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Abstract

Accurate and interpretable predictions of de-
pression severity are essential for clinical de-
cision support, yet existing models often lack
uncertainty estimates and temporal modeling.
We propose PTTSD, a Probabilistic Textual
Time Series Depression Detection framework
that predicts PHQ-8 scores from utterance-
level clinical interviews while modeling uncer-
tainty over time. PTTSD includes sequence-to-
sequence and sequence-to-one variants, both
combining bidirectional LSTMs, self-attention,
and residual connections with Gaussian or
Student’s-t output heads trained via negative
log-likelihood. Evaluated on E-DAIC and
DAIC-WOZ, PTTSD achieves state-of-the-art
performance among text-only systems (e.g.,
MAE = 3.85 on E-DAIC, 3.55 on DAIC) and
produces well-calibrated prediction intervals.
Ablations confirm the value of attention and
probabilistic modeling, while comparisons with
MentalBERT establish generality. A three-part
calibration analysis and qualitative case studies
further highlight the interpretability and clini-
cal relevance of uncertainty-aware forecasting.

1 Introduction

Depression remains one of the leading causes of
global disability, affecting over 300 million indi-
viduals worldwide (WHO, 2017, 2022). Scalable,
automated tools for assessing depressive symptom
severity offer valuable support in digital therapy
and remote care, where access to clinicians is lim-
ited. Among these tools, text-based systems that
process clinical interviews have shown strong po-
tential for predicting standardized scores such as
the PHQ-8 (Kroenke et al., 2009).

Recent methods typically model interview tran-
scripts as sequences of utterances and employ deter-
ministic architectures such as LSTMs, Transform-
ers, or large language models (LLMs) (Mandal
et al., 2025; Fang et al., 2023a; Nykoniuk et al.,

2025; Sadeghi et al., 2024). These utterance se-
quences naturally form a textual time series, where
each utterance provides a temporally ordered ob-
servation. However, most existing approaches pro-
duce scalar severity estimates without quantifying
uncertainty—an important limitation in high-stakes
clinical contexts.

We argue that modeling depression severity as
a probabilistic textual time series regression task
enables not only accurate predictions but also inter-
pretable confidence estimates. In this formulation,
each utterance contributes to an evolving poste-
rior over severity scores, allowing us to capture
aleatoric uncertainty—uncertainty arising from in-
herent noise or ambiguity in the input, such as
sparse, contradictory, or ambiguous language. This
uncertainty-aware perspective is crucial in clinical
natural language processing (NLP), where model
confidence can significantly affect downstream
decision-making.

We introduce PTTSD—a Probabilistic Textual
Time Series Depression Detection framework that
makes temporally grounded, calibrated predictions
over PHQ-8 scores from utterance-level sequences.
Unlike prior work, PTTSD addresses three key lim-
itations in the field: (1) it produces calibrated un-
certainty estimates rather than point predictions;
(2) it avoids prompt-based methods, improving re-
producibility; and (3) it leverages full transcripts
to capture temporal structure. Our model encodes
the input with a bidirectional LSTM, self-attention,
and residual connections, and produces distribu-
tional outputs using Gaussian or Student’s-¢ heads
trained via negative log-likelihood loss.

We evaluate PTTSD on the DAIC and E-DAIC
benchmarks using high-quality re-transcribed in-
terviews and demonstrate strong performance on
standard metrics (e.g., MAE = 3.55, RMSE =4.77
on DAIC; MAE = 3.85, RMSE =4.52 on E-DAIC),
outperforming recent text-only baselines without
relying on prompt engineering or handcrafted fea-



tures. Ablation and sensitivity analyses further val-

idate the contributions of probabilistic loss design,

attention mechanisms, and calibration metrics.
Our main contributions are:

* We propose PTTSD, a fully probabilistic se-
quence model that jointly predicts PHQ-8
scores along with calibrated uncertainty from
utterance-level textual time series.

* We train and evaluate PTTSD end-to-end on
full interviews without handcrafted prompts,
yielding a simple, reproducible modeling
pipeline.

* We achieve state-of-the-art results on E-DAIC
among text-only models, and provide thor-
ough ablation, calibration, and sensitivity anal-
yses to assess uncertainty quality and model
robustness.

2 Related Work

Textual time series modeling has been central to
recent efforts in automatic depression detection,
especially within clinical interviews and therapy
sessions. Prior work has predominantly relied on
deterministic neural methods such as LSTMs and
attention-based transformers to model temporal de-
pendencies in textual data (Mandal et al., 2025;
Fang et al., 2023a; Nykoniuk et al., 2025). These
models capture sequential patterns but lack mech-
anisms to quantify uncertainty over time. While
LLMs extract richer textual features (Sadeghi et al.,
2024; Chen et al., 2024), most systems remain
heuristic or deterministic, focusing on structural or
multimodal fusion rather than probabilistic reason-
ing. In contrast, our fully probabilistic, end-to-end
model captures uncertainty directly from raw utter-
ances without handcrafted prompts, emphasizing
simplicity and efficiency.

Notably, Qureshi et al. (2019b) use multitask
learning with attention mechanisms for joint re-
gression and classification, but do not incorporate
uncertainty modeling. Similarly, prompt-based
methods such as those of Zhang and Guo (2024)
transform depression detection into a few-shot clas-
sification task via language model prompting, but
still yield single-point predictions. Graph-based ar-
chitectures (Burdisso et al., 2023; Chen et al., 2024)
model discourse-level context across utterances and
questions, offering enhanced interpretability and
structural awareness, though they too typically omit
calibrated uncertainty.

A rare exception is Dia et al. (2024), who pro-
pose a stochastic transformer for post-traumatic
stress disorder detection, introducing probabilis-
tic components such as stochastic activations to
model uncertainty across modalities. However,
their work focuses on visual signals and does not
address textual time series or PHQ-8 regression.
More recently, Zhang et al. (2025) apply a multi-
instance learning (MIL) framework to estimate de-
pression severity from long transcripts, assigning
confidence scores to depressive cues at the sen-
tence level. While this provides instance-level in-
terpretability, the underlying model is not explicitly
probabilistic in the Bayesian sense.

Several recent works have explored fair or cali-
brated uncertainty estimation. Li and Zhou (2025)
propose Fair Uncertainty Quantification (FUQ) for
PHQ regression, producing conformal prediction
intervals with coverage guarantees across demo-
graphic groups. While effective for fairness, FUQ
operates at the distributional output level and does
not model temporal evolution within interviews.
Other systems, such as Mao et al. (2023) and Guo
et al. (2022), employ BiLSTMs or Transformers
with textual features, sometimes augmented by
topic signals, but focus solely on deterministic loss
objectives.

3 Probabilistic Textual Time Series
Depression Detection

3.1 Problem Formulation

We formalize PHQ-8 prediction as a probabilis-
tic regression task over utterance-level textual se-
quences. Given a clinical interview transcript con-
sisting of 7" utterances {u1, ug, ..., ur}, the goal
is to predict a scalar depression severity score
y € R (e.g., the participant’s PHQ-8 score), and
quantify uncertainty in that prediction.

p(y | e11;0)

3.2 Data and Preprocessing

We utilize the Distress Analysis Interview Corpus
(DAIC) (Gratch et al., 2014) and extended DAIC
(E-DAIC) (DAIC-WOQOZ Project, 2019) datasets,
which contain anonymized semi-structured inter-
view transcripts and associated PHQ-8 (Kroenke
et al., 2009) depression scores. Each participant’s
data consists of a sequence of utterances extracted
from transcript files, along with a PHQ-8 score
indicating depression severity. The PHQ-8 (Pa-
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Figure 1: Probabilistic Textual Time Series Depression Detection

tient Health Questionnaire-8) is a standardized self-
report instrument with scores ranging from 0 to 24,
used to assess depressive symptom severity. More
details on the PHQ-8 and DAIC in Appendix A and
Appendix B, respectively.

To improve interview transcription fidelity, we
reprocessed the original E-DAIC audio using Whis-
perX (Bain et al., 2023), which provides more ac-
curate word-level alignment and robust speaker di-
arization compared to the baseline Whisper model
(Radford et al., 2023) employed by Sadeghi et al.
(2024). We organize utterances into temporal se-
quences and split the data into training, validation,
and test sets using the predefined partitions. During
batching, utterances are padded to the batch’s max-
imum length, and an attention mask is constructed
to differentiate padded from valid tokens.

3.3 Generating Utterance Embeddings

We represent each utterance using pretrained sen-
tence encoders. We represent each utterance
using pretrained sentence encoders. Our pri-
mary model uses the all-MinilLM-L6-v2 Sen-
tence Transformer' (Reimers and Gurevych, 2019),
a compact model with only 22 million parame-
ters that achieves competitive performance across
a wide range of tasks on the Hugging Face
MTEB Embedding Leaderboard (Muennighoff
et al., 2023). We also evaluate an alternative variant
of our model using MentalBERT (Ji et al., 2022), a
domain-adapted BERT model pretrained on mental
health-related corpora’.

For Sentence Transformers, utterances are en-
coded directly into fixed-dimensional vectors us-
ing mean pooling over token representations. For

"https://huggingface.co/sentence-transformers/
all-MinilM-L6-v2

2https://huggingface.co/mental/
mental-bert-base-uncased

MentalBERT, we extract the final hidden state of
the [CLS] token as the utterance-level embedding.
In both cases, each utterance u; is independently
mapped to an embedding vector e, € RP. The
resulting sequence (e, e, . .., er) represents the
input utterance series, where 7' is the number of
utterances in the session. These embeddings are
stacked into a tensor X € RBXT*P where B is
the batch size, T' the number of utterances, and
D the embedding dimension. We propagate atten-
tion masks through the entire pipeline to exclude
padded positions from contributing to downstream
modeling, loss computation, and evaluation.

3.4 Probabilistic LSTM Architecture

PTTSD uses a unified sequence model that sup-
ports both sequence-to-sequence (seq2seq) and
sequence-to-one (seq2one) prediction modes. Both
variants share the same architectural backbone in-
spired by (Mandal et al., 2025) (Figure 1): a multi-
layer bidirectional LSTM followed by a multi-head
self-attention layer (Vaswani et al., 2017) with
residual connections. Let X € RB*XT*D be the
input utterance embedding sequence. The LSTM
encodes this into hidden states H € REBXTxH
which are then passed through the attention layer
to produce refined representations. The final at-
tended representation is obtained via a residual
connection:

A = Attention(H) + H

Sequence-to-Sequence. In this mode, each time
step ¢ yields a predictive distribution p(y; | e<¢).
Two feedforward networks (MLPs) map the at-
tended hidden state a; to the mean and uncertainty
parameters:

fu = MLP,(a;), ¢ = softplus(MLP,(a¢))+e
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where € > 0 ensures numerical stability. Depend-
ing on the output head, the model may alternatively
predict evidential parameters or degrees of freedom
for a Student’s-¢ distribution. All predictions are
computed in parallel and masked to exclude padded
positions.

Sequence-to-One. In this mode, the attended se-
quence A is aggregated into a single pooled vector
using masked average pooling. This pooled repre-
sentation is then used to predict a single distribution
p(y | e1.7), matching the session-level annotation
granularity of PHQ-8.

3.5 Sequence Modeling and Predictive
Distributions

In the sequence-to-sequence variant, the PHQ-8
score is modeled as a time series where the label at
time step ¢ is predicted as:

p(ye | e<t;0)

where 0 denotes the model parameters and e<;
are the utterance embeddings up to time . The
model is trained non-autoregressively, i.e., without
access to past labels y;. In the sequence-to-one
variant, a single distribution is predicted for the
entire sequence:

p(y | er.1;0)

corresponding to the session-level PHQ-8 target.
We explore two probabilistic output distribu-
tions:

Gaussian distribution. The model predicts a
mean fi; and standard deviation &; at each time
step, defining the conditional distribution as:

p(ye | e<i;0) = Ny, | fu,67)

Student’s t-distribution. Alternatively, the
model may output a location fi;, scale 4, and
degrees of freedom 14, defining:

p(ye | e<t; 0) = StudentT(yy | fut, 64, vt)

The corresponding probability density function is:

1 N2
e (* “)]
14 g

with normalization constant:

flylpov)=Cv,0)

3.6 Loss Functions

We train all models using the negative log-
likelihood (NLL) of the ground-truth PHQ-8 score
under the predicted distribution. For the sequence-
to-sequence variant, the loss is computed at each
time step and averaged across valid utterances. For
the sequence-to-one variant, a single prediction is
made per session, and the NLL is computed at the
sequence level.

Let iy and 6, denote the predicted mean and
standard deviation at time step ¢ (or fi,0 in the
seq2one case, where ¢ = 1). The total sequence
loss is:

T togp(un | e<i6)  (seq2seq)
M ~logp(y | err; 0) (seq2one)

The batch loss is normalized across participants:

B
Lowen = = 3 L4
atc B < - T seq
1=

where T} is the number of valid utterances for par-
ticipant ¢; for seq2one, T; = 1.

For Gaussian outputs, the model predicts a mean
and standard deviation, and the corresponding
weighted Gaussian NLL loss is:

T

Ll = Z [alog(2m) + Blog(67) + 7 - 6]
=1

(ye — fu)?
)

O

with §; =

For seq2one, this reduces to a single-term sum
with ¢ = 1. The weights «, 3, control the trade-
off between likelihood components and are set to 1
by default.

We optionally use auxiliary or baseline objec-
tives:

1 T

T

. 1 .

Lmse = T Z(@/t—ut)Q,ﬁMAE =7 Z |y — fue]
t=1 t=1

In the seq2one case, the summation reduces to
a single term, as only one label and one prediction
exist per sample.



3.7 Training Procedure

PTTSD is trained for 50 epochs using the Adam
optimizer with cosine annealing (Loshchilov and
Hutter, 2016). The learning rate is initialized at 2e-
4 and decays smoothly to a minimum of le-4. We
batch at the participant level, with each batch con-
taining all utterances from a subset of participants.
Early stopping with a patience of 15 epochs is ap-
plied based on Dev MAE, and the best-performing
model checkpoint is restored. To address label
imbalance, we apply a log transformation to the
targets during training, with outputs transformed
back to the original scale for evaluation.

4 [Experiments

4.1 Experimental Setup

Implementation. All models are implemented in
PyTorch (Paszke et al., 2019). Padding, batching,
and masking ensure that variable-length sequences
do not affect loss or metric computations.

Hardware. Training is performed on a single
NVIDIA A100-SXM4-80GB GPU with 80GB of
GDDR6 VRAM, using CUDA version 12.2.

Runtime. Training PTTSD for 50 epochs on a
single NVIDIA A100-80 GB takes ~2h 23min in
wall-clock time (=172 s per epoch). The model
has a total 2,703,403 trainable parameters.

Data Splits. We follow the official training, val-
idation, and test splits provided with each dataset.
For E-DAIC, the data is partitioned into 163 train-
ing, 56 validation, and 56 test participants. For
DAIC-WOZ, the official splits include 107 train-
ing, 35 validation, and 56 test participants. As
described in Section 3.2, all audio is re-transcribed
using WhisperX to improve transcription quality
and alignment over the original transcripts.

Evaluation Metrics. We evaluate models on
both the validation and held-out test sets using
mean squared error (MSE) and root mean squared
error (RMSE). These metrics quantify average pre-
diction error, with RMSE placing greater emphasis
on larger errors due to its squaring operation. This
makes RMSE particularly useful for identifying
models that minimize not just average error, but
also variance in error magnitude. When model-
ing predictive uncertainty, we additionally report
negative log-likelihood (NLL). All metrics are com-
puted over valid (non-padded) utterances only.

Reproducibility. All preprocessing steps, model
configurations, and training scripts are made pub-
licly available on GitHub.? To account for variabil-
ity due to random initialization, we report average
performance over three runs with different seeds.

4.2 Main Results

Table 1 presents PHQ-8 regression performance
on both E-DAIC and DAIC datasets. We compare
our PTTSD models across multiple configurations
(sequence-to-sequence vs. sequence-to-one; Men-
talBERT vs. all-MiniLM-L6-v2) against a range of
prior text-based approaches.

E-DAIC. Among all text-only systems, PTTSD
(sequence-to-sequence with all-MiniLM-L6-v2)
achieves the lowest test MAE (3.85) and RMSE
(4.52), establishing a new state of the art. Other
PTTSD variants, including MentalBERT-based and
sequence-to-one configurations, also perform com-
petitively, demonstrating robustness across archi-
tecture choices. Earlier works such as Ray et al.
(2019) and Rodrigues Makiuchi et al. (2019) at-
tain dev RMSEs of 4.22-4.97, but their test perfor-
mance is either weaker or unreported. More recent
prompt-based models by Sadeghi et al. (2024) use
Whisper transcripts and audio-based quality filter-
ing. Their best variant (Pr3+Whisper+AudioQual)
reports strong dev MAE (2.85) and RMSE (4.02),
but is not text-only due to audio quality gat-
ing. Their best text-only test result (Pr3+Whisper)
achieves 4.22 MAE and 5.07 RMSE, which PTTSD
outperforms by a large margin on both metrics.

DAIC. On the original DAIC dataset, PTTSD
again performs competitively, especially in the
all-MiniLM-L6-v2 sequence-to-one variant, which
achieves the lowest test MAE (3.55) and matches
the best test RMSE (4.77) of Fang et al. (2023b).
Interestingly, Gong and Poellabauer (2017) reports
strong dev performance (MAE 2.77, RMSE 3.54),
while test results (MAE 3.96, RMSE 4.99) show
a notable drop, which may reflect differences in
evaluation protocols or generalization challenges.

4.3 Ablation Studies

Effect of Loss Function. Table 2 compares the
impact of different loss functions on validation and
test performance. Gaussian NLL yields the best
overall balance, achieving low MAE and RMSE
across both splits, with particularly strong test

30 https://github.com/someonedoing-research/
PTTSD
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Dev Test

Dataset  Method MAE RMSE MAE RMSE
Williamson et al. (2016) 3.34 4.46 - -
Gong and Poellabauer (2017) 2.77 3.54 3.96 4.99
Yang et al. (2017) 3.52 4.52 - -
Stepanov et al. (2018) - - 4.88 5.83
Oureshi et al. (2021) 3.78 - - -
Niu et al. (2021) 3.73 4.80 - -
Fang et al. (2023b) - - 3.61 4.76

DAIC Rohanian et al. (2019) - - 4.98 6.05
Al Hanai et al. (2018) 5.18 6.38 - -
Qureshi et al. (2019a) 3.74 4.80 - -

4.39 5.47 3.65 4.69

PTTSD - sequence-to-one - Mental BERT (£0.10)  (£043)  (1024)  (£024)
4.67 5.82 3.92 4.79

PTTSD - sequence-to-sequence - Mental BERT (£0.04)  (£034) (054  (+0.54)
. 3.82 4.84 3.55 4.77

PTTSD - sequence-to-one - all-MiniLM-L6-v2 (£009)  (£028)  (£0.15)  (£0.53)
. 4.59 522 3.88 5.10

PTTSD - sequence-to-sequence - all-MiniLM-L6-v2 (£007)  (£030)  (£041)  (£0.92)
Ray et al. (2019) - 4.37 4.02 473
Rodrigues Makiuchi et al. (2019) - LSTM - 4.97 - 6.88

Rodrigues Makiuchi et al. (2019) — 8 CNN blocks-LSTM - 4.22 - -

Sadeghi et al. (2023) 3.65 5.27 4.26 5.37
Sadeghi et al. (2024) — Pr3+Whisper 3.17 4.51 4.22 5.07
Sadeghi et al. (2024) — Pr3+Whisper+AudioQual 2.85 4.02 3.86 4.66
3.56 4.45 4.18 5.23

E-DAIC  PTTSD - sequence-to-one - MentalBERT (£001)  (4£007)  (4£005)  (£0.13)
3.55 4.58 4.20 5.39

PTTSD - sequence-to-sequence - Mental BERT (£0.14)  (£020)  (£003)  (£0.08)
. 3.60 4.76 4.58 5.87

PTTSD - sequence-to-one - all-MiniLM-L6-v2 (£0.13)  (£0.14)  (1050)  (£0.92)
. 3.47 4.57 3.85 4.52

PTTSD - sequence-to-sequence - all-MiniLM-L6-v2 (£002)  (£0.04) (1004  (£038)

Table 1: Evaluation of PHQ-8 regression performance across text-only models on the DAIC and E-DAIC datasets.

Bold indicates best performance within each dataset.

Loss Dev Test

MAE RMSE | MAE RMSE
Gaussian NLL.  3.4440 4.5293 | 3.8603 5.0219
Student-t NLL  3.6637 4.9328 | 3.9294 5.1488
MAE 3.6427 4.8091 | 4.1885 5.4407
MSE 3.6398 49845 | 3.6694 4.8760

Table 2: Loss function comparison on dev/test sets (E-
DAIC, single run).

MAE (3.86). Student’s-t NLL performs compa-
rably but with slightly worse calibration and higher
RMSE, likely due to the added complexity of esti-
mating the degrees of freedom.

MAE and MSE losses exhibit inconsistent be-
havior: while MSE achieves the lowest test MAE
(3.67), it performs worse on the dev set and yields
the highest test RMSE among all probabilistic
losses. The MAE loss underperforms across all
metrics, suggesting it is less effective for learning
stable sequence-level representations in this setting.

These results highlight that Gaussian NLL offers
the most reliable and generalizable performance
when modeling uncertainty in PHQ-8 prediction
from textual time series.

Effect of the Model Architecture. We conduct
an ablation study to assess the contribution of indi-
vidual architectural components in our probabilistic
LSTM sequence-to-sequence model. Each ablation
variant disables a specific component—attention,
residual connections, or the variance prediction
head—while all other settings are held constant.
Models are trained for 20 epochs (rather than the
full 50 used in main experiments) to accelerate
comparison. Evaluation is performed on the test
set using mean absolute error (MAE) and root mean
squared error (RMSE). Full experimental details
are included in Appendix C.

Table 3 and Figure 2 illustrate the effects of
disabling different components. Removing self-
attention yields the largest degradation in perfor-



Variant MAE A MAE (%) RMSE A RMSE (%)
Full Model 6.32 - 8.10 -

- w/o Attention 7.74 +22.48 9.74 +20.24

- w/o Residual 7.19 +13.78 8.96 +10.53

- w/o Variance Head  5.98 —5.37 7.21 —10.99

Table 3: Ablation of architectural components (Gaus-
sian NLL on test set). Absolute scores and percentage
change relative to the full model.

Model Performance

Component Contribution (% Change)

2s I 20
s

105

No_Residual  No_Attention

Figure 2: Ablation results

mance, increasing MAE by 22.5% and RMSE by
20.2%, confirming its importance for modeling
long-range dependencies across utterances.

Omitting residual connections also leads to no-
ticeable performance drops (MAE +13.8%, RMSE
+10.5%), suggesting that residual pathways con-
tribute to stable training and effective information
flow across layers.

Interestingly, removing the variance prediction
head simplifies the model and yields slightly bet-
ter raw error metrics (MAE —5.4% and RMSE
—11.0%), likely because the model reverts to a sim-
pler deterministic objective. However, this comes
at the cost of losing uncertainty estimation—a core
benefit in clinical decision support.

Overall, the full model offers the best trade-off
between predictive accuracy and uncertainty mod-
eling, with ablations confirming the value of self-
attention, residuals, and probabilistic output heads.

4.4 Hyperparameter Sensitivity

a f ¥ NLL (Dev) NLL (Test) Comments

1 1 1 1.3129 1.1934 standard NLL

1 2 1 1.7854 1.4865 uncertainty-averse
1 1 2 1.2777 1.3189 error-focused

1 1 05 2.2163 2.0316 calibration-first

Table 4: Sensitivity analysis of Gaussian NLL loss
weighting parameters «, (3, and 7.

Table 4 presents the effect of varying the NLL
weighting parameters /3 (log-variance term) and
(normalized squared error term), with a held con-
stant as it weights the constant term in the NLL

and hence does not influence the model’s gradi-
ents or learning dynamics. The standard setting
(B = v = 1) yields the best overall performance
on the test set (NLL = 1.1934), indicating a bal-
anced trade-off between data fit and uncertainty
modeling. Increasing /3 to 2 (“uncertainty-averse”)
substantially increases NLL on both development
and test sets, suggesting that heavily penalizing
predicted variance harms calibration and leads to
underconfident predictions. Conversely, increasing
7 to 2 (“error-focused”) improves the development
NLL slightly but increases test NLL, indicating
overfitting to the training signal. Reducing ~y to 0.5
(“calibration-first”) degrades both development and
test NLLs, likely due to underemphasis on predic-
tion accuracy. The results suggest that aggressive
reweighting of either term destabilizes the trade-off
between sharpness and calibration, and that the de-
fault Gaussian NLL (8 = v = 1) remains the most
reliable setting across validation and test sets.

4.5 Uncertainty Calibration Analysis

Accurate uncertainty quantification is critical in
clinical NLP, where predictions may inform sen-
sitive decisions. We evaluate the calibration of
PTTSD using Expected Calibration Error (ECE),
empirical coverage, and visual diagnostics (Fig-
ure 3), comparing models trained with Gaussian
NLL and MSE losses to understand how proba-
bilistic modeling impacts calibration quality. The
figure includes three subplots: (1) a binned cali-
bration plot comparing mean predicted standard
deviation (x-axis) and mean absolute error (y-axis)
across uncertainty bins, with deviations from the
diagonal summarized by the Expected Calibration
Error (ECE); (2) a scatter plot of individual pre-
dictions showing predicted uncertainty versus ob-
served error; and (3) a coverage plot showing the
proportion of ground truth values falling within
model-predicted confidence intervals. Perfect cal-
ibration aligns with the red diagonal in each plot.
We compute the ECE as the average absolute devia-
tion between nominal confidence levels and the ac-
tual coverage rates observed at those levels. Specif-
ically, we compare the proportion of ground truth
values falling within the model’s prediction inter-
vals (e.g., 68%) to the expected theoretical value.
Figure 3 compares calibration results for PTTSD
trained with Gaussian NLL and MSE. The Gaus-
sian NLL model achieves a low ECE of 0.0220
and closely approximates ideal 68% coverage
(66.2%), indicating strong and informative calibra-
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Figure 3: Calibration analysis of PTTSD seq2seq on DAIC test set (Gaussian NLL vs. MSE)

tion. While slightly overconfident, it adapts uncer-
tainty to input ambiguity, producing sharp yet reli-
able intervals. In contrast, the MSE-trained model
shows poorer average calibration (ECE = 0.0675)
and is significantly underconfident, with coverage
far exceeding the nominal threshold (84.0%), re-
sulting in overly wide and less informative intervals.
Overall, the Gaussian NLL model yields better-
aligned uncertainty estimates balancing sharpness
and reliability—critical for clinical NLP applica-
tions where actionable confidence matters.

To illustrate the interpretability of our uncer-
tainty estimates, Appendix D presents case studies
visualizing predicted PHQ-8 intervals over time,
showing how the model adjusts confidence based
on input ambiguity and severity dynamics. We
also observe a strong correlation between predicted
uncertainty and absolute error (Pearson r = (.88,
Spearman p = 0.64; Appendix E.2), confirming
that uncertainty estimates reflect prediction quality.

Combined, the calibration metrics and case stud-
ies demonstrate that PTTSD produces informative
and actionable uncertainty. Unlike point-estimate
models, PTTSD adapts its confidence to the input,
indicating when predictions are reliable and when
caution is warranted. This is especially critical in

clinical NLP, where decisions depend not just on
what is predicted, but also on how sure the model
is. By providing sequence-level uncertainty that
evolves with dialogue, PTTSD supports transparent
and interpretable assessment for real-world mental
health screening and triage.

5 Conclusion

We introduced PTTSD, a probabilistic neural
framework for predicting PHQ-8 depression sever-
ity from utterance-level text. PTTSD models cali-
brated uncertainty using Gaussian and Student’s-¢
distributions and integrates bidirectional LSTMs,
self-attention, and residual connections. It re-
quires no handcrafted features or prompts, making
it suitable for clinical deployment. Experiments
on DAIC and E-DAIC show that PTTSD achieves
state-of-the-art performance among fully automatic
text-only systems, while providing reliable uncer-
tainty estimates. Ablations and calibration analyses
confirm the contributions of attention, probabilistic
output heads, and balanced loss weighting. These
findings support the utility of uncertainty-aware
textual time series modeling in clinical NLP. Fu-
ture work will explore multimodal extensions and
clinical validation.



Limitations

While PTTSD offers promising results in predictive
accuracy and uncertainty modeling, several limita-
tions remain. First, the framework relies solely on
textual data. Although effective, it does not lever-
age multimodal cues such as vocal prosody or facial
expressions, which are known to be informative
for assessing mental health. Second, the E-DAIC
dataset contains fewer than 300 participants, and
further reduction due to filtering and partitioning
limits the statistical power and generalizability of
our findings to broader clinical settings. Third, the
interviews in E-DAIC are conducted with a virtual
interviewer ("Ellie") operated in a Wizard-of-Oz
setup rather than a real clinician, which may affect
the ecological validity of the speech data and limit
applicability to authentic client—clinician interac-
tions. In terms of modeling, we encode utterances
independently using pretrained language models
without context-aware finetuning, potentially over-
looking local coherence or discourse-level cues.
Furthermore, while PTTSD provides distributional
predictions, we do not assess its clinical utility
or decision-support value; human-centered eval-
uations with therapists or end users are needed to
determine the interpretability and trustworthiness
of predicted uncertainty. Finally, although we eval-
uate calibration quantitatively, we do not study how
uncertainty scores might be perceived or utilized
by clinicians in real-world settings. Future work
should address these limitations by incorporating
multimodal signals, validating on therapist—client
dialogues, and evaluating the human trust and us-
ability of uncertainty-aware predictions.
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A PHQ-8 Depression Assessment

The Patient Health Questionnaire-8 (PHQ-8)
(Kroenke et al., 2009) is a widely used self-report
scale designed to measure the presence and sever-
ity of depressive symptoms. It is derived from the
PHQ-9 but omits the ninth item concerning suicidal
thoughts, making it more suitable for large-scale
screening and automated processing.

Each of the eight items corresponds to a DSM-
IV criterion for depression and asks respondents
to rate how often they have experienced a specific
symptom over the past two weeks. Responses are
scored on a 4-point Likert scale:
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0 — Not at all

1 — Several days

2 — More than half the days
* 3 — Nearly every day

The total PHQ-8 score ranges from 0 to 24 and
is interpreted as follows:

e 0—4: None

5-9: Mild depression

10-14: Moderate depression

15-19: Moderately severe depression

20-24: Severe depression

The PHQ-8 has been validated in both clinical
and general populations and is considered a reliable
proxy for identifying depressive symptom severity
in mental health research.

B Distress Analysis Interview Corpus
(DAIC and E-DAIC)

The Distress Analysis Interview Corpus (DAIC-
WOZ) (Gratch et al., 2014) and its extended ver-
sion, E-DAIC (DAIC-WOZ Project, 2019), are
widely used datasets for research in automated de-
pression detection. Both datasets contain semi-
structured clinical interviews conducted by a virtual
interviewer named Ellie, operated via a "Wizard-of-
0Oz" setup, to elicit verbal and non-verbal indicators
of psychological distress.

B.1 E-DAIC vs. DAIC-WOZ

The E-DAIC corpus is a re-transcribed and quality-
controlled extension of DAIC-WOZ. It corrects
known transcription errors and inconsistencies, and
provides standardized splits for training, develop-
ment, and testing. While DAIC-WOZ has been
extensively used in prior work, E-DAIC offers im-
proved data quality and is recommended for text-
based modeling tasks.

B.2 Dataset Composition

E-DAIC consists of 275 participant interviews, par-
titioned as follows:

* Training set: 163 participants

* Development set: 56 participants
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* Test set: 56 participants
Each session includes:

¢ Audio recordings: Interview audio in WAV
format.

* Transcripts: Time-stamped dialogue with
speaker labels.

* Visual features: Extracted using OpenFace,
including facial landmarks, action units, and
head pose.

¢ Acoustic features: Extracted via COVAREP
and FORMANT analysis.

* PHQ-8 scores: Self-reported ratings of de-
pression severity.

B.3 Data Organization

The dataset is organized into session-specific fold-
ers identified by participant IDs (e.g., 30@0_P), each
containing:

* TRANSCRIPT.csv: Annotated dialogue tran-
script.

¢ AUDIO.wav: Raw audio file.

e COVAREP.csv, FORMANT.csv: Acoustic fea-
tures.

e CLNF_features. txt, CLNF_AUs.csv,
CLNF_pose.txt, CLNF_gaze.txt: Visual
features extracted using OpenFace.

Additional metadata includes:

e train_split.csv, dev_split.csv,
test_split.csv: Partition definitions.

* PHQ8_scores.csv: Item-level and total PHQ-
8 responses.

B.4 PHQ-8 Score Distribution

PHQ-8 scores in both DAIC and E-DAIC range
from O to 24, capturing varying levels of depressive
symptom severity. The distribution is right-skewed,
with a concentration of low-to-moderate severity
cases, which presents challenges for model calibra-
tion and minority class performance.
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B.5 Usage Considerations

Researchers working with DAIC or E-DAIC should
consider the following:

* Data Quality: E-DAIC addresses known is-
sues in DAIC-WOZ, including transcript er-
rors and missing data, and is recommended
for textual modeling.

e Ethical Use: Given the sensitive nature of the
interviews, ethical guidelines and approvals
must be followed.

* Licensing: Access requires agreement to
the dataset’s End User License Agreement
(EULA).

Our use of both datasets complies with their in-
tended research purpose. The corpora were re-
leased to support research on automated detection
of psychological distress and related mental health
conditions. In this work, we focus exclusively on
the prediction of PHQ-8 depression severity from
textual transcripts, a primary task for which the
dataset was designed. The datasets are anonymized
at source, with personally identifiable information
removed prior to distribution. We further restrict
our usage to non-commercial, academic settings,
operate solely on de-identified utterance sequences,
and report only aggregate results. No individual-
level data or metadata are released. All use com-
plies with the dataset’s End User License Agree-
ment (EULA) and contributes to its intended goal
of advancing computational methods for mental
health assessment.

For detailed information on data preprocessing
and feature extraction methodologies, refer to the
official documentation provided with the dataset.

C Ablation Study Experimental Setup

For each ablation, we use the same data splits,
batch size, optimizer, learning rate schedule, and
early stopping criteria as the main experiments.
The following configurations are evaluated:

* Full Model: All components enabled (atten-
tion, residual, variance).

* No Attention: Attention layer removed.
¢ No Residual: Residual connection removed.

* No Variance: Variance prediction head dis-
abled; model trained with MSE loss.



Each model is trained for the same number of
epochs with fixed random seeds for reproducibil-
ity. After training, we evaluate on the held-out
test set and report MAE, RMSE, and NLL (where
available). All code, configurations, and results are
available for reproducibility.

D Case Study

‘Well-Calibrated Participant (ID: 349)

= + Ground Truth
= Prediction
Uncertainty (+10)

60 100 120 140 160

80
Timestep

(a) well-calibrated

High-Error Participant (ID: 384)

Value

80 100 120

60
Timestep

(b) high-error, high-uncertainty

Best-Predicted Participant (ID: 407)

100 150
Timestep

(c) best predicted

Figure 4: Case studies illustrating prediction, ground
truth, and model uncertainty for three representative
participants. Each subplot shows the temporal trajectory
of predictions (blue), ground truth (dashed green), and
uncertainty intervals (light blue area) across timesteps.
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Figure 5: Uncertainty distributions by severity group

To provide a more detailed understanding of the
model’s behavior, we conducted case studies on
selected participants, focusing on key scenarios
such as well-calibrated predictions, high uncer-
tainty, high error, and best-predicted cases. For
each participant, we analyzed their prediction tra-
jectories, uncertainty estimates, and ground truth
values over time. Figure 4 illustrates three represen-
tative examples: (a) a well-calibrated participant
where predicted uncertainties closely align with
observed errors; (b) a high-error, high-uncertainty
case, reflecting model uncertainty under ambigu-
ous input; and (c) the best-predicted participant,
demonstrating accurate predictions with narrow
uncertainty bands. These examples highlight the
model’s ability to adaptively express confidence,
offering interpretable outputs for both reliable and
uncertain predictions.

E Further experiments

E.1 Sharpness Calibration Tradeoff.

To further analyze the quality of our uncertainty
estimates, we examine the sharpness—calibration
tradeoff. Sharpness refers to the concentration or
narrowness of the model’s predictive distributions,
with sharper (lower variance) predictions indicat-
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Figure 6: Sharpness calibration tradeoff

ing higher confidence. However, sharpness must
be balanced with calibration: a model that is too
sharp may be overconfident, while a model that
is too broad may be underconfident. Figure 6 vi-
sualizes the distribution of predictive standard de-
viations across the test set and assesses the rela-
tionship between predicted uncertainty and actual
error. This analysis reveals whether the model’s
most confident predictions are indeed more accu-
rate, and whether improvements in sharpness come
at the expense of calibration.

We observe that the model with v = 0.5 pro-
duces a sharper distribution of predictive standard
deviations, reflecting lower predicted uncertainty
overall. This configuration also yields a stronger
negative correlation between predicted standard
deviation and absolute error (r = —0.3466), com-
pared to the default uniform configuration (r
—0.1557). This indicates that, under v = 0.5,
the model’s uncertainty estimates more effectively
distinguish between high- and low-error predic-
tions. However, as discussed previously, this gain
in sharpness and ranking quality comes at the cost
of calibration: the model systematically underesti-
mates its uncertainty, leading to undercoverage in
the prediction interval analysis.

E.2 Error-Uncertainty Correlation

Figure 7 illustrates the relationship between pre-
dicted uncertainty and absolute prediction error for
PTTSD trained with Gaussian NLL. We observe a
strong linear correlation, with a Pearson coefficient
of 0.88 and Spearman rank correlation of 0.64, both
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statistically significant (p < 0.001). A fitted regres-
sion line yields an R? of 0.77 with a narrow 95%
confidence interval, confirming that higher uncer-
tainty estimates are predictive of higher errors. This
supports the model’s ability to assign meaningful
and interpretable uncertainty in practice.

Error-Uncertainty Correlation
Pearson: 0.8776, Spearman: 0.6365

60 == Linear

Absolute Error [ - y|

Statistical Tests:
arson r = 0.87
= 0.

10 25 30

15 20
Predicted Uncertainty (0)

Figure 7: Error uncertainty correlation for PTTSD with
Gaussian NLL

E.3 Temporal Uncertainty Dynamics

Figure 8 shows how mean predicted uncertainty
and mean absolute error evolve across timesteps
for PTTSD trained with Gaussian NLL. Early in
the sequence, where many samples are available,
both uncertainty and error are relatively high but
decrease steadily as the model accumulates con-
textual information. After around timestep 250,
uncertainty stabilizes, while the error begins to in-
crease. This divergence is likely due to the sharp
drop in sample count at later timesteps (e.g., only
8 samples after timestep 200 and just one after
timestep 350), which introduces statistical noise
and limits the model’s ability to generalize.

Mean Uncertainty and Error by Timestep

o R o R e B o e R VR

Mean Uncertainty (o)
Mean Absolute Error
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150
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200 250 300

Figure 8: Temporal uncertainty tendencies for PTTSD
with Gaussian NLL
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