieves competitive performance across204

a wide range of tasks on the Hugging Face205

MTEB Embedding Leaderboard (Muennighoff206

et al., 2023). We also evaluate an alternative variant207

of our model using MentalBERT (Ji et al., 2022), a208

domain-adapted BERT model pretrained on mental209

health-related corpora2.210

For Sentence Transformers, utterances are en-211

coded directly into fixed-dimensional vectors us-212

ing mean pooling over token representations. For213

1https://huggingface.co/sentence-transformers/
all-MiniLM-L6-v2

2https://huggingface.co/mental/
mental-bert-base-uncased

MentalBERT, we extract the final hidden state of 214

the [CLS] token as the utterance-level embedding. 215

In both cases, each utterance ut is independently 216

mapped to an embedding vector et ∈ RD. The 217

resulting sequence (e1, e2, . . . , eT ) represents the 218

input utterance series, where T is the number of 219

utterances in the session. These embeddings are 220

stacked into a tensor X ∈ RB×T×D, where B is 221

the batch size, T the number of utterances, and 222

D the embedding dimension. We propagate atten- 223

tion masks through the entire pipeline to exclude 224

padded positions from contributing to downstream 225

modeling, loss computation, and evaluation. 226

3.4 Probabilistic LSTM Architecture 227

PTTSD uses a unified sequence model that sup- 228

ports both sequence-to-sequence (seq2seq) and 229

sequence-to-one (seq2one) prediction modes. Both 230

variants share the same architectural backbone in- 231

spired by (Mandal et al., 2025) (Figure 1): a multi- 232

layer bidirectional LSTM followed by a multi-head 233

self-attention layer (Vaswani et al., 2017) with 234

residual connections. Let X ∈ RB×T×D be the 235

input utterance embedding sequence. The LSTM 236

encodes this into hidden states H ∈ RB×T×H , 237

which are then passed through the attention layer 238

to produce refined representations. The final at- 239

tended representation is obtained via a residual 240

connection: 241

A = Attention(H) +H 242

Sequence-to-Sequence. In this mode, each time 243

step t yields a predictive distribution p(yt | e≤t). 244

Two feedforward networks (MLPs) map the at- 245

tended hidden state at to the mean and uncertainty 246

parameters: 247

µ̂t = MLPµ(at), σ̂t = softplus(MLPσ(at))+ϵ 248

3

https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2
https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2
https://huggingface.co/mental/mental-bert-base-uncased
https://huggingface.co/mental/mental-bert-base-uncased


where ϵ > 0 ensures numerical stability. Depend-249

ing on the output head, the model may alternatively250

predict evidential parameters or degrees of freedom251

for a Student’s-t distribution. All predictions are252

computed in parallel and masked to exclude padded253

positions.254

Sequence-to-One. In this mode, the attended se-255

quence A is aggregated into a single pooled vector256

using masked average pooling. This pooled repre-257

sentation is then used to predict a single distribution258

p(y | e1:T ), matching the session-level annotation259

granularity of PHQ-8.260

3.5 Sequence Modeling and Predictive261

Distributions262

In the sequence-to-sequence variant, the PHQ-8263

score is modeled as a time series where the label at264

time step t is predicted as:265

p(yt | e≤t; θ)266

where θ denotes the model parameters and e≤t267

are the utterance embeddings up to time t. The268

model is trained non-autoregressively, i.e., without269

access to past labels y<t. In the sequence-to-one270

variant, a single distribution is predicted for the271

entire sequence:272

p(y | e1:T ; θ)273

corresponding to the session-level PHQ-8 target.274

We explore two probabilistic output distribu-275

tions:276

Gaussian distribution. The model predicts a277

mean µ̂t and standard deviation σ̂t at each time278

step, defining the conditional distribution as:279

p(yt | e≤t; θ) = N (yt | µ̂t, σ̂
2
t )280

Student’s t-distribution. Alternatively, the281

model may output a location µ̂t, scale σ̂t, and282

degrees of freedom νt, defining:283

p(yt | e≤t; θ) = StudentT(yt | µ̂t, σ̂t, νt)284

The corresponding probability density function is:285

f(y | µ, σ, ν) = C(ν, σ)

[
1 +

1

ν

(
y − µ

σ

)2
]− ν+1

2

286

with normalization constant:287

C(ν, σ) =
Γ
(
ν+1
2

)
Γ
(
ν
2

)√
νπ σ

288

3.6 Loss Functions 289

We train all models using the negative log- 290

likelihood (NLL) of the ground-truth PHQ-8 score 291

under the predicted distribution. For the sequence- 292

to-sequence variant, the loss is computed at each 293

time step and averaged across valid utterances. For 294

the sequence-to-one variant, a single prediction is 295

made per session, and the NLL is computed at the 296

sequence level. 297

Let µ̂t and σ̂t denote the predicted mean and 298

standard deviation at time step t (or µ̂, σ̂ in the 299

seq2one case, where t = 1). The total sequence 300

loss is: 301

Lseq =

{
−
∑T

t=1 log p(yt | e≤t; θ) (seq2seq)
− log p(y | e1:T ; θ) (seq2one)

302

The batch loss is normalized across participants: 303

Lbatch =
1

B

B∑
i=1

1

Ti
L(i)

seq 304

where Ti is the number of valid utterances for par- 305

ticipant i; for seq2one, Ti = 1. 306

For Gaussian outputs, the model predicts a mean 307

and standard deviation, and the corresponding 308

weighted Gaussian NLL loss is: 309

LNLL =

T∑
t=1

[
α log(2π) + β log(σ̂2

t ) + γ · δt
]

310

311

with δt =
(yt − µ̂t)

2

σ̂2
t

312

For seq2one, this reduces to a single-term sum 313

with t = 1. The weights α, β, γ control the trade- 314

off between likelihood components and are set to 1 315

by default. 316

We optionally use auxiliary or baseline objec- 317

tives: 318

LMSE =
1

T

T∑
t=1

(yt−µ̂t)
2,LMAE =

1

T

T∑
t=1

|yt−µ̂t| 319

In the seq2one case, the summation reduces to 320

a single term, as only one label and one prediction 321

exist per sample. 322
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3.7 Training Procedure323

PTTSD is trained for 50 epochs using the Adam324

optimizer with cosine annealing (Loshchilov and325

Hutter, 2016). The learning rate is initialized at 2e-326

4 and decays smoothly to a minimum of 1e-4. We327

batch at the participant level, with each batch con-328

taining all utterances from a subset of participants.329

Early stopping with a patience of 15 epochs is ap-330

plied based on Dev MAE, and the best-performing331

model checkpoint is restored. To address label332

imbalance, we apply a log transformation to the333

targets during training, with outputs transformed334

back to the original scale for evaluation.335

4 Experiments336

4.1 Experimental Setup337

Implementation. All models are implemented in338

PyTorch (Paszke et al., 2019). Padding, batching,339

and masking ensure that variable-length sequences340

do not affect loss or metric computations.341

Hardware. Training is performed on a single342

NVIDIA A100-SXM4-80GB GPU with 80GB of343

GDDR6 VRAM, using CUDA version 12.2.344

Runtime. Training PTTSD for 50 epochs on a345

single NVIDIA A100–80 GB takes ~2h 23min in346

wall-clock time (≈172 s per epoch). The model347

has a total 2,703,403 trainable parameters.348

Data Splits. We follow the official training, val-349

idation, and test splits provided with each dataset.350

For E-DAIC, the data is partitioned into 163 train-351

ing, 56 validation, and 56 test participants. For352

DAIC-WOZ, the official splits include 107 train-353

ing, 35 validation, and 56 test participants. As354

described in Section 3.2, all audio is re-transcribed355

using WhisperX to improve transcription quality356

and alignment over the original transcripts.357

Evaluation Metrics. We evaluate models on358

both the validation and held-out test sets using359

mean squared error (MSE) and root mean squared360

error (RMSE). These metrics quantify average pre-361

diction error, with RMSE placing greater emphasis362

on larger errors due to its squaring operation. This363

makes RMSE particularly useful for identifying364

models that minimize not just average error, but365

also variance in error magnitude. When model-366

ing predictive uncertainty, we additionally report367

negative log-likelihood (NLL). All metrics are com-368

puted over valid (non-padded) utterances only.369

Reproducibility. All preprocessing steps, model 370

configurations, and training scripts are made pub- 371

licly available on GitHub.3 To account for variabil- 372

ity due to random initialization, we report average 373

performance over three runs with different seeds. 374

4.2 Main Results 375

Table 1 presents PHQ-8 regression performance 376

on both E-DAIC and DAIC datasets. We compare 377

our PTTSD models across multiple configurations 378

(sequence-to-sequence vs. sequence-to-one; Men- 379

talBERT vs. all-MiniLM-L6-v2) against a range of 380

prior text-based approaches. 381

E-DAIC. Among all text-only systems, PTTSD 382

(sequence-to-sequence with all-MiniLM-L6-v2) 383

achieves the lowest test MAE (3.85) and RMSE 384

(4.52), establishing a new state of the art. Other 385

PTTSD variants, including MentalBERT-based and 386

sequence-to-one configurations, also perform com- 387

petitively, demonstrating robustness across archi- 388

tecture choices. Earlier works such as Ray et al. 389

(2019) and Rodrigues Makiuchi et al. (2019) at- 390

tain dev RMSEs of 4.22–4.97, but their test perfor- 391

mance is either weaker or unreported. More recent 392

prompt-based models by Sadeghi et al. (2024) use 393

Whisper transcripts and audio-based quality filter- 394

ing. Their best variant (Pr3+Whisper+AudioQual) 395

reports strong dev MAE (2.85) and RMSE (4.02), 396

but is not text-only due to audio quality gat- 397

ing. Their best text-only test result (Pr3+Whisper) 398

achieves 4.22 MAE and 5.07 RMSE, which PTTSD 399

outperforms by a large margin on both metrics. 400

DAIC. On the original DAIC dataset, PTTSD 401

again performs competitively, especially in the 402

all-MiniLM-L6-v2 sequence-to-one variant, which 403

achieves the lowest test MAE (3.55) and matches 404

the best test RMSE (4.77) of Fang et al. (2023b). 405

Interestingly, Gong and Poellabauer (2017) reports 406

strong dev performance (MAE 2.77, RMSE 3.54), 407

while test results (MAE 3.96, RMSE 4.99) show 408

a notable drop, which may reflect differences in 409

evaluation protocols or generalization challenges. 410

4.3 Ablation Studies 411

Effect of Loss Function. Table 2 compares the 412

impact of different loss functions on validation and 413

test performance. Gaussian NLL yields the best 414

overall balance, achieving low MAE and RMSE 415

across both splits, with particularly strong test 416

3 https://github.com/someonedoing-research/
PTTSD
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Dataset Method
Dev Test

MAE RMSE MAE RMSE

DAIC

Williamson et al. (2016) 3.34 4.46 – –
Gong and Poellabauer (2017) 2.77 3.54 3.96 4.99
Yang et al. (2017) 3.52 4.52 – –
Stepanov et al. (2018) – – 4.88 5.83
Oureshi et al. (2021) 3.78 – – –
Niu et al. (2021) 3.73 4.80 – –
Fang et al. (2023b) – – 3.61 4.76
Rohanian et al. (2019) – – 4.98 6.05
Al Hanai et al. (2018) 5.18 6.38 – –
Qureshi et al. (2019a) 3.74 4.80 – –

PTTSD - sequence-to-one - MentalBERT 4.39
(±0.10)

5.47
(±0.43)

3.65
(±0.24)

4.69
(±0.24)

PTTSD - sequence-to-sequence - MentalBERT 4.67
(±0.04)

5.82
(±0.34)

3.92
(±0.54)

4.79
(±0.54)

PTTSD - sequence-to-one - all-MiniLM-L6-v2 3.82
(±0.09)

4.84
(±0.28)

3.55
(±0.15)

4.77
(±0.53)

PTTSD - sequence-to-sequence - all-MiniLM-L6-v2 4.59
(±0.07)

5.22
(±0.30)

3.88
(±0.41)

5.10
(±0.92)

E-DAIC

Ray et al. (2019) – 4.37 4.02 4.73
Rodrigues Makiuchi et al. (2019) – LSTM – 4.97 – 6.88
Rodrigues Makiuchi et al. (2019) – 8 CNN blocks-LSTM – 4.22 – –
Sadeghi et al. (2023) 3.65 5.27 4.26 5.37
Sadeghi et al. (2024) – Pr3+Whisper 3.17 4.51 4.22 5.07
Sadeghi et al. (2024) – Pr3+Whisper+AudioQual 2.85 4.02 3.86 4.66

PTTSD - sequence-to-one - MentalBERT 3.56
(±0.01)

4.45
(±0.07)

4.18
(±0.05)

5.23
(±0.13)

PTTSD - sequence-to-sequence - MentalBERT 3.55
(±0.14)

4.58
(±0.20)

4.20
(±0.03)

5.39
(±0.08)

PTTSD - sequence-to-one - all-MiniLM-L6-v2 3.60
(±0.13)

4.76
(±0.14)

4.58
(±0.50)

5.87
(±0.92)

PTTSD - sequence-to-sequence - all-MiniLM-L6-v2 3.47
(±0.02)

4.57
(±0.04)

3.85
(±0.04)

4.52
(±0.38)

Table 1: Evaluation of PHQ-8 regression performance across text-only models on the DAIC and E-DAIC datasets.
Bold indicates best performance within each dataset.

Loss Dev Test
MAE RMSE MAE RMSE

Gaussian NLL 3.4440 4.5293 3.8603 5.0219
Student-t NLL 3.6637 4.9328 3.9294 5.1488
MAE 3.6427 4.8091 4.1885 5.4407
MSE 3.6398 4.9845 3.6694 4.8760

Table 2: Loss function comparison on dev/test sets (E-
DAIC, single run).

MAE (3.86). Student’s-t NLL performs compa-417

rably but with slightly worse calibration and higher418

RMSE, likely due to the added complexity of esti-419

mating the degrees of freedom.420

MAE and MSE losses exhibit inconsistent be-421

havior: while MSE achieves the lowest test MAE422

(3.67), it performs worse on the dev set and yields423

the highest test RMSE among all probabilistic424

losses. The MAE loss underperforms across all425

metrics, suggesting it is less effective for learning426

stable sequence-level representations in this setting.427

These results highlight that Gaussian NLL offers 428

the most reliable and generalizable performance 429

when modeling uncertainty in PHQ-8 prediction 430

from textual time series. 431

Effect of the Model Architecture. We conduct 432

an ablation study to assess the contribution of indi- 433

vidual architectural components in our probabilistic 434

LSTM sequence-to-sequence model. Each ablation 435

variant disables a specific component—attention, 436

residual connections, or the variance prediction 437

head—while all other settings are held constant. 438

Models are trained for 20 epochs (rather than the 439

full 50 used in main experiments) to accelerate 440

comparison. Evaluation is performed on the test 441

set using mean absolute error (MAE) and root mean 442

squared error (RMSE). Full experimental details 443

are included in Appendix C. 444

Table 3 and Figure 2 illustrate the effects of 445

disabling different components. Removing self- 446

attention yields the largest degradation in perfor- 447
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Variant MAE ∆ MAE (%) RMSE ∆ RMSE (%)

Full Model 6.32 – 8.10 –
- w/o Attention 7.74 +22.48 9.74 +20.24
- w/o Residual 7.19 +13.78 8.96 +10.53
- w/o Variance Head 5.98 −5.37 7.21 −10.99

Table 3: Ablation of architectural components (Gaus-
sian NLL on test set). Absolute scores and percentage
change relative to the full model.
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Figure 2: Ablation results

mance, increasing MAE by 22.5% and RMSE by448

20.2%, confirming its importance for modeling449

long-range dependencies across utterances.450

Omitting residual connections also leads to no-451

ticeable performance drops (MAE +13.8%, RMSE452

+10.5%), suggesting that residual pathways con-453

tribute to stable training and effective information454

flow across layers.455

Interestingly, removing the variance prediction456

head simplifies the model and yields slightly bet-457

ter raw error metrics (MAE –5.4% and RMSE458

–11.0%), likely because the model reverts to a sim-459

pler deterministic objective. However, this comes460

at the cost of losing uncertainty estimation—a core461

benefit in clinical decision support.462

Overall, the full model offers the best trade-off463

between predictive accuracy and uncertainty mod-464

eling, with ablations confirming the value of self-465

attention, residuals, and probabilistic output heads.466

4.4 Hyperparameter Sensitivity467

α β γ NLL (Dev) NLL (Test) Comments

1 1 1 1.3129 1.1934 standard NLL
1 2 1 1.7854 1.4865 uncertainty-averse
1 1 2 1.2777 1.3189 error-focused
1 1 0.5 2.2163 2.0316 calibration-first

Table 4: Sensitivity analysis of Gaussian NLL loss
weighting parameters α, β, and γ.

Table 4 presents the effect of varying the NLL468

weighting parameters β (log-variance term) and γ469

(normalized squared error term), with α held con-470

stant as it weights the constant term in the NLL471

and hence does not influence the model’s gradi- 472

ents or learning dynamics. The standard setting 473

(β = γ = 1) yields the best overall performance 474

on the test set (NLL = 1.1934), indicating a bal- 475

anced trade-off between data fit and uncertainty 476

modeling. Increasing β to 2 (“uncertainty-averse”) 477

substantially increases NLL on both development 478

and test sets, suggesting that heavily penalizing 479

predicted variance harms calibration and leads to 480

underconfident predictions. Conversely, increasing 481

γ to 2 (“error-focused”) improves the development 482

NLL slightly but increases test NLL, indicating 483

overfitting to the training signal. Reducing γ to 0.5 484

(“calibration-first”) degrades both development and 485

test NLLs, likely due to underemphasis on predic- 486

tion accuracy. The results suggest that aggressive 487

reweighting of either term destabilizes the trade-off 488

between sharpness and calibration, and that the de- 489

fault Gaussian NLL (β = γ = 1) remains the most 490

reliable setting across validation and test sets. 491

4.5 Uncertainty Calibration Analysis 492

Accurate uncertainty quantification is critical in 493

clinical NLP, where predictions may inform sen- 494

sitive decisions. We evaluate the calibration of 495

PTTSD using Expected Calibration Error (ECE), 496

empirical coverage, and visual diagnostics (Fig- 497

ure 3), comparing models trained with Gaussian 498

NLL and MSE losses to understand how proba- 499

bilistic modeling impacts calibration quality. The 500

figure includes three subplots: (1) a binned cali- 501

bration plot comparing mean predicted standard 502

deviation (x-axis) and mean absolute error (y-axis) 503

across uncertainty bins, with deviations from the 504

diagonal summarized by the Expected Calibration 505

Error (ECE); (2) a scatter plot of individual pre- 506

dictions showing predicted uncertainty versus ob- 507

served error; and (3) a coverage plot showing the 508

proportion of ground truth values falling within 509

model-predicted confidence intervals. Perfect cal- 510

ibration aligns with the red diagonal in each plot. 511

We compute the ECE as the average absolute devia- 512

tion between nominal confidence levels and the ac- 513

tual coverage rates observed at those levels. Specif- 514

ically, we compare the proportion of ground truth 515

values falling within the model’s prediction inter- 516

vals (e.g., 68%) to the expected theoretical value. 517

Figure 3 compares calibration results for PTTSD 518

trained with Gaussian NLL and MSE. The Gaus- 519

sian NLL model achieves a low ECE of 0.0220 520

and closely approximates ideal 68% coverage 521

(66.2%), indicating strong and informative calibra- 522
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(b) Deterministic MSE

Figure 3: Calibration analysis of PTTSD seq2seq on DAIC test set (Gaussian NLL vs. MSE)

tion. While slightly overconfident, it adapts uncer-523

tainty to input ambiguity, producing sharp yet reli-524

able intervals. In contrast, the MSE-trained model525

shows poorer average calibration (ECE = 0.0675)526

and is significantly underconfident, with coverage527

far exceeding the nominal threshold (84.0%), re-528

sulting in overly wide and less informative intervals.529

Overall, the Gaussian NLL model yields better-530

aligned uncertainty estimates balancing sharpness531

and reliability—critical for clinical NLP applica-532

tions where actionable confidence matters.533

To illustrate the interpretability of our uncer-534

tainty estimates, Appendix D presents case studies535

visualizing predicted PHQ-8 intervals over time,536

showing how the model adjusts confidence based537

on input ambiguity and severity dynamics. We538

also observe a strong correlation between predicted539

uncertainty and absolute error (Pearson r = 0.88,540

Spearman ρ = 0.64; Appendix E.2), confirming541

that uncertainty estimates reflect prediction quality.542

Combined, the calibration metrics and case stud-543

ies demonstrate that PTTSD produces informative544

and actionable uncertainty. Unlike point-estimate545

models, PTTSD adapts its confidence to the input,546

indicating when predictions are reliable and when547

caution is warranted. This is especially critical in548

clinical NLP, where decisions depend not just on 549

what is predicted, but also on how sure the model 550

is. By providing sequence-level uncertainty that 551

evolves with dialogue, PTTSD supports transparent 552

and interpretable assessment for real-world mental 553

health screening and triage. 554

5 Conclusion 555

We introduced PTTSD, a probabilistic neural 556

framework for predicting PHQ-8 depression sever- 557

ity from utterance-level text. PTTSD models cali- 558

brated uncertainty using Gaussian and Student’s-t 559

distributions and integrates bidirectional LSTMs, 560

self-attention, and residual connections. It re- 561

quires no handcrafted features or prompts, making 562

it suitable for clinical deployment. Experiments 563

on DAIC and E-DAIC show that PTTSD achieves 564

state-of-the-art performance among fully automatic 565

text-only systems, while providing reliable uncer- 566

tainty estimates. Ablations and calibration analyses 567

confirm the contributions of attention, probabilistic 568

output heads, and balanced loss weighting. These 569

findings support the utility of uncertainty-aware 570

textual time series modeling in clinical NLP. Fu- 571

ture work will explore multimodal extensions and 572

clinical validation. 573
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Limitations574

While PTTSD offers promising results in predictive575

accuracy and uncertainty modeling, several limita-576

tions remain. First, the framework relies solely on577

textual data. Although effective, it does not lever-578

age multimodal cues such as vocal prosody or facial579

expressions, which are known to be informative580

for assessing mental health. Second, the E-DAIC581

dataset contains fewer than 300 participants, and582

further reduction due to filtering and partitioning583

limits the statistical power and generalizability of584

our findings to broader clinical settings. Third, the585

interviews in E-DAIC are conducted with a virtual586

interviewer ("Ellie") operated in a Wizard-of-Oz587

setup rather than a real clinician, which may affect588

the ecological validity of the speech data and limit589

applicability to authentic client–clinician interac-590

tions. In terms of modeling, we encode utterances591

independently using pretrained language models592

without context-aware finetuning, potentially over-593

looking local coherence or discourse-level cues.594

Furthermore, while PTTSD provides distributional595

predictions, we do not assess its clinical utility596

or decision-support value; human-centered eval-597

uations with therapists or end users are needed to598

determine the interpretability and trustworthiness599

of predicted uncertainty. Finally, although we eval-600

uate calibration quantitatively, we do not study how601

uncertainty scores might be perceived or utilized602

by clinicians in real-world settings. Future work603

should address these limitations by incorporating604

multimodal signals, validating on therapist–client605

dialogues, and evaluating the human trust and us-606

ability of uncertainty-aware predictions.607
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A PHQ-8 Depression Assessment833

The Patient Health Questionnaire-8 (PHQ-8)834

(Kroenke et al., 2009) is a widely used self-report835

scale designed to measure the presence and sever-836

ity of depressive symptoms. It is derived from the837

PHQ-9 but omits the ninth item concerning suicidal838

thoughts, making it more suitable for large-scale839

screening and automated processing.840

Each of the eight items corresponds to a DSM-841

IV criterion for depression and asks respondents842

to rate how often they have experienced a specific843

symptom over the past two weeks. Responses are844

scored on a 4-point Likert scale:845

• 0 – Not at all 846

• 1 – Several days 847

• 2 – More than half the days 848

• 3 – Nearly every day 849

The total PHQ-8 score ranges from 0 to 24 and 850

is interpreted as follows: 851

• 0–4: None 852

• 5–9: Mild depression 853

• 10–14: Moderate depression 854

• 15–19: Moderately severe depression 855

• 20–24: Severe depression 856

The PHQ-8 has been validated in both clinical 857

and general populations and is considered a reliable 858

proxy for identifying depressive symptom severity 859

in mental health research. 860

B Distress Analysis Interview Corpus 861

(DAIC and E-DAIC) 862

The Distress Analysis Interview Corpus (DAIC- 863

WOZ) (Gratch et al., 2014) and its extended ver- 864

sion, E-DAIC (DAIC-WOZ Project, 2019), are 865

widely used datasets for research in automated de- 866

pression detection. Both datasets contain semi- 867

structured clinical interviews conducted by a virtual 868

interviewer named Ellie, operated via a "Wizard-of- 869

Oz" setup, to elicit verbal and non-verbal indicators 870

of psychological distress. 871

B.1 E-DAIC vs. DAIC-WOZ 872

The E-DAIC corpus is a re-transcribed and quality- 873

controlled extension of DAIC-WOZ. It corrects 874

known transcription errors and inconsistencies, and 875

provides standardized splits for training, develop- 876

ment, and testing. While DAIC-WOZ has been 877

extensively used in prior work, E-DAIC offers im- 878

proved data quality and is recommended for text- 879

based modeling tasks. 880

B.2 Dataset Composition 881

E-DAIC consists of 275 participant interviews, par- 882

titioned as follows: 883

• Training set: 163 participants 884

• Development set: 56 participants 885
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• Test set: 56 participants886

Each session includes:887

• Audio recordings: Interview audio in WAV888

format.889

• Transcripts: Time-stamped dialogue with890

speaker labels.891

• Visual features: Extracted using OpenFace,892

including facial landmarks, action units, and893

head pose.894

• Acoustic features: Extracted via COVAREP895

and FORMANT analysis.896

• PHQ-8 scores: Self-reported ratings of de-897

pression severity.898

B.3 Data Organization899

The dataset is organized into session-specific fold-900

ers identified by participant IDs (e.g., 300_P), each901

containing:902

• TRANSCRIPT.csv: Annotated dialogue tran-903

script.904

• AUDIO.wav: Raw audio file.905

• COVAREP.csv, FORMANT.csv: Acoustic fea-906

tures.907

• CLNF_features.txt, CLNF_AUs.csv,908

CLNF_pose.txt, CLNF_gaze.txt: Visual909

features extracted using OpenFace.910

Additional metadata includes:911

• train_split.csv, dev_split.csv,912

test_split.csv: Partition definitions.913

• PHQ8_scores.csv: Item-level and total PHQ-914

8 responses.915

B.4 PHQ-8 Score Distribution916

PHQ-8 scores in both DAIC and E-DAIC range917

from 0 to 24, capturing varying levels of depressive918

symptom severity. The distribution is right-skewed,919

with a concentration of low-to-moderate severity920

cases, which presents challenges for model calibra-921

tion and minority class performance.922

B.5 Usage Considerations 923

Researchers working with DAIC or E-DAIC should 924

consider the following: 925

• Data Quality: E-DAIC addresses known is- 926

sues in DAIC-WOZ, including transcript er- 927

rors and missing data, and is recommended 928

for textual modeling. 929

• Ethical Use: Given the sensitive nature of the 930

interviews, ethical guidelines and approvals 931

must be followed. 932

• Licensing: Access requires agreement to 933

the dataset’s End User License Agreement 934

(EULA). 935

Our use of both datasets complies with their in- 936

tended research purpose. The corpora were re- 937

leased to support research on automated detection 938

of psychological distress and related mental health 939

conditions. In this work, we focus exclusively on 940

the prediction of PHQ-8 depression severity from 941

textual transcripts, a primary task for which the 942

dataset was designed. The datasets are anonymized 943

at source, with personally identifiable information 944

removed prior to distribution. We further restrict 945

our usage to non-commercial, academic settings, 946

operate solely on de-identified utterance sequences, 947

and report only aggregate results. No individual- 948

level data or metadata are released. All use com- 949

plies with the dataset’s End User License Agree- 950

ment (EULA) and contributes to its intended goal 951

of advancing computational methods for mental 952

health assessment. 953

For detailed information on data preprocessing 954

and feature extraction methodologies, refer to the 955

official documentation provided with the dataset. 956

C Ablation Study Experimental Setup 957

For each ablation, we use the same data splits, 958

batch size, optimizer, learning rate schedule, and 959

early stopping criteria as the main experiments. 960

The following configurations are evaluated: 961

• Full Model: All components enabled (atten- 962

tion, residual, variance). 963

• No Attention: Attention layer removed. 964

• No Residual: Residual connection removed. 965

• No Variance: Variance prediction head dis- 966

abled; model trained with MSE loss. 967
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Each model is trained for the same number of968

epochs with fixed random seeds for reproducibil-969

ity. After training, we evaluate on the held-out970

test set and report MAE, RMSE, and NLL (where971

available). All code, configurations, and results are972

available for reproducibility.973

D Case Study974
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Figure 4: Case studies illustrating prediction, ground
truth, and model uncertainty for three representative
participants. Each subplot shows the temporal trajectory
of predictions (blue), ground truth (dashed green), and
uncertainty intervals (light blue area) across timesteps.
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Figure 5: Uncertainty distributions by severity group

To provide a more detailed understanding of the 975

model’s behavior, we conducted case studies on 976

selected participants, focusing on key scenarios 977

such as well-calibrated predictions, high uncer- 978

tainty, high error, and best-predicted cases. For 979

each participant, we analyzed their prediction tra- 980

jectories, uncertainty estimates, and ground truth 981

values over time. Figure 4 illustrates three represen- 982

tative examples: (a) a well-calibrated participant 983

where predicted uncertainties closely align with 984

observed errors; (b) a high-error, high-uncertainty 985

case, reflecting model uncertainty under ambigu- 986

ous input; and (c) the best-predicted participant, 987

demonstrating accurate predictions with narrow 988

uncertainty bands. These examples highlight the 989

model’s ability to adaptively express confidence, 990

offering interpretable outputs for both reliable and 991

uncertain predictions. 992

E Further experiments 993

E.1 Sharpness Calibration Tradeoff. 994

To further analyze the quality of our uncertainty 995

estimates, we examine the sharpness–calibration 996

tradeoff. Sharpness refers to the concentration or 997

narrowness of the model’s predictive distributions, 998

with sharper (lower variance) predictions indicat- 999
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Figure 6: Sharpness calibration tradeoff

ing higher confidence. However, sharpness must1000

be balanced with calibration: a model that is too1001

sharp may be overconfident, while a model that1002

is too broad may be underconfident. Figure 6 vi-1003

sualizes the distribution of predictive standard de-1004

viations across the test set and assesses the rela-1005

tionship between predicted uncertainty and actual1006

error. This analysis reveals whether the model’s1007

most confident predictions are indeed more accu-1008

rate, and whether improvements in sharpness come1009

at the expense of calibration.1010

We observe that the model with γ = 0.5 pro-1011

duces a sharper distribution of predictive standard1012

deviations, reflecting lower predicted uncertainty1013

overall. This configuration also yields a stronger1014

negative correlation between predicted standard1015

deviation and absolute error (r = −0.3466), com-1016

pared to the default uniform configuration (r =1017

−0.1557). This indicates that, under γ = 0.5,1018

the model’s uncertainty estimates more effectively1019

distinguish between high- and low-error predic-1020

tions. However, as discussed previously, this gain1021

in sharpness and ranking quality comes at the cost1022

of calibration: the model systematically underesti-1023

mates its uncertainty, leading to undercoverage in1024

the prediction interval analysis.1025

E.2 Error–Uncertainty Correlation1026

Figure 7 illustrates the relationship between pre-1027

dicted uncertainty and absolute prediction error for1028

PTTSD trained with Gaussian NLL. We observe a1029

strong linear correlation, with a Pearson coefficient1030

of 0.88 and Spearman rank correlation of 0.64, both1031

statistically significant (p < 0.001). A fitted regres- 1032

sion line yields an R2 of 0.77 with a narrow 95% 1033

confidence interval, confirming that higher uncer- 1034

tainty estimates are predictive of higher errors. This 1035

supports the model’s ability to assign meaningful 1036

and interpretable uncertainty in practice. 1037
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Figure 7: Error uncertainty correlation for PTTSD with
Gaussian NLL

E.3 Temporal Uncertainty Dynamics 1038

Figure 8 shows how mean predicted uncertainty 1039

and mean absolute error evolve across timesteps 1040

for PTTSD trained with Gaussian NLL. Early in 1041

the sequence, where many samples are available, 1042

both uncertainty and error are relatively high but 1043

decrease steadily as the model accumulates con- 1044

textual information. After around timestep 250, 1045

uncertainty stabilizes, while the error begins to in- 1046

crease. This divergence is likely due to the sharp 1047

drop in sample count at later timesteps (e.g., only 1048

8 samples after timestep 200 and just one after 1049

timestep 350), which introduces statistical noise 1050

and limits the model’s ability to generalize. 1051
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