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Abstract

Despite their simple intuition, convolutions are more tedious to analyze than dense
layers, which complicates the transfer of theoretical and algorithmic ideas to convo-
lutions. We simplify convolutions by viewing them as tensor networks (TNs) that
allow reasoning about the underlying tensor multiplications by drawing diagrams,
manipulating them to perform function transformations like differentiation, and
efficiently evaluating them with einsum. To demonstrate their simplicity and
expressiveness, we derive diagrams of various autodiff operations and popular cur-
vature approximations with full hyper-parameter support, batching, channel groups,
and generalization to any convolution dimension. Further, we provide convolution-
specific transformations based on the connectivity pattern which allow to simplify
diagrams before evaluation. Finally, we probe performance. Our TN implementa-
tion accelerates a recently-proposed KFAC variant up to 4.5 x while removing the
standard implementation’s memory overhead, and enables new hardware-efficient
tensor dropout for approximate backpropagation.

1 Introduction

Convolutional neural networks [CNNs, 39] mark a milestone in the development of deep learning
architectures as their ‘sliding window’ approach represents an important inductive bias for vision
tasks. Their intuition is simple to explain with graphical illustrations [e.g. 21]. Yet, convolutions are
more challenging to analyze than dense layers in multi-layer perceptrons (MLPs) or transformers [71].
One reason is that they are hard to express in matrix notation and—even in index notation—compact
expressions that are convenient to work with only exist for special hyper-parameters [e.g. 27, 2]. Many
hyper-parameters (stride, padding, ...) and additional features like channel groups [36] introduce
even more complexity that is inherited by related routines, e.g. for autodiff. We observe a delay of
analytic and algorithmic developments between MLPs vs. CNNs, e.g.

* Approximate Hessian diagonal: 1989 vs. 2024

* Hessian rank: 2021 vs. 2023

* Gradient descent learning dynamics: 2014 vs. 2023

* Neural tangent kernel (NTK): 2018 vs.2019

» Kronecker-factored quasi-Newton methods: 2021 vs. 2022

» Kronecker-factored curvature (KFAC, KFRA, KFLR): (2015, 2017, 2017) vs. (2016, 2020, 2020)
The software support for less standard routines some of these methods require also reflects this gap.

Some functions only support special dimensions [15]. Others use less efficient workarounds (§5.1) or
are not provided at all (§B.4). And they are hard to modify as the code is either closed-source [12] or
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from einconv import conv_index_pattern; from einops import einsum; import torch

01

I, K, D, P, S = ... # convolution hyper-parameters (2-tuples) 02

X = torch.rand(C_in, I[0], I[1]) # input to convolution i | d,

kfc_shape = (C_in * K[0] = K[1], C_in * K[0] = K[1]) # final shape M k1 m k
kz

k/
def kfc_im2col(): 2
"""Compute Kronecker factor via im2col."""

X_unf = torch.nn.functional.unfold(X, K, D, P, S)
return einsum(X_unf, X_unf, "i out, j out -> i j") nO) k1 nm
@)k

def kfc_tn(): |-|(2) ko 1
"""Compute Kronecker factor via its tensor network.""" l
o

Pil = conv_index_pattern(I[0], K[0], S[0]l, P[0], D[0])
Pi2 = conv_index_pattern(I[1], K[1], S[1], P[1], D[1])
return einsum(X, Pi1, Pi2, X, Pil, Pi2,

Cin

"c_in i1 i2, i1 ol k1, i2 02 k2, c_in_ i1_ i2_, i1_ ol_ k1_ i2_ o2

- - - - - k2_
+ " -> c_in k1 k2 c_in_ k1_ k2_").reshape(kfc_shape) J

def kfc_simplified_tn(): # for dense convolutions ’_: ,
"""Compute Kronecker factor via its simplified tensor network.""" iy ka 1H ky
X = X.reshape(C_in, I[0] // K[0], K[0], I[1] // K[1], K[1])
return einsum(X, X, "c_in ol k1 02 k2, c_in_ ol_ k1_ o02_ k2_" Cin oy

+ "-> c_in k1 k2 c_in_ k1_ k2_").reshape(kfc_shape)

Figure 1: Many convolution-related routines can be expressed as TNs and evaluated with einsum.
We illustrate this for the input-based factor of KFAC for convolutions [KFC, 27], whose standard
implementation (fop) requires unfolding the input (high memory). The TN (middle) enables internal
optimizations inside einsum (e.g. with contraction path optimizers like opt_einsum [66]). (Bottom)
In many cases, the TN further simplifies due to structures in the index pattern, which reduces cost.

written in a low-level language. This complicates the advance of existing, and the exploration of new,
algorithmic ideas for convolutions.

Here, we seek to reduce this complexity gap by viewing convolutions as tensor networks [TNs,
53, 6, 9] which express the underlying tensor multiplications as diagrams. These diagrams are simpler
to parse than mathematical equations and can seamlessly be (i) manipulated to take derivatives,
add batching, or extract sub-tensors, (ii) merged with other diagrams, and (iii) evaluated with
einsum. This yields simple, modifiable implementations that benefit from automated under-the-hood-
optimizations for efficient TN contraction developed by the quantum simulation community [e.g.
60, 25, 74, 13], like finding a high-quality contraction order or distributing computations:

1. We use the TN format of convolution from Hayashi et al. [29] to derive diagrams and
einsum formulas for autodiff and less standard routines for curvature approximations with
support for all hyper-parameters, batching, groups, and any dimension (Table 1).

2. We present transformations based on the convolution’s connectivity pattern to re-wire and
symbolically simplify TNs before evaluation (example in Figure 1).

3. We compare default and TN implementations, demonstrating optimal peak memory reduc-
tion and run time improvements up to 4.5 x for a recent KFAC variant, and showcase their
flexibility to impose hardware-efficient dropout for randomized backpropagation.

Our work not only provides simpler perspectives and implementations that facilitate the exploration
of algorithmic ideas for convolutions, but also directly advances second-order methods like KFAC: It
enables more frequent pre-conditioner updates, using larger batches without going out of memory,
and extending KFAC to transpose convolution. These improvements are important for second-order
optimization and other applications like Laplace approximations [20] and influence functions [28].

2 Preliminaries

We briefly review 2d convolution (§2.1), tensor multiplication and einsum (§2.2), then introduce the
graphical TN notation and apply it to convolution (§2.3). Bold lower-case (a), upper-case (A), and
upper-case sans-serif (A) symbols indicate vectors, matrices, and tensors. Entries follow the same
convention but use regular font weight; [-] denotes slicing ([A]; ; = A; ;). Parenthesized indices
mean reshapes, e.g. [a](; ;) = [A];,; with a the flattened matrix A.
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Figure 2: TNs of (a) 2d convolution and (b,c) connections to its matrix multiplication view. The
connectivity along each dimension is explicit via an index pattern tensor I1.

2.1 Convolution

2d convolutions process channels of 2d signals X € R *11 %12 with C;, channels of spatial dimen-
sions' I, I, by sliding a collection of Cy, filter banks, arranged in a kernel W € RCou Cin X K13 Kz
with kernel size Kj, K>, over the input. The sliding operation depends on various hyper-
parameters [padding, stride, ..., see 21]. At each step, the filters are contracted with the overlapping
area, yielding the channel values of a pixel in the output Y € Ru*01XOz with spatial dimensions
01, O,. Optionally, a bias from b € R is added per channel.

One way to implement convolution is via matrix multiplication [10], similar to fully-connected
layers. First, one extracts the overlapping patches from the input for each output, then flattens and
column-stacks them into a matrix [X] € RCnK1K2x010z2 called the unfolded input (or im2col).
Multiplying a matrix view W € R%uxCuaK1K2 of the kernel onto the unfolded input then yields a
matrix view Y of Y (the vector of ones, 10, 0,, copies the bias for each channel),

Y = WI[X] + b1, o, € REwx102, 1

We can also view convolution as an affine map of the flattened input z € R /172 into a vector view
y of Y with a Toeplitz-structured matrix A(W) € RCuO102xCnl1l2

y=AW)z +b® 10,0, € REu102 )

This perspective is uncommon in code, but used in theoretical works [e.g. 65] as it highlights the
similarity between convolutions and dense layers.

2.2 Tensor Multiplication

Tensor multiplication unifies outer (Kronecker), element-wise (Hadamard), and inner products and
uses the input-output index relation to infer the multiplication type. We start with the binary case,
then generalize to more inputs: Consider A, B, C whose index names are described by the index
tuples S1, Sa, S5 where S5 C (S U Sa) (converting tuples to sets if needed). Any product of A and
B can be described by the multiplication operator * (g, s, s,) With

C= *(51,S2,53)(A7 B) < [C}Ss = Z(slusz)\s3 [A}Sl [3]52 3

summing over indices that are not present in the output. E.g., for two matrices A, B, their product is
AB = *((i j),(,k).(i.k)) (A, B) (see §1.2), their Hadamard product A® B = *((; jy,(i,5),(i.5)) (4, B),
and their Kronecker product A @ B = *((; jy,(k.1),((i,k).(G.1))) (A, B). Libraries support this func-
tionality via einsum, which takes a string encoding of S1, S2, S3, followed by A, B. It also accepts

longer sequences Ay, ..., Ay with index tuples 51, Ss, ..., Sy and output index tuple Sy 41,
N
Anii=#s,,.5x.9v01) (AL AN) & [Ania]sy,, = Z <H[An]5n) . @
n=1

(UNZs Sn)\Sn 41

'We prefer I, I over the more common choice H, W to simplify the generalization to higher dimensions.



Table 1: Contraction expressions of operations related to 2d convolution. They include batching
and channel groups, which are standard features in implementations. We describe each operation
by a tuple of input tensors and a contraction string that uses the einops library’s syntax [59] which
can express index (un-)grouping. Some quantities are only correct up to a scalar factor which is
suppressed for brevity. See §B for visualizations and Table B3 for more operations.

Operation Operands Contraction string (einops [59] convention)
Conv. (no bias) X, I-I(l)7 I'I<2),W ,‘{,>(§ %éngimili)iii ié"ﬂ k1, i2 02 k2, (g c_out) c_in k1 k2
Unf.input (im2col) X, MN® n® "n c_in i1 i2, il ol k1, i2 02 k2 -> n (c_in k1 k2) (ol 02)"
: 1 2 "i1 ol ki, i2 02 k2, k1 k2

Unf. kernel (Toeplitz) N, N, W 5 %oit of o»' Gttt 19

: (1) (2) yY) "n (g c_in) i1 i2, il ol k1, i2 o2 k2, n (g c_out) ol o2
Welght VIP Xa n ) n 7V -> %g c_out) c_in k1 k2" &
Input VIP (tr. COIIV.) W7 I-I(l)7 I-I(Q)’V(Y) HE§ ﬁ’?gtz); Eﬁ;.nilixlig%, i1 ol k1, i2 02 k2, n (g c_out) ol o2

KFC/KFAC-expand X, |-|(1)7 |-|(2)7X7 |-|(1)7 n(z) ”1;1(§1ck1n? ié ;3 k;1 ol k1, i2 02 k2, n (g c_in_) ié )iQ

-> g (c in k1 k2) (c_in_ k1

1 2 1 2) "n ( ) i1 i2, il ol k1, i2 o2 k2, ( ) 112,
KFAC-reduce X,n® n® x n®» n® "= g o i e 2o 2 le gttt

1 o1 , 12 02 k2_ 7>g(c k1 kQ) (c_ k1

Binary and N-ary tensor multiplication are commutative: We can simultaneously permute operands
and their index tuples without changing the result,

(51,52,55) (A B) = %(5,.5,,5,) (B A) s *( 5,5, (A Ay ) = %(s;,.5,00 A, AL L)

They are also associative, i.e. we can multiply operands in any order. However, the notation becomes
involved as it requires additional set arithmetic to detect summable indices (see §H.1 for an example).

2.3 Tensor Networks & Convolution

A simpler way to understand tensor multiplications is via diagrams developed by e.g. Penrose [53].
Rank-K tensors are represented by nodes with K legs labelled by the index’s name’. (a}-i denotes
a vector a, i-(B}-/ a matrix B, and i{€)} a rank-3 tensor C. A Kronecker delta [0]; ; = J; ; is
simply a line, i-(6}-i =s{1)-i =i—i. Multiplications are indicated by connections between legs. For
inner multiplication, we join the legs of the involved indices, e.g. the matrix multiplication diagram
is i » = i{a}i{B)}+. Element-wise multiplication is similar, but with a leg sticking out. The
Hadamard and Kronecker product diagrams are

—@—;—w.— a8 :m-<<_._>>-( 0. 3)

Note that the outer tensor product is a rank-4 tensor and must be reshaped (indicated by black
triangles®) into a matrix. This syntax allows for extracting and embedding tensors along diagonals;
e.g. taking a matrix diagonal, @s@)-i= L@L:, or forming a diagonal matrix, i-{@es(@}-i= @1 ; and
generalizes to larger diagonal blocks (§B). In the following, we stick to the simplest case to avoid the
more advanced syntax. However, it shows the expressive power of TNs and is required to support
common features of convolutions like channel groups (known as separable convolutions).

Application to convolution: We define a binary tensor P € {0, 1}/1XO1xKixIoxO2xKz which
represents the connectivity pattern between input, output, and kernel. P, o, &y ,is,00,k, 18 1 if input
locations (41, 2) overlap with kernel positions (k1, ko) when computing output locations (01, 02)
and 0 otherwise. The spatial couplings are independent along each dimension, hence P decomposes
into Py, o, k1iz,00,ks = 5117)01, 522)0 x, Where the index pattern tensor NY e {0,1}1x0ixK;
encodes the connectivity along dllmensmn 7. With that, one obtains

Cin Ii,l2 Ki1,K2

_ E § § (1) (2)
YcoqulyOQ - Coul + XCm,Zl,Zg rlll o1,k1 nig,()z,k@ Wcoulacinak17k2

cin=111,i2=1 k1 ,ko=1

Without bias, this translates into the diagram in Figure 2a.

2We use identical shapes for all tensors. Leg orientation does not assign properties like co-/contra-variance.
3Reshape can be seen as multiplication with a one-hot tensor, but we decided to use a separate symbol to
emphasize it merely serves for re-interpretation and does not cause much computation.
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Figure 3: TN differentiation as graphical manipulation. (a) Differentiating convolution w.r.t. W is
cutting it out of the diagram and yields the weight Jacobian. (b) Same procedure applied to the
Jacobian w.r.t. X. (c) VJP for the we1ght and (d) input Jacobian (transpose convolution). Jacobians
are shaded, only their contraction with v g highlighted.

3 TNs for Convolution Operations

We now demonstrate the elegance of TNs for computing derivatives (§3.1), autodiff operations (§3.2),
and approximate second-order information (§3.3) by graphical manipulation. For simplicity, we
exclude batching (vmap-ing like in JAX [8]) and channel groups, and provide the diagrams with full
support in §B. Table | summarizes our derivations (with batching and groups). As a warm-up, we
identify the unfolded input and kernel from the matrix-multiplication view (Equations (1) and (2)).
They follow by contracting the index patterns with either the input or kernel (Figures 2b and 2c),

1) 2
[[[X]H(('lmkhki’) (01,01) — Z XCm i 12“51 01 k1n§2?027k2 )

11,12

§ : (1) (2)
[A(W)](('(,uhol 02),(Cin,i1, 72) n117017k1 i2,02,k2 WCuuhC|mk1~,k2 .
k1, k2

3.1 Tensor Network Differentiation

Derivatives play a crucial role in theoretical and practical ML. First, we show that differentiating a TN
diagram amounts to a simple graphical manipulation. Then, we derive the Jacobians of convolution.
Consider an arbitrary TN represented by the tensor multiplication from Equation (4). The Jacobian
tensor [Ja, Ant1]sy 4, sy = OAN+1lsyi1/a]A;]s, W.rt. an input A; collects all partial derivatives and
is addressed through indices Snt1 X S with S’ an 1ndependent copy of S;. Assume that A; only
enters once in the tensor multlphcatlon Then, taklng the derivative of Equation (4) w.r.t. [A ] il

simply replaces the tensor by a Kronecker delta i S

IA N+1
[(‘9]\[[;_‘1]]5/+ - Z [A1]51 te [Aj—l}sj,l H 52'71‘/ [Aj+1]sj+1 e [AN]SN (6)
7 (UA_;Sn)\Snt1 i€sS;

If an index 7 € S is summed, ¢ € S, 41, we can sum the Kronecker delta d; ;/, effectively replacing
all occurrences of 7 by 7’. If instead ¢ is part of the output index, ¢ € S, 11, the Kronecker delta
remains part of the Jacobian and imposes structure. Figure 3a illustrates this process in diagrams for
differentiating a convolution w.r.t. its kernel. Equation (6) amounts to cutting out the argument of
differentiation and assigning new indices to the resulting open legs. For the weight Jacobian JwY,
this introduces structure: If we re-interpret the two sub-diagrams in Figure 3a as matrices, compare
with the Kronecker diagram from Equation (5) and use Figure 2b, we find [X] " ® I, for the

Jacobian’s matrix view [e.g. 16]. Figure 3b shows the input Jacobian JxY which is a tensor view of
A(W), as expected from the matrix-vector perspective of Equation (2).

Differentiating a TN is more convenient than using matrix calculus [44] as it amounts to a simple
graphical manipulation, does not rely on a flattening convention, and therefore preserves the full
index structure. The resulting TN can still be translated back to matrix language, if desired. It also
simplifies the computation of higher-order derivatives (e.g. 9°Y/owsx), since differentiation yields
another TN and can thus be repeated. If a tensor occurs more than once in a TN, the product rule
applies and the derivative is a sum of TNs with one occurrence removed.



Figure 4: TNs of input-based Kronecker
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3.2 Autodiff & Connections to Transpose Convolution

Although Jacobians are useful, crucial routines for autodiff are vector-Jacobian and Jacobian-vector
products (VIPs, JVPs). Both are simple to realize with TNs due to access to full Jacobians. VJPs are
used in backpropagation to pull back a tensor VY ¢ RCux01x0: from the output to the input or
weight space. The VIP results VX € RCnxI1x%2 and VW) ¢ RCouxCinx K1 xK2 gre

v _ Z (Y) 9Yepu,01,05 vW _ Z (Y) Y equ01,00
cl i ,ih Cout;01,02 8Xd i ’ CoutrCln K7 K Cout;01,02 (3'WC/ o Kk '
Cout;01,02 “in 1072 Cout;01 ,02 outCin> N1, M2

Both are simply new TNs constructed from contracting the vector with the respective Jacobian,
see Figures 3c and 3d (VJPs are analogous). The input VJP is often used to define transpose
convolution [21]. In the matrix-multiplication perspective (Equation (2)), this operation is defined
relative to a convolution with kernel W by multiplication with A(W) T, i.e. using the same connectivity
pattern but mapping from the convolution’s output to input space. The TN in Figure 3d makes this
sharing explicit and cleanly defines transpose convolution.*

3.3 Kronecker-factored Approximate Curvature

The Jacobian diagrams allow us to construct the TNs of second-order information like the Fisher/gen-
eralized Gauss-Newton (GGN) matrix and sub-tensors like its diagonal (§C). Here, we focus on the
popular Kronecker-factored approximation of the GGN [47, 27, 23, 48] whose input-based Kronecker
factor relies on the unfolded input [X] which requires large memory. State-of-the-art libraries that
provide access to KFAC [17, 51] also use this approach. Using TNs, we can often avoid expanding
[X] explicitly and save memory. Here, we describe the existing KFAC approximations and their TNs
(see §5.1 for their run time evaluation).

KFC (KFAC-expand): Grosse & Martens [27] introduce a Kronecker approximation for the ker-
nel’s GGN, G ~ © ® I where I' € R%u«XCou and the input-based factor @ = [X][X]T €
REn K1 K2xCn K1 K2 (Figure 4a), the unfolded input’s self-inner product (averaged over a batch).

KFAC-reduce: Eschenhagen et al. [23] generalized KFAC to graph neural networks and transformers
based on the concept of weight sharing, also present in convolutions. They identify two approxi-
mations: KFAC-expand and KFAC-reduce. The former corresponds to KFC [27]. The latter shows
similar performance in downstream tasks, but is cheaper to compute. It relies on the column-averaged
unfolded input, i.e. the average over all patches sharing the same weights. KFAC-reduce approximates
G~ Q@I withT € REXCu and Q = 1/(0,02)°1, 0, [X](1, 0, [X]) T € ROnKiKaxCuki ke
(Figure 4b; averaged over a batch). For convolutions, this is arguably a ‘more natural’ approximation
as it becomes exact in certain limits [23], in contrast to the expand approximation.

KFAC for transpose convolution: Our approach enables us to derive KFAC for transpose convo-
lutions. We are not aware of previous works doing so. This seems surprising because, similar to
§2.1, transpose convolution can be seen as matrix multiplication between the kernel and an unfolded
input. From this formulation we can immediately obtain KFAC through the weight sharing view
of Eschenhagen et al. [23]. The Kronecker factor requires unfolding the input similar to im2col,
but for transpose convolutions. This operation is currently not provided by ML libraries. We can
overcome this limitation, express the unfolding operation as TN, and—for the first time—establish
KFAC (expand and reduce) for transpose convolutions (see §B.4 for details).

“Standalone implementations of transpose convolution require another parameter to unambiguously recon-
struct the convolution’s input dimension (see §D for how to compute I in this case).
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4 TN Simplifications & Implementation

Many convolutions in real-world CNNs use structured connectivity patterns that allow for simplifica-
tions which we describe here along with implementation aspects.

4.1 Index Pattern Structure & Simplifications

The index pattern I encodes the connectivity of a convolution and depends on its hyper-parameters.
Along one dimension, M = M(I, K, S, P, D) with input size I, kernel size K, stride .S, padding
P, and dilation D. We provide pseudo-code for computing I in §D which is easy to implement
efficiently with standard functions from any numerical library (Algorithm D1). Its entries are

[n(I7 Ka Sa P) D)]i,o,k = 6i,1+(k71)D+(071)37P 5 (7)

withi = 1,...,1,0 = 1,...,0,k = 1,...,K and output size O(I,K,S,P,D) = 1+
| (T+2P—(K+(K-1)(D-1)))/s]|. Since I is binary and has size linear in I, O, K, it is cheap to pre-
compute and cache. The index pattern’s symmetries allow for re-wiring a TN. For instance, the
symmetry of (k, D) and (o0, .S) in Equation (7) and O(I, K, S, P, D) permits a kernel-output swap,
exchanging the role of kernel and output dimension (Figure 5a). Rochette et al. [58] used this to
phrase the per-example gradient computation (Figure 3c) as convolution.

For many convolutions of real-world CNNs (see §E for a hyper-parameter study) the index pattern
possesses structure that simplifies its contraction with other tensors into either smaller contractions or
reshapes: Dense convolutions use a shared kernel size and stride, and thus process non-overlapping
adjacent tiles of the input. Their index pattern’s action can be expressed as a cheap reshape (Fig-
ure 5b). Such convolutions are common in DenseNets [33], MobileNets [31, 60], ResNets [30],
and ConvNeXts [42]. InceptionV3 [69] has 2d mixed-dense convolutions that are dense along one
dimension. Down-sampling convolutions use a larger stride than kernel size, hence only process a
sub-set of their input, and are used in ResNet18 [30], ResNext101 [72], and WideResNet101 [73].
Their pattern contracts with a tensor V like that of a dense convolution with a sub-tensor V (Figure 5c¢).
§5.1 shows that those simplifications accelerate computations.

4.2 Practical Benefits of the TN Abstraction & Limitations for Convolutions

Contraction order optimization: There exist various orders in which to carry out the summations
in a TN and their performance can vary by orders of magnitude. One extreme approach is to carry
out all summations via nested for-loops. This so-called Feynman path integral algorithm requires
little memory, but many FLOPS since it does not re-cycle intermediate results. The other extreme is
sequential pair-wise contraction. This builds up intermediate results and can greatly reduce FLOPS.
The schedule is represented by a binary tree, but the underlying search is in general at least #P-
hard [14]. Fortunately, there exist heuristics to find high-quality contraction trees for TNs with
hundreds of tensors [32, 25, 13], implemented in packages like opt_einsum [66].

Index slicing: A common problem with high-quality schedules is that intermediates exceed memory.
Dynamic slicing [32] (e.g. cotengra [25]) is a simple method to decompose a contraction until it
becomes feasible by breaking it up into smaller identical sub-tasks whose aggregation adds a small
overhead. This enables peak memory reduction and distribution.

Sparsity: I is sparse as only a small fraction of the input contributes to an output element. For
a convolution with stride S < K and default parameters (P = 0, D = 1), for fixed output and
kernel indices k, o, there is exactly one non-zero entry in [M]. , . Hence nnz(M) = OK, which
corresponds to a sparsity of /1. Padding leads to more kernel elements that do not contribute to an
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output pixel, and therefore a sparser . For down-sampling and dense convolutions, we showed
how IM’s algebraic structure allows to simplify its contraction. However, if that is not possible, I
contains explicit zeros that add unnecessary FLOPS. One way to circumvent this is to match a TN
with that of an operation with efficient implementation (like im2col, (transpose) convolution) using
transformations like the kernel-output swap or by introducing identity tensors to complete a template,
as done in Rochette et al. [58], Dangel [15] for per-sample gradients and im2col.

Approximate contraction & structured dropout: TNs offer a principled approach for stochas-
tic approximation via Monte-Carlo estimation to save memory and run time at the cost of accu-
racy. The basic idea is best explained on a matrix product C := AB = 25:1 [A]. ,, [B],,. with
A € RI*N B € RN, To approximate the sum, we introduce a distribution over n’s range, then
use column-row-sampling [CRS, 1] to form an unbiased Monte-Carlo approximation with sam-
pled indices, which only requires the sub-matrices with active column-row pairs. Bernoulli-CRS
samples without replacement by assigning a Bernoulli random variable Bernoulli(7,,) with prob-
ability 7, for column-row pair n to be included in the contraction. The Bernoulli estimator is

C = 25:1 n/m [A], . [Bl, . with 2, ~ Bernoulli(r, ). With a shared keep probability, 7, := p,
this yields the unbiased estimator C" =1/p%" , \ A’B’where A’ = AK and B’ = K B with

K = diag(z1, ..., 2n) are the sub-matrices of A, B containing the active column-row pairs. CRS
applies to a single contraction. For TNs with multiple sums, we can apply it individually, and also
impose a distribution over the result indices, which computes a (scaled) sub-tensor.

5 Experiments

Here, we demonstrate computational benefits of TNs for less standard routines of second-order
methods and showcase their flexibility to perform stochastic autodiff in novel ways.

5.1 Run Time Evaluation

We implement the presented TNs’ contraction strings and operands’ in PyTorch [52]. The simplifica-
tions from §4 can be applied on top and yield a modified einsum expression. To find a contraction
schedule, we use opt_einsum [66] with default settings. We extract the unique convolutions of 9
architectures for ImageNet and smaller data sets, then compare some operations from Table | with
their standard implementation on an Nvidia Tesla T4 GPU (16 GB); see §F for all details. Due to
space constraints, we highlight important insights here and provide references to the corresponding
material in the appendix. In general, the performance gap between standard and TN implementation
decreases the less common an operation is (Figure F17); from forward pass (inference & training), to
VIJPs (training), to KFAC (training with a second-order method). This is intuitive as more frequently
used routines have been optimized more aggressively.

Impact of simplifications: While general convolutions remain unaffected (Figure F18d) when
applying the transformations of §4, mixed dense, dense, and down-sampling convolutions consistently
enjoy significant run time improvements (Figures F18a to F18c). As an example, we show the
performance comparison for dense convolutions in Figure 6: The performance ratio’s median between
TN and standard forward and input VJP is close to 1, that is both require almost the same time. In the
median, the TN even outperforms PyTorch’s highly optimized weight VIJP, also for down-sampling

’einsum does not yet support index un-grouping, so we must reshape manually before and after.
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convolutions (Figure F21). For KFC, the median performance ratios are well below 1 for dense,
mixed dense & sub-sampling convolutions (Figure F22).

KFAC-reduce: For all convolution types, the TN implementation achieves its largest improvements
for € and consistently outperforms the PyTorch implementation in the median when simplifications
are enabled (Figure F23). The standard implementation unfolds the input, takes the row-average,
then forms its outer product. The TN does not need to expand [X] in memory and instead averages
the index pattern tensors, which reduces peak memory and run time. We observe performance ratios
down to 0.22x (speed-ups up to ~ 4.5 x, Table F9) and consistently lower memory consumption
with savings up to 3 GiB (Figure 7). Hence, our approach not only significantly reduces the overhead
of 2nd-order optimizers based on KFAC-reduce, but also allows them to operate on larger batches
without exceeding memory (Eschenhagen et al. [23] specifically mention memory as important
limitation of their method). Other examples for KFAC algorithms where computing the input-based
Kronecker factor adds significant time and memory overhead are that of Petersen et al. [54], Benzing
[5] which only use €2 (setting I'' < I), or Lin et al. [41, 40] which remove matrix inversion.

Downstream improvements with KFAC-reduce: To demonstrate the speed-ups of KFAC-reduce
in practical algorithms, we apply our work to the SINGD optimizer [41] and benchmark the impact
of our TN implementation on its memory and run time in comparison to SGD without momentum.
Concretely, we investigate SINGD with KFAC-reduce and diagonal pre-conditioners on ResNet18
and VGG19 on ImageNet-like synthetic data (3,256, 256) using a batch size of 128. We measured
per-iteration time and peak memory on an NVIDIA A40 with 48 GiB of RAM. For SINGD, we
compare computing the Kronecker factors with the standard approach (‘SINGD’) via input unfolding
versus our TN implementation (‘SINGD+TN”). Table 2 summarizes the results.

On both nets, our TN implementation halves
SINGD’s run time, and almost completely
eliminates the memory, overhead compared
to SGD. On VGG19, it dramatically lowers
the memory overhead, cutting it down by

Table 2: Impact of our TN implementation on SINGD’s
run time and peak memory compared to SGD.

Optimizer Per iter.[s] Peak mem. [GiB]

a factor of 2 from 32 GiB to 16 GiB. This £ gg\%}) 8}3 8?3 ig ggg
1 4 . . . .

enables using larger batches.qr more fre- 2 SINGDYTN  0.16(1.3%) 3.6 (1.0

quently updating the pre-conditioner, under-

lining the utility of our approach for reduc- 5, SGD 0.69 (1.0x) 14 (1.0x%)

ing the computational gap between approx- 8 SINGD 1.0(1.5%) 32(2.3%)

imate second-order and first-order methods. ~  SINGD+TN  0.80 (1.2x) 16 (1.1x)

5.2 Randomized Autodiff via Approximate Contraction

CRS is an alternative to checkpointing [26] to lower memory consumption of backpropagation [50,
11, 1]. Here, we focus on unbiased gradient approximations by applying the exact forward pass, but
CRS when computing the weight VJP, which requires storing a sub-tensor of X. For convolutions,
the approaches of existing works are limited by the supported functionality of ML libraries. Adelman
et al. [1] restrict to sampling X along ¢;,, which eliminates many gradient entries as the index is part
of the gradient. The randomized gradient would thus only train a sub-tensor of the kernel per step.
Oktay et al. [50], Chen et al. [11] apply unstructured dropout to X, store it in sparse form, and restore
the sparsified tensor during the backward pass. This reduces memory, but not computation.

Our TN implementation is more flexible and can, for example, tackle spatial dimensions with CRS.
This reduces memory to the same extent, but also run time due to fewer contractions. Importantly, it
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Figure 8: Sampling spatial axes is more effective than channels on both (a) real-world and (b)
synthetic data. We take the untrained All-CNN-C [68] for CIFAR-100 with cross-entropy loss,
disable dropout, and modify the convolutions to use a fraction p of X when computing the weight
gradient via Bernoulli-CRS. For mini-batches of size 128, we compute the deterministic gradients
for all kernels, then flatten and concatenate them into a vector g; likewise for its proxy g. CRS is
described by (pe,,, pi,, Di, ) the keep rates along the channel and spatial dimensions. We compare
channel and spatial sampling with same memory reduction, i.e. (p, 1, 1) and (1, ,/p, \/p). To measure
approximation quality, we use the normalized residual norm ll9—9dll,/||g||, and report mean and
standard deviation of 10 different model and batch initializations.

does not zero out the gradient for entire filters. In Figure 8 we compare the gradient approximation
errors of channel and spatial sub-sampling. For the same memory reduction, spatial sub-sampling
yields a smaller approximation error on both real & synthetic data. E.g., instead of keeping 75 % of
channels, we achieve the same approximation quality using only 35 % of pixels.

6 Related Work

Structured convolutions: We use the TN formulation of convolution from Hayashi et al. [29] who
focus on connecting kernel factorizations to existing (depth-wise separable [31, 60], factored [69],
bottleneck [30], flattened/CP decomposed, low-rank filter [67, 57, 70]) convolutions and explore new
factorizations. Our work focuses on operations related to convolutions, diagram manipulations, the
index pattern structure, and computational performance/flexibility. Structured convolutions integrate
seamlessly with our framework by replacing the kernel with its factorized TN.

Higher-order autodiff: ML frameworks focus on differentiating scalar-valued objectives once.
Recent works [37, 38, 43] developed a tensor calculus to compute higher-order derivatives of tensor-
valued functions and compiler optimizations through linear algebra and common sub-expression
elimination. Phrasing convolution as einsum, we allow it to be integrated into such frameworks,
benefit from their optimizations, and complement them with our convolution-specific simplifications.

7 Conclusion

We used tensor networks (TNs), a diagrammatic representation of tensor multiplications, to simplify
convolutions and many related operations. We derived the diagrams of autodiff and less standard
routines for curvature approximations like KFAC with support for all hyper-parameters, channel
groups, batching, and generalization to arbitrary dimensions. All amount to simple einsum expres-
sions that can easily be modified—e.g. to perform stochastic backpropagation—and benefit from
under-the-hood optimizations before evaluation. We complemented those by convolution-specific
symbolic simplifications based on structure in the connectivity pattern and showed their effectiveness
to advance second-order methods. Our TN implementation accelerates the computation of KFAC
up to 4.5 x and uses significantly less memory. Beyond performance improvements, the simplifying
perspective also allowed us to formulate KFAC for transpose convolution. More broadly, our work
underlines the elegance of TNs for reasoning about tensor multiplications and function transforma-
tions (differentiation, batching, slicing, simplification) in terms of diagrams at less cognitive load
without sacrificing rigour. We believe they are a powerful tool for the ML community that will open
up new algorithmic possibilities due to their simplicity & flexibility.
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A Limitations
Here we comment on limitations on our approach.

No common sub-expression elimination (CSE): Our implementation relies on opt_einsum
which focuses on contraction order optimization. This optimization is efficient when all operands
are different. However, with multiple occurrences of operands, computing shared sub-expressions
might be an advantageous optimization approach which opt_einsum does not account for. The
second-order quantity TNs from §C and §3.3 contain such sub-expressions, for instance [X] and

15102 [X] in KFAC-expand and KFAC-reduce, and SW in the GGN quantities from Figure C16.
The efficiency of CSE depends on how costly the shared tensor is to compute. For instance, computing

sW s expensive and therefore CSE is the more suitable optimization technique. For the input-based
Kronecker factors which require the unfolded input, either contraction path optimization or CSE
might be better. This is because the optimal contraction order may not correspond to 2x input
unfolding and exhibit more parallelism which may lead to faster run times on a GPU. It would be
interesting to integrate CSE into the contraction path optimization and develop a heuristic to choose a
contraction path, for instance based on a weighted sum of FLOPs and memory.

No index slicing: We mention index slicing as a technique to reduce peak memory of, and distribute,
TN contractions. However, our implementation does not use index slicing, although there are packages
like cotengra [25] with an interface similar to opt_einsum. We did not experiment with index
slicing as our benchmark uses a single GPU and did not encounter out-of-memory errors. Still, we
mention this technique, as, in combination with CSE, it could automatically reduce peak memory of
the GGN quantities from Figure C16 which suffer from high memory requirements.

B Visual Tour of Tensor Network Operations for Convolutions

Here, we extend the presented operations with a batch axis and allow for grouped convolutions.

B.1 Convolution & First-order Derivatives

Adding a batch dimension (vmap-ing): Adding a batch axis to all presented operations is trivial.
We only need to add an additional leg to the batched tensors, and connect these legs via element-wise
or inner multiplication, depending on whether the result tensor is batched or not.

Grouped convolutions: Grouped convolutions were originally proposed by Krizhevsky et al. [36]
and allow for parallelizing, distributing, and reducing the parameters of the convolution operation.

They split Cj, input channels into G groups of size Cj, := Cin/a, then perform independent convolu-
tions per group, each producing Clyy := Cou/c output channels which are concatenated in the output.
Each group uses a kernel W ;of size C’Om X C‘m x K7 x K,. These kernels are stacked into a single
tensor W € RCou:Cin: K1, K2 quch that (W](g.:),:.:.. = Wy. To support groups, we thus decompose the

channel indices into ¢, := (Gin, g) and coy := (Cout, g)- For the forward pass this yields the grouped
convolution (without bias)

_ (1) (2)
Y(g.,éﬂul),olm = Zil,ig,éi“,kl,kg X(g,ém),il,iznq:l,ol,kl niQ,OQ,kQ W(g,éom),cin,kl,k? . (B8)

Figure B9a shows the batched version of Equation (B8) as TN. Applying the differentiation rule from
§3 leads to the Jacobians and VJPs shown in the remaining panels of Figure BO.

B.2 Exact Second-order Information

In Figure B12 we show the TNs for the GGN diagonal and the GGN Gram matrix (empirical NTK
matrix) from Figure C16 extended by channel groups and a batch axis.

Diagonal block extraction: Combined with index un-grouping, diagonal extraction generalizes to
larger blocks: Let A € RE7*X7 be a matrix of K horizontally and vertically concatenated blocks
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Figure B9: TNs of the (a) forward pass, (b, c) Jacobians, and (d, ) VIPs with batch axis and channel
groups. They generalize Figures 2 and 3 from the main text. For the VJPs, the Jacobians are shaded.

. . .
I [ I

| . Cout Cout
< | n n/

(a) GGN diagonal (b) GGN Gram matrix (empirical NTK)

Figure B10: TNs of (a) the GGN diagonal and (b) the GGN Gram matrix with batching and channel
groups. They extend Figures C16b and C16¢ from the main text.

AFk2) ¢ RIXJ B — 1. K. We can extract the diagonal blocks by restoring the sub-structure,
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Figure B11: TN of a GGN mini-block diagonal without batching and channel groups.

01 01 o}
k 1 kll k 1 k /1
o
/
ko K o2 %2
. ko Kb
n —| A g | n I g
Cin 61/n d Cin d 51/n
(a) KFC/KFAC-expand factor (b) KFAC-reduce factor

Figure B12: TN diagrams of input-based factors in Kronecker approximations of the GGN for
convolutions with batching and channel groups. They extend Figure 4 from the main text.

then taking the diagonal along the K -dimensional index,

K
fgj = (ki) {A) (k).

We can apply this procedure to the GGN from Figure C16a. Assume we want to divide the output
channel, input channel, and spatial dimensions into G¢,,, G¢,,; Gk, , Gk, groups. A group will thus
be indexed with a tuple (g¢,,, 9c.,, 9K, » K, ) and the corresponding GGN block will be of dimension
Cout/GCm,l X Cin/GCm X Kl/GK1 X KQ/GK2 X Cout/GCm,l X Cin/GCm X KI/GK1 X KQ/GK2 and
correspond to the GGN for [W](gcouﬁ:)’(gcin :(gxcy ) (grc,,)- This process of un-grouping the output
dimensions, then taking the diagonal along the group indices, is illustrated in Figure B11. Note that
if we choose G, = Cout, G, = Cin, Gr, = K1, Gk, = Ks, each block will be a single number
and hence we recover the GGN diagonal from Figure C16b. If instead we G¢,, = G¢, Gk, Gk, = 1,
we obtain the full GGN from Figure C16a. The outlined schemes allows to extract mini-blocks of
arbitrary size along the diagonal (subject to the total dimension).

in?

B.3 Kronecker-factored Approximate Curvature (KFAC) for Grouped Convolutions

We were unable to find a definition of KFAC for grouped convolutions. Hence, we derive it here
and present the TN diagrams. We use the perspective that grouped convolutions are independent
convolutions over channel groups which are then concatenated. For each of those convolutions, we
can then apply established the KFAC approximation for convolutions without groups. For a group
g we have the kernel W, = [W], . ... and the unfolded input of its associated input channels,

3i) sttt

X1 = [XDg,),:.: = [Xl(g,),:.:] Cor [Xon o] = [Xnl(g,:),:,: = [Xlny(q,),:,:] in the batched setting).

KFC/KFAC-expand for grouped convolutions: Applying the regular KFC approximation to

the kernel of group g, this yields the Fisher approximation Q, ® I'g with T’y € RCoux Cou gnd
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Q, =1~ ZN_l[[Xn,g}][[Xn JA7 € ROnK1K2xCuK1K2 where X, g 1s the input tensor for sample
n and group g (remember the mdex structure Xy, (g..),i,i2)- Figure B12a shows the diagram for
{Nﬂg}g:

KFAC-reduce for grouped convolutions: Proceeding in the same way, but usmg the unfolded input
averaged over output locations, we obtain the Fisher approximation ﬂ ® I‘ with F € RCuxCou
and Q; = 1/N(©0:102 Yn_1 15 6. [Xn o115, 0, [Xn o) € RCﬁnKlK?XCmKlK? for the kernel of

group g. Figure B12b shows the diagram for {N(OlOg)zﬂg}gzl

B.4 Kronecker-factored Approximate Curvature (KFAC) for Transpose Convolution

Here we derive the KFAC approximation for transpose convolutions.

We describe transpose convolution in terms of its associated convolution from an input space
X = RExIixIz to an output space ) = REu*O1x02 - The convolution has hyper-parameters

KlyQ,SlTQ,P1727.D172 with index patterns I'I(l) = I'I(IhKl,Sl,Pl,Dl) € RIIXOlXKl and
N® = N(Iy, Ks, S, P, D) € REX02xK2,

Transpose convolution as matrix multiplication: Transpose convolution maps a Y € Yinto an
X € X. In ML frameworks like PyTorch, its kernel W is stored as Coy X Ciy X K7 X K5 tensor. The
relation X = W x1 Y where x1 denotes transpose convolution is given by Figure 3d,

Cot Ki Kz O (023

§ § ’ § § ’ E nw n@ 1
('m 11,02 i1,01,k1 12702,1472 Ycoulykhk? Wcoulacinykhk? (B9)

conn=1ki1=1ko=101=102=1

Our goal is to turn the express the above as matrix multiplication. To do that, we first define the
matrix reshape X of X via X € R@>*/1%2 guch that [X]., (i, i) = X. Next, we consider a

Ciny¥1,%2
transposed kernel W of W with changed order of the first two indices, i.e. W € RCn* Coux K1 x K>
such that

WCin,Cmu,kl,kz = Wcouhcinyklka : (B10)

This transposition is necessary to convert the kernel’s layout in the ML framework to a layout that
admits Equation (B9) to be expressed as matrix multiplication. Using a matrix reshape W of W via
W € RO xCouki K2 guch that [We, (courkrika) = Wen,cousks k> W can express Equation (B9) as
matrix multiplication

X = W[Y] (B11)

where [Y] € RCuK1E2xIilz ig the transpose-unfolded input to the transpose convolution (note that
[1# [1thH
01 0,
(2
H[Y]]T](Com k1,k2),(i1,d2) = Z Z nzl 01,k1 12,)02 ko Ycou(701;02 : (B12)

01= 102 1

To the best of our knowledge there is no API for [-]r in existing ML frameworks. Our approach can
provide a simple and efficient implementation of [-] through the TN shown in Figure B13a which
corresponds to Equation (B12). As Equation (B11) is of the same form as Equation (1), it is now
straightforward to write down the KFAC approximations for transpose convolution.

KFAC-expand: We will define the KFAC-expand approximation for the GGN w.r.t. the flattened
kernel w of W. Note that, in practise, this approximation must be properly transformed back to

the layout W of the ML framework. We have G(w) ~ Q®T, withT' € RE*C computed from
backpropagated gradients, and the input-based Kronecker factor

Q = [Y]r[Y]{ € ROwF KX Couka s (B13)

See Figure B13b for the corresponding TN.
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Figure B13: TN for extending KFAC to transpose convolutions (no batching and groups).

KFAC-reduce: For KFAC-reduce, we have G(w) ~ Q @ I, with I € R%*C computed from

backpropagated gradients, and the input-based Kronecker factor
- 1 T
Q= L) (17 ,[YIr) (1], ,[Y]r) € REwF1K2xCoukale (B14)

See Figure B13c for the corresponding TN.

With batching and groups: In the presence of G groups, we have per-group kernels Wg =
(W](g.),0: € REWEXC/@xExKs gng W, € R/ X Pun/oxKix Kz ag well as per-group transpose-
unfolded inputs [Y,]r = [Y]r(, .y .. = [Y](g.)..Jr € R®/SK2K2xhlz "Each group corresponds
to a transpose convolution in itself. With batching, we have an additional leading batch dimension,

i.e. [Y, ¢]r. Applying the same steps from above, we can define the KFAC approximation for the
GGN w.r.t. the flattened per-group kernel w, of W,.

For KFAC-expand, we have G(w,) ~ Q, @ I'y, with 'y € R /&> /& computed from backpropa-
gated gradients, and the input-based Kronecker factor

N
1 out out
Q= 5 Vgl lYo I € ROER R CmfoI G,
n=1
For KFAC-reduce, we have G(w,) ~ Qg ® f‘g, with f‘g € R/¢x /S computed from backpropa-
gated gradients, and the input-based Kronecker factor
A 1

N

T out out

Qg - N(0102)2 Z (l}rllz [Y"»Q]]T) (1?112 [[YW/7£]]]T) € RC [ R IGx Con] GH I :
n=1

B.5 Further Operations & Extensive Overview

Consecutive convolutions: We can chain two, or more, convolutions into a single TN diagram
(Figure B14) to obtain a deep linear CNN [65] similar to deep linear networks which are popular for
analytical studies.

Convolution weight/input JVPs: In the main text, we derived the Jacobians of convolution (§3.1)
which can be used to derive the JVPs. A JVP propagates perturbations VW) & RCouxCinx K1 x K>

and VX € RCnxI1xI2 iy the input space to perturbations in the output space by contracting the
perturbation with the Jacobian. See Table B3 for the general einsum expressions.

Batched convolution weight VJP: To obtain per-sample gradients, the weight VIP must be carried
out without summing over the batch axis which amounts to keeping the batch index in the output
index tuple.

VJPs and JVPs of im2col: With the TN differentiation technique described in §3.1 we can compute
the Jacobian of the unfolding operation, then contract it with perturbations VX) ¢ RCinxK1x K> jp
input space to obtain the JVP, or with perturbations V (IX]) ¢ RO102xCaK1 K> (6 obtain the VIP.
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Figure B14: TN of two consecutive convolutions without groups and without batch axis.

Approximate Hessian diagonals (HesScale/BL89): Becker & Lecun [4], Elsayed et al. [22]
proposed approximate procedures for the Hessian diagonal which cost roughly a gradient. They can
be understood as modifications of the Hessian backpropagation equations from Dangel et al. [16].

Consider a layer with input , output y, and weights w inside a sequential feedforward neural network
(for a convolutional layer, these correspond to the flattened input, output, and kernel). To compute
per-layer Hessians of a loss #, each layer backpropagates its incoming Hessian Vf/ according to [16]

ol
Vil = (J2y) Vi l(J2y) + Z @Viyi :
i o0 (B15)
Vil = (Jut) VyllJuwy) + 3 5V

The scheme of [4, 22] imposes diagonal structure on the backpropagated quantity. A layer receives
a backpropagated diagonal d¥) such that diag(d®)) ~ Viﬁ, and backpropagates it according to
Equation (B15), but with a post-processing step to obtain a diagonal backpropagated quantity,

ot
() — 33 T 4; (y) ; 2,
d\*) = diag ((me) diag(d'¥ )(me)) + diag < % o, wal> ,

(B16)
d) = ding ((J) T ding(d™)(Ty) ) + ding (Z ;’jva> ,

where diag(d®)) ~ V2 and diag(d(*)) ~ V2 { is an approximation to the Hessian diagonal.

For convolutional layers, which are linear in the input and weight, the second summands are zero due
to VZy; = 0 = V2,y;. The first terms of Equation (B16) require (i) embedding a diagonal vector
into a matrix, (ii) applying MJPs and JMPs, and (iii) extracting the result’s diagonal. Those can
be expressed as a single TN. We show the diagrams in Figure B15, using tensors rather than their

flattened versions, that is (z, y, w, d®,d®) d*)) — (X, Y, W, D(X), D(Y)7 D(W)).
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Figure B15: TN diagrams for HesScale/BL89 [4, 22] backpropagations through convolutional layers

to approximate the Hessian diagonals D(X), D). JMPs and MJPs are shaded. (a, b) show the simple
versions without batching and without channel groups. (c, d) include batching and channel groups.
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Table B3: Extensive list of convolution and related operations (extension from Table | in the main text). All operations consider two spatial dimensions and support
batching and channel groups. Generalization to other dimensions follow by introducing more spatial indices i_3, o_3, ... and kernel indices k_3, ....

Operation

Operands

Contraction string (einops [59] convention)

Convolution (no bias) [29]
Unfolded input (im2col, [X])
Unfolded kernel (Toeplitz)
Folded output (co12im)
Transpose-unfolded input ([Y]1)

X, N n® w
X’n(l)’n@)
n(l)’ n(2))w
Y’n(l)’n@)
Y’n(l)’n@)

"n (g c_in) i1 i2, i1 ol ki, i2 o2 k2, (g c_out) c_in k1 k2 -> n (g c_out) ol 02"
"n c_in i1 i2, i1 ol k1, i2 02 k2 -> n (c_in k1 k2) (ol o02)"

"i1 ol k1, i2 02 k2, c_out c_in k1 k2 -> (c_out ol 02) (c_in il i2)"

"n (g c_out) ol 02, il ol k1, i2 02 k2 -> n (g c_in) i1l i2"

"n (g c_out) ol 02, il ol ki, i2 02 k2 -> n (g c_in k1 k2) il i2"

Convolution weight VIP

Convolution input VJP (transpose convolution)
Convolution weight VIJP (per-
sample/batched) [58]

X, N [@ ym
w,n® [, ym
X, nW [@ ym

"n (g c_in) i1 i2, il ol ki, i2 02 k2, n (g c_out) ol 02 -> c_out c_in ki1 k2"
"(g c_out) c_in k1 k2, i1 ol k1, i2 02 k2, n (g c_out) ol 02 -> n (g c_in) il i2"

"n (g c_in) i1 i2, i1 ol k1, i2 02 k2, n (g c_out) ol 02 -> n (g c_out) c_in k1 k2"

Convolution weight JVP
Convolution input JVP

X, N, @ yw
w,n® [, yo

"n (g c_in) i1 i2, i1 ol ki, i2 o2 k2, (g c_out) c_in k1 k2 -> n (g c_out) ol 02"

"(g c_out) c_in i1 i2, il ol k1, i2 02 k2, n (g c_in) il i2 -> n (g c_out) ol 02"

im2col VJP
im2col JVP

nw, n@ yaxn
n(l)’n(2)’v(x)

"il ol k1, i2 02 k2, n (c_in k1 k2) (ol 02) -> n c_in il i2"
"i1 ol k1, i2 02 k2, n c_in i1 i2 -> n (c_in k1 k2) (ol 02)"

KFC/KFAC-expand [27, 23]
KFAC-reduce [23]
KFC/KFAC-expand for transpose convolution

KFAC-reduce for transpose convolution

X, n® n® x,n® n®
X, nM n® x n® n®
Y, n® n® y n® n®
Y, n® n® y n® n®

"n (g c_in) i1 i2, il ol k1, i2 02 k2, n (g c_in_) i1_ i2_, i1_ ol k1_, i2_ 02 k2_

-> g (c_in k1 k2) (c_in_ ki_ k2 )"

"n (g c_in) i1 i2, il ol k1, i2 02 k2, n (g c_in_) i1_ i2_, i1_ ol_ ki1_, i2_ o2_ k2_
-> g (c k1 k2) (c_ ki_ k2.)"

"n (g c_out) ol 02, il ol k1, i2 02 k2, n (g c_out_) ol_ o02_, il_ ol ki_, i2_ o2 k2_
-> g (c_out k1 k2) (c_out_ ki_ k2_)"

"n (g c_out) ol 02, il ol ki1, i2 02 k2, n (g c_out_) ol_ o02_, il_ ol_ ki_, i2_ 02_ k2_
-> g (c_out k1 k2) (c_out_ ki_ k2_)"

GGN Gram/empirical NTK matrix [18, 51, 49]
GGN/Fisher diagonal [17, 51]
GGN/Fisher diagonal (per-sample/batched)

X, N, n® sM x aM p@ sMm
X, N n® sM x nM p@ sMm
X, N a® sM x M n@ gMm

"n (g c_in) i1 i2, il ol k1, i2 02 k2, ¢ n (g c_out) ol 02, n_ (g c_in) il_ i2_, i1_ ol_ ki,
i2_ 02_ k2, c_ n_ (g c_out) ol_ 02_ -> (c n) (c_ n_)"

"n (g c_in) i1 i2, il ol k1, i2 02 k2, ¢ n (g c_out) ol 02, n (g c_in) il_ i2_, il_ ol_ ki,
i2_ 02_ k2, ¢ n (g c_out) ol_ 02_ -> (g c_out) c_in ki1 k2"

"n (g c_in) i1l i2, il ol k1, i2 02 k2, ¢ n (g c_out) ol 02, n (g c_in) il_ i2_, i1_ ol_ ki,
i2_ 02_ k2, ¢ n (g c_out) ol_ 02_ ->n (g c_out) c_in ki1 k2"

Approximate weight Hessian diagonal [4, 22]
Approximate input Hessian diagonal [4, 22]

Approximate weight Hessian diagonal (per-
sample/batched)

X, A, A pM x, M, >
w,n® a® p®» w am, @
X, AM . A® p® x a®, a®

"n (g c_in) i1l i2, il ol ki, i2 02 k2, n (g c_out) ol 02, n (g c_in) i1_ i2_, i1_ ol ki1, i2_ 02 k2
-> (g c_out) c_in k1 k2"

"(g c_out) c_in k1 k2, il ol k1, i2 02 k2, n (g c_out) ol 02, (g c_out) c_in k1_ k2_, il ol ki_,
i2 02 k2_ -> n (g c_in) il i2"

"n (g c_in) i1 i2, il ol k1, i2 02 k2, n (g c_out) ol 02, n (g c_in) i1_ i2_, i1_ ol ki1, i2_ 02 k2
->n (g c_out) c_in ki1 k2"
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Figure C16: TN composition and sub-tensor extraction for second-order information. Weight MJPs
from Figure 3c are shaded. (a) exact and (b) diagonal of the kernel’s GGN (the same applies to
structurally similar matrices like the gradient covariance [35]). (c) TN of the GGN Gram matrix.

C Exact Second-Order Information

Here, we look at computing second-order information of a loss w.r.t. to the kernel of a convolution.
Its computation can be phrased as backpropagation with a final extraction step [19] which contains
less standard operations like Jacobian-matrix products (JMPs) and sub-tensor extraction. TNs can
express this extraction step in a single diagram.

Consider a datum (x,t) and its loss £(w) = £(f,t) where f = f,(x) € RY is the pre-
diction of a CNN with a convolution with flattened kernel w and flattened output y (deriva-
tions carry over to a batch loss). The kernel’s generalized Gauss-Newton (GGN) matrix [63]
G(w) = (Juf) V(I f) € RECnFIGXConln KK s 3 positive semi-definite Hessian proxy
preferred by many applications [e.g. 20, 45] and coincides with the Fisher information matrix for
many common losses [46]. It is the self-outer product of a backpropagated symmetric factorization
SW = (Jy f)T ST € ROmO102XC of the loss Hessian, V3((f,y) = SU)(SU))T. During

backpropagation, the convolution extracts information about G(w) = (Jy) ' S® (S®) T J,vy.

In TN notation, this is easy to express without flattening: We simply compose two VIP diagrams
from Figure 3c with an extra leg (MJP) and add the outer-product contraction to obtain the tensor
version G(W) € RCouxCinxKixKaxCouxCinx K1x K2 of G(w) (Figure C16a). The GGN is often
further approximated by sub-tensors as it is too large. These slicing operations are also easy to
integrate into the diagrams, e.g. to extract diagonal elements (Figure C16b [17, 51]), or mini-block
diagonals (Figure B11 [16, 3]). This also removes redundant computations compared to computing,
then slicing, the matrix. The same ideas apply to the GGN Gram matrix (S(*))T §(w) ¢ RC*C
(Figure C16c). It contains the GGN spectrum [18] and is related to the empirical NTK for square loss
[49].
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D Implementation Details

Here we present details on the index pattern computation, and additional transformations.

D.1 Index Pattern Tensor Computation for Convolutions

Algorithm D1 lists pseudo-code for the index pattern computation from the convolution hyper-
parameters K, S, P, D, and the spatial input dimension I, that is (I, K, S, P, D). Unlike in the
main text, we use 0-based indexing which is more common in numerical libraries. For self-consistency,
we re-state the relation of the hyper-parameters to output dimension from [21, Relationship 15],

I+2P-K—-(K-1)(D-1
O(I,K,S,P,D)l+{ é I )J . D17)
Algorithm D1 Computing the convolution index pattern tensor I1 for a spatial dimension.
Require: Input size I € NT, kernel size K € N*, stride S € NT, padding P € N, dilation D € N*
O+ 1+ V"’QP_K_(SK_I)(D_I)J > Compute output dimension [21, Relationship 15]
M <+ Orxoxk > Initialize index pattern tensor
foro=0,...,0-1,k=0,...,K —1do >Use O-based indexing!
i< kD+o0S—-P > Reconstruct contributing input element
if0 <i<1I—1then > Check in bounds
I'Ii,o,k —1
end if
end for

return Index pattern tensor M € {0, 1}7XO*¥

D.2 Index Pattern Tensor for Standalone Transpose Convolution

Although a transpose convolution is defined w.r.t. a reference convolution with hyper-parameters
K, S, P, D, most libraries offer standalone implementations of transpose convolution. We describe
the transpose convolution by its associated convolution, that is as a mapping from RCu* 01X Oz (the
convolution’s output space) to Rn*/1X12 (the convolution’s input space). For convolution with
S > 1, we cannot infer I from O, K, S, P, D, as multiple Is map to the same O if (I + 2P — K —
(K—1)(D—1)) mod S # 0 (see the floor operation in Algorithm D1). We need to either supply I
directly, or the remainder

A=1+4+2P-K—-(K-1)(D-1)-S5(0-1)
(often called output_padding) to make / unambiguous. Then, we compute
I=0-1)S-2P+K+(K-1)(D-1)+A. (D18)
to get I(O, A) and call Algorithm D1 to obtain M(1(O, A), K, S, P, D).

D.3 Details on Index Pattern Simplifications

In the following, we will assume the absence of boundary pixels that don’t overlap with the kernel,
that is

I+2P—(K+(K—1)(D—1)) modS=0, (D19)

where the floor operation in O(I, K, S, P, D) is obsolete. This can always be assured by narrowing
X before a convolution. Based on our hyper-parameter analysis of real-world CNNs (§E), we identify:

Transformation D1 (Dense convolutions) Assume Equation (D19). For K = S with default
padding and dilation (P = 0, D = 1), patches are adjacent non-overlapping tiles, accessible
by un-grouping the input index i into a tuple index (1, k) of size I/k x K:

NI K K,0,1)], = (VLKL K, 0,1)] 6 ok = 05,0070

Point-wise convolutions (K = S = 1) are a special case with pattern [11(1,1,1,0,1)]; o 5 = ;0.
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Point-wise convolutions with K = S = 1 are common in DenseNets [33], MobileNets [31, 60] and
ResNets [30]. InceptionV3 [69] has 2d ‘mixed dense’ convolutions that are point-wise along one
spatial dimension. ConvNeXt [42] uses dense convolutions with K = S € {2,4}.

Transformation D2 (Down-sampling convolutions) For S > K with default padding and dilation
(P =0, D =1), some elements do not overlap with the kernel. If the input dimension i is summed,
all participating tensors can be pruned to remove the explicit zeros. Assume I mod S = 0. Then,
pruning amounts to un-grouping i into (i, s) of size I/s x S, narrowing s to K entries, and grouping
back into an index 1 of size K1/s. After pruning, the index pattern represents a dense convolution
with input size K1/, kernel size K, and stride K. In a contraction with some tensor V,

Sia M INULES > K0.)], 0 =5V 5 INCs, K K0.1)),
with sub-tensor [\Nl]; = HV]...,(i’,s),...]--~,(:,:K),... where : K means narrowing to K elements.

Transformation D2 converts down-sampling convolutions to dense convolutions, which can be further
simplified with Transformation D1. We find down-sampling convolutions with S =2 > K =1
in ResNet18 [30], ResNext101 [72], and WideResNet101 [73]. Those convolutions discard 75 %
of their input! Knowledge that an operation only consumes a fraction of its input could be used to
eliminate those ‘dead’ computations in preceding operations, reducing FLOPS and memory.

Transformation D3 (Kernel-output dimension swap) Assume Equation (D19). Transposing ker-
nel and output dimensions in an index pattern yields another index pattern with same input size,
kernel size O(I, K, S, P, D), and swapped stride and dilation:
[n(17 Ka Sa P7 D)]i,{)7k = [n(Ia Oa Da P7 S)L’,/r,‘,g .

This transformation is easy to see from the symmetry of (k, D) and (o,.S) in Equation (7) and
O(I, K, S, P, D). It converts index pattern contractions over output into kernel dimensions, like in
convolutions. An example is the weight VIJP from Figure 3c, which—after swapping kernel and
output dimensions—resembles the TN for convolution from Figure 2 with kernel V. Rochette et al.
[58] use this to phrase the computation of per-example gradients as convolution.

§D.3 presents more properties of 'l based on the sub-sampling interpretation of stride and dilation
along the output and kernel dimensions. We also provide a transformation for swapping input and
output dimensions, relating convolution and transpose convolution as described in [21].

For completeness, we state additional index pattern tensor properties here (using 1-based indexing):

Transformation D4 (Sub-sampling interpretation of stride) Strided convolutions (S > 1) sub-
sample non-strided convolutions along the output dimension, ignoring all but every Sth output [21].
In other words, [(I, K, S, P, D)), ,, = [N(I, K, 1, P, D)]; 1 5(o—1), 0% in tensor notation ([']..s
denotes slicing with steps of S),

N(I,K,S,P,D)=[N(K,1,P,D), . .

Transformation DS (Sub-sampling interpretation of dilation) Dilated convolutions (D > 1)
with kernel size K sub-sample the kernel of a non-dilated convolution of kernel size K + (D —
1)(K — 1), ignoring all but every Dth kernel element. In other words, [N(I, K, S, P, D)]; ,, =

(N, K+ (K =1)(D —1),8,P,1)]; , 14 px_1) 0% in tensor notation,

n(IvK757P7D) = [I'I(I,K—l— (K_ 1)(D - 1)’S’P71)]: uD ot
Transformation D6 (Transpose convolution as convolution) Assume Equation (D19). Consider a
non-strided (S = 1), non-dilated (D = 1) convolution with index pattern N(I, K, 1, P, 1) and output
dimension O(I, K, 1, P, 1). Transposing the spatial dimensions and flipping the kernel dimension

vields another index pattern with modified padding P = K — P — 1. In other words, for all
i=1,....Lk=1,....K,0=1,...,0

[n(la K7 17Pa 1)]1‘,0,]@ = [n(Ova 17P/a 1)]071'7K+1—k .
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E Convolution Layer Hyper-parameter Analysis

Here we give an overview of and characterize convolutions in popular architectures (see Table E4). We
include moderately deep CNNs on Fashion MNIST, CIFAR-10, and CIFAR-100 from the DeepOBS
benchmark [62], and deep CNNs on ImageNet (AlexNet, ResNet18, InceptionV3, MobileNetV2,
ResNext101). Regarding the hyper-parameters, we make the following observations:

* Many CNNs do not use a bias term. This is because the output of those layers feeds directly
into a batch normalization layer, which is invariant under the addition of a bias term.

 All investigated convolutions use default dilation.

* Group convolutions are rarely used. MobileNetV2 and ConvNeXt-base (Tables E4g and E4i)
use group convolutions that interpret each individual channel as a group. ResNext101
(Table E4f) uses group convolutions that interpret a collection of channels as a group.
ConvNeXt-base (Table E4g) uses dense convolutions with P = 0 and S = K € {2,4}.

* Many networks use dense convolutions, that is convolutions with unit kernel size (K = 1),
unit stride (S = 1), and no padding (P = 0). These convolutions have a trivial index
pattern and can therefore be simplified.

* InceptionV3 (Table E4h) uses two-dimensional convolutions with one trivial dimension
(‘mixed dense’) with unit kernel size, unit stride, and no padding along one direction. For
this spatial dimension, the index pattern can be simplified.

¢ ResNetl8 (Table E4e) and ResNext101 (Table E4f) use convolutions with S > K for
down-sampling whose kernel only overlaps with a fraction of the input. The index pattern
can be simplified.
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Table E4: Hyper-parameters of convolutions in different CNNs. For convolutions with identical
hyper-parameters, we only show one instance and its multiplicity.

(a) 3c3d, CIFAR-10 (3, 32, 32)

Name (count) ‘ Input shape Output shape Kernel Stride Padding Dilation Groups Bias Type

conv1.0 (1) (3,32,32) (64,28, 28) 5.5) (1,1 (0,0) (1,1 1 Yes  General
conv2.0 (1) (64, 14, 14) (96, 12, 12) (3.3) (1, 1) (0,0) (1, 1) 1 Yes  General
conv3.1 (1) (96, 8, 8) (128, 6, 6) (3.3) (1, 1) (0,0) a1 1 Yes  General

(b) 2c2d, Fashion MNIST (1, 28, 28)

Name (count) ‘ Input shape Output shape Kernel Stride Padding Dilation Groups Bias Type

convl.l (1) (1,32,32) (32,28,28) (5,5) (1,1 0,0) (1,1 1 Yes General
conv2.1 (1) (32,18, 18) (64,14, 14) (5,5) (1, 1) (0,0) (1,1 1 Yes General

(c) AlI-CNN-C, CIFAR-100 (3, 32, 32)

Name (count) ‘ Input shape Output shape Kernel Stride Padding Dilation Groups Bias Type

convl.l (1) (3, 34, 34) (96, 32, 32) (3,3) (1, 1) (0, 0) (1, 1) 1 Yes General
conv2.1 (1) (96, 34, 34) (96,32, 32) 3,3) 1,1 (0,0) 1,1 1 Yes General
conv3.1 (1) (96,33,33) (96, 16, 16) (3,3) 2.2) (0,0) a1 1 Yes  General
conva.1 (1) (96, 18, 18) (192, 16, 16) (3.3) 1,1y (0,0) 1,1y 1 Yes  General
convs.1 (1) (192, 18, 18) (192, 16, 16) (3,3) a1 (0,0) a1 1 Yes  General
convé.1 (1) (192,17, 17) (192, 8, 8) 3.3) 2,2) (0,0) an 1 Yes General
conv7.0 (1) (192,38, 8) (192, 6, 6) 3,3) (1, 1) (0, 0) (1, 1) 1 Yes General
conv8.1 (1) (192, 6, 6) (192, 6, 6) (1, 1) (1, 1) (0, 0) (1, 1) 1 Yes Dense
conv9.1 (1) (192, 6, 6) (100, 6, 6) 1, 1) 1 (0,0) 1,1 1 Yes Dense

(d) AlexNet, ImageNet (3, 256, 256)

Name (count)

Input shape Output shape Kernel Stride Padding Dilation Groups Bias Type

features.O (1) (3,256, 256) (64, 63, 63) (11, 11) 4,4) 2,2) 1, 1) 1 Yes General
features.3 (1) (64,31,31) (192,31, 31) (5.5) (1,1 2.2) (1, 1) 1 Yes  General
features.6 (1) (192, 15, 15) (384, 15, 15) (3.3) (1, 1) a1 (1, 1) 1 Yes  General
features.8 (1) (384,15, 15) (256, 15, 15) 3,3) (1, 1) 1,1 1,1 1 Yes General
features.10 (1) (256, 15, 15) (256, 15, 15) 3,3) (1, 1) (1, 1) (1, 1) 1 Yes General

(e) ResNet18, ImageNet (3, 256, 256)

Name (count)

Input shape Output shape Kernel Stride Padding Dilation Groups Bias Type

convl (1) (3,256, 256) (64,128, 128) 1,7) 2,2) 3,3) (1, 1) 1 No General
layer1.0.conv1 (4) (64, 64, 64) (64, 64, 64) 3.3) (1, 1) (1, 1) (1, 1) 1 No General
layer2.0.conv1 (1) (64, 64, 64) (128,32,32) 3.3) 2,2) (1, 1) (1, 1) 1 No General
layer2.0.conv2 (3) (128,32, 32) (128,32,32) 3.3) (1, 1) (1, 1) (1, 1) 1 No General
layer2.0.downsample.O (1) (64, 64, 64) (128, 32,32) (1,1 2,2) (0,0) (1, 1) 1 No Down
layer3.0.convl (1) (128, 32, 32) (256, 16, 16) (3,3) 2,2) (1, 1) (1, 1) 1 No General
layer3.0.conv2 (3) (256, 16, 16) (256, 16, 16) (3,3) 1,1 (1, 1) 1,1 1 No General
layer3.0.downsample.0 (1) (128, 32,32) (256, 16, 16) (1, 1) 2,2) (0, 0) 1,1 1 No Down
layer4.0.conv1 (1) (256, 16, 16) (512,8,8) 3.3) 2,2) (1, 1) (1, 1) 1 No General
layer4.0.conv2 (3) (512,8,8) (512,8,8) 3.3) (1, 1) (1, 1) (1, 1) 1 No General
layer4.0.downsample.0 (1) (256, 16, 16) (512,8,8) (1, 1) 2,2) (0,0) (1, 1) 1 No Down

(f) ResNext101_32x8d, ImageNet (3, 256, 256)

Name (count)

Input shape Output shape Kernel Stride Padding Dilation Groups Bias Type

convl (1) (3. 256, 256) (64, 128, 128) (7.7 2,2) (3.3) (1,1 1 No General
layerl.0.convl (2) (64, 64, 64) (256, 64, 64) a1 (1, 1) (0,0) (1, 1) 1 No Dense
layer1.0.conv2 (3) (256, 64, 64) (256, 64, 64) 3,3) (1, 1) (1, 1) (1, 1) 32 No General
layer1.0.conv3 (5) (256, 64, 64) (256, 64, 64) 1,1 (1, 1) (0, 0) 1, 1) 1 No Dense
layer2.0.conv1 (1) (256, 64, 64) (512, 64, 64) 1,1 1, 1) (0, 0) 1, 1) 1 No Dense
layer2.0.conv2 (1) (512, 64, 64) (512, 32,32) 3,3) 2,2) 1, 1) 1, 1) 32 No General
layer2.0.conv3 (7) (512,32,32) (512,32,32) (1, 1) (1, 1) (0,0) (1, 1) 1 No Dense
layer2.0.downsample.O (1) (256, 64, 64) (512, 32,32) (1, 1) 2,2) (0, 0) a1, 1 1 No Down
layer2.1.conv2 (3) (512, 32,32) (512,32,32) 3,3) 1,1 1,1 1,1 32 No General
layer3.0.conv1 (1) (512,32,32) (1024, 32, 32) 1,1 (1, 1) (0, 0) (1, 1) 1 No Dense
layer3.0.conv2 (1) (1024, 32, 32) (1024, 16, 16) 3,3) 2,2) (1, 1) 1, 1) 32 No General
layer3.0.conv3 (45) (1024, 16, 16) (1024, 16, 16) 1,1 1, 1) (0, 0) 1, 1) 1 No Dense
layer3.0.downsample.0 (1) (512,32,32) (1024, 16, 16) (1, 1) 2.2) (0,0) (1, 1) 1 No Down
layer3.1.conv2 (22) (1024, 16,16) (1024, 16, 16) (3.3) 1, 1) (1, 1) 1, 1) 32 No General
layer4.0.conv1 (1) (1024, 16,16) (2048, 16, 16) a1 (1, 1) (0, 0) (1, 1) 1 No Dense
layer4.0.conv2 (1) (2048, 16, 16) (2048, 8, 8) 3,3) 2,2) a, 1 (1,1 32 No General
layer4.0.conv3 (5) (2043, 8, 8) (2048, 8, 8) 1,1 (1, 1) (0, 0) 1, 1) 1 No Dense
layer4.0.downsample.0 (1) (1024, 16, 16) (2048, 8, 8) 1,1 2,2) (0, 0) 1, 1) 1 No Down
layer4.1.conv2 (2) (2048, 8, 8) (2048, 8, 8) 3,3) 1,1 (1, 1) 1, 1) 32 No General

(g) ConvNeXt-base, ImageNet (3, 256, 256)

Name (count)

Input shape Output shape Kernel Stride Padding Dilation Groups Bias Type

features.0.0 (1) (3. 256, 256) (128, 64, 64) 4, 4) (4, 4) (0,0) 1, 1) 1 Yes Dense
features.1.0.block.0 (3) (128, 64, 64) (128, 64, 64) (7.7 1,1y (3.3) 1,1y 128 Yes  General
features.2.1 (1) (128, 64, 64) (256,32, 32) 2.2 2.2) (0,0) a1 1 Yes Dense
features.3.0.block.0 (3) (256, 32, 32) (256, 32, 32) 7,7 1,1 3,3) (1,1 256 Yes General
features.4.1 (1) (256, 32, 32) (512, 16, 16) 2,2) 2,2) (0, 0) 1,1 1 Yes Dense
features.5.0.block.0 (27) (512, 16, 16) (512, 16, 16) 7.7 1,1 3,3) 1,1 512 Yes General
features.6.1 (1) (512, 16, 16) (1024, 8, 8) 2,2) 2,2) (0,0) 1,1 1 Yes Dense
features.7.0.block.0 (3) (1024, 8, 8) (1024, 8, 8) (7.7 (1, 1) (3.3) 1,1y 1024 Yes  General
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(h) InceptionV3, ImageNet (3, 299, 299)

Name (count) ‘ Input shape Output shape Kernel Stride Padding Dilation Groups Bias Type
Conv2d_la_3x3.conv (1) (3,299, 299) (32, 149, 149) (3,3) 2.2) (0,0) a1 1 No General
Conv2d_2a_3x3.conv (1) (32,149, 149) (32,147, 147) (3.3) 1, 1) (0,0) 1,1y 1 No General
Conv2d_2b_3x3.conv (1) (32,147, 147) (64, 147, 147) (3.3) 1,1y (1, 1) 1,1y 1 No General
Conv2d_3b_Ix1.conv (1) (64,73, 73) (80,73, 73) (1,1 an (0,0) an 1 No Dense
Conv2d_4a_3x3.conv (1) (80,73,73) (192,71,71) (3,3) a1, 1 0,0) 1,1 1 No General

Mixed_5b.branch1x1.conv (2) (192, 35, 35) (64, 35, 35) (1, 1) 1,1 (0, 0) (1, 1) 1 No Dense
Mixed_5b.branch5x5_1.conv (1) (192, 35, 35) (48, 35, 35) (1, 1) 1,1 (0,0) 1,1 1 No Dense
Mixed_5b.branch5x5_2.conv (3) (48, 35, 35) (64, 35, 35) (5.5) 1.1 2.2) 1.1 1 No General

Mixed_5b.branch3x3dbl_2.conv (4) (64,35, 35) (96,35, 35) (3.3) 1,1y (1, 1) 1,1y 1 No General
Mixed_5b.branch3x3dbl_3.conv (3) (96, 35, 35) (96, 35, 35) (3,3) a1 a1 a1 1 No General
Mixed_5b.branch_pool.conv (1) (192, 35, 35) (32,35, 35) 1,1 1,1 0,0) (1,1 1 No Dense

Mixed_5c.branch1x1.conv (3) (256, 35, 35) (64, 35, 35) (1, 1) 1,1 (0,0) 1,1 1 No Dense
Mixed_5c.branch5x5_1.conv (1) (256, 35, 35) (48, 35, 35) (1, 1) 1,1 (0, 0) (1, 1) 1 No Dense

Mixed_5d.branch1x1.conv (4) (288, 35, 35) (64, 35, 35) 1, 1) 1,1 (0,0) 1,1 1 No Dense
Mixed_5d.branch5x5_1.conv (1) (288, 35, 35) (48,35, 35) (1, 1) (1, 1) (0,0) 1,1y 1 No Dense

Mixed_6a.branch3x3.conv (1) (288, 35, 35) (384,17, 17) (3,3) 2.2) (0,0) 1.1 1 No General

Mixed_6a.branch3x3dbl_3.conv (1) (96, 35, 35) (96,17, 17) (3,3) 2,2) 0,0) (1,1 1 No General

Mixed_6b.branch1x1.conv (12) (768,17, 17) (192, 17,17) (1, 1) (1, 1) (0,0) (1,1 1 No Dense
Mixed_6b.branch7x7_1.conv (2) (768,17, 17) (128,17, 17) (1, 1) 1,1 (0, 0) 1,1 1 No Dense
Mixed_6b.branch7x7_2.conv (2) (128,17, 17) (128, 17,17) 1,7) 1,1 0, 3) 1,1 1 No Dense mix
Mixed_6b.branch7x7_3.conv (1) (128,17, 17) (192,17, 17) (7. 1) 1,1y (3,0) 1,1y 1 No Dense mix

Mixed_6b.branch7x7dbl_2.conv (2) (128,17, 17) (128,17, 17) (7. 1) 1.1 (3.0) 1.1 1 No Dense mix
Mixed_6b.branch7x7dbl_5.conv (1) (128,17, 17) (192,17, 17) (1,7) 1,1y (0,3) 1,1y 1 No Dense mix
Mixed_6¢c.branch7x7_1.conv (4) (768,17, 17) (160, 17, 17) (1, 1) 1,1 (0, 0) 1,1 1 No Dense
Mixed_6¢.branch7x7_2.conv (4) (160, 17, 17) (160, 17, 17) 1,7 1,1 ,3) 1,1 1 No Dense mix
Mixed_6¢.branch7x7_3.conv (2) (160,17, 17) (192,17, 17) (7, 1) 1,1 3,0) (1, 1) 1 No Dense mix
Mixed_6c.branch7x7dbl_2.conv (4) (160, 17, 17) (160, 17, 17) (7, 1) 1,1 3,0) 1,1 1 No Dense mix
Mixed_6c.branch7x7dbl_5.conv (2) (160,17, 17) (192,17, 17) (1,7) 1,1y (0,3) 1,1y 1 No Dense mix
Mixed_6e.branch7x7_2.conv (4) (192,17, 17) (192,17, 17) (1,7) 1,1y (0,3) 1,1y 1 No Dense mix
Mixed_6e.branch7x7_3.conv (4) (192,17, 17) (192,17, 17) (7, 1) a1 (3,0) a1 1 No Dense mix
AuxLogits.conv0.conv (1) (768,5,5) (128,5,5) (1, 1) 1,1 (0, 0) 1,1 1 No Dense
AuxLogits.convl.conv (1) (128,5,5) (768, 1, 1) (5,5) 1,1 (0, 0) 1,1 1 No General
Mixed_7a.branch3x3_2.conv (1) (192,17,17) (320, 8, 8) (3,3) 2,2) (0, 0) (1,1 1 No General
Mixed_7a.branch7x7x3_4.conv (1) (192,17, 17) (192,8,8) (3,3) 2,2) (0,0) 1,1 1 No General

Mixed_7b.branch1x1.conv (1) (1280, 8, 8) (320, 8, 8) (1, 1) 1.1 (0,0) 1.1 1 No Dense
Mixed_7b.branch3x3_1.conv (1) (1280, 8, 8) (384, 8, 8) (1,1 1,1y (0,0) 1,1y 1 No Dense
Mixed_7b.branch3x3_2a.conv (4) (384,38, 8) (384, 8, 8) (1,3) 1,1 ©, 1) 1,1 1 No Dense mix
Mixed_7b.branch3x3_2b.conv (4) (384,38, 8) (384, 8, 8) 3,1 1,1 (1,0) 1,1 1 No Dense mix

Mixed_7b.branch3x3dbl_1.conv (1) (1280, 8, 8) (448, 8, 8) (1, 1) 1,1 (0, 0) (1,1 1 No Dense
Mixed_7b.branch3x3dbl_2.conv (2) (448, 8, 8) (384,8,8) 3,3) 1,1 1,1 1,1 1 No General
Mixed_7b.branch_pool.conv (1) (1280, 8, 8) (192, 8, 8) (1, 1) 1,1y (0,0) 1,1y 1 No Dense

Mixed_7c.branchix1.conv (1) (2048, 8, 8) (320, 8, 8) (1, 1) 1,1 (0,0) 1.1 1 No Dense

Mixed_7c.branch3x3_1.conv (1) (2048, 8, 8) (384, 8, 8) (1, 1) a1 (0,0) 1,1y 1 No Dense

Mixed_7c.branch3x3dbl_1.conv (1) (2048, 8, 8) (448, 8, 8) (1, 1) 1,1 (0, 0) 1,1 1 No Dense

Mixed_7c.branch_pool.conv (1) (2048, 8, 8) (192, 8, 8) (1, 1) 1,1 (0, 0) 1,1 1 No Dense

(i) MobileNetV2, ImageNet (3, 256, 256)

Name (count) ‘ Input shape Output shape Kernel Stride Padding Dilation Groups Bias Type
features.0.0 (1) (3,256, 256) (32,128, 128) 3,3) 2,2) 1,1 1,1 1 No General
features.1.conv.0.0 (1) (32,128,128) (32,128, 128) (3.3) a1 1.1 a1 32 No General
features.1.conv.1 (1) (32,128,128) (16, 128, 128) 1, 1) a1 (0,0) a1 1 No Dense
features.2.conv.0.0 (1) (16,128,128) (96, 128, 128) (1, 1) a1 (0,0) a,1) 1 No Dense
features.2.conv.1.0 (1) (96, 128, 128) (96, 64, 64) 3,3) 2,2) (1,1 (1,1 96 No General
features.2.conv.2 (1) (96, 64, 64) (24, 64, 64) (1, 1) (1, 1) (0,0) (1, 1) 1 No Dense
features.3.conv.0.0 (2) (24, 64, 64) (144, 64, 64) 1,1 (1, 1) (0,0) (1, 1) 1 No Dense
features.3.conv.1.0 (1) (144, 64, 64) (144, 64, 64) 3,3) 1,1 1,1 (1,1 144 No General
features.3.conv.2 (1) (144, 64, 64) (24, 64, 64) (1, 1) 1,1 (0,0) a1 1 No Dense
features.4.conv.1.0 (1) (144, 64, 64) (144, 32, 32) (3,3) 2.2) 1.1 a1 144 No General
features.4.conv.2 (1) (144, 32,32) (32,32,32) 1,1 (1,1 (0,0) (1,1 1 No Dense
features.5.conv.0.0 (3) (32,32,32) (192, 32,32) (1,1 (1,1 (0,0) (1,1 1 No Dense
features.5.conv.1.0 (2) (192, 32, 32) (192, 32,32) 3,3) (1, 1) (1,1 (1, 1) 192 No General
features.5.conv.2 (2) (192, 32,32) (32,32,32) (1, 1) 1,1 (0,0) 1,1 1 No Dense
features.7.conv.1.0 (1) (192, 32,32) (192, 16, 16) 3,3) 2,2) 1,1 1,1 192 No General
features.7.conv.2 (1) (192, 16, 16) (64, 16, 16) 1, 1) 1,1 (0,0) a1 1 No Dense
features.8.conv.0.0 (4) (64, 16, 16) (384, 16, 16) (1, 1) a1 (0,0) a1 1 No Dense
features.8.conv.1.0 (4) (384, 16, 16) (384, 16, 16) 3.3) (1,1 (1,1 (1,1 384 No General
features.8.conv.2 (3) (384, 16, 16) (64, 16, 16) (1, 1) (1,1 (0,0) (1,1 1 No Dense
features.11.conv.2 (1) (384, 16, 16) (96, 16, 16) 1,1 (1, 1) (0,0) (1, 1) 1 No Dense
features.12.conv.0.0 (3) (96, 16, 16) (576, 16, 16) 1, 1) 1,1 (0,0) 1,1 1 No Dense
features.12.conv.1.0 (2) (576, 16, 16) (576, 16, 16) (3.3) a1 1.1 a1 576 No General
features.12.conv.2 (2) (576, 16, 16) (96, 16, 16) (1, 1) a1 (0,0) a1 1 No Dense
features.14.conv.1.0 (1) (576, 16, 16) (576, 8, 8) (3.3) 2.2 a1 a1 576 No General
features.14.conv.2 (1) (576, 8, 8) (160, 8, 8) (1, 1) (1,1 0,0) a1, 1 No Dense
features.15.conv.0.0 (3) (160, 8, 8) (960, 8, 8) (1, 1) (1, 1) (0,0) (1, 1) 1 No Dense
features.15.conv.1.0 (3) (960, 8, 8) (960, 8, 8) 3,3) (1, 1) (1,1 (1, 1) 960 No General
features.15.conv.2 (2) (960, 8, 8) (160, 8, 8) 1, 1) a1 (0,0) a1 1 No Dense
features.17.conv.2 (1) (960, 8, 8) (320, 8, 8) (1, 1) 1,1 (0,0) a1 1 No Dense
features. 18.0 (1) (320.8,8) (1280, 8, 8) (1, 1) a,1) (0,0) a,1) 1 No Dense
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Figure F17: Benchmark overview. We measure the performance ratios of our TN implementation
w.r.t. a base line in PyTorch (PT). Blue boxes show the performance ratios of TN versus PT, second-
color boxes show the performance ratios of TN+opt versus PT.

F Run Time Evaluation Details (GPU)

Here we provide all details on the run time evaluation from the main text. We consider the convolutions
from the CNNs from §E. Experiments were carried out on an Nvidia Tesla T4 (16 GB memory). We
use a batch size of 32 for the ImageNet architectures, and 128 for the others.

F.1 Protocol & Overview

We compare different implementations of the same operations in PyTorch. The base line (refer-
enced by ‘PT’) uses PyTorch’s built-in functionalities for convolutions and related operations, such
as torch.nn.functional.conv2d (forward), torch.nn.functional.unfold (KFC, KFAC-
reduce), and PyTorch’s built-in automatic differentiation torch.autograd.grad (VIPs).

Our TN implementation (referenced by ‘TN’) sets up operands and the string-valued equation for
each routine. Optionally, we can apply the simplifications from §4 as a post-processing step before
contraction, which yields a modified equation and operand list (“TN + opt’). Finally, we determine the
contraction path using opt_einsum. contract_path and perform the contraction with its PyTorch
back-end (opt_einsum. contract). We only measure the contraction time as in practical settings,
the contraction path search would be executed once, then cached. We also exclude final operations to
obtain the correct shape or scale (flattening, reshaping, scaling by constant) in all implementations
(including the base line).

For each operation and each convolution layer, we perform 50 independent repetitions and report
the minimum time in tables. To summarize those tables, we extract the performance ratios, that is
the TN implementation’s run time divided by the base line’s. Ratios larger than 1 mean that the
TN implementation is slower, ratios smaller than 1 indicate that it is faster than the base line. We
collect those ratios for the different convolution types (general, mixed dense, dense, sub-sampling)
and display them separately using box plots. Each operation has two boxes, corresponding to
the un-simplified (TN), and the simplified (TN + opt) implementation. For the box plots, we use
matplotlib’s default settings (a box extends from the first quartile to the third quartile of the data,
with a line at the median; whiskers extend from the box by 1.5x the inter-quartile range; flier points are
those past the end of the whiskers). Figure F17 summarizes the entire GPU benchmark. Figure F18
shows the same information with each convolution type as an individual plot.
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Figure F18: Impact of TN simplifications (non-simplified performance ratios shown in blue). TN
simplifications improve performance on (a) mixed dense, (b) dense, and (c) down-sampling convolu-
tions. (d) General convolutions are not affected by TN simplifications.
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F.2 Forward Pass

We compare TN and TN-+opt with PyTorch’s torch.nn. functional.conv2d. Figure F19 visual-
izes the performance ratios for different convolution categories. Table F5 contains the detailed run
times and performance factors.
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Figure F19: Forward pass performance ratios of TN versus PT and TN+opt versus PT for different
convolution types on GPU.
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Table F5: Forward pass performance comparison on GPU.
(a) 3c3d, CIFAR-10, input shape (128, 3, 32, 32)

Name ‘ TN [s] PT [s] Factor TN + opt [s] PT [s] Factor

convl.0 | 1.26-1073  4.63-107%  2.73x 1.23.1073%  4.64-107%  2.64x

com2.0 | 1.91-1073  4.52.107%  4.22x 1.79 1072  4.53.-107%  3.95x

comv3.l | 1.21-1073%  4.11-107%  2.94x 1.16 1073 4.10-107%  2.83x
(b) F-MNIST 2c2d, input shape (128, 1, 28, 28)

Name ‘ TN [s] PT [s] Factor TN + opt [s] PT [s] Factor

convl.l | 821-10"% 2.25.107%  3.65x 7.67-10"%  225.107%  3.41x

com21 | 3.56-1073  7.43.107%  4.79x 3.24-107%  7.83.10"%  4.14x
(c) CIFAR-100 All-CNN-C, input shape (128, 3, 32, 32)
Name ‘ TN [s] PT [s] Factor TN + opt [s] PT [s] Factor
convl.l | 1.01-1073  4.20-107%  2.41x 9.45-10"%  4.19.107%  2.25x
com2.1 | 1.94-1072  3.09-1073  6.26x 1.88-1072  3.10-1073  6.08x
conv3.l | 8561073  2.86-1073  3.00x 7.77-107%  2.86-1073  2.72x
convd.l | 858-1073 1.75-1073  4.91x 7.77-1073  1.75.1073  4.45x
conv5.1 | 1.67-1072  2.91-1073  5.74x 1.51-1072  2.91-1073  5.19x
conv6.l | 5.13-1073  2.24-1073  2.29x 5.08-10"3 2.24.107%  2.27x
cov7.0 | 2581073  8.26-10"%  3.12x 2.51-107%  827-10"%  3.03x
comv81 | 8.20-107% 2.96-107%  2.77x 3.42-107%  297.107%  1.15x
conv9.l | 7.52.107% 2.35.107%  3.19x 3.01-10~% 2.35.107%  1.28x
(d) Alexnet, input shape (32, 3, 256, 256)

Name ‘ TN [s] PT [s] Factor TN + opt [s] PT [s] Factor
features.0 1.83-1072  2.45.1073  7.47x 1791072 2441073  7.35x
features.3 7.43-107%  2.67-107%  2.79x 7.27-107%  2.85.-1073  2.55x
features.6 | 4.68-1072  1.04-107%  4.52x 3.22-107%  1.02-107%  3.14x
features.8 | 6.15-107%  1.86-10"°  3.31x 6.16-10"°  1.84-1073  3.34x
features.10 | 4.41-1073  1.31-107%  3.36x 4381073  1.31-1073%  3.35x

(e) ResNetl18, input shape (32, 3, 256, 256)
Name ‘ TN [s] PT [s] Factor TN + opt [s] PT [s] Factor
convl 1.44-1072  4.07-1073  3.53x 1.44-1072  4.08-1073  3.53x
layer1.0.conv1 1.05-1072 1.78.1073  5.91x 1.05-1072  1.79.-1073  5.87x
layer2.0.conv1 6.44-1073  1.89-1073  3.41x 6.46-1073  1.89-1073  3.42x
layer2.0.conv2 6.88-107°  1.51-107%  4.54x 6.91-107%  1.52.107%  4.54x
layer2.0.downsample.0 | 1.60-1073  3.79-10"%  4.23x 5.19-10"% 3.80-10"%  1.37x
layer3.0.conv1 3.82-107%  2.00-107%  1.91x 3.56-10"2  2.01-107%  1.77x
layer3.0.conv2 5.02-107°%  1.30-107%  3.85x 5.05-107%  1.31-107%  3.87x
layer3.0.downsample.0 | 1.10-1073  3.78.10"%  2.91x 5.61-10"% 3.79.107%  1.48x
layer4.0.conv1 2.87-107%  236-107°  1.21x 2.86-10"3  2.36-107%  1.21x
layer4.0.conv2 4.47-107%  1.40-1073  3.18x 4.51-107%  1.40-1073  3.21x
layer.0.downsample.0 | 9.90-10~%  3.81-10"%  2.60x 5.16-10"% 3.83.10~%  1.35x
(f) ResNext101, input shape (32, 3, 256, 256)
Name ‘ TN [s] PT [s] Factor TN + opt [s] PT [s] Factor
convl 1.45-1072  4.07-1073  3.57x 1.44-1072  4.07-1073  3.54x
layer].0.conv1 4.31-107%  1.22.1073%  3.54x 2.26-10"3% 1.22.1073 1.85x
layer].0.conv2 3.03-1072 9.86-10"%  3.07x 3.03-1072  9.86-10"3  3.08x
layerl.0.conv3 1.51-1072  6.54-1073  2.31x 7.49-1073  6.54-1073  1.15x
layer2.0.conv1 2.08-1072 1.29-1072  1.61x 1.36-1072  1.29-1072  1.05x
layer2.0.conv2 3.33-1072  4.93-107%  6.75x 3.33-1072  4.93.107%  6.75x
layer2.0.conv3 1.05-1072  6.24-1073  1.69x 6.84-107%  6.24-107%  1.10x
layer2.0.downsample.0 | 7.65-103  3.30-1073  2.31x 3.71-107%  3.31-107%  1.12x
layer2.1.conv2 1.50-1072  4.59-103  3.27x 1.50-1072  4.59-10~3  3.27x
layer3.0.conv1 1.67-1072  1.23.-1072  1.35x 1.28-1072  1.23-1072  1.04x
layer3.0.conv2 1.76 - 1072  2.65-10"3  6.65x 1.76 - 1072 2.66-10"2  6.65x
layer3.0.conv3 8.27-1073%  6.14-1073  1.35x 6.44-10"3  6.14-10"3 1.05x
layer3.0.downsample.0 | 5.58 - 1072  3.20-1073  1.74x 3.42.1073  3.20-107%  1.07x
layer3.1.conv2 7.64-1073  2.49.1073  3.07x 7.64-1073  2.48-1073  3.07x
layer4.0.conv1 1.43-1072 1.22-1072  1.18x 1.24-1072  1.22-1072  1.02x
layer4.0.conv2 8.07-107%  2.02-107%  3.99x 8.08-1073  2.02-107%  4.00x
layer4.0.conv3 7.85-1073  6.28-107%  1.25x 6.33-10"%  6.28-107%  1.01x
layer4.0.downsample.0 | 4.73-1073  3.44.1073%  1.37x 3.34-107%  3.44-107%  0.97x
layer4.1.conv2 4.76 -107%  1.36-10"3  3.51x 4.77-107%  1.35.-1073  3.52x
(g) ConvNeXt-base, input shape (32, 3, 256, 256)
Name ‘ TN [s] PT [s] Factor TN + opt [s] PT [s] Factor
features.0.0 4.26-1073  9.88-10"%  4.31x 1.20-1073  9.94-107%  1.21x
features.1.0.block.0 | 5.07-1072  7.61-107°  6.66x 5.07-1072  7.61-107°%  6.66x
features.2.1 7.60-10"3  3.21.107%  2.37x 3.80-1073  320-107%  1.21x
features.3.0.block.0 | 2.36-1072  3.81-1073  6.18x 2.35.1072  3.81-107%  6.17x
features.4.1 5.41-107%  3.38-107%  1.60x 3.52-107%  3.38-107°  1.04x
features.5.0block0 | 1.11-1072  1.94-107% 57083  1.10-1072 1.94-107%  5.69x
features.6.1 4.54-1073  3.69-1073%  1.23x 3.44-107%  3.70-107%  0.93x
features.7.0.block.0 | 1.06-1073  1.01-1073  1.05x 1.02-1073  1.01-107%  1.01x




(h) InceptionV3, input shape (32, 3, 299, 299)

Name ‘ TN [s] PT [s] Factor TN + opt [s] PT [s] Factor
Conv2d_la_3x3.conv 1.02-1072  9.85-10~%  10.35x 1.01-1072  9.79.10"%  10.30x
Conv2d_2a_3x3.conv 3.23.1072  5.14-1073 6.30x 3.19-1072  5.16-1073 6.18x
Conv2d_2b_3x3.conv 4.83-1072  8.14-1073 5.93x 4.78.1072  8.14-1073 5.87x
Conv2d_3b_Ix1.conv 4.96-107%  1.17.1073 4.24x 1.72-1073% 1171073 1.48x
Conv2d_4a_3x3.conv 3.69-10"2 7.64-1073  4.83x 3.65-1072  7.64-1073  4.77x

Mixed_Sb.branch1x1.conv 1.85-1072  5.04-10"% 3.68x 8.17-10"%  5.03.1074 1.62x
Mixed_5b.branch5x5_1.conv 1.64-1072  4.97.107% 3.30x 8.11-10"%  4.99.107% 1.63x
Mixed_5b.branch5x5_2.conv 5.01-10"3  1.23.1073 4.07x 4.83.-107%  1.23.1073 3.94x

Mixed_5b.branch3x3dbl_2.conv | 4.40-10"3  1.31.1073 3.38x 431-107%  1.31.1073 3.30x
Mixed_Sb.branch3x3dbl_3.conv | 5.82-1073  1.66-103 3.50x 5.66-10"°  1.66-107° 3.40x

Mixed_5b.branch_pool.cony 1.33-1072  3.26-10"%  4.09x 7.04-10"%  3.27-107%  2.15x

Mixed_5c.branch1x1.conv 2.08-107%  6.41-10"% 3.24x 1.03-1073  6.40-10"% 1.61x
Mixed_5c.branch5x5_1.conv 1.87-1073  6.29.10"% 2.97x 1.03-107%  6.30-10"% 1.63x

Mixed_5d.branch1x1.conv 2.18-1073  6.99-10"* 3.12x 1.13-107%  6.98.10"% 1.62x
Mixed_5d.branch5x5_1.conv 1.96-1072  6.91.10"% 2.84x 1.13.103%  6.88-10"% 1.64x

Mixed_6a.branch3x3.conv 1.15-1072  7.12.1073 1.61x 1.07-1072  7.13.1073 1.51x

Mixed_6a.branch3x3dbl_3.conv | 2.61-1072  8.99.10"% 2.90x 2.36-107%  9.00-107% 2.62x

Mixed_6b.branch1x1.conv 2.16-10"3  1.22.1073 1.77x 1.41-1073  1.22.1073 1.15x
Mixed_6b.branch7x7_1.conv 1.67-1072  8.15.10"% 2.05x 1.10-1073  8.16-10"% 1.35x
Mixed_6b.branch7x7_2.conv 2.14-107%  8.04-107% 2.66x 1.76 -1072  8.05-10"% 2.19x
Mixed_6b.branch7x7_3.conv 2.59-107%  1.06-10"3 2.45x 2.27-107%  1.06-1073 2.15x

Mixed_6bbranch7x7dbl 2.conv | 2.17-102  7.88.10" % 2.76x 1.78.1073  7.88.10"% 2.26x
Mixed_6b.branch7x7dbl_S.conv | 2.63-1072  1.07.1073 2.46 x 2.25-107%  1.07-1073 2.11x
Mixed_6c.branch7x7_1.conv 2.05-107%  1.16-107% 1.77x 1.41-107%  1.16-1073 1.21x
Mixed_6c.branch7x7_2.conv 3.19-107%  1.12-1073 2.84x 2.72.107%  1.12.1073 2.42x
Mixed_6c.branch7x7_3.conv 3.12-107%  1.25.1073 2.50x 2.76-107%  1.25.1073 2.21x
Mixed_6c.branch7x7dbl_2.conv | 3.25-1072  1.10-1073 2.96x 2.75-107%  1.10-1073 2.51x
Mixed_6c.branch7x7dbl_S.conv | 3.19-1073  1.28.1073 2.49x 2.73.107%  1.29.1073 2.12x
Mixed_6e.branch7x7_2.conv 3.78.107%  1.48-1073 2.54x 3.21-107%  1.48.1073 2.16x
Mixed_6e.branch7x7_3.conv 3.87-107%  1.45.107% 2.66x 3.26-107%  1.46-107° 2.24x
AuxLogits.conv0.conv 6.40-10~% 2.38.107% 2.69x 3.20-10"% 2.39.107% 1.34x
AuxLogits.conv1.conv 8.06-10"* 1.53-107%  0.53x 6.98-10"% 1.52.1073%  0.46x
Mixed_7a.branch3x3_2.conv 1.08-1073  4.37.10"% 2.48x 1.09-1073  5.01-10"% 2.18x
Mixed_7a.branch7x7x3_4.conv | 1.54-1073  8.89.107% 1.73x 1.52-107%  8.88-10"% 1.71x

Mixed_7b.branch1x1.conv 1.29.1072  7.43.10"% 1.73x 8.76-10~*  7.43.10"% 1.18x
Mixed_7b.branch3x3_1.conv 1.47-1072  1.03.1073 1.42x 1.02-107%  1.03-1073  0.99x
Mixed_7b.branch3x3_2a.conv 1.49-1073  9.36-10"% 1.59x 1.26 1072  9.38.107% 1.34x
Mixed_7b.branch3x3_2b.conv 1.46-1073  9.37.10"4 1.56x 1.28 1073  9.37.107%  1.37x

Mixed_7bbranch3x3dbl_l.conv | 1.67-102  1.04.10"3 1.61x 1171073 1.04-1073 1.13x
Mixed_7bbranch3x3dbl_2.conv | 3.18-1073  9.82.10% 3.23x 3.21-107%  9.83.1074 3.26x
Mixed_7b.branch_pool.conv 9.54 104 6.76 - 10~ % 1.41x 6.30-10~% 6.75-10"% 0.93x

Mixed_7c.branch1x1.conv 1.68-1072  1.08.10"3 1.56x 1271073 1.08-1073 1.18x

Mixed_7c.branch3x3_1.conv 1.98-1072  1.60-10"3 1.23x 1.51-107%  1.60-1072  0.94x

Mixed_7c.branch3x3dbl_l.conv | 2.25-1073  1.56-1073 1.44x 1.73-107%  1.56-1073 1.11x

Mixed_7c.branch_pool.conv 1.25-107%  1.04-1073 1.20x 9.35-10~%  1.04-107%  0.90x

(1) MobileNetV2, input shape (32, 3, 256, 256)

Name ‘ TN [s] PT [s] Factor TN + opt [s] PT [s] Factor
features.0.0 6.91-10"3 7.23.1074 9.55x 6.92-107%  7.24.107% 9.56x
features.l.conv.0.0 | 2.28-1072  2.05-107%  11.11x 2.28-1072  2.06-107%  11.09x
features.1.conv.1 5.64-107%  7.61-10"%  7.42x 1.56-1073  7.57.10%  2.06x
features.2.conv.0.0 | 4.27-1073  1.74.1073 2.45x 2.02-107%  1.74.1073 1.16x
features.2.conv.1.0 | 3.31-1072  1.69-1073  19.55x 3.31-1072  1.69-1072%  19.56x
features.2.conv.2 2.53-107%  4.93.-107%  5.13x 1.08-107%  4.99.10~%  2.16x
features.3.conv.0.0 1.78 1073  7.88.10"% 2.26x 9.63-10~% 7.88.10"% 1.22x
features.3.conv.1.0 | 2.09-1072  2.30-1073 9.07x 2.09-1072 2.30-107% 9.06x
features.3.conv.2 2.93-107%  6.33.107% 4.63x 1.47-1072  6.34-107% 2.33x
features.4.conv.1.0 1.04-1072  6.62-10"%  15.76x 1.04-1072  6.63-10"%  15.72x
features.4.conv.2 1.10-1073  2.61-10"% 4.23x 5.03-10"* 2.61-10"% 1.92x
features.5.conv.0.0 | 9.24-10"%  3.32.107% 2.78x 5.07-10"% 3.33.107% 1.52x
features.S.conv.[.0 | 5.44-1073  7.87-10%  6.91x 5.42-1072  7.88.10"%  6.88x
features.5.conv.2 1.22-.1073  3.11-107% 3.93x 6.16-10~% 3.11.10"% 1.98x
features.7.conv.1.0 | 2.38-1073  2.49.10"% 9.58x 2.37-107%  2.51.1074 9.44x
features.7.conv.2 7.49-10"*  2.09-10"%  3.58x 3.20-10~%  2.10-107%  1.53x
features.8.conv.00 | 8.05-10"*  2.91.10"% 2.77x 4.42-10"%  292.107% 1.51x
features.8.conv.1.0 | 2.29-1073  4.14.10% 5.53x 2.27-107%  4.15.1074 5.48x
features.8.conv.2 7.98 1074 3.07 1074 2.60x 4.63-10"% 3.06-10"% 1.51x
features.11.conv.2 9.88-10~* 4.08-10"% 2.42x 5.67-10"* 4.07-10"* 1.39x
features.12.conv.0.0 | 1.06 - 1073  4.92.10"% 2.16x 5.64-10"%  4.92.107% 1.14x
features.12.conv.1.0 | 4.18-1073  6.04-10~* 6.91x 4.16-107%  6.05-10"% 6.87x
features.12.conv.2 1.16-107%  5.53.10%  2.10x 7.40-10"%  555.107%  1.33x
features.14.conv.1.0 | 1.73-1073  2.29.10% 7.57x 1.72-1073  2.28.10"% 7.53x
features. 14.conv.2 6.95-10"% 3.90-1074 1.78x 4.10-10% 3.90-107% 1.05x
features.15.conv.0.0 9.24 .10 % 3.53.10"4 2.62x 4.36-10"% 3.53-10"% 1.23x
features.15.conv.1.0 | 1.49-103  2.72.10% 5.46 x 1471073  2.73.10"% 5.39x
features. 15.conv.2 8.32-10"*% 5.80-107% 1.43x 5.44-10"% 5.80-10"%  0.94x
features.17.conv.2 1.12-1073  9.74.107% 1.15x 7.14-107%  9.75.107%  0.73x
features.18.0 1.25-1072  7.31.10"% 1.71x 8.01-10~% 7.31-107%*  1.10x
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F.3 Input VJP

We compare TN and TN+opt with a PyTorch implementation of the input VIP via
torch.autograd.grad. Figure F20 visualizes the performance ratios for different convolution
categories. Table F6 contains the detailed run times and performance factors.
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Figure F20: Input VJP performance ratios of TN versus PT and TN+opt versus PT for different
convolution types on GPU.
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Table F6: Input VJP performance comparison on GPU.
(a) 3c3d, CIFAR-10, input shape (128, 3, 32, 32)

Name ‘ TN [s] PT [s] Factor TN + opt [s] PT [s] Factor
covl.0 | 2.24-107%  1.39-1073  1.61x 2.19-107%  1.34-107%  1.63x
comv2.0 | 2.61-107%  8.29-107%  3.15x 2.55-107%  7.86-10"%  3.25x
comv3.1 | 1.46-1073  5.04-10"%*  2.90x 1421073  4.69-10"*  3.02x

(b) F-MNIST 2c2d, input shape (128, 1, 28, 28)

Name ‘ TN [s] PT [s] Factor TN + opt [s] PT [s] Factor

convl.l | 9.47-107%  4.36-10"%  2.17x 8.86-10~% 4.40-107%  2.02x

conv2. | 3.67-107%  9.83-10"%  3.74x 3.62-1073  9.83.107%  3.69x
(c) CIFAR-100 All-CNN-C, input shape (128, 3, 32, 32)

Name ‘ TN [s] PT [s] Factor TN + opt [s] PT [s] Factor

convl.l | 1.91-107%  9.84-107%  1.94x 1.87-107%  9.37-107%  2.00x

comv2. | 2.00-1072  5.95.-1073  3.35x 2.00-1072  5.92.107%  3.37x
comv3.l | 7.82-107%  5.05-1073  1.55x 7.77-1073  5.01-1073  1.55x
convd.l | 8.23-107%  3.11-1073  2.65x 8.17-107%  3.10-107%  2.63x
convs.l | 1.56-1072  4.36-1073  3.57x 1.55-1072  4.36-1073  3.56x
conv6.l | 4.58-1073  3.96-1073  1.16x 4.53-1073 3.96-1073  1.14x
conv7.0 | 2.86-1073  8.32-107%  3.44x 2.81-107%  8.68-10"%  3.24x
conv8.l | 8.31-107% 2.91.107%  2.85x 3.47-10~%  3.32.10%  1.04x
com9.1 | 7.76-10"%  2.21.107*  3.51x 2.90-10"% 261-107%  1.11x
(d) Alexnet, input shape (32, 3, 256, 256)

Name ‘ TN [s] PT [s] Factor TN + opt [s] PT [s] Factor
features.0 1.92-1072  5.48-1072  3.50x 1.92-1072  5.54-1073  3.46x
features.3 1.15-1072  4.16-1073  2.77x 1.15-1072  4.20-107%  2.75x
features.6 | 5.36-1072  1.49.1073  3.60x 5.36-107%  1.49.107%  3.60x
features.8 | 6.26 1072  1.86-1073  3.36x 6.25-1073  1.86-1073  3.37x
features.10 | 4.41-107%  1.32.107%  3.35x 4.40-107%  1.35-1073%  3.26x

(e) ResNetl18, input shape (32, 3, 256, 256)
Name ‘ TN [s] PT [s] Factor TN + opt [s] PT [s] Factor
convl 3.38-1072 8561072  3.96x 3.38-1072  8.49.107%  3.98x
layerl.0.conv1 1.06-1072  2.17-1073  4.87x 1.05-1072  2.11-1073  4.99x
layer2.0.conv1 7.03-10"3% 3.72.1073 1.89x 6.95-10"3  3.66-10"3 1.90x
layer2.0.conv2 6.91-1073  1.55-1073  4.47x 6.90-1073  1.51-1073  4.56x
layer2.0.downsample.0 | 2.02-1072  8.02-10"%  2.51x 1.71-1072  7.64-10"%  2.24x
layer3.0.conv1 3.94-107%  3.05-107%  1.29x 3.88-107%  3.01-107%  1.29x
layer3.0.conv2 5.07-107%  1.31-107%  3.87x 5.07-107%  1.36-107%  3.74x
layer3.0.downsample.0 | 1.15-1072  5.96-10"%  1.94x 9.54-10"% 6.40-10~%  1.49x
layer4.0.conv1 2.89-1073  3.08-107%  0.94x 2.84-107%  3.12-107%  0.91x
layer4.0.conv2 4.50-10"%  1.40-1073  3.21x 4.49-1073  1.44.1073 3.12x
layer4.0.downsample.0 | 9.35-10"*  5.51-10~*  1.70x 7.93.10"*%  5.90-10"*%  1.34x
(f) ResNext101, input shape (32, 3, 256, 256)
Name ‘ TN [s] PT [s] Factor TN + opt [s] PT [s] Factor
convl 3.38-1072  8.52-107%  3.97x 3.38-1072  8.48-107%  3.98x
layerl.0.conv1 6.18-10"3  1.96-1073  3.15x 2.86-10"2  1.96-107%  1.46x
layerl.0.conv2 3.04-10"2 1.17-1072  2.60x 3.05-10"2 1.17-1072  2.61x
layer].0.conv3 1.46-10"2  6.57-10"2 2.22x 7.39-10"3%  6.58-10"3 1.12x
layer2.0.conv1 2.40-1072  1.14-1072 2.10x 1.44-1072  1.17-10"2 1.23x
layer2.0.conv2 2.75.10"2  1.96-1072  1.40x 2.75.1072  1.95-1072  1.41x
layer2.0.conv3 1.04-1072  6.43-1073  1.61x 6.74-107%  6.43-1073  1.05x
layer2.0.downsample.0 | 8.99-10"3  4.78.10"3 1.88x 8.06-10"3  4.74.1073 1.70x
layer2.1.conv2 1.51-1072  4.46-10"3  3.38x 1.51-1072  4.45.1073  3.39x
layer3.0.conv1 1.94-1072  1.25-1072  1.55x 1.32-1072  1.25-1072  1.06x
layer3.0.conv2 1.76 -10~2  8.33.10"2 2.11x 1.76 -10~2  8.34-10"2 2.11x
layer3.0.conv3 8.21-10"3  6.32-107%  1.30x 6.39-10"3  6.32-107%  1.01x
layer3.0.downsample.0 | 5.51-1072  4.54-10"2  1.21x 5.00-1073  4.52.1073  1.11x
layer3.1.conv2 7.60-107%  1.97-1073  3.85x 7.60-107%  1.98-107%  3.84x
layer4.0.conv1 1.51-1072 1.24-1072  1.22x 1.26-1072 1.24-1072  1.02x
layer4.0.conv2 8.24-10"3  5.43.107%  1.52x 8.24-10"3  5.44-1073%  1.51x
layer4.0.conv3 7.65-107%  6.72-1073  1.14x 6.25-10"%  6.73-107%  0.93x
layer4.0.downsample.0 | 4.61-10"3  5.45.107%  0.84x 4.31-107%  5.45-1073%  0.79x
layer4.1.conv2 4791073 1.34.1073  3.57x 4791073 1.39.1073  3.44x

(g) ConvNeXt-base, input shape (32, 3, 256, 256)

Name ‘ TN [s] PT [s] Factor TN + opt [s] PT [s] Factor
features.0.0 5.36-107°  1.79-107%  2.99x 1.57-107%  1.79-107%  0.88x
features.1.0.block.0 | 4.63-1072  8.60-10"3  5.38x 4.63-1072  8.58-1072  5.40x
features.2.1 8.85-107%  537-107°%  1.65x 3.55-107%  5.38-107%  0.66x
features.3.0.block.0 | 2.14-1072  4.21-107%  5.09x 2.14-1072  4.21-107%  5.09x
features.4.1 5.64-107%  4.43.107%  1.27 3.34-107%  4.43.107%  0.75x
features.5.0.block.0 | 1.05-1072  2.16-1073 4,8736 1.05-1072  2.16-1072  4.86x

features.6.1 431-107%  550-107°  0.78x 3.25-107%  550-107%  0.59x
features.7.0.block.0 | 1.09-1072  1.17-107%  0.93x 1.06-107%  1.15-107%  0.92x




(h) InceptionV3, input shape (32, 3, 299, 299)

Name ‘ PT [s] Factor TN + opt [s] PT [s] Factor
Conv2d_la_3x3.conv 1. 3.19-1073  3.97x 1.26 1072 3.21-1073  3.92x
Conv2d_2a_3x3.conv 3.16 5.13-1073  6.16x 3.16-1072  5.17-107%  6.10x
Conv2d_2b_3x3.conv 4.32 8.11-1073  5.33x 4.24-1072  8.17-107%  5.19x
Conv2d_3b_Ix1.conv 5.76 1.09-1073  5.31x 1.37-107%  1.09-1073  1.25x
Conv2d_da_3x3.conv 3.71 1.12-1072  3.30x 3.71-1072  1.12-102  3.30x

Mixed_5b.branchix1.conv 1. 6.89-10"%  1.99x 6.67-10"% 6.88-107% 0.97x
Mixed_Sb.branch5x5_1.conv 1.18 5.87 1074 1.92x 5.70 - 10~% 5.88-10"% 0.97x
Mixed_5b.branch5x5_2.conv 4. 1.39-1073  3.58x 4.97-107%  1.39.1073  3.57x

Mixed_Sb.branch3x3dbl_2.conv | 4. 1.07-107%  3.98x 4.23.1073  1.06-107%  3.98x
Mixed_5b.branch3x3dbl_3.conv | 5. 1.66 - 1073 3.41x 5.68-107°  1.66-107°  3.41x

Mixed_Sb.branch_pool.conv 9. 5.10-10~%  1.90x 4.77-107%  5.13.107%  0.93x

Mixed_5c.branch1x1.conv 1. 8.10-10"%  1.82x 8.07-10% 8.10-10"%  1.00x
Mixed_5c.branch5x5_1.conv 1. 6.85-10"%  1.79x 6.81-10"% 6.87-107%  0.99x

Mixed_5d.branch1x1.cony 1. 1.04-1073  1.61x 9.40-10~* 1.05-107%  0.90x
Mixed_5d.branch5x5_1.conv 1. 8.69-10"%  1.59x 7.84-10"* 8.12-10"% 0.96x

Mixed_6a.branch3x3.conv 1. 1.32-1072  0.86x 1.14-1072  1.32-1072  0.86x

Mixed_6a.branch3x3dbl_3.conv | 2. 1.70 - 1073 1.48x 2.46-107%  1.70-1073%  1.45x

Mixed_6b.branch1x1.conv 1. 1.18 1073 1.50x 1.24.1073%  1.19.1073 1.05x
Mixed_6b.branch7x7_I.conv 1. 8.69-10"%  1.58x 9.27-10% 8.70-107% 1.07x
Mixed_6b.branch7x7_2.conv 2. 8.27-10"%  2.58x 1.79-107%  8.27-107%  2.16x
Mixed_6b.branch7x7_3.conv 2. 1.08-1073  2.36x 2.22.107%  1.08-1073  2.05x

Mixed_6b.branch7x7dbl_2.conv | 2. 8.10-10"%  2.57x 1.80-1073  8.09-107%  2.22x
Mixed_6b.branch7x7dbl_5.conv | 2. 1.11-1073  2.21x 2.14-107%  1.11-1073%  1.92x
Mixed_6c.branch7x7_1.conv 1. 1.03-1073  1.52x 1.09-107%  1.03-107%  1.06x
Mixed_6c.branch7x7_2.conv 3. 1141073  2.79x 2761073  1.13.1073  2.43x
Mixed_6c.branch7x7_3.conv 3. 1.28 1073 2.40x 2.72.107%  1.28-107%  2.12x
Mixed_6c.branch7x7dbl_2.conv | 3. 1.12-1073  2.78x 2.77-107%  1.12-1073%  2.48x
Mixed_6c.branch7x7dbl_S.conv | 2. 1.33-1073  2.22x 2.61-1073  1.33.107%  1.96x
Mixed_6e.branch7x7_2.conv 3. 1.54-1073  2.45x 3.26-107%  1.50-1073  2.17x
Mixed_6e.branch7x7_3.conv 3. 1.51-1073  2.42x 3.27-107%  1.47.107%  2.22x
AuxLogits.conv0.conv 5.58 2.74-10"% 2.02x 3.03-10"% 2.34.10"% 1.30x
AuxLogits.conv1.conv 6. 2.04-107%  0.31x 4.94-10%  202-107%  0.25x
Mixed_7a.branch3x3_2.conv 1.56 1072 7.08-10"%  2.21x 1.47-1073  6.64-107%  2.22x
Mixed_7abranch7x7x3_4.conv | 1.46-1073  1.10-1073  1.33x 1.42-107%  1.14-107%  1.25x

Mixed_7b.branch1x1.conv 1.31-107%  7.40-107%  1.77x 8.47-10~* 7.89.107%  1.07x
Mixed_7b.branch3x3_I.conv 1.44-1073  855-.107%  1.69x 9.54-10"% 9.00-10"4 1.06x
Mixed_7b.branch3x3_2a.conv 1.51-1073  9.77-107%  1.55x 1.26 1072 1.02-1073  1.24x
Mixed_7b.branch3x3_2b.conv 1.50-1073  9.77.10~%  1.54x 1.27-107%  9.78.107%  1.30x

Mixed_7b.branch3x3dbl_l.conv | 1.56-1073  1.02-1073  1.54x 1.07-107%  9.72.107%*  1.10x
Mixed_7bbranch3x3dbl_2.conv | 3.32-1073  1.02-1073  3.24x 3.28-107%  9.91.10"%  3.31x
Mixed_7b.branch_pool.conv 1.01-103 5.57 1074 1.81x 6.18-10"% 5.10- 10~ % 1.21x

Mixed_7c.branch1x1.conv 1.69-107%  1.25.1073  1.35x 1.21-107%  1.22.1073  0.99x

Mixed_7c.branch3x3_I.conv 1.86-1072  1.45.1073  1.28x 1.39-107%  1.45.1072  0.95x

Mixed_7c.branch3x3dbl_l.conv | 2.05-1073  1.66-1073  1.23x 1.57-1072  1.66-10"°  0.95x

Mixed_7c.branch_pool.conv 1.27-1073  8.35.10"%  1.53x 8.32-10~% 835.-10"% 1.00x

(1) MobileNetV2, input shape (32, 3, 256, 256)

Name ‘ TN [s] PT [s] Factor TN + opt [s] PT [s] Factor
features.0.0 8.32-107%  2.08-1073  4.01x 8.26-107%  2.02-1073  4.09x
features.l.conv.0.0 | 2.27-1072  2.63-107°  8.64x 2.27-1072  2.60-107%  8.71x
features. 1.conv.1 3.22-107%  1.17-103%  2.75x 1.02-107%  1.16 1073  0.87x
features 2.conv.0.0 | 7.67-1073  2.61-107%  2.94x 3.66-10"°  2.61-1073 1.40x
features2.conv.1.0 | 2.79-1072 8111072  3.44x 2.79-1072  8.11-107%  3.43x
features.2.conv.2 1.48-1073%  6.38.10~%  2.33x 7.53-10"%  6.40.10"%  1.18x
features.3.conv.0.0 | 2.86-10"2  1.05-107%  2.73x 1.45-107%  1.05.1073 1.38x
features3.conv.1.0 | 2.08-1072  2.95.107%  7.07x 2.08-1072 295-107%  7.05x
features.3.conv.2 1.77-107%  1.04-107%  1.70x 9.75-10"%  1.04-107%  0.94x
features.4.conv.1.0 | 7.63-1073  3.15-107°  2.42x 7.62-107%  3.15.-107%  2.42x
features.4.conv.2 9.49-10"%  4.32.107%  2.20x 4.38-10% 3.88.107% 1.13x
features.5.conv.0.0 1.20-107%  5.26-107%  2.29x 6.09-10"%  4.83.107%  1.26x
features.5.conv.1.0 | 5.41-107%  1.02-1073  5.29x 5.39.107%  1.02-1073  5.27x
features.5.conv.2 9.53-10"%  4.00-10"%  2.38x 4.35-107%  3.98-107%  1.09x
features.7.conv.1.0 | 2.11-1073  1.07-107%  1.97x 2.10-107%  1.07-1073 1.97x
features.7.conv.2 7.77-107%  2.33.107%  3.34x 3.04-10~% 2.33.107%  1.30x
features 8.conv.0.0 | 8.13-10~%  3.41.10"%  2.38x 4.63-10"%  3.40-10"%  1.36x
features.8.conv.1.0 | 2.09-1073  5.48.10"%  3.81x 2.07-107%  547.107%  3.79x
features.8.conv.2 8.65-10"% 3.16-107%  2.74x 4.04-107%  3.16-107%  1.28x
features. 1 1.conv.2 9.34-10~%  4.22.107%  2.21x 4.74-107%  4.24.107% 1.12x
features.12.conv.0.0 | 1.16-1073  7.11-10"%  1.64x 7.37.10"* 7.10-107% 1.04x
features.12.conv.1.0 | 3.84-107%  7.91.107%  4.85x 3.82-107%  7.91-107%  4.83x
features.12.conv.2 1.08-1072  5.71-107%  1.90x 6.13-10~%  5.73.107%  1.07x
features.14.conv.1.0 | 1.61-1073  8.26-10"%  1.95x 1.60-1073  8.26-10"%  1.93x
features. 14.conv.2 8.14-10"% 287.107%  2.83x 3.84-10"% 2.87.107% 1.34x
features.15.conv.0.0 | 8.46-10"%  6.29-107%  1.34x 5.55-10"%  6.08-10"%  0.91x
features.15.conv.1.0 | 1.52-1073  3.62-10"%  4.21x 1.50-103  3.61-10"%  4.17x
features.15.conv.2 9.64-10"%  4.43.107%  2.18x 4.82-107%  4.44.107% 1.09x
features.17.conv.2 1.23-107%  7.30-107%  1.69x 6.98-10"% 7.32.107%  0.95x
features.18.0 1.20-107%  1.28.107%  1.00x 8.76-10~*% 1.28-1072  0.68x
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F4 Weight VJP

We compare TN and TN+opt with a PyTorch implementation of the weight VJP via
torch.autograd.grad. Figure F21 visualizes the performance ratios for different convolution
categories. Table F7 contains the detailed run times and performance factors.
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Figure F21: Weight VJP performance ratios of TN versus PT and TN+opt versus PT for different
convolution types on GPU.
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Table F7: Weight VJP performance comparison on GPU.

(a) 3c3d, CIFAR-10, input shape (128, 3, 32, 32)

Name ‘ TN [s] PT [s] Factor TN + opt [s] PT [s] Factor

covl.0 | 2.27-107%  1.50-1073  1.52x 2.27-107%  1.50-107%  1.51x

comv2.0 | 3.00-107%  1.12-1073  2.68x 2.99-107%  1.07-107%  2.78x

comv3.1 | 1.29-1073  5.46-10"%  2.37x 1251073 5.08-107%  2.47x
(b) F-MNIST 2c2d, input shape (128, 1, 28, 28)

Name ‘ TN [s] PT [s] Factor TN + opt [s] PT [s] Factor

convl.l | 1.08-1073  3.81-10"%  2.83x 1.03-1073%  4.05-10"%  2.54x

com2.1 | 4.12-1073  1.02-1073  4.02x 4.09-1073%  1.03-1073%  3.98x
(c) CIFAR-100 All-CNN-C, input shape (128, 3, 32, 32)

Name ‘ TN [s] PT [s] Factor TN + opt [s] PT [s] Factor
convl.l | 2.43-107%  1.02-1073  2.39x 2.42-107%  1.02-1073%  2.37x
com2.1 | 3.83.1072  5.62-1072  6.81x 1.97-1072  5.62-1073  3.51x
com3.1 | 830-1073  4.14-1073  2.00x 8.33-1073  4.21-107%  1.98x
convd.l | 8.66-107°  2.64-1073  3.28x 8.68-107°  2.68-107°  3.24x
cos.l | 1.60-1072  3.38-1073  4.75x 1.61-1072  3.42.107%  4.70x
comv6.l | 5.23.1073  2.80-1073  1.87x 5.17-107%  2.81-1073  1.84x
com7.0 | 2.68-1073  9.97-107%  2.68x 2.59-107%  1.04-107%  2.49x
com8.1 | 9.13-107%  2.62-107%  0.35x 4.33.107%  262-107%  0.17x
com9.1 | 8.78-10"% 3.54.10"% = 2.48x 3.93.-10"% 350-10"%  1.12x

(d) Alexnet, input shape (32, 3, 256, 256)

Name ‘ TN [s] PT [s] Factor TN + opt [s] PT [s] Factor
features.0 1.82-1072  3.31-107%  5.50x 1.82-1072  3.33-1073  5.46x
features.3 2.02-1072  2.57-107%  7.85x 1.14-1072  2.58-1073  4.44x
features.6 | 6.98 1072  1.67-107°  4.19x 5.17-10"%  1.67-1073  3.10x
features.8 | 8.16-1072  1.97-1073  4.15x 6.13-1073  1.97-1073%  3.11x
features.10 | 5.80 - 1073  1.47-107%  3.94x 4.34-107% 1.47-1073%  2.95x

(e) ResNetl18, input shape (32, 3, 256, 256)
Name ‘ TN [s] PT [s] Factor TN + opt [s] PT [s] Factor
convl 3.00-1072  8.23.107%  3.65x 2.99-1072  7.83.-107%  3.82x
layerl.0.conv1 2.34-1072  3.18-1073  7.37x 1.10-1072  3.22.1073  3.43x
layer2.0.conv1 5.88-10"3  2.97.1073 1.98x 5.87-10"3%  2.96-10"3 1.98x
layer2.0.conv2 1.17-1072  1.66-10"3 7.03x 6.98-1073  1.66-1073  4.20x
layer2.0.downsample.0 | 1.85-1072  7.39-10"%  2.51x 7.60-10"% 7.33.107%  1.04x
layer3.0.conv1 3.79-107%  2.71-107%  1.40x 3.76-107%  2.71-107%  1.39x
layer3.0.conv2 6.62- 103 1.48 1073 4.46x 4.87-1073 1.48 1073 3.28x
layer3.0.downsample.0 | 1.61-1073  5.39-10~%  2.99x 6.12-10"% 5.45.10"%  1.12x
layer4.0.conv1 2.85-1073  2.46-1073  1.16x 2.82-107%  2.46-1073  1.15x
layer4.0.conv2 4.83-107% 1.72-1072 2.80x 4.31-107%  1.72-107%2 2.50x
layer4.0.downsample.0 | 1.00-10~3  1.02-10~%  0.98x 5.07-10~* 1.02-107%  0.50x
(f) ResNext101, input shape (32, 3, 256, 256)
Name ‘ TN [s] PT [s] Factor TN + opt [s] PT [s] Factor
convl 3.00-1072  8.22-107%  3.65x 2.99-1072  7.83-107%  3.82x
layerl.0.conv1 7.08-1073  2.92.1073  2.42x 3.75.-10"3  2.89-107%  1.30x
layerl.0.conv2 6.70-10"2  2.53.1072  2.65x 6.72-10"2  1.91-10"2  3.51x
layer].0.conv3 3.12-10"2 8781073  3.55x 1.04-1072  1.02-10"2 1.02x
layer2.0.conv1 2291072  1.80-10"2 1.28x 1.77-1072  1.76 .10~ 2 1.01x
layer2.0.conv2 6.64-10"2 1.23-1072  5.40x 6.63-10"2 1.23-1072  5.39x
layer2.0.conv3 1.82-1072  5.90-1073  3.08x 8.44-107%  6.50-107%  1.30x
layer2.0.downsample.0 | 8.57-10"3  5.24.1073 1.64x 4.55-107%  5.24-10"3%  0.87x
layer2.1.conv2 4.04-1072  1.21-1072  3.33x 4.04-1072  1.22.1072  3.32x
layer3.0.conv1 1.84-1072  2.03-1072  0.91x 1.48-1072  2.03-1072  0.73x
layer3.0.conv2 1.63-10"2  5.77-1072 2.83x 1.63-10"2  5.82-1072 2.81x
layer3.0.conv3 1.17-1072  1.07-1072  1.10x 7.19-107%  1.07-1072  0.67x
layer3.0.downsample.0 | 6.19-10"2  5.95.1072  1.04x 3.85-1073  6.01-1073  0.64x
layer3.1.conv2 1.47-1072  3.17-107%  4.65x 1.47-1072  3.14-1073%  4.67x
layer4.0.conv1 1.55-1072  2.10-1072  0.74x 1.33-1072  2.11-1072  0.63x
layer4.0.conv2 8.07-10"3 3.13-1072  0.26x 8.06-10"2 3.13-102  0.26x
layer4.0.conv3 8.23-107%  1.06-10"2  0.78x 6.75-10"%  1.06-10"2  0.63x
layer4.0.downsample.0 | 4.96-10"3  5.94.10"%  0.84x 3.59-10"3%  5.99.-10"%  0.60x
layer4.1.conv2 6.63-10"3  1.40-1073  4.72x 6.62-10"3  1.45-1073  4.55x
(g) ConvNeXt-base, input shape (32, 3, 256, 256)
Name ‘ TN [s] PT [s] Factor TN + opt [s] PT [s] Factor
features.0.0 5.93-107%  1.99-107%  2.98x 1.87-107%  1.97-107%  0.95x
features.1.0.block.0 | 2.53-1072  1.09-10"2  2.33x 2.53-1072  1.09-10~2  2.33x
features.2.1 8.20-107%  4.53.107°  1.83x 4321073 452.107%  0.96x
features.3.0.block.0 | 1.23-1072  5.85-107°  2.10x 1.22-1072  5.82-1073  2.10x
features.4.1 5.74-107%  5.30-1073 1.0839 3.74-107%  529-107%  0.71x
features.5.0.block.0 | 6.05-1072  3.63-1073  1.66 6.03-1073  3.64-1072  1.66x
features.6.1 4.74-107%  5.28.107%  0.90x 3.53-107%  5.17-107%  0.68x
features.7.0.block.0 | 9.08-10"%  3.13.107%  0.29x 8.87-10~* 3.13.-107%  0.28x




(h) InceptionV3, input shape (32, 3, 299, 299)

Name ‘ TN [s] PT [s] Factor TN + opt [s] PT [s] Factor
Conv2d_la_3x3.conv 1.07-1072  1.70-107%  6.31x 1.07-1072  1.70-1073  6.29x
Conv2d_2a_3x3.conv 6.00-10"2 1.16-102  5.18x 3.11-1072  1.16-1072  2.68x
Conv2d_2b_3x3.conv 6.10-1072  1.34-1072  4.55x 4.27-1072  1.53-1072  2.78x
Conv2d_3b_Ix1.conv 5.48-.10"3 1.82-107°%  3.01x 2.26-107%  2.12-1073%  1.07x
Conv2d_da_3x3.conv 5.28-10"2 1.29-102  4.08x 3.39-1072  1.29.-1072  2.62x

Mixed_5b.branchix1.conv 5.14-107%  1.16-107°  4.43x 1.41-107%  1.48-1073  0.95x
Mixed_5b.branch5x5_1.conv 4.92-107%  1.46-107°%  3.37x 1.39-107%  1.47-107%  0.95x
Mixed_5b.branch5x5_2.conv 9.28.107%  1.28-107%  7.23x 4.83-107%  1.28-107%  3.77x

Mixed_Sb.branch3x3dbl_2.conv | 7.78 1072  1.75.1073  4.45x 4.22.107% 1.75.1073%  2.41x
Mixed_5b.branch3x3dbl_3.conv | 1.05-1072  1.86-107°  5.63x 6.00-107%  1.87-1073%  3.21x

Mixed_Sb.branch_pool.conv 4521073 9.10-10~%  4.97x 1161073  8.96-10"*  1.30x

Mixed_5c.branch1x1.conv 6.55-10"3  2.00-1073  3.27x 1.67-107%  1.93-1072  0.86x
Mixed_5c.branch5x5_1.conv 6.33-107%  1.93.-107%  3.28x 1.64-107% 1.86-1072  0.88x

Mixed_5d.branch1x1.cony 7.46-107°  2.34-107%  3.19x 2.03-107% 2.31-107%  0.88x
Mixed_5d.branch5x5_1.conv 7.24-107%  2116-1073%  3.36x 2.00-107% 2.15-107%  0.93x

Mixed_6a.branch3x3.conv 1.10-1072  8.34-1073  1.32x 1.09-1072  8.34.1073 1.31x

Mixed_6a.branch3x3dbl_3.conv | 2.46-107°  1.12-1073  2.20x 2.42-107%  1.12-1073%  2.17x

Mixed_6b.branch1x1.conv 5.17-107%  2.05-107%  2.52x 1.86-107%  2.07-107%  0.90x
Mixed_6b.branch7x7_I.conv 4.63-1073  1.56-1073  2.96x 1.46-1073  1.61-1072  0.91x
Mixed_6b.branch7x7_2.conv 3.09 - 1.59 1073 1.94x 2.01-107%  1.64-1073%  1.22x
Mixed_6b.branch7x7_3.conv 3.44 - 2.29-107%  1.50x 2.37.107%  2.33.107%  1.01x

Mixed_6b.branch7x7dbl_2.conv | 4.06 - 1.64-1073  2.48x 1.81-1073  1.68-1073 1.08x
Mixed_6b.branch7x7dbl_S.conv | 2.51 - 2.24-107%  1.12x 2.85-1073  2.29.107%  1.24x
Mixed_6c.branch7x7_1.conv 4.99 - 1.98-1073  2.53x 1.77-107%  2.03-107%  0.87x
Mixed_6¢.branch7x7_2.conv 4.87 - 2.71-1073 1.80x 3.30- 1073 2.75- 1073 1.20x
Mixed_6c.branch7x7_3.conv 4.85 - 2.84-107%  1.71x 2.99.-107%  2.87.1073 1.04x
Mixed_6c.branch7x7dbl_2.conv | 5.43 2.80-1073  1.94x 2.95-107%  2.80-107%  1.05x
Mixed_6c.branch7x7dbl_S.conv | 3.20 2.78-1073  1.15x 3.41-107%  282.1073%  1.21x
Mixed_6e.branch7x7_2.conv 5.96 3.19-1073  1.87x 3.83.107%  3.24.107° 1.18x
Mixed_6e.branch7x7_3.conv 6.50 3.26-107%  1.99x 3.40-107%  3.30-107°%  1.03x
AuxLogits.conv0.cony 6.48 3.45.10"%  1.87x 3.45.10~% 3.88-10"% 0.89x
AuxLogits.conv1.conv 5.34 2.09-10"% 2.56x 4.59-10"4 2.76 - 104 1.66x
Mixed_7a.branch3x3_2.conv 1.80 5.61-10"%  3.22x 1.78 1073  6.16-10"%  2.90x
Mixed_7a.branch7x7x3_4.conv 1.55 8.46 - 1074 1.83x 1.52-103 8.50-10~% 1.79x

Mixed_7b.branch1x1.conv 2.08 1.62-1073 1.28x 1.07-1073 1.63-1073 0.66x
Mixed_7b.branch3x3_I.conv 2.19 - 1.65-1072  1.33x 1.17-107%  1.65-1072  0.71x
Mixed_7b.branch3x3_2a.conv 1.56 1.47 1073 1.06x 1.20-107%  1.47-107%  0.82x
Mixed_7b.branch3x3_2b.cony 1.66 1.50-1073  1.11x 1.22.107%  1.50-107%  0.82x

Mixed_7b.branch3x3dbl_l.conv | 2.34 1.65-1072  1.42x 1.33.107%  1.66-10"2  0.80x
Mixed_7b.branch3x3dbl_2.conv | 3.55 1.23-107%  2.90x 3.10-1073  1.26-1073  2.45x

Mixed_7b.branch_pool.conv 1.84 - 1.46 - 103 1.26x 8.67-10"% 1.46-10"3  0.59x

Mixed_7c.branch1x1.conv 3.07-1073 3.08-1073 1.00x 1.55-1073 3.12.1073 0.50x
Mixed_7c.branch3x3_I.conv 3.30-107%  3.11-107%  1.06x 1.79-107%  3.11-1072  0.58x

Mixed_7c.branch3x3dbl_l.conv | 3.56-1073  3.11-1073  1.15x 2.03-107%  3.10-107%  0.65x

Mixed_7c.branch_pool.conv 2.70-107%  1.61-1073  1.68x 1221073 1.61-1073  0.76x

(1) MobileNetV2, input shape (32, 3, 256, 256)

Name ‘ TN [s] PT [s] Factor TN + opt [s] PT [s] Factor
features.0.0 7.70-1072  1.45.107%  5.30x 7.67-1073  1.46-107%  5.26x
features. 1.conv.0.0 1.59-1072 2461073  6.48x 1.59-1072  2.47.107%  6.46x
features. 1.conv.1 1.47-1072 2401073  6.11x 2.64-10"%  2.39.-107%  1.10x
features.2.conv.0.0 | 8.97-107%  4.95.1073 1.81x 4221073 4.95.107%  0.85x
features2.conv.1.0 | 2.14-1072  2.40-107%  8.90x 2.14-1072  2.41-107%  8.89x
features.2.conv.2 7.38-107%  1.96.1073  3.76x 1.91-107%  1.89.107%  1.01x
features.3.conv.0.0 | 3.55-107%  2.24.1073 1.58x 1.83-1072  2.19-1073  0.84x
features.3.conv.1.0 1.34-1072  2.49.1073  5.38x 1.34-1072 2461072  5.43x
features.3.conv.2 1.04-1072  2.89-1073  3.61x 2.80-107%  2.85.107%  1.01x
features.4.conv.1.0 7.46-107%  1.01-107%  7.41x 7.44-107%  9.84-10~*%  7.56x
features.4.conv.2 3.00-107%  9.40-10"%  3.19x 9.20-10"% 894.107%  1.03x
features.5.conv.0.0 1.49-107%  7.46-10"%  2.00x 7.48-107% 7.46-10%  1.00x
features.5.conv.1.0 | 4.77-1073  9.10.10"%  5.24x 4.75.107%  8.88-10"%  5.34x
features.5.conv.2 3.62-107%  1.06-1073  3.41x 1.04-107%  1.01-1073  1.03x
features.7.conv.1.0 | 2.61-1073  3.66-10"%  7.13x 2.60-107%  3.65-10"%  7.13x
features.7.conv.2 1.43.1073%  5.55.10"%  2.58x 4.64-10% 555-107%  0.84x
features.8.conv.0.0 114103 5.36-10"%  2.12x 5.22.10"* 5.34-10% 0.98x
features.8.conv.1.0 | 2.44.1073  5.67-107%  4.31x 2.43.107%  5.68-10"%  4.28x
features.8.conv.2 2.23-107%  8.32-107%  2.68x 6.80-10"% 8.82.107% 0.77x
features.11.conv2 | 2.36-1073  8.68-10"%  2.72x 7.89-10"%  8.69-10"%  0.91x
features.12.conv.0.0 | 1.55-1073  1.08 1073 1.44x 9.00-10"% 1.03-1073  0.88x
features.12.conv.1.0 | 3.52-1073  8.20-10"%  4.29x 3.50-107%  8.19-107%  4.27x
features.12.conv.2 3.27-107%  1.26-1073  2.59x 1.10-1072  1.26-107%  0.87x
features. 14.conv.1.0 | 2.07-10~3  3.90-10"%  5.31x 2.05-1072  3.90-107%  5.26x
features. 14.conv.2 1.06-1073  1.39-107%  0.76x 5.10-10"% 1.40-107%  0.36x
features.15.conv.0.0 | 1.12-1072  7.19.107%  1.56x 6.21-10"% 7.10-107%* 0.87x
features.15.conv.1.0 | 2.31-1073  5.96-10"%  3.87x 2281072 5961074  3.83x
features.15.conv.2 1.34-107%  1.41-107%  0.95x 6.53-10"% 1.40-1073  0.47x
features.17.conv.2 1.59-107%  1.67-107%  0.95x 8.70-10"% 1.62-107%  0.54x
features.18.0 1.53-107%  1.68-10"%  0.91x 1.04-107%  1.63-107%  0.64x
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F.5 KFC Factor (KFAC-expand)

We compare TN and TN+opt with a PyTorch implementation of the input-based KFC factor based
on torch.nn.functional.unfold. Figure F22 visualizes the performance ratios for different
convolution categories. Table F8 contains the detailed run times and performance factors.
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Figure F22: KFC/KFAC-expand factor performance ratios of TN versus PT and TN+opt versus PT
for different convolution types on GPU.
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Table F8: KFC (KFAC-expand) factor performance comparison on GPU.
(a) 3c3d, CIFAR-10, input shape (128, 3, 32, 32)

Name ‘ TN [s] PT [s] Factor TN + opt [s] PT [s] Factor
comvl.0 | 1.03-1073  242.1073  0.43x 1.03-107%  2.52.1073  0.41x
comv2.0 | 6.69-107°%  3.83-1073  1.75x 6.97-107%  4.52-107°  1.54x
comv3.l | 3271073  2.38.1072  1.37x 3.53-107%  2.54.107%  1.39x

(b) F-MNIST 2c2d, input shape (128, 1, 28, 28)

Name ‘ TN [s] PT [s] Factor TN + opt [s] PT [s] Factor

comvl.l | 1221073  2.01-1072  0.61x 9.30-10"%  1.72.1073%  0.54x

com2.1 | 1.03-1072  9.54-1073  1.08x 1.02-1072  9.47-107%  1.08x
(c) CIFAR-100 All-CNN-C, input shape (128, 3, 32, 32)

Name ‘ TN [s] PT [s] Factor TN + opt [s] PT [s] Factor
convl.l | 1.37-107%  1.48-1072  0.93x 2.72-107%  2.11-107%  1.29x
com2.1 | 1.48-10"'  6.95-1072  2.13x 1531071  7.14-1072  2.15x
com3.l | 4.77-1072  1.15-1072  4.17x 4.56-10"2  1.38-102  3.30x
convd.l | 2.32-1072  1.14-1072  2.03x 2.25-1072  1.14-1072  1.98x
cows.l | 7.03-1072  5.82-1072  1.21x 1.01-10"'  6.19-1072  1.63x
conv6.l | 2.84-1072  1.33-1072  2.14x 2.83-1072 9771073  2.90x
comv7.0 | 8.68-1073  5.95-1073  1.46x 9.30-107%  6.01-107%  1.55x
comv8.l | 1.03-1073  9.97-10"*  1.03x 3.67-10~% 1.44.1073%  0.25x
com9.1 | 1.06-1073  1.49.-1073  0.71x 4.61-10% 1.56-10"%  0.30x

(d) Alexnet, input shape (32, 3, 256, 256)

Name ‘ TN [s] PT [s] Factor TN + opt [s] PT [s] Factor
features.0 | 5.45-1072  1.35-1072  4.03x 6.09-1072  1.34-1072  4.55x
features.3 4.57-1072  4.14-1072  1.10x 5.31-1072  3.73.-1072  1.42x
features.6 | 8.63 1072  7.86-103 1.10x 1121072 8741073  1.28x
features.8 | 3.76 -1072  4.10-1072  0.92x 4.57-1072  4.33.1072  1.06x
features.10 | 1.52-1072  1.38-1072  1.10x 1.91-1072  1.47-1072  1.30x

(e) ResNetl18, input shape (32, 3, 256, 256)
Name ‘ TN [s] PT [s] Factor TN + opt [s] PT [s] Factor
convl 5.25-10"2  2.07-10"2  2.54x 5.22.10"2  2.06-10"2  2.54x
layer1.0.conv1 4.36-1072 2981072  1.46x 5.57-10"2  3.02-1072  1.84x
layer2.0.conv1 2.81-1072  6.38-107%  4.41x 2781072  1.23-1072  2.25x
layer2.0.conv2 2561072  1.90-1072  1.34x 3.09-1072  2.01-102 1.53x
layer2.0.downsample.0 | 3.66-1072  8.14-10"%  4.49x 6.45-10"* 7.94.-10"% 0.81x
layer3.0.conv1 1.34-1072  9.19-1073  1.46x 1.40-10"2  9.17-1073  1.53x
layer3.0.conv2 1.90-1072  1.84-1072  1.03x 2.25.1072  1.95.102 1.16x
layer3.0.downsample.0 | 1.98-1072  7.00-10~%  2.83x 459-10% 5.72.10°%*  0.80x
layer4.0.conv1 8.65-107°  4.79-1073  1.81x 9.12-1073  4.60-1073  1.98x
layer4.0.conv2 2.48-10"2  1.63-1072  1.52x 2.49-10"2 1.88-10"2 1.32x
layer4.0.downsample.0 | 1.19 1072  5.45.10"%  2.18x 2.88-10"* 5.45-10* 0.53x

(f) ResNext101, input shape (32, 3, 256, 256)

Name ‘ TN [s] PT [s] Factor TN + opt [s] PT [s] Factor

convl 5.13-1072  2.05-1072  2.50x 5.06-1072  2.05-1072  2.46x
layerl.0.conv1 3.33.107%  1.85-107%  1.80x 1.70- 1072 2.08-10"3  0.82x
layerl.0.conv2 1.09-10"Y  6.60-10"2  1.66x 1.11-10"%  8.12-1072  1.37x
layer1.0.conv3 1.60-10"2  7.49.1073  2.14x 1.04-1072  7.52.10"32 1.39x
layer2.0.conv1 1.60-1072  1.53-1072  1.05x 1.04-1072  1.53-1072  0.68x
layer2.0.conv2 1.40-107'  4.44.1072  3.15x 1.44-107'  4.54.1072  3.18x
layer2.0.conv3 1.14-1072  5.19-1073  2.20x 8.41-107%  5.20-1073  1.62x
layer2.0.downsample.0 | 1.40-1072  4.22.107%  3.30x 2.92-1073% 4.24.107%  0.69x
layer2.1.conv2 5.07-10"2 423102  1.20x 5.07-10"2  4.24-1072  1.19x
layer3.0.conv1 1.14-1072  5.21-1073  2.19x 8.42-107%  5.27-1073  1.60x
layer3.0.conv2 6.11-10"2  3.21-1072  1.90x 6.23-10"2  2.92.10"2 2.14x
layer3.0.conv3 8.77-1073  4.30-1073  2.04x 7.17-107%  4.33.107%  1.66x
layer3.0.downsample.0 | 7.59-1073  3.08-1073  2.47x 2281073  3.08-1073  0.74x
layer3.1.conv2 2121072 1.95-1072  1.09x 2.05-1072  1.99-10"2  1.03x
layer4.0.conv1 8751073  4.15-1073  2.11x 7.18-10"3%  4.26-10"3 1.68x
layer4.0.conv2 4701072  247-.1072  1.91x 4711072 247-1072  1.91x
layer4.0.conv3 7.88-107%  7.66-1073  1.03x 6.74-1073  7.67-107%  0.88x
layer4.0.downsample.0 | 4.54-1073  2.52.107%  1.80x 2.03-107% 2.54.107%  0.80x
layer4.1.conv2 1.36-1072  1.16-10"2  1.16x 1.36-1072  1.17-1072  1.16x

(g) ConvNeXt-base, input shape (32, 3, 256, 256)

Name ‘ TN [s] PT [s] Factor TN + opt [s] PT [s] Factor
features.0.0 9.94-107%  2.11-107%  4.71x 1.18-1072  2.11-107%  0.56x
features.1.0.block.0 | 4.09-1072  1.37.-10~'  0.30x 5.25.10"2  1.42-10"'  0.37x
features.2.1 2.37-1072  4.90-107°  4.85x 7.81-1072  4.93.-1073  1.59x
features.3.0.block.0 | 1.61-1072  6.99-10"2  0.23x 1.57-1072  7.12-1072  0.22x
features.4.1 1.41-1072  4.08.107%  3.45 6.88-1073  4.15-107%  1.66x
features.5.0.block.0 | 3.98 1073  3.35.1072 0.12%‘2 3.96-1073 3.43.1072  0.12x

features.6.1 6.82-1073  3.30-107°  2.06x 4.77-107%  3.31-107%  1.44x
features.7.0.block.0 | 1.02-1072  1.61-10"2  0.06x 1.00-107%  1.63-10"2  0.06x




(h) InceptionV3, input shape (32, 3, 299, 299)

Name ‘ TN [s] PT [s] Factor TN + opt [s] PT [s] Factor
Conv2d_la_3x3.conv 3.42.1072  4.09-107%  8.36x 3.43-1072  4.11-107%  8.33x
Conv2d_2a_3x3.conv 1.58-10°1  9.20.1072  1.70x 1.91-1071  9.18-1072  2.08x
Conv2d_2b_3x3.conv 1.56 10" 9.66-10"2  1.61x 1.88-1071  9.44.1072  1.99x
Conv2d_3b_Ix1.conv 5.26-107%  2.33.107%  2.26x 1.74-1073%  241.107%  o0.72x
Conv2d_da_3x3.conv 1.01-10"'  6.34-1072  1.58x 1.08-10"'  6.16- 1072 1.76x

Mixed_5b.branchix1.conv 4.13-107%  2.02-107%  2.05x 2.40-107%  2.13-1073%  1.13x
Mixed_5b.branch5x5_1.conv 4.12-107%  3.66-107°%  1.13x 2.41-107%  3.65-107°  0.66x
Mixed_5b.branch5x5_2.conv 4291072  327.1072  1.31x 4391072  3.29.1072 1.33x

Mixed_Sb.branch3x3dbl_2.conv | 8.57-1072  7.27-1073  1.18x 1.38-1072  7.31.1073 1.89x
Mixed_Sb.branch3x3dbl_3.conv | 1.72-1072  1.42.1072  1.21x 2.46-1072  1.42-1072  1.73x

Mixed_5b.branch_pool.cony 4.12-107%  205-1073%  2.01x 2.40-107%  2.02-1073%  1.19x

Mixed_5c.branch1x1.conv 5.43-107%  4.89.107%  1.11x 3.27-107%  4.89.107%  0.67x
Mixed_5c.branch5x5_1.conv 5.40-107%  4.87-107°%  1.11x 3.27-107%  4.88-107%  0.67x

Mixed_5d.branch1x1.cony 7.24-107%  6.66-107°  1.09x 4.88-107%  6.68-107%  0.73x
Mixed_5d.branch5x5_1.conv 7.25-1073 6.67- 1073 1.09x 4.88-1073 6.69- 1073 0.73x

Mixed_6a.branch3x3.conv 7.76-1072  3.28-1072  2.37x 7.78-1072  3.23.1072  2.41x

Mixed_6a.branch3x3dbl_3.conv | 1.29-1072  3.50-1073  3.69x 1.41-1072  7.15-107%  1.97x

Mixed_6b.branch1x1.conv 6.56-10"3  566-107%  1.16x 4.80-1073  4.22.1073 1.14x
Mixed_6b.branch7x7_I.conv 6.55-10"3  6.02-1073  1.09x 4.80-107%  6.03-107%  0.80x
Mixed_6b.branch7x7_2.conv 2.01-107%  3.60-107%  0.56x 1.50 1072  3.58-107%  0.42x
Mixed_6b.branch7x7_3.conv 1.92-107%  3.50-107%  0.55x 1.46 1073  3.58.107%  0.41x

Mixed_6b.branch7x7dbl 2.conv | 1.94-10~3  3.54-.10"2  0.55x 1.45.1073%  3.56-1072  0.41x
Mixed_6b.branch7x7dbl_S.conv | 1.97 1072  3.49-1073  0.56x 1.46 1073  3.49-1073  0.42x
Mixed_6c.branch7x7_1.conv 4.60-1073  1.43x 4.80-107%  4.90-107%  0.98x
Mixed_6¢.branch7x7_2.conv 5.14-1073 0.50x 2.08 1073 5.08-1073 0.41x
Mixed_6c.branch7x7_3.conv 5.32-1073  0.48x 2.04-107% 523.107%  0.39x
Mixed_6c.branch7x7dbl_2.conv | 2.51-1073  5.32-1073  0.47x 2.05-107% 5.25-107%  0.39x
Mixed_6c.branch7x7dbl_S.conv | 2.53 1073  5.21-107%  0.49x 2.04-107%  5.12-107%  0.40x
Mixed_6e.branch7x7_2.conv 3.35-107%  7.81-107%  0.43x 2.90-107% 7.61-107%  0.38x
Mixed_6e.branch7x7_3.conv 3.35-107%  7.52.107°%  0.45x 2.91-107% 7.31-107%  0.40x
AuxLogits.conv0.cony 1.09-107%  6.14-10"%  1.77x 3.82-10~% 6.10-10"%*  0.63x
AuxLogits.conv1.conv 8.95-10~% 1.07-107%  0.84x 8.52-10~% 1.09-107%  0.78x
Mixed_7a.branch3x3_2.conv 6.56-1073  2.67-107°  2.45x 6.98-1073  2.68-107°%  2.60x
Mixed_7abranch7x7x3_4.conv | 6.93-1073  2.93-1073  2.36x 7.04-1073  2.94-107%  2.39x

Mixed_7b.branch1x1.conv 3.27-107%  1.82-107%  1.80x 2.39-107%  1.76-1073 1.36x
Mixed_7b.branch3x3_I.conv 3.66-10"3  3.34-107%  1.10x 2.83-107% 3.36-107°%  0.84x
Mixed_7b.branch3x3_2a.conv 2.51-107% 2.34-107°%  1.07x 3.03-107%  2.32-107%  1.31x
Mixed_7b.branch3x3_2b.conv 2.43.107%  224.1073%  1.09x 2.98-107%  2.16-1073%  1.38x

Mixed_7b.branch3x3dbl_l.conv | 3.70-1073  2.57.1072  1.44x 2.83.107%  243.1073 1.17x
Mixed_7b.branch3x3dbl_2.conv | 2.03-1072  1.45.1072  1.40x 1.94-1072  1.40-1072  1.39x
Mixed_7b.branch_pool.conv 2.89-10"3% 1.57.1073 1.84x 2.26-10"2% 1.57-.103 1.44x

Mixed_7c.branchix1.conv 7.88-1073  7.66-1072  1.03x 6.73-1073  7.66-1072  0.88x

Mixed_7c.branch3x3_I.conv 7.88-1072  7.66-10"3  1.03x 6.73-1073  7.66-10"%  0.88x

Mixed_7c.branch3x3dbl_l.conv | 7.92-1073  7.67-1073  1.03x 6.74-1073  7.67-107°  0.88x

Mixed_7c.branch_pool.conv 7.92.-107%  7.67-107%  1.03x 6.74-10~%  7.67-107%  0.88x

(1) MobileNetV2, input shape (32, 3, 256, 256)

Name ‘ TN [s] PT [s] Factor TN + opt [s] PT [s] Factor
features.0.0 2.30-1072  3.63-107%  6.34x 2.24-1072  3.65-107%  6.13x
features.l.conv.0.0 | 2.84-1072  3.71-1072  0.76x 2.84-1072  3.72-1072 0.76x
features.1.conv. | 7.35-1072  5.48.107%  1.34x 2.95-1072  5.50-107%  0.54x
features.2.conv.0.0 | 4.28 1072  2.92.1073 1.47x 1501073  2.91-1073  0.51x
features2.conv.1.0 | 3.98-1072  2.51.1072 1.59x 3.98-1072  2.51.1072 1.59x
features.2.conv.2 5.33.107%  4.67-107%  1.14x 3.06-107%  5.04-107%  0.61x
features.3.conv.0.0 1.63-1073  1.37.1073 1.19x 7.02-10"* 1.39-107%  0.50x
features.3.conv.1.0 2.07-1072 3.67-1072  0.56x 2.06-10"2 3.68-10"2 0.56x
features.3.conv.2 9.72-107%  9.38-107°%  1.04x 6.47-107%  9.36-107%  0.69x
features.4.conv.1.0 1.15-1072  1.02-10"2 1.13x 1.15-1072  1.02-10"2 1.13x
features.4.conv.2 2.82-107%  2.65-1073 1.06x 1.77-1073  2.64-107%  0.67x
features.5.conv.0.0 1.05-107%  7.05-107%  1.49x 3.84-107% 7.08-107%  0.54x
features.S.conv.1.0 | 6.38-1072  1.19.1072  0.54x 6.36-107%  1.19-10"2  0.53x
features.5.conv.2 3.39-107%  3.16-1073 1.07x 2101073  3.18-107%  0.66x
features.7.conv.1.0 | 3.66 1073  3.66 - 1073 1.00x 3.69-107%  3.67-107%  1.01x
features.7.conv.2 1.41-107%  1.28-1073  1.10x 7.93-107% 1.28-107%  0.62x
features.8.conv.0.0 | 9.96-10"%  6.18-10"*%  1.61x 3.37-107%  6.26-10"%  0.54x
features.8.conv.1.0 | 2.88-1073  6.25-107%  0.46x 2.87-107%  6.26-107°  0.46x
features.8.conv.2 2.36-107° 2241072  1.06x 1.55-1072  2.24-107%  0.69x
features.11.conv.2 2.33.107%  2.22.107%  1.05x 1.55-107%  2.24.107%  0.69x
features.12.conv.0.0 | 9.43.10~%  7.06-10"* 1.34x 3.87-107% 7.07-107%*  0.55x
features.12.conv.1.0 | 4.07-1073  8.89-107%  0.46x 4.04-107%  890-107%  0.45x
features.12.conv2 | 3.97-107%  3.84.107%  1.03x 2.97-107%  3.85.107%  0.77x
features. 14.conv.1.0 | 2.41-1073  2.66-10"%  0.91x 2.39.107%  2.66-10"°  0.90x
features. 14.conv.2 1.50-1073  1.23.1073 1.22x 9.00-10"% 1.23.107%  0.73x
features.15.conv.0.0 | 9.14-107%  6.34-107%  1.44x 3.38-10% 6.23-107%  0.54x
features.15.conv.1.0 | 9.60-10~%  4.01-107%  0.24x 9.83-10~% 4.03.1073  0.24x
features.15.conv.2 2.57-107%  2.35.1073 1.10x 1.85-1072  2.35.107%  0.79x
features.17.conv.2 2.57-107%  2.35-107%  1.10x 1.85-1072  2.35-107%  0.79x
features. 18.0 1.15-1073%  7.91.10"%  1.46x 4.79.107%  7.91.-107*  0.61x
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F.6 KFAC-reduce Factor

We compare TN and TN+opt with a PyTorch implementation of the input-based KFAC-reduce
factor based on torch.nn.functional.unfold. Figure F23 visualizes the performance ratios for
different convolution categories. Table F9 contains the detailed run times and performance factors.
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Figure F23: KFAC-reduce factor performance ratios of TN versus PT and TN+opt versus PT for
different convolution types on GPU.
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Table F9: KFAC-reduce factor performance comparison on GPU.
(a) 3c3d, CIFAR-10, input shape (128, 3, 32, 32)

Name ‘ TN [s] PT [s] Factor TN + opt [s] PT [s] Factor
comvl.0 | 8.88-107% 2.26-1073  0.39x 8.59-10"% 241.107%  0.36x
com2.0 | 1.41-107% 1.79-1073  0.79x 1.29-107%  1.75-107%  0.74x
cov3.l | 1.33-107%  2.31-107%  0.57x 1.46 1073  2.37.107%  0.61x

(b) F-MNIST 2c2d, input shape (128, 1, 28, 28)

Name ‘ TN [s] PT [s] Factor TN + opt [s] PT [s] Factor
comvl.l | 1.10-1073  1.67-1072  0.66x 1.01-107% 1.83-1072  0.55x
com2.1 | 1.58-1073  2.57-1073  0.62x 1.54-1073  2.76-1073  0.56x
(c) CIFAR-100 All-CNN-C, input shape (128, 3, 32, 32)
Name ‘ TN [s] PT [s] Factor TN + opt [s] PT [s] Factor
convl.l | 1.11-107% 1.84-1072  0.60x 1.07-1072  1.89-107%  0.56x
cov2.l | 3.26-107%  8.32.107%  0.39x 3.19-107%  8.24-107%  0.39x
com3.l | 3.09-1073 3.56-10"3  0.87x 3.08-1073 3.56-107%  0.87x
convd.l | 1.45-1073  3.09 1073  0.47x 1.44-107%  3.09-107%  0.47x
cows.l | 2591073  5.63-107%  0.46x 2.55-107%  5.62-107%  0.45x
conv6.l | 2.46-1073  3.49.1072  0.71x 2.43.107%  3.48-107%  0.70x
comv7.0 | 1.55-1073  3.03-1073  0.51x 1.53-1073  3.02-107%  0.51x
conv8.1 | 1.14-107%  1.46-10"%  0.78x 3.59.10~% 1.36-107%  0.26x
com9.1 | 1.14-1073  1.46-10"2  0.79x 3.59-10"% 1.36-10°%  0.26x

(d) Alexnet, input shape (32, 3, 256, 256)

Name ‘ TN [s] PT [s] Factor TN + opt [s] PT [s] Factor
features.0 1.86-1072  4.22-107%  0.44x 1.84-1073  4.22.107%  0.44x
features.3 1.60-1072  3.88-107%  0.41x 1.53-1072  3.89-107%  0.39x
features.6 1.51-1073%  1.64-1073  0.92x 1.43.107%  1.63-1073  0.88x
features.8 1.77-107%  3.02-1073  0.59x 1.73-107%  3.02-1073  0.57x
features.10 | 1.56 - 1073 1.96-107°  0.79x 1.51-107%  1.96-107%  0.77x

(e) ResNetl18, input shape (32, 3, 256, 256)

Name ‘ TN [s] PT [s] Factor TN + opt [s] PT [s] Factor

781073 5.40-1073  0.33x
20-107%  5.32-107%  0.41x
16-107%  1.96-1073  1.10x
47-107%  3.04-1073  0.49x
24-107%  7.49.10%  0.43x
45.107%  1.21-107%  1.20x
.36-107%  1.95-107%  0.70x
68-10"%  5.44-10%  0.49x
44-107% 1.33-107%  1.08x
62-1072 1.86-107%  0.87x
57-107%  4.11-107*  0.63x

convl 1791072  5.41-10"%  0.33x
layerl.0.conv1 241073 5.35-107%  0.42x
layer2.0.conv1 23.107%  1.99-1073 1.12x
layer2.0.conv2 A47.1073 3.02-1073 0.49x
layer2.0.downsample.0 .85-1073  7.70-10"%  2.40x
layer3.0.conv1 46-107%  1.21-107%  1.21x
layer3.0.conv2 49-107% 1.96-107%  0.76x
layer3.0.downsample.0 26-107%  5.44-10"%  2.31x
layer4.0.conv1 49-107%  1.33.107%  1.12x
layer4.0.conv2 60-1073  1.86-10"%  0.86x
layer4.0.downsample.0 63-10"% 5.25 .10 % 1.83x
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(f) ResNext101, input shape (32, 3, 256, 256)

Name ‘ TN [s] PT [s] Factor TN + opt [s] PT [s] Factor

convl 1.78-1072  5.38-107%  0.33x 1.77-107%  5.39-107%  0.33x
layerl.0.conv1 1.87-1072  1.73.1073  1.08x 4.47-10%  1.73.107%  0.26x
layerl.0.conv2 4.44-1072  1.94-1072  2.29x 4.43-1072  1.94-1072  2.29x
layer].0.conv3 6.09-10"3% 5.57.10"3 1.09x 1.21-107%  5.57-107%  0.22x
layer2.0.conv1 6.09-10"3  5.57-1073  1.09x 1.21-1073  5.58-1073  0.22x
layer2.0.conv2 1.37-1072  1.18-1072  1.16x 1.37-1072 1.18.1072  1.16x
layer2.0.conv3 3.81-107%  3.02-107%  1.26x 7.44-.10"%  3.02-107%  0.25x
layer2.0.downsample.0 | 6.08-10"3  1.77.1073  3.44x 7.12-10"%  1.77-1073  0.40x
layer2.1.conv2 416-1073%  9.91.10"3  0.42x 416-107%  9.90-10~2  0.42x
layer3.0.conv1 3.81-107%  3.02-1073  1.26x 7.32-10"%  3.02-107%  0.24x
layer3.0.conv2 7.88-10"%  6.42-1073 1.23x 7.90-10"3%  6.43.10"3 1.23x
layer3.0.conv3 1.61-1072 1.78-10"%  0.91x 5.42-10"* 1.80-10%  0.30x
layer3.0.downsample.0 | 3.80-1072  1.17-1072  3.24x 5.10-10~% 1.21-1073  0.42x
layer3.1.conv2 2.25-107%  5.41-107%  0.42x 2.26-107%  5.41-107%  0.42x
layer4.0.conv1 1.61-1072  1.77-107%  0.91x 5.44-10~* 1.80-10~%  0.30x
layer4.0.conv2 4211073  5.29.1072  0.80x 4.21-107%  5.29.1072  0.80x
layer4.0.conv3 1.23-107%  1.45.10"%  0.85x 7.68-10"% 1.44.107%  0.53x
layer4.0.downsample.0 | 1.62-10~3  8.91.10"% 1.82x 4.97-10"%*  8.93-10* 0.56x
layer4.1.conv2 2.18-1073  4.73.107%  0.46x 2161073 4721073  0.46x

(g) ConvNeXt-base, input shape (32, 3, 256, 256)

Name ‘ TN [s] PT [s] Factor TN + opt [s] PT [s] Factor
features.0.0 1.72-107%  1.02-107%  1.69x 7.52-107% 1.01-107%  0.74x
features.1.0.block.0 | 1.53-1072  4.41-10~2  0.35x 1531072  4.40-1072  0.35x
features.2.1 3.80-107%  1.99.-107%  1.91x 8.44-10"% 1.99.107%  0.43x
features.3.0.block.0 | 8.21-1073  2.22.1072  0.37x 8.19-107% 222.1072  0.37x
features.4.1 2.32.107% 1.21-1073  1.92 6.85-10~* 1.18-107%  0.58x
features.5.0.block.0 | 4.62-1073  1.18.1072 0.39%‘5 4571073  1.16-10"2  0.40x

features.6.1 1.40-1073  1.10-1073  1.27x 9.28-10"% 1.02-107%  0.91x
features.7.0.block.0 | 1.38-1072  6.35-107%  0.22x 1.35-107%  6.34-107%  0.21x




(h) InceptionV3, input shape (32, 3, 299, 299)

Name TN [s] PT [s] Factor TN + opt [s] PT [s] Factor
Conv2d_la_3x3.conv 2.39 - 2.03-107%  1.18x 2.36-107%  2.00-107%  1.18x
Conv2d_2a_3x3.conv 4.42 . 1.30- 1072  0.34x 4381073  1.30-1072  0.34x
Conv2d_2b_3x3.conv 4.33 - 1.30-1072  0.33x 432-107% 1.30-1072  0.33x
Conv2d_3b_Ix1.conv 1.32 - 2161073  6.12x 5.53-10~% 2.16-10"%  0.26x
Conv2d_da_3x3.conv 2.72 - 8.00-1073  0.34x 2.74-107%  8.02-1073%  0.34x

Mixed_5b.branchix1.conv 1.43 - 1.57-1073  0.91x 4521074  1.57.107%  0.29x
Mixed_5b.branch5x5_1.conv 1.43 - 1.57-107%  0.91x 4.53-10%  1.57-107%  0.29x
Mixed_5b.branch5x5_2.conv 1.56 - 3.73-1073 0.42x 1.35.1073 3.72-1073 0.36x

Mixed_Sb.branch3x3dbl_2.conv | 1.57 - 1.91-107%  0.82x 1.44-1073  1.91-1073  0.76x
Mixed_5b.branch3x3dbl_3.conv | 1.48 - 2.66-107°  0.56x 1.41-107%  2.66-107°  0.53x

Mixed_Sb.branch_pool.conv 1.45 - 1.59-107%  0.91x 4.62-10"%  1.59-1073%  0.29x

Mixed_5c.branch1x1.conv 1.79 - 2.00-107%  0.90x 5.48-10"% 2.00-1073%  0.27x
Mixed_5c.branch5x5_1.conv 1.79 - 2.00-107%  0.90x 5.46-10"% 2.00-107%  0.27x

Mixed_5d.branch1x1.conv 1.99 - 2.22-107%  0.90x 5.90-10~% 221.107%  0.27x
Mixed_5d.branch5x5_1.conv 1.97 - 2.20-107%  0.89x 5.83.-10~% 2.18-1073%  0.27x

Mixed_6a.branch3x3.conv 2.81 - 3.18-107%  0.88x 2.76-107% 3.18-107%  0.87x

Mixed_6a.branch3x3dbl_3.conv | 1.30 - 1.22-1073  1.07x 1.44-107%  1.20-107%  1.11x

Mixed_6b.branch1x1.conv 1.49 - 1.64-1072  0.91x 5.47-10~% 1.62-107%  0.34x
Mixed_6b.branch7x7_I.conv 1.46 - 1.64-1072  0.89x 5.60-10"% 1.64-107%  0.34x
Mixed_6b.branch7x7_2.conv 1.01 - 1.07-1073  0.94x 7.56-10"% 1.10-107%  0.69x
Mixed_6b.branch7x7_3.conv 9.45 - 1.23-107%  0.77x 7.61-10"% 1.23.107%  0.62x

Mixed_6b.branch7x7dbl_2.conv | 1.06 - 1.23-1072  0.86x 7.62-10"% 1.23.-107%  0.62x
Mixed_6b.branch7x7dbl_S.conv | 1.14 - 1.10-1073%  1.04x 7.56-10"%  1.10-1073  0.69x
Mixed_6c.branch7x7_1.conv 1.43 - 1.62-1072  0.88x 5.47-10% 1.64-107%  0.33x
Mixed_6¢c.branch7x7_2.conv 1.01 - 1.34-1073 0.75x 7.64-10"% 1.35-1073 0.56x
Mixed_6c.branch7x7_3.conv 1.07 - 1.69-1072  0.63x 7.69-10"% 1.68-1073  0.46x
Mixed_6c.branch7x7dbl_2.conv | 8.59 - 1.67-1073  0.51x 7.67-107%  1.69-107°  0.45x
Mixed_6c.branch7x7dbl_S.conv | 1.01 - 1.33-107%  0.76x 7.64-10"% 1.35.107%  0.57x
Mixed_6e.branch7x7_2.conv 1.01 - 1.48-1072  0.69x 7.68-10"% 1.49.-1073  0.51x
Mixed_6e.branch7x7_3.conv 9.53 - 1.77-1073  0.54x 7.38-107% 1.79.-107%  0.41x
AuxLogits.conv0.cony 9.97-10~%  6.04-10"%  1.65x 3.66-10~% 6.58-10"%* 0.56x
AuxLogits.conv1.conv 1.05-107%  1.09-1073  0.97x 9.31-10%  1.09-107%  0.85x
Mixed_7a.branch3x3_2.conv 1.30-1073  7.75.-107%  1.68x 1.26-1073  7.67-10"% 1.64x
Mixed_7abranch7x7x3_4.conv | 1.34-1073  1.14-1073  1.18x 1.36-1072  1.14-107%  1.19x

Mixed_7b.branch1x1.conv 1.03-107%  9.07-10"%  1.13x 5.08-10"% 9.07-10"%  0.56x
Mixed_7b.branch3x3_I.conv 1.16 1072 9.30-107%  1.25x 5.20-10"% 9.10-107%  0.57x
Mixed_7b.branch3x3_2a.conv 1.13-1073  7.94-107%  1.43x 6.80-10"% 7.93.107% 0.87x
Mixed_7b.branch3x3_2b.conv 1.07-1073  8.53.10"%  1.25x 7.60-10"% 851.107%  0.89x

Mixed_7b.branch3x3dbl_l.conv | 1.16-1073  9.32.10"%  1.25x 5.38-10"% 9.32.107%  0.58x
Mixed_7b.branch3x3dbl_2.conv | 1.67-1072  1.55-1073  1.08x 1.59-107%  1.55-1073  1.02x
Mixed_7b.branch_pool.conv 1.16-1073  6.79-10"% 1.71x 5.19-10"%  6.85-10%  0.76x

Mixed_7c.branch1x1.conv 1.23.107%  1.45.1072  0.85x 7.69-10"% 1.44.-1073  0.53x

Mixed_7c.branch3x3_I.conv 1.21-1073  1.44-1073  0.84x 7.80-10"% 1.45.1073  0.54x

Mixed_7c.branch3x3dbl_l.conv | 1.21-1073  1.43-1073  0.84x 7.66-10"% 1.44-107%  0.53x

Mixed_7c.branch_pool.conv 1.21-1073  1.44.-1073  0.84x 7.80-10"%* 1.45.107%  0.54x

(1) MobileNetV2, input shape (32, 3, 256, 256)

Name ‘ TN [s] PT [s] Factor TN + opt [s] PT [s] Factor
features.0.0 1901073  1.66-1073 1.15x 1.91-1073  1.68-1073  1.14x
features.l.conv.0.0 | 2.69-1072  9.87-107%  0.27x 2.70-107%  9.89-107%  0.27x
features.1.conv. | 1.12-1072  3.03-107%  3.70x 7.12-10"%  3.00-107%  0.24x
features.2.conv.0.0 1.80-1073  1.77.1073 1.02x 4.64-10% 1761073  0.26x
features.2.conv.1.0 7.01-107%  9.06-107%  0.77x 6.99-107%  9.06-107%  0.77x
features.2.conv.2 2.59.107%  2.38.107%  1.09x 6.08-10% 240-107%  0.25x
features.3.conv.0.0 1441073 9.19.107%  1.57x 2.96-10"* 9.40-10~*% 0.31x
features.3.conv.1.0 2.99-107% 1.12-1072  0.27x 2.99-107% 1.12-1072  0.27x
features.3.conv.2 3.65-107°  3.38-107%  1.08x 7.92-107% 3.40-107%  0.23x
features.4.conv.1.0 | 3.01-1072  3.76-10"°  0.80x 2.99-1072  3.77.107%  0.79x
features.4.conv.2 1381073  1.16 - 1073 1.19x 3.53-10%  1.16-107%  0.30x
features.5.conv.0.0 | 8.51-107%  5.17.107%  1.65x 2.77-107%  5.34.-107%  0.52x
features.S.conv.1.0 | 1.38-1072  3.99.107%  0.34x 1.36-107%  3.99.107%  0.34x
features.5.conv.2 1.68-1073  1.36-10"3 1.24x 3.94-10% 1.35.107%  0.29x
features.7.conv.1.0 1.37-107%  1.69-107%  0.81x 1.35-107%  1.69-107%  0.80x
features.7.conv.2 8.59.10~% 7.05-107%  1.22x 2.52-107%  7.00-10%  0.36x
features.8.conv.0.0 | 8.45-10"%  4.92.10"%  1.72x 2.49-10"* 4.93.10~*% 0.51x
features.8.conv.1.0 1.16-1073  2.36-1072  0.49x 1.12-107%  2.35.107%  0.47x
features.8.conv.2 8.73-107% 9.30-107%  0.94x 3.06-10"% 9.29.107%  0.33x
features.11.conv2 | 9.89-10"%  9.49.107%  1.04x 3.06-10% 9.25.10"*  0.33x
features.12.conv.0.0 | 9.55.10~%  5.32.107% 1.80x 2.50-10"% 5.14-10"%  0.49x
features.12.conv.1.0 | 1.51-1073  3.23-107%  0.47x 1.27-107%  3.22.107%  0.39x
features.12.conv.2 1141073 1.24-107%  0.92x 3.94-107%  1.17-107%  0.34x
features. 14.conv.1.0 | 1.51-1073  1.61-1072  0.94x 1.45-107%  1.61-10"%  0.90x
features. 14.conv.2 1.14-1073  6.83-10"% 1.67x 3.67-10"% 6.80-10"%  0.54x
features.15.conv.0.0 | 9.53-107%  5.23.107%  1.82x 2.74-107* 5.23.-107%  0.52x
features.15.conv.1.0 | 1.41-10~3  2.25.107%  0.63x 1.37-107%  2.25.107%  0.61x
features.15.conv.2 1.15-1073  8.81-10"% 1.31x 4.46-10"% 883.107% 0.51x
features.17.conv.2 1.16-107%  8.80-10"%  1.31x 436-10"% 858.107% 0.51x
features. 18.0 9.51-10~%  5.40-10"%  1.76x 2.50-10"%  5.22.107%  0.48x
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G Memory Evaluation Details (CPU)

Here, we investigate the peak memory consumption of our proposed TN implementations.

G.1 Theoretical & Empirical Analysis for KFAC-reduce Factor

We assume a two-dimensional convolution with input X of shape (Ci,, I1, I3), output of shape
(Cout, O1,02) and kernel of shape (Cou, Cin, K1, K2). The analysis with a batch dimension is
analogous; hence we suppress it here to de-clutter the notation.

The main difference between the default and our proposed TN implementation of 2 from §3.3 lies
in the computation of the averaged unfolded input [X]®) := 1/ (0102)14, o, [X] which consists of
Cin K1 K5 numbers. In the following, we will look at the extra memory on top of storing the input X,
the averaged unfolded input [X]('®), and the result £2.

Default implementation: The standard implementation computes [X](®'2) via the unfolded input
[X] and thus requires extra storage of C;, K1 K201 O2 numbers.

TN implementation (general case): The TN implementation requires storing the averaged index
patterns N8 .= 1/o, ZOO:"l[I'I(l)];,O7: for i = 1,2. These are directly computed via a slight
modification of Algorithm D1 and require storing /1 K7 + I K5 numbers. In contrast to the default
implementation, spatial dimensions are de-coupled and there is no dependency on C};.

TN implementation (structured case): For structured convolutions (Figure 5) we can describe the
action of the index pattern tensor through reshape and narrowing operations. ML libraries usually
perform these without allocating additional memory. Hence, our symbolic simplifications completely
eliminate the allocation of temporary intermediates to compute [X] (avg)

Empirical results: To demonstrate the memory reduction inside the computation of 2 we measure
its peak memory with the memory-profiler library and subtract the memory required to store X
and €. This approximates the extra internal memory requirement of an implementation. With the
setup of §F we report the minimum additional memory over 50 independent runs in Table G10. We
consistently observe that the TN implementation has lower peak memory, which is further reduced by
our symbolic simplifications (see for example the effect on ResNext101’s dense and down-sampling
convolutions in Table G10f).

Our theoretical analysis from above suggests that the peak memory difference becomes most vis-
ible for many channels with large kernel and output sizes. One example are ConxNeXt-base’s
features.1.0.block.0 convolutions with K1 = Ky = 7, O1 = Oy = 64, and C;, = 128 (Ta-
ble E4g). For those convolutions, we observe that the default implementation requires an additional
3,140 MiB (=~ 3 GiB!) of memory, whereas the TN implementation has zero extra memory demand
(Table G10g). This is consistent with our theoretical analysis in that the overhead is storing the
unfolded input, which has (N = 32) - (Ciy = 128) - (01 =64) - (O2 =64) - (K; =7) - (K2 =
7) = 822,083, 584 float32 entries, corresponding to 3,136 MiB.
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Table G10: Additional internally required memory to compute the KFAC-reduce factor (measured on
CPU). The value 0 indicates that an implementation’s peak memory matches the memory consumption

of its input X and result .

(a) 3c3d, CIFAR-10, input shape (128, 3, 32, 32)

Name | TN [MiB] TN +opt [MiB]  PT [MiB] Type
convl.0 0.0 0.0 0.0 General
conv2.0 0.0 0.0 0.0 General
conv3.1 0.0 0.0 0.0 General

(b) F-MNIST 2c2d, input shape (128, 1, 28, 28)

Name ‘ TN [MiB] TN + opt [MiB] PT [MiB] Type
convl.l 0.0 0.0 0.0 General
conv2.1 0.0 0.0 0.0 General

(c) CIFAR-100 All-CNN-C, input shape (128, 3, 32, 32)

Name | TN [MiB] TN + opt [MiB] PT [MiB] Type
convl.l 0.0 0.0 0.0 General
conv2.1 0.0 0.0 431 General
conv3.1 0.0 0.0 0.0 General
conv4.1 0.0 0.0 0.0 General
conv5.1 0.0 0.0 215 General
conv6.1 0.0 0.0 0.0 General
conv7.0 0.0 0.0 0.0 General
conv8.1 0.0 0.0 0.0 Dense
conv9.1 0.0 0.0 0.0 Dense

(d) Alexnet, input shape (32, 3, 256, 256)

Name | TN[MiB] TN + opt [MiB] PT [MiB] Type
features.0 0.0 0.0156 175 General
features.3 0.0 0.0 186 General
features.6 0.0 0.0156 0.0 General
features.8 0.0 0.0156 93.8 General

features.10 0.0 0.0195 0.0 General

(e) ResNetl18, input shape (32, 3, 256, 256)

Name | TN [MiB] TN + opt [MiB] PT [MiB] Type
convl 0.0 0.0 293 General
layerl.0.conv1 0.0 .0 287 General
layer2.0.conv1 31.7 0.0 71.1 General
layer2.0.conv2 0.0 0.0 143 General
layer2.0.downsample.0 0.0 0.0 0.0 Down
layer3.0.conv1 0.0 0.0 0.0 General
layer3.0.conv2 0.0 0.0 70.8 General
layer3.0.downsample.0 0.0 0.0 0.0 Down
layer4.0.conv1 0.0 0.0 0.0 General
layer4.0.conv2 0.0 80.3 0.0 General
layer4.0.downsample.0 0.0 0.0 0.0 Down
(f) ResNext101, input shape (32, 3, 256, 256)

Name | TN [MiB] TN + opt [MiB] PT [MiB] Type
convl 0.0 0.0 293 General
layer1.0.conv1 0.0 0.0 0.0 Dense
layer1.0.conv2 576 576 1150 General
layerl.0.conv3 128 0.0 127 Dense
layer2.0.convl 128 0.0 127 Dense
layer2.0.conv2 256 256 575 General
layer2.0.conv3 0.0 0.0 0.0 Dense
layer2.0.downsample.0 128 0.0 19.3 Down
layer2.1.conv2 0.0 0.0 575 General
layer3.0.conv1 0.0 0.0 0.0 Dense
layer3.0.conv2 128 128 288 General
layer3.0.conv3 0.0 0.0 0.0 Dense
layer3.0.downsample.0 0.0 0.0 0.0 Down
layer3.1.conv2 0.0 0.0 288 General
layer4.0.conv1 0.0 0.0 0.0 Dense
layer4.0.conv2 0.0 0.0 144 General
layer4.0.conv3 0.0 0.0 0.0 Dense
layer4.0.downsample.0 0.0 0.0 0.0 Down
layer4.1.conv2 0.0 0.0 144 General

(g) ConvNeXt-base, input shape (32, 3, 256, 256)

Name | TN[MiB] TN +opt [MiB]  PT [MiB] Type
features.0.0 0.0 0.0 0.0 Dense
features.1.0.block.0 0.0 0.0 3140 General
features.2.1 0.0 0.0 0.0 Dense
features.3.0.block.0 0.0 0.0 1570 General
features.4.1 0.0 0.0 0.0 Dense
features.5.0.block.0 0.0 0.0 784 General
features.6.1 0.0 0.0 0.0 Dense
features.7.0.block.0 0.0 0.0 392 General
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(h) InceptionV3, input shape (32, 3, 299, 299)

Name ‘ TN [MiB] TN + opt [MiB] PT [MiB] Type
Conv2d_la_3x3.conv 54.6 0.0 73.0 General
Conv2d_2a_3x3.conv 86.7 86.7 759 General
Conv2d_2b_3x3.conv 84.4 84.4 758 General
Conv2d_3b_1x1.conv 166 0.0 0.0 Dense
Conv2d_4a_3x3.conv 52.0 0.0 442 General

Mixed_5b.branch1x1.conv 0.0 0.0 0.0 Dense
Mixed_5b.branch5x5_1.conv 0.0 0.0 0.0 Dense
Mixed_5b.branch5x5_2.conv 0.0 0.0 178 General

Mixed_5b.branch3x3dbl_2.conv 0.0 0.0 84.8 General
Mixed_5b.branch3x3dbl_3.conv 0.0 0.0 128 General
Mixed_5b.branch_pool.conv 0.0 0.0 0.0 Dense

Mixed_5c.branch1x1.conv 0.0 0.0 0.0 Dense
Mixed_5c.branch5x5_1.conv 0.0 0.0 0.0 Dense

Mixed_5d.branchlx1.conv 42.7 0.0 0.0 Dense
Mixed_5d.branch5x5_1.conv 42.8 0.0 0.0 Dense

Mixed_6a.branch3x3.conv 0.0 0.0 0.0 General

Mixed_6a.branch3x3dbl_3.conv 0.0 0.0 0.0 General

Mixed_6b.branch1x1.conv 0.0 0.0 0.0 Dense
Mixed_6b.branch7x7_1.conv 0.0 0.0 0.0 Dense
Mixed_6b.branch7x7_2.conv 0.0 0.0 0.0 Dense mix
Mixed_6b.branch7x7_3.conv 0.0 0.0 0.0 Dense mix

Mixed_6b.branch7x7dbl_2.conv 0.0 0.0 0.0 Dense mix
Mixed_6b.branch7x7dbl_5.conv 0.0 0.0 0.0 Dense mix
Mixed_6c¢.branch7x7_1.conv 0.0195 0.0 0.0 Dense
Mixed_6c.branch7x7_2.conv 0.0156 0.0 0.0 Dense mix
Mixed_6c.branch7x7_3.conv 0.0 0.0 0.0 Dense mix
Mixed_6c.branch7x7dbl_2.conv 0.0 0.0 0.0 Dense mix
Mixed_6c.branch7x7dbl_5.conv 0.0 0.0 0.0 Dense mix
Mixed_6e.branch7x7_2.conv 0.0 0.0 0.0 Dense mix
Mixed_6e.branch7x7_3.conv 0.0 0.0 0.0 Dense mix
AuxLogits.conv0.conv 0.0 0.0 0.0 Dense
AuxLogits.conv1.conv 0.0 0.0 0.0 General
Mixed_7a.branch3x3_2.conv 0.0 0.0 0.0 General
Mixed_7a.branch7x7x3_4.conv 0.0 0.0 0.0 General

Mixed_7b.branch1x1.conv 0.0 0.0 0.0 Dense
Mixed_7b.branch3x3_1.conv 0.0 0.0 0.0 Dense
Mixed_7b.branch3x3_2a.conv 0.0 0.0 0.0 Dense mix
Mixed_7b.branch3x3_2b.conv 0.0 0.0 0.0 Dense mix

Mixed_7b.branch3x3dbl_1.conv 0.0 0.0 0.0 Dense
Mixed_7b.branch3x3dbl_2.conv 0.0 0.0 0.0 General
Mixed_7b.branch_pool.conv 0.0 0.0 0.0 Dense

Mixed_7c.branch1x1.conv 0.0 0.0 0.0 Dense

Mixed_7¢.branch3x3_1.conv 0.0 0.0 0.0 Dense

Mixed_7c.branch3x3dbl_1.conv 0.0 0.0 0.0 Dense

Mixed_7c¢.branch_pool.conv 0.0 0.0 0.0 Dense

(1) MobileNetV2, input shape (32, 3, 256, 256)
Name | TN [MiB] TN + opt [MiB] PT [MiB] Type

features.0.0 0.0 0.0 53.8 General
features.1.conv.0.0 26.1 26.1 576 General
features.1.conv.1 128 0.0 63.8 Dense
features.2.conv.0.0 0.0 0.0 0.0 Dense
features.2.conv.1.0 192 192 432 General
features.2.conv.2 0.0 0.0 0.0 Dense
features.3.conv.0.0 0.0 0.0 0.0 Dense
features.3.conv.1.0 34.1 70.4 648 General
features.3.conv.2 71.7 0.0 71.4 Dense
features.4.conv.1.0 59.5 55.7 162 General
features.4.conv.2 0.0 0.0 0.0 Dense
features.5.conv.0.0 0.0 0.0 0.0 Dense
features.5.conv.1.0 0.0 0.0 215 General
features.5.conv.2 0.0 0.0 0.0 Dense
features.7.conv.1.0 0.0 0.0 53.3 General
features.7.conv.2 0.0 0.0 0.0 Dense
features.8.conv.0.0 0.0 0.0 0.0 Dense
features.8.conv.1.0 0.0 0.0 107 General
features.8.conv.2 0.0 0.0 0.0 Dense
features.11.conv.2 0.0 0.0 0.0 Dense
features.12.conv.0.0 0.0 0.0 0.0 Dense
features.12.conv.1.0 0.0 0.0 161 General
features.12.conv.2 0.0 0.0 0.0 Dense
features.14.conv.1.0 0.0 0.0 39.7 General
features.14.conv.2 0.0 0.0 0.0 Dense
features.15.conv.0.0 0.0 0.0 0.0 Dense
features.15.conv.1.0 0.0 0.0 63.8 General
features.15.conv.2 0.0 0.0 0.0 Dense
features.17.conv.2 0.0 0.0 0.0 Dense
features.18.0 0.0 0.0 0.0 Dense
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H Miscellaneous

H.1 Example: Associativity of Tensor Multiplication

Here, we demonstrate associativity of tensor multiplication through an example. The technical
challenge is that an index can only be summed once there are no remaining tensors sharing it.
Therefore, we must carry indices that are summed in later multiplications in the intermediate results,
which requires some set arithmetic on the index sets.

Let S1, .52, S5 be index tuples of the input tensors A, B, C, and S4 C (S7 U Sy U S3) a valid output
index tuple of their tensor multiplication D = (g, 5, 5,,5,) (A, B, C). We can either first multiply A
with B to obtain an intermediate tensor of index structure S 2, or B with C to obtain an intermediate
tensor of index structure S 3, before carrying out the remaining multiplications. To construct the

intermediate index structures, we divide the indices S = (S1 U Sy U S3) \ Sy that are summed
over into those only shared between A, B given by Sy » = (S; U S3) \ (S4 U S3), and those only
shared among B, C given by 5”273 = (S2 U S5) \ (S4 U Sy). This yields the intermediate indices
S12=(51US2)\ 5‘12 and Sp 3 = (S2 U S3) \ 52,3, and the parenthesizations

Dls, = (Ls18,, (X6, ,[Als,[Bls. ) [Cls. ) = (15, [Als: (X, . [Bls.[Cls. ))
< D= *(S1,2,53,54) (*(52153’52,3)(A’ B)’C) = *(81,52,3,54) (Av *(Sl,Sz,Sl,z)(BaC)) .

(H20)

This generalizes to n-ary multiplication, allowing to break it down into smaller multiplications.
However, the index notation and set arithmetic from Equation (H20) quickly becomes impractical.

H.2 Example: Matrix-matrix Multiplication as Tensor Multiplication

Here we provide a small self-contained example that demonstrates Equation (3) for matrix-matrix
multiplication.

Consider two matrices A, B which are compatible for multiplication and let C = A B. In index

notation, we have
[Clik =D _[ALi;[Bljk-
J
The index tuples are Sa = (i,7), S = (4, k), and S¢ = (¢, k). Next, we evaluate which indices
are summed over. Since the order of those indices does not matter, we can interpret the tuples as sets
and use set arithmetic:

(SaUSB)\ Sc = ((6,5) UG, K)\ (6, k) = () \ (i, k) = () -

Now we see that matrix-matrix multiplication is a case of tensor multiplication (Equation (3)),

[Clse = Y [AlsalBlss = #(s4.58.5¢)(4, B) .
(SAUSB)\SC
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technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: The TN simplifications we provide in §4.1 follow straightforward from the
index pattern’s structure Equation (7) and are stated rigorously in §D.3, including their
assumptions.

Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide implementation details in §D, experimental and hardware details
in §F and G.

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We will open-source the code to reproduce all our experiments, as well as the
raw data containing the results shown in the manuscript.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental Setting/Details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: See §F and G for details on the experimental setting.
Guidelines:

» The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Our run time plots contain box plots with medians and quartiles reported over
different convolutions, and the randomized backpropagation results show mean and standard
deviations for 10 different model and batch initializations.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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8.

10.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

¢ For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: All results were obtained on a single GPU to be comparable in terms of run
time. See §F for the details.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: We have read the Code of Ethics and believe that our work conforms to it.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: This work aims to provide a simplifying perspective and implementations
of otherwise hard-to-access operations for convolutions to facilitate the exploration of
algorithmic ideas and advance existing second-order methods. We don’t see any direct
negative societal impacts.
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Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

* Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper does not release any data or models that have a high risk for misuse.
Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We cite the papers introducing the neural network architectures and data sets
used in our experiments.

Guidelines:
» The answer NA means that the paper does not use existing assets.
 The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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14.

15.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New Assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and Research with Human Subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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