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ABSTRACT

Few-shot incremental segmentation is the task of updating a segmentation model,
as novel classes are introduced online overtime with a small number of training
images. Although incremental segmentation methods exist in the literature, they
tend to fall short in the few-shot regime and when given partially-annotated train-
ing images, where only the novel class is segmented. This paper proposes a data
synthesizer, Guided copy-And-Paste Synthesis (GAPS), that improves the perfor-
mance of few-shot incremental segmentation in a model-agnostic fashion. Despite
the great success of copy-paste synthesis in the conventional offline visual recog-
nition, we demonstrate substantially degraded performance of its naı̈ve extension
in our online scenario, due to newly encountered challenges. To this end, GAPS
(i) addresses the partial-annotation problem by leveraging copy-paste to generate
fully-labeled data for training, (ii) helps augment the few images of novel objects
by introducing a guided sampling process, and (iii) mitigates catastrophic forget-
ting by employing a diverse memory-replay buffer. Compared to existing state-of-
the-art methods, GAPS dramatically boosts the novel IoU of baseline methods on
established few-shot incremental segmentation benchmarks by up to 80%. More
notably, GAPS maintains good performance in even more impoverished annota-
tion settings, where only single instances of novel objects are annotated.

1 INTRODUCTION

Incremental segmentation is an important capability for open-world AI systems. For example, con-
sider a housekeeping robot that has been trained to segment common household objects, but once
deployed in a user’s home it encounters a previously unseen type of furniture. For such practical ap-
plications, incremental segmentation would be capable of expanding the set of recognized classes to
contain the new object. There are a few desired properties of incremental segmentation algorithms
to operate under these scenarios. First of all, the algorithm should be equipped with few-shot learn-
ing capability, which means that the algorithm can benefit from as few as one image provided by a
user rather than requiring hundreds of images annotated offline by professional annotators. Second,
providing full segmentation annotation of an image is time-consuming. To avoid causing substantial
burdens for untrained users, the algorithm needs to be trainable with partially-annotated images
where only novel classes are annotated.

A few attempts have been made by recent works (Cermelli et al., 2020; Cha et al., 2021; Douillard
et al., 2021; Zhang et al., 2022; Yan et al., 2021) on non-few-shot incremental segmentation to inves-
tigate learning with partially-annotated images, which is termed semantic background shift (Cermelli
et al., 2020). Background shift describes a challenge unique to incremental semantic segmentation
where classes that are not in the current learning step are assigned ‘background’ labels, which pro-
hitbits direct end-to-end training. Recent work uses either modified loss (Cermelli et al., 2020;
Zhang et al., 2022) or pseudo-labeling (Cha et al., 2021; Douillard et al., 2021; Yan et al., 2021) as
proxies to train on partially-annotated images. However, although these proxying methods demon-
strate good performance under the non-few-shot settings, they rely on rich annotations and fall short
when only a limited amount of data is presented to the model, due to a lack of diversity of data. An
even more restrictive setting occurs when users label only a single instance of the novel class, which
can dramatically hurt performance of proxy models, due to the training containing non-annotated
instances of the novel class (which are treated as negative pixels).
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Figure 1: Our proposed method utilizes guided copy-paste augmentation to synthesize diverse train-
ing data, using as few as one single novel instance for training. For example, the model encounters
an image of many motorcycles, which is novel to the model. As a result, the model incorrectly as-
signs learned bicycle labels to these pixels and therefore needs to be updated. Our proposed method
can adapt to the novel motorcycle class with an annotation of a single motorcycle, which can be
efficiently annotated; whereas previous work (Cermelli et al., 2020; 2021) require time-consuming
annotation of all instances of motorcycles or even the entire image. Best view in color.

To address the aforementioned challenges, we propose GAPS (Guided copy-And-Paste Synthesis),
which improves the training of incremental segmentation models by synthesizing fully-annotated
images from partially-annotated examples. It is model-agnostic, and can be inserted as a plug-and-
play module into different incremental learning algorithms, e.g., standard fine-tuning or PIFS (Cer-
melli et al., 2021). Copy-paste generates diverse training data to boost performance under few-shot
settings, enables the model to learn with partially-annotated images with as few as one annotated
novel instance out of many novel instances in an image (e.g., as illustrated at the lower left part
of Fig. 1), which is a stricter setting than semantic background shift (Cermelli et al., 2020).

To the best of our knowledge, we are the first to introduce copy-paste as a synthesis technique to cre-
ate a diverse data source for few-shot incremental segmentation. Although copy-paste (Ghiasi et al.,
2021) has been shown to be an effective data augmentation technique for offline visual recognition
tasks, we identify new key technical challenges to adapting it to few-shot incremental settings. First,
how should the synthesizer pick representative samples from the base dataset to construct a diverse
pool of fully-annotated base scenes? Second, given the constructed pool of fully-annotated images,
how should it select the most suitable base images to be pasted on? Third, after an informative image
is selected, from what distribution should it sample current and previously learned novel objects to
balance sample frequency and avoid over-sampling or under-sampling? Our GAPS method differs
from a naı̈ve (e.g., uniform random sampling) copy-paste process by a guided strategy that considers
diversity of the memory-replay buffer, imbalanced class frequencies between base classes and novel
classes, and contextual similarity of images.

In summary, our contributions are as follow:

1. We are the first to introduce copy-paste as a synthesis technique to address partially-labeled
images for incremental segmentation.

2. To address the gaps between copy-paste under the offline setting as an augmentation tech-
nique and under the online setting as a synthesis technique, we design a guided copy-paste
process that improves the distribution of synthesized images by enforcing diversity of the
memory-replay buffer, exploiting contextual information, and balancing class frequencies.

3. The proposed GAPS technique consistently boosts the performance of a variety of incre-
mental learning algorithms from simple fine-tuning to sophisticated state-of-the-arts under
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the few-shot setting. Furthermore, we demonstrate the strength of GAPS to cope with a
more challenging task setting where only one instance out of many novel instances in an
image is annotated, which highlights copy-paste as a better alternative to pseudo-labeling
or modified loss for practical incremental segmentation applications.

2 RELATED WORK

Incremental Learning for Semantic Segmentation. It is known that many learning-based mod-
els suffer from catastrophic forgetting (McCloskey & Cohen, 1989), a phoenomenon that causes
models to perform significantly worse on old tasks when they are fine-tuned to adapt to new tasks.
Incremental learning studies how to enable models to adapt to new classes while mitigating catas-
trophic forgetting without accessing the old dataset or full-scale re-training. This problem has been
studied extensively in image classification (Li & Hoiem, 2017; Lopez-Paz & Ranzato, 2017; Yoon
et al., 2018; Rebuffi et al., 2017; Mallya et al., 2018; Castro et al., 2018; Bang et al., 2021); whilst
relatively less work have been done to study incremental learning under the task setting of seman-
tic segmentation (Cermelli et al., 2020; Michieli & Zanuttigh, 2019; Cha et al., 2021; Douillard
et al., 2021; Zhang et al., 2022). Noticeably, a few attempts have been made by recent work to ad-
dress the semantic background shift problem proposed by Cermelli et al. (2020) via either pseudo-
labeling (Cha et al., 2021; Douillard et al., 2021; Yan et al., 2021) or modified loss (Cermelli et al.,
2020; Zhang et al., 2022) to train on partially-annotated images of novel classes. However, existing
work relies on rich annotations and tends to fail when only a limited amount of data is available. In
contrast, our work enables incremental segmentation learning with few data via a guided copy-paste
process, which demonstrates promising performance under the few-shot and more impoverished
single-instance setting. Furthermore, GAPS is a model-agnostic data pre-processor, which is or-
thogonal to incremental learning techniques such as regularization (Li & Hoiem, 2017).

Few-Shot Semantic Segmentation. Few-shot semantic segmentation methods predict segmentation
masks of novel classes using only a few training examples of the novel class. Many meta-learning-
based methods (Shaban et al., 2017; Wang et al., 2019; Tian et al., 2020b; Zhang et al., 2020) and
even specialized datasets (Li et al., 2020) have been proposed to address such a problem. However,
few-shot semantic segmentation methods produce novel-class-only binary foreground-background
segmentation. In comparison, our proposed method works in a more challenging and realistic setting
where both base classes and novel classes need to be segmented.

Few-Shot Incremental Segmentation. While there are many works in few-shot incremental image
classification (Tao et al., 2020; Cheraghian et al., 2021), relatively fewer works have been done to
investigate few-shot incremental segmentation (Tian et al., 2020a; Cermelli et al., 2021; Ganea et al.,
2021). Tian et al. (2020a) designs a meta-learning-based classifier that adjusts learned prototypes
by modeling interaction between base classes and incoming novel class. Unlike Tian et al. (2020a),
which only performs a single update of weights in the classifier, PIFS (Cermelli et al., 2021) apply
regularization techniques to allow fine-tuning of the entire network, achieving state-of-the-art result
in few-shot incremental semantic segmentation. However, PIFS (Cermelli et al., 2021) is fine-tuned
on only a small number of samples, which leads to sub-optimal performance due to overfitting. In
addition, PIFS requires fully-annotated images as input, which hinders its potential for practical
applications.

Copy-Paste Augmentation. Copy-and-paste is an augmentation technique that copies a subset of
objects from one image and pastes onto the other image using their segmentation masks. Many
works (Dwibedi et al., 2017; Ghiasi et al., 2021; Dvornik et al., 2018) have been done to investigate
how copy-and-paste augmentation can help with various visual tasks. Dvornik et al. apply copy-
paste augmentation in object detection by designing a neural network to consider context and guide
copy-paste. However, the context guidance method proposed by Dvornik et al. can not be trivially
applied to our application since it requires abundant fully-annotated training data. More recently,
Ghiasi et al. conduct extensive experiments to demonstrate the effectiveness of simple copy-paste
in the instance segmentation problem. We extend the augmentation strategy from Ghiasi et al.
(2021) and construct an intuitive baseline called Naı̈ve copy-Paste Synthesis (NPS) to adapt it to
our online task setting. However, as we will demonstrate, such naı̈ve adaptation gives unsatisfactory
performance in our task setting because of gaps between the static offline learning and continual
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Figure 2: Overview of GAPS. During the incremental learning stage, GAPS takes in as few as one
annotated instance of a single image. It is more probable for GAPS to select a scene contextually
similar to the provided image from memory-replay buffer D̂0. The image is then probabilistically
pasted to generate synthetic fully-labeled scenes. Note that GAPS is model-agnostic, and here we
use PIFS (Cermelli et al., 2021) as an example for the underlying segmentation model to illustrate
how GAPS is applied as a pre-processor. Best seen in color.

online learning. In our work, we propose a series of techniques to guide the copy-paste synthesizer
to address these gaps, whose effectiveness is evident from the significant improvement from NPS.

3 METHOD

Problem Setup. Let X ⊂ RH×W×3 be a set of RGB images with size H ×W , C ⊂ N be a set of
category labels, and YC ⊂ RH×W×|C| be a set of label masks (i.e., per-pixel category labels in C). In
semantic segmentation, we aim to learn a model ϕ that maps an image x ∈ X to a segmentation mask
y ∈ YC . Different from standard semantic segmentation, in few-shot incremental segmentation, C
is expanded over time through two stages. During the base learning stage, the model is provided
with a base dataset D0 = {(xi, yi)|xi ∈ X , yi ∈ YC0}, where C0 is a set of classes in the base
dataset. D0 generally contains many fully-annotated image-mask pairs and is used to train the
model ϕ0 : X → YC0 from scratch.

During the incremental learning stage, a sequence of tasks {D1, D2, . . . } with novel categories is
presented to the model, where Dj = {(xi, yi)|xi ∈ X , yi ∈ YCj} and Cj is a set of classes for task
Dj . In few-shot learning, the size of the training sets for the novel tasks is small, i.e., |Dj | ≪ |D0|.
After adapting to task Dj , the model is updated as ϕj : X → Y∪i=0,...,jCi . The goal of incremental
learning is to optimize the model performance jointly on both previous tasks and the current task. To
enforce the partially-annotated image setting, we follow Cermelli et al. and assume that only novel
classes are annotated, i.e., Ci ∩ Cj = ∅ for all i ̸= j.

Method overview. Fig. 2 illustrates our proposed Guided copy-Paste Synthesis (GAPS) framework
for few-shot incremental segmentation. It is a generic and model-agnostic data synthesis framework
that generates fully-labeled scenes from partially-annotated images of novel objects as a preproces-
sor to the underlying segmentation model. After the standard base learning stage with base dataset
D0, we build a memory-replay buffer D̂0 using an diversity-guided exemplar selection strategy
(Section 3.2). During the incremental learning stage, fully-labeled samples are synthesized by copy-
ing from the masked novel objects in D1, . . . , Dj and pasting onto base exemplars from the replay
buffer D̂0. The strategy by which we choose base exemplars and novel segments is context-guided
(Section 3.3) and class-frequency-guided (Section 3.4).
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3.1 FEW-SHOT INCREMENTAL SEGMENTATION MODEL

In principle, GAPS is model-agnostic, which means that it can work with many incremental segmen-
tation models as a diverse data source to improve their performance. Here we adopt PIFS (Cermelli
et al., 2021) as the main baseline underlying segmentation model for its state-of-the-art perfor-
mance on few-shot incremental semantic segmentation and support for end-to-end training. The
PIFS segmentation model ϕ is composed of a convolution-based feature extractor f and a per-pixel
classification layer g using prototypical representation – g is configured to classify the pixels into
n classes, so it is parameterized with prototypes W = [w1, w2, . . . , wn]. Intuitively, f maps every
pixel in an input image onto the unit hyper-sphere in a high-dimensional representation space. g
then generates probability prediction by comparing cosine similarity of feature vectors with learned
class prototypes wi in the representation space and applying softmax of the resulting similarities.

We want to note that our re-implementation of Cermelli et al. (2021) uses L2 regularization rather
than the prototype distillation loss proposed by Cermelli et al. We found experimentally that when
a diverse data source is used (i.e., our proposed GAPS), L2 regularization works better. To be more
precise, we construct a penalization term LREG to regularize the output before the classifier. For
incremental learning task Dj with image-mask pairs (x, y), we have

LREG = ||fj(x)− fj−1(x)||2. (1)
The final training loss is given by

L(x, y) = LCE(ϕj(x), y) + λLREG, (2)
whereLCE is either the standard cross-entropy loss or the modified cross-entropy loss from Cermelli
et al. (2020). λ is a hyper-parameter used to weight the regularization loss. All other components
are the same as in (Cermelli et al., 2021). We denote our re-implementation of PIFS with L2 regu-
larization loss as PIFS(L2).

3.2 DIVERSITY-GUIDED EXEMPLAR SELECTION WITH LEARNED PROTOTYPES

Algorithm 1 Construct Memory-replay Buffer
Require: number of exemplars n

k ← FLOOR(n/|Y0|) // Sample per class
for c from 1 to |Y0| do

Sc ← {(xi, yi) ∈ D0, c ∈ yi}
for (xi, yi) ∈ Sc do

pi ← MAP(xi, yi, c) // Pred. Proto.
si ← COSINESIMILARITY(pic, wc)

end for
Sort Sc by similarity score si
ESc ← {} // final exemplar set of class c
for j = 1, 2, . . . , k do

Lidx ← j · |Sc|/k
Uidx ← MIN(Lower + |Sc|/k, |Sc|)
(x, y)← SAMPLE(Sc[Lidx : Uidx])
ESc ← ESc ∪ (x, y)

end for
end for
D̂0 ← UNIFORMSAMPLE(

⋃
i=1,...,|Y0| ESi, n)

For methods with memory-replaying (e.g.,
SSUL (Cha et al., 2021)), GAPS can work di-
rectly on top of their constructed buffers with
minimal modification. For other methods such
as PIFS (Cermelli et al., 2021), we propose
a diversity-guided exemplar selection process
that builds a small yet diverse memory-replay
buffer D̂0 from D0 to mitigate catastrophic for-
getting. Selecting diverse examples that are
representative of the base dataset helps mitigate
catastrophic forgetting, as suggested by Rebuffi
et al. (2017). Inspired by Bang et al. (2021),
we select samples distributed uniformly along
a spectrum from easy to hard for diversity.

Here, we present an algorithm (Algorithm 1)
to construct D̂0 by exploiting the Masked Av-
erage Pooling (MAP) function from Cermelli
et al. (2021). Intuitively, we approximate the
difficulty of every sample by their similarity be-
tween the estimated prototype with learned pro-
totypes. Estimated prototypes that are close to
the learned prototype are considered easy sam-
ples and vice versa. After building a list of base
samples sorted by difficulties, we select sam-
ples from equally-spaced intervals to ensure samples of all difficulties are selected for diversity.

During the incremental learning stage, we select at most k samples for each novel class using the
same algorithm to memorize novel classes. To maintain the size of the memory-replay buffer, we
remove old samples from the memory-replay buffer but keep at least 80% of the samples to be
fully-annotated samples, so that we have diverse base images for copy-pasting.
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3.3 CONTEXT-GUIDED SAMPLING

We hypothesize that synthesizing novel objects onto contextually consistent base images would
result in an improved learning process. For example, a TV in an apartment should more likely be
pasted onto an image of another apartment rather than an outdoor landscape. We design a context-
guided sampling algorithm to select images from D̂0 that are contextually similar to the provided
partially-labeled images.

GAPS uses a scene embedding network h : X → Rm to estimate pairwise contextual similarity
between any two given images. The embedding h maps an input image to a scene embedding vector
in a metric space where pairwise similarity comparison between two embeddings are possible. In
our system, we use an off-the-shelf VGGNet (Simonyan & Zisserman, 2015) and replace its last
fully connected layer with a cosine-similarity-based classifier. The network h is trained using the
Places365 (Zhou et al., 2017a) dataset, which contains 365 scene categories and roughly 1.6 million
images in its training split. During training, the scene prediction is done by comparing the predicted
embedding with existing prototypes. After training, the network h is frozen and the 365 prototypes
are discarded.

To find contextually similar base images to each novel image, we evaluate the cosine similarity
of the novel image to each of the examples in D̂0, and constuct a contextually similar subset S
with |D̂0|/10 most contextually similar examples. When there are multiple novel images, we take
a union of selected examples. To allow other base scenes to be sampled to mitigate catastrophic
forgetting, we sample from S with a probability of α, and sample from D̂0 with a probability of
1 − α, where α is a hyperparameter set to 0.9 in our implementation. Note that we only need to
compute scene embedding once for every image in D̂0 and incoming partially-annotated images.
Hence, the context-guided sampling algorithm poses only minor computational overhead to GAPS.

3.4 CLASS-FREQUENCY-GUIDED PROBABILISTIC SYNTHESIS

Now the final question is, given a fully-annotated image xB and an image of a novel object xN ,
how frequent should we apply copy-paste? There is a trade-off between oversampling and un-
dersampling. As one extreme, one can follow Ghiasi et al. (2021) and always apply copy-paste
augmentation to paste novel objects onto every base image. However, this will lead to oversampling
of novel categories in the current task, which we found to hurt the performance of existing classes.
On the other hand, rarely pasting novel instances would lead to undersampling of the novel class.
Therefore, to guide copy-paste in the online setting, we design a synthesis strategy called vRFS
based on RFS (Repeat Factor Sampling) described by Gupta et al. (2019) to perform synthesis.

To apply vRFS, we first need to compute category-wise sampling factor rc for every c as in RFS.
If c ∈ C0, we set rc = 1 as since during the construction of D̂0 we already consider class balance
by class-wise uniformly sampling. If c ∈ Cj with j ≥ 1, we first compute its class frequency
by fc = nShot/|D̂0|, where nShot denotes the number of images in Dj with at least one pixel
of c. Then, the category-wise sampling factor for c is given by rc = MAX(1,

√
t/fc). Note that

in (Gupta et al., 2019), t is chosen as a hyperparameter to be tuned. However, we empirically found
that setting t to be the multiplicative inverse of total number of classes, or t = 1/| ∪1,...,j Yj |, is
enough to yield stable results across different datasets and under different few-shot settings. This
eliminates the need to search a hyperparameter for different settings and make our proposed method
more robust towards different task settings.

During the synthesis process, we first randomly select a novel class cN from Cj , and another class co
from ∪1,...,jCj \ {cN}. We first decide if co should be pasted onto xB . To apply vRFS resampling,
we hallucinate two virtual samples: in the first sample where copy-paste would not be applied, the
image-level sampling factor is given by 1. In the second sample where copy-paste synthesis were to
be performed, we would obtain a sample with image-level sampling factor of ri = MAXc∈irc = rco .
Thus, the probability to synthesize class co onto xB is given by rco/(1 + rco). We then repeat the
process for the novel class cN . Note that vRFS synthesis is applied twice for every class, resulting
in up to two pasted instances of cN in the final image.
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4 EXPERIMENTS

4.1 DATASETS

We follow literature in few-shot segmentation and few-shot incremental segmentation (Shaban et al.,
2017; Nguyen & Todorovic, 2019; Tian et al., 2020a; Cermelli et al., 2021) and evaluate our model
on the PASCAL-5i dataset (Shaban et al., 2017) and the COCO-20i dataset (Nguyen & Todorovic,
2019). PASCAL-5i is artificially built from the PASCAL VOC 2012 Semantic Segmentation dataset
(Everingham et al., 2010) with additional annotations from the SBD (Hariharan et al., 2011) dataset.
The original VOC segmentation dataset provides segmentation annotations for 20 object categories.
The PASCAL-5i dataset manually splits the original dataset into 4 folds for cross-validation. For
each fold, 5 categories are selected as novel categories, while the remaining 15 categories are re-
garded as base categories. In our experiments, images containing at least one pixel of the novel
categories are excluded from the base dataset. The construction of the COCO-20i dataset handles
the 80 thing classes in COCO in a similar manner, where the dataset is split into 4 folds and each fold
contains 20 categories. The rest of the process to construct the base dataset and the novel dataset in
COCO-20i is same as the PASCAL-5i dataset.

4.2 EVALUATION PROTOCOLS

In the base learning stage, the model is trained using the entire base dataset. In incremental learning
stages, sequences of tasks are presented to the model. We use the same evaluation protocol as pro-
posed in Cermelli et al. (2021) for fair comparisons, where 5 incremental learning tasks are used for
PASCAL-5i and each task contains 1 class from the novel split. On the COCO-20i dataset, there are
4 incremental learning tasks, and each task contains 5 classes from the novel split.

We evaluate the performance of the model on the entire validation set of the corresponding dataset
after every step. For fair comparisons with Cermelli et al. (2021), we average results across dif-
ferent steps and exclude completely unseen classes from evaluation of current step. We use three
different metrics to evaluate the performance of the model: mean Intersection-over-Union (mIoU)
over base categories, mIoU over novel categories, and harmonic mean of the base mIoU and the
novel mIoU. Unless otherwise noted, the numbers are computed by averaging results over splits in
a cross-validating fashion.

To average out randomness due to few training samples, we also average results over multiple runs
with different set of few-shot training samples. For experiments on splits on PASCAL-5i, we found
that averaging results over 10 runs with randomly sampled few-shot novel images yields stable
results. For COCO-20i, we found that averaging results over 5 runs is enough to yield stable results.

4.3 MAIN RESULTS

In Table 1, we evaluate various incremental segmentation methods on the PASCAL-5i dataset and
the COCO-20i dataset, and combine them with GAPS where appropriate.

Baselines. There are two main baselines we are comparing to. The first one is SSUL (Cha et al.,
2021), which is the state-of-the-art method in non-few-shot incremental segmentation. The second
one is PIFS (Cermelli et al., 2021), for it is the state-of-the-art method in few-shot incremental
semantic segmentation. We also report performance of our re-implementation PIFS(L2) described
in Sec. 3.1. In addition, we also evaluate simple fine-tuning and MiB (Cermelli et al., 2020).

GAPS consistently increases performance under few-shot settings. Methods combined with
our proposed data source, GAPS, consistently outperform their un-augmented counterpart on both
the base and novel categories performance. It is worth noting that GAPS substantially boosts the
performance of methods that originally require fully-annotated training images (i.e., fine-tuning
and PIFS), despite using only partially-annotated images now. Even for methods that do not carry
out end-to-end training and update only the classifier (i.e., SSUL), GAPS still steadily increases
performance on novel categories.
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METHOD BASE NOVEL HM BASE NOVEL HM
PASCAL-5i 1-SHOT PASCAL-5i 5-SHOT

MIB (Cermelli et al., 2020) 43.9 2.6 4.9 60.9 5.8 10.5
FINETUNE* 47.2 3.9 7.2 58.7 7.7 13.6
FINETUNE+GAPS 64.2(+17.0) 16.2(+12.3) 25.9(+18.7) 66.8(+8.1) 38.1(+30.4) 48.5(+34.9)
SSUL (Cha et al., 2021) 73.9 16.4 26.8 74.8 27.8 40.5
SSUL+GAPS 74.0(+0.1) 19.9(+3.5) 31.3(+4.5) 74.9(+0.1) 30.0(+2.2) 42.8(+2.3)

PIFS* (Cermelli et al., 2021) 64.1 16.9 26.7 64.5 27.5 38.6
PIFS(L2)*1 64.6 19.7 30.2 57.7 24.5 34.4
PIFS(L2)+GAPS 66.8(+2.2) 23.6(+3.9) 34.9(+4.7) 68.2(+10.5) 44.2(+19.7) 53.7(+19.3)

COCO-20i 1-SHOT COCO-20i 5-SHOT
MIB (Cermelli et al., 2020) 40.4 3.1 5.8 43.8 11.5 18.2
FINETUNE* 38.5 4.8 8.5 39.5 11.5 17.8
FINETUNE+GAPS 44.5(+6.0) 11.0(+6.2) 17.7(+9.5) 46.4(+6.9) 24.9(+13.4) 32.4(+14.6)
SSUL (Cha et al., 2021) 51.0 6.3 11.3 51.6 15.0 23.2
SSUL+GAPS 50.8(-0.2) 11.0(+4.7) 18.1(+6.8) 51.9(+0.3) 17.1(+2.1) 25.7(+2.5)

PIFS* (Cermelli et al., 2021) 40.4 10.4 16.5 41.1 18.3 25.3
PIFS(L2)*1 45.7 10.3 16.8 46.2 20.2 28.1
PIFS(L2)+GAPS 46.7(+1.0) 12.8(+2.5) 20.1(+3.3) 48.8(+2.6) 25.8(+5.6) 33.7(+5.6)

Table 1: Methods augmented with our proposed GAPS consistently outperform their un-augmented
counterparts across different few-shot settings on COCO-20i and PASCAL-5i. Methods noted with*

use fully-annotated images, others use same sets of images with novel-class-only partial annotation.
1: our re-implementation using L2 regularization. Highest results are colored red and the second
highest results are colored blue. HM stands for harmonic mean. (Best view in color).

4.4 ABLATION STUDY

In Table 2, we ablate guidance designs in GAPS to illustrate how different types of guidance con-
tribute to the final incremental learning performance than naı̈ve copy-paste synthesis. Due to the
highest harmonic mean of PIFS(L2)+GAPS, here we use PIFS(L2)+GAPS for the ablation study.

Our diversity-guided exemplar selection method consistently increases performance on base
categories, which suggests that it is capable of choosing diverse samples to construct a representa-
tive memory-replay buffer and mitigate catastrophic forgetting.

Context-guided sampling steadily improves performance on novel classes, which is consistent
with findings in previous work (Dvornik et al., 2018) that background context is an important factor
to consider in copy-paste synthesis.

Frequency-guided probabilistic synthesis boosts results on novel classes. On the other hand, its
influence on base categories is negligible. We take a closer look at step-wise performance (whose
visualization is available in Appendix A.11) and found that the reason is due to unguided copy-
paste’s oversampling of novel classes that are being adapted, and forgetting of classes learned in the
previous incremental learning stage and not in the memory-replay buffer.

4.5 MORE CHALLENGING SINGLE-INSTANCE EXPERIMENT

Though the semantic background shift proposed by Cermelli et al. (2020) relaxes the requirement to
provide full segmentation annotations, it still requires all novel instances in images to be annotated,
which can be time-consuming to obtain in cluttered scenes and hinder potential applications. Here
we consider a more challenging task setting, which we term single-instance incremental learning.
Namely, for training images provided in incremental learning stages, if there are multiple instances
of a novel class in the image, we assume that only one instance will be annotated.

To simulate this setting, we use the instance-level segmentation annotation provided by the COCO
dataset to enforce only annotation of one novel instance in every image is available to the model.
Since state-of-the-art incremental segmentation approaches use pseudo-labeling (Cha et al., 2021),
we design a method PIFS(L2)†, which simulates combining PIFS(L2) with pseudo-labeling to cope
with partially-annotated sample. Here we allow PIFS(L2)† to have access to additional information
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MEM COPY-PASTE F-GUIDE D-GUIDE C-GUIDE BASE NOVEL HM
— —* — — — 46.2(± 0.3) 20.2(± 0.7) 28.1(± 0.3)

✓ —* — — — 49.3(± 0.2) 19.4(± 0.7) 27.9(± 0.3)

✓ ✓ — — — 47.0(± 0.2) 19.8(± 0.6) 27.8(± 0.3)

✓ ✓ ✓ — — 47.2(± 0.2) 25.2(± 0.6) 32.9(± 0.3)

✓ ✓ ✓ ✓ — 48.2(± 0.2) 25.0(± 0.7) 32.9(± 0.3)

✓ ✓ ✓ ✓ ✓ 48.8(± 0.2) 25.8(± 0.6) 33.7(± 0.3)

Table 2: Ablation study of components in GAPS on PIFS(L2) on the COCO-20i dataset under 5-
shot setting. Note that when only combined with the memory-replay buffer, the base IoU is higher
because model has access to additional full annotations. When diversity guidance (D-guide) is dis-
abled, D̂0 consists of random examples from the base dataset, resulting in worse base performance.
When context guidance (C-guide) is disabled, a base image is uniformly sampled. When frequency
guidance (F-guide) is disabled, a novel instance is sampled uniformly and is always pasted onto
the base image. 95% confidence intervals over 20 trials are reported assuming that trial results are
normally distributed. *: use fully-annotated masks when copy-paste is turned off.

METHOD BASE NOVEL HM BASE NOVEL HM
ALL INSTANCES SINGLE-INSTANCE ONLY

PIFS(L2)† 46.2 20.2 28.1 46.1 (-0.2%) 17.6 (-12.9%) 25.4 (-9.6%)
PIFS(L2)+GAPS 48.8 25.8 33.7 49.1 (+0.6%) 25.1 (-2.7%) 33.2 (-1.5%)

Table 3: Performance of pseudo-labeling methods and GAPS under the more challenging single-
instance learning setting on COCO-20i 5-shot. Only 1 novel instance out of potentially many in-
stances in individual training images is annotated. The pseudo-labeling baseline, PIFS(L2)†, yields
substantially worse performance; whereas PIFS(L2)+GAPS has only minor performance decreases.

– the annotation of other non-novel background pixels – to simulate an oracle pseudo-labeling model
which perfectly segments learned classes but recognizes unseen novel classes as background.

The results are given in Table 3. We can observe that the pseudo-labeling baseline, PIFS(L2)†, yields
substantially worse performance when the model receives single-instance annotations. We reason
this is due to noisy labels generated by the pseudo-labeling process, where novel instances are incor-
rectly labeled as background. On the contrary, PIFS(L2)+GAPS shows only a minor performance
decrease with single instances. This highlights the potential of copy-paste synthesis as an alternative
to the existing pseudo-labeling paradigm to cope with the more realistic single-instance setting.

More results and visualization. Due to space limit, we kindly refer readers to the appendix for
more quantitative results from Appendix A.2 and visualized qualitative results in Appendix A.11.

5 CONCLUSION AND DISCUSSION

In this paper, we demonstrate how judicious use of copy-paste dramatically boosts the performance
of incremental segmentation methods under the few-shot setting and enables learning with partially-
annotated images. Our proposed GAPS technique selects representative exemplars in the memory-
replay buffer and addresses the problems of class imbalance and contextual mismatch in synthesis.

In future work, we are interested in further application of copy-paste as a synthesis technique to
cope with the background shifting problem for incremental segmentation. We believe that copy-
paste can serve as a promising alternative to pseudo-labeling and modified loss to enable learning on
partially-annotated images. We also believe that further optimizing exemplar selection and sampling
strategies can lead to better guidance and lead to even better performance. Finally, the ability to learn
with as few as one annotated instance in an image raises several intriguing possibilities. For example,
integrating our work with learning-based interactive segmentation will enable human operators to
continually and adaptively teach novel classes and correct failed predictions. This workflow has
many interesting applications such as robot teleoperation where sparse annotations are preferable.
Learning with weaker annotations, like bounding boxes or single clicks, and even self-supervision,
is also an interesting direction to explore.
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Francisco M Castro, Manuel J Marı́n-Jiménez, Nicolás Guil, Cordelia Schmid, and Karteek Alahari.
End-to-end incremental learning. In ECCV, 2018.

Fabio Cermelli, Massimiliano Mancini, Samuel Rota Bulo, Elisa Ricci, and Barbara Caputo. Mod-
eling the background for incremental learning in semantic segmentation. In CVPR, 2020.

Fabio Cermelli, Massimiliano Mancini, Yongqin Xian, Zeynep Akata, and Barbara Caputo.
Prototype-based incremental few-shot semantic segmentation. arXiv preprint arXiv:2012.01415,
2021.

Sungmin Cha, YoungJoon Yoo, Taesup Moon, et al. Ssul: Semantic segmentation with unknown
label for exemplar-based class-incremental learning. NeurIPS, 2021.

Liang-Chieh Chen, George Papandreou, Florian Schroff, and Hartwig Adam. Rethinking atrous
convolution for semantic image segmentation. arXiv preprint arXiv:1706.05587, 2017.

Ali Cheraghian, Shafin Rahman, Sameera Ramasinghe, Pengfei Fang, Christian Simon, Lars Peters-
son, and Mehrtash Harandi. Synthesized feature based few-shot class-incremental learning on a
mixture of subspaces. In ICCV, 2021.

Arthur Douillard, Yifu Chen, Arnaud Dapogny, and Matthieu Cord. Plop: Learning without forget-
ting for continual semantic segmentation. In CVPR, 2021.

Nikita Dvornik, Julien Mairal, and Cordelia Schmid. Modeling visual context is key to augmenting
object detection datasets. In ECCV, 2018.

Debidatta Dwibedi, Ishan Misra, and Martial Hebert. Cut, paste and learn: Surprisingly easy syn-
thesis for instance detection. In ICCV, 2017.

Mark Everingham, Luc Van Gool, Christopher KI Williams, John Winn, and Andrew Zisserman.
The pascal visual object classes (voc) challenge. IJCV, 2010.

Dan Andrei Ganea, Bas Boom, and Ronald Poppe. Incremental few-shot instance segmentation. In
CVPR, 2021.

Golnaz Ghiasi, Yin Cui, Aravind Srinivas, Rui Qian, Tsung-Yi Lin, Ekin D Cubuk, Quoc V Le, and
Barret Zoph. Simple copy-paste is a strong data augmentation method for instance segmentation.
In CVPR, 2021.

Agrim Gupta, Piotr Dollar, and Ross Girshick. LVIS: A dataset for large vocabulary instance seg-
mentation. In CVPR, 2019.

Bharath Hariharan, Pablo Arbelaez, Lubomir Bourdev, Subhransu Maji, and Jitendra Malik. Seman-
tic contours from inverse detectors. In ICCV, 2011.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In CVPR, 2016.

Xiang Li, Tianhan Wei, Yau Pun Chen, Yu-Wing Tai, and Chi-Keung Tang. Fss-1000: A 1000-class
dataset for few-shot segmentation. In CVPR, 2020.

Zhizhong Li and Derek Hoiem. Learning without forgetting. TPAMI, 2017.

David Lopez-Paz and Marc’Aurelio Ranzato. Gradient episodic memory for continual learning.
NeurIPS, 2017.

Arun Mallya, Dillon Davis, and Svetlana Lazebnik. Piggyback: Adapting a single network to mul-
tiple tasks by learning to mask weights. In ECCV, 2018.

Michael McCloskey and Neal J Cohen. Catastrophic interference in connectionist networks: The
sequential learning problem. In Psychology of learning and motivation. Elsevier, 1989.

10



Under review as a conference paper at ICLR 2023

Umberto Michieli and Pietro Zanuttigh. Incremental learning techniques for semantic segmentation.
In ICCVW, 2019.

Khoi Nguyen and Sinisa Todorovic. Feature weighting and boosting for few-shot segmentation. In
ICCV, 2019.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In ICML, 2021.

Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg Sperl, and Christoph H Lampert. icarl:
Incremental classifier and representation learning. In CVPR, 2017.

Amirreza Shaban, Shray Bansal, Zhen Liu, Irfan Essa, and Byron Boots. One-shot learning for
semantic segmentation. 2017.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. In Yoshua Bengio and Yann LeCun (eds.), ICLR, 2015.

Xiaoyu Tao, Xiaopeng Hong, Xinyuan Chang, Songlin Dong, Xing Wei, and Yihong Gong. Few-
shot class-incremental learning. In CVPR, 2020.

Zhuotao Tian, Xin Lai, Li Jiang, Michelle Shu, Hengshuang Zhao, and Jiaya Jia. Generalized few-
shot semantic segmentation. arXiv preprint arXiv:2010.05210, 2020a.

Zhuotao Tian, Hengshuang Zhao, Michelle Shu, Zhicheng Yang, Ruiyu Li, and Jiaya Jia. Prior
guided feature enrichment network for few-shot segmentation. TPAMI, 2020b.

Kaixin Wang, Jun Hao Liew, Yingtian Zou, Daquan Zhou, and Jiashi Feng. Panet: Few-shot image
semantic segmentation with prototype alignment. In ICCV. 2019.

Shipeng Yan, Jiale Zhou, Jiangwei Xie, Songyang Zhang, and Xuming He. An em framework for
online incremental learning of semantic segmentation. In Proceedings of the 29th ACM Interna-
tional Conference on Multimedia, 2021.

Jaehong Yoon, Eunho Yang, Jeongtae Lee, and Sung Ju Hwang. Lifelong learning with dynamically
expandable networks. In ICLR, 2018.

Chang-Bin Zhang, Jia-Wen Xiao, Xialei Liu, Ying-Cong Chen, and Ming-Ming Cheng. Represen-
tation compensation networks for continual semantic segmentation. In CVPR, 2022.

Xiaolin Zhang, Yunchao Wei, Yi Yang, and Thomas S Huang. Sg-one: Similarity guidance network
for one-shot semantic segmentation. IEEE transactions on cybernetics, 2020.

Bolei Zhou, Agata Lapedriza, Aditya Khosla, Aude Oliva, and Antonio Torralba. Places: A 10
million image database for scene recognition. TPAMI, 2017a.

Bolei Zhou, Hang Zhao, Xavier Puig, Sanja Fidler, Adela Barriuso, and Antonio Torralba. Scene
parsing through ade20k dataset. In CVPR, 2017b.

Bolei Zhou, Hang Zhao, Xavier Puig, Tete Xiao, Sanja Fidler, Adela Barriuso, and Antonio Torralba.
Semantic understanding of scenes through the ade20k dataset. IJCV, 2019.

11



Under review as a conference paper at ICLR 2023

Split Categories

COCO-20-0

person, airplane, boat, parking meter, dog
elephant, backpack, suitcase, sports ball, skateboard

wine glass, spoon, sandwich, hot dog, chair
dining table, mouse, microwave, refrigerator, scissors

COCO-20-1

bicycle, bus, traffic light, bench, horse
bear, umbrella, frisbee, kite, surfboard

cup, bowl, orange, pizza, couch
toilet, remote, oven, book, teddy bear

COCO-20-2

car, train, fire hydrant, bird, sheep
zebra, handbag, skis, baseball bat, tennis racket

fork, banana, broccoli, donut, potted plant
tv, keyboard, toaster, clock, hair drier

COCO-20-3

motorcycle, truck, stop sign, cat, cow
giraffe, tie, snowboard, baseball glove, bottle

knife, apple, carrot, cake, bed
laptop, cell phone, sink, vase, toothbrush

Table 4: COCO-20i class splits under multi-step settings. Every novel split is further split into 4
steps sequentially sorted by their original class indices as in (Cermelli et al., 2021). A row indicates
classes in a step. For example, in COCO-20-1, classes presented to the model in the first incremental
learning step are bicycle, bus, traffic light, bench, and horse.

Split Categories
PASCAL-5-0 aeroplane | bicycle | bird | boat | bottle
PASCAL-5-1 bus | car | cat | chair | cow
PASCAL-5-2 table | dog | horse | motorbike | person
PASCAL-5-3 potted plant | sheep | sofa | train | tv-monitor

Table 5: PASCAL-5i class splits under multi-step settings. Every novel split is further split into 5
steps sequentially sorted by their original class indices and each step is split by the ‘|’.

A APPENDIX

A.1 DATASET SPLITS

We use the PASCAL-5i splits (Shaban et al., 2017) and the COCO-20i splits (Nguyen & Todorovic,
2019) as described in previous works. We follow the multi-step setup described in (Cermelli et al.,
2021) to ensure fair comparisons. Details are given in Table 4 and Table 5.

A.2 MEMORY-REPLAY BUFFER CONSTRUCTION

In Table 6, we study how different memory buffer construction strategies influence the performance
of the model. We experiment with multiple baseline implementations to construct the memory-
replay buffer: Full-set-random denotes samples that are uniformly sampled from the base training
set. Classwise-random denotes randomly selecting even number of samples from each base class.
To consider multiple classes in images, we design two baseline methods. RFS (Repeat Factor Sam-
pling) is done by using the weighted sampling technique described in LVIS (Gupta et al., 2019),
which considers multiple classes in samples by computing category-level re-sampling factor and
creates image-level re-sampling factor based on the maximum category-level factor in the image.
RFS assigns higher weights to rare classes and has been shown to work well in long-tailed task
settings. The other baseline, ‘GreedyClass’, is achieved by greedily picking samples in every base
class with the most number of classes. To consider the region sizes in the image, we design a base-
line method, ‘BalancedRegion’, which uses a similar algorithm as our proposed diversity sampling
method, but we replace the difficulty estimation with the number of pixels the selected class occupies
in images.
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Base Set Base Novel HM
Full-set-random 47.9± 0.2 24.6± 0.7 32.5

Classwise-random 48.3± 0.2 24.7± 0.8 32.7
RFS 47.6± 0.3 25.2± 0.7 33.0

GreedyClass 48.7± 0.2 25.0± 0.7 33.0
BalancedRegion 48.6± 0.2 24.9± 0.8 32.9

Easy 48.0± 0.2 24.2± 0.8 32.2
Hard 47.7± 0.2 25.2± 0.8 33.0

Easy-Hard-Mix 48.4± 0.3 24.8± 0.7 32.8
Diverse Sampling (Ours) 48.9± 0.2 25.3± 0.9 33.3

Table 6: Ablation study of different memory-replay buffer construction strategies on COCO-20-1.
We found that the performance is maximized when using our diversity-aware memory-replay buffer
reconstruction strategy. Mean and 95% confidence intervals over 10 runs are reported.

Method Base Novel HM
Always Paste (Ghiasi et al., 2021) 47.1± 0.3 18.7± 1.7 26.8

50-50-Paste 49.7± 0.4 24.2± 1.5 32.6
CAS (Gupta et al., 2019) 49.4± 0.3 12.0± 1.3 19.3

vRFS (Ours) 48.9± 0.4 25.3± 1.6 33.3

Table 7: Ablation study of different strategies to compute synthesis probability on COCO-20-1. Our
proposed vRFS method computes synthesis probability to balance class frequencies in training data,
and achieves best performance in terms of harmonic mean. Mean and standard deviation over 10
runs are reported.

Intuitively, easy samples help model maintain learned prototypes during incremental learning, and
hard samples help model distinguish decision boundaries. Hence, based on our sample difficulty
ranking method based on prototypical distances, we also construct a few variants: Easy denotes
samples whose predicted embeddings are closest to learned prototypes; Hard represents difficult
samples whose predicted embedding are most distant to learned prototypes in the learned metric
space; Easy-Hard-Mix denotes equal mixtures of samples drawn from easiest samples and hardest
samples. Lastly, Diverse-Sampling is our proposed method, where samples of all difficulties are
equally drawn.

We experimented with all of these variants and found that the diversity-aware construction yields
the best result in all metrics. Compared to randomly selected samples or easy samples, using hard
samples result in better performance on novel categories. On the other hand, we found that using
a mixture of easiest samples and hardest sample is also a good strategy, which achieves superior
performance in base categories compared to other baselines, and comparable performance to our
diversity-aware sampling. It is also worth noting that both the ‘GreedyClass’ method and the ‘Bal-
ancedRegion’ method achieve almost comparable results to our methods, but still slightly underper-
form our diversity guidance.

A.3 CLASS-FREQUENCY-AWARE SYNTHESIS

We investigate how different probabilistic strategies to apply copy-and-paste augmentation affects
GAPS. The results are illustrated in Table 7. Here, vRFS (virtual RFS) is our proposed method.
CAS (Class-aware-sampling) is a sampling strategy from (Gupta et al., 2019) which first uniformly
samples a class and then selects a sample containing instances from the selected class. In our im-
plementation, the probability to synthesize novel objects is simply given by 1/M , where M is the
sum of total number of base classes and seen novel classes. For every selected base image, the
Always Paste method randomly picks a novel category and always synthesizes an instance of the
selected novel category onto the given image. Finally, the 50-50-Paste method is an extension of the
naı̈ve copy-paste method to leverage past novel samples like vRFS. Essentially, it replays samples
from learned novel classes with 50% probability, and uses novel class from the current incremental
learning task also with 50% probability. Note that these two options are not mutually exclusive.
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Method Base Novel
Standard Jittering 48.5± 0.4 24.1± 1.5

Large Scale Jittering (Ghiasi et al., 2021) 48.9± 0.4 25.3± 1.5

Table 8: Ablation study of magnitudes of random resizing in copy-paste on COCO-20-1. Large
Scale Jittering is proposed in (Ghiasi et al., 2021) with more aggressive resizing scale. Mean and
standard deviation over 10 runs are reported.
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Figure 3: Long-term continual learning performance of PIFS(L2) and PIFS(L2)+GAPS on the
COCO-20-1 split under 5-shot setting. Best view in color.

In the result, we can observe that our method (vRFS) achieves the best result in terms of the novel
IoU and harmonic mean of base and novel IoU. On the other hand, the 50-50-Paste baseline and the
CAS baseline achieves better results possibly because they undersample novel classes.

A.4 EFFECT OF GEOMETRIC VARIATIONS

In Table 8, we investigate how geometric variations affect the performance in our method. Our
conclusion is consistent with what was found in (Ghiasi et al., 2021): using more aggresive scale
jittering helps increase the diversity of samples and increases performance. Beyond confirming
conclusion from previous work, such improvement alongside stronger augmentation demonstrates
the effectiveness of augmentation technique even when there is few data presented, highlighting a
possibility to further improve the performance by using even stronger augmentation technique.

A.5 ROBUSTNESS AGAINST CATASTROPHIC FORGETTING

We perform an additional experiment on COCO-20-1 where a long few-shot incremental learning
sequence (60 base; 20 novel classes with 20 incremental steps; 5-shot) is used. The step-wise
result can be found in Fig. 3. PIFS(L2), augmented with GAPS, demonstrates more robustness to
forgetting with many incremental learning steps than standard PIFS.

A.6 EVALUATION ON DISJOINT ADE20K 100-5 5-SHOT SETTING

To validate our approach on the ADE20k dataset (Zhou et al., 2017b; 2019), we ran a suite of exper-
iments where we follow the ADE100-5 (11 steps) setup discussed in (Cha et al., 2021) and modify
it as 5-shot learning. We tested PIFS(L2) and PIFS(L2)+GAPS on this setting. The results are given
in Table 9. We observe a steady increase in both the base IoU and novel IoU in this challenging task
setting on methods augmented with GAPS. This further validates the effectiveness of our approach.
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Figure 4: Performance of PIFS(L2)+GAPS on the COCO-20-1 split under 5-shot setting with vary-
ing memory-replay buffer size. Best view in color.

Method Base Novel HM
PIFS(L2) 33.8± 0.9 3.5± 1.5 6.3

PIFS(L2)+GAPS 36.2± 0.6 5.9± 1.4 10.1

Table 9: Performance of PIFS(L2) and PIFS(L2)+GAPS on the ADE100-5 disjoint 5-shot setting.
Mean and standard deviation over 5 runs are reported.

A.7 COMPARISONS WITH EXEMPLAR-ONLY METHODS

We explore an alternative memory-replay buffer implementation to add examples learned during the
incremental learning stage to the memory-replay buffer, in an attempt to help performance on novel
classes. Since examples observed during the incremental learning stage are only partially annotated,
they can not be directly added to the memory-replay buffer. We experiment with an alternative
method. Here, ‘PIFS(L2)+MEM+PL’ means that we follow SSUL and perform pseudo-labeling on
partially annotated samples before adding them to memory. The results are given in Table 10. We can
observe that storing samples observed during the incremental learning stage leads to only moderate
increase in novel IoU. Our PIFS(L2)+GAPS significantly outperforms both baselines.

A.8 EFFECT OF MODELS PRETRAINED ON DIFFERENT DATASETS FOR CONTEXTUAL
GUIDANCE

We experiment with several other pretraining models as the contextual guiding model. In particu-
lar, we use ImageNet-pretrained model and pretrained image encoder from CLIP (Radford et al.,
2021) to compute scene embedding for incoming images. The other settings remain unchanged. The
results are given in Table 11. We observe from the results that the ImageNet-pretrained model per-
forms worse than our Places365-pretrained model. On the other hand, the CLIP-pretrained model
yields comparable performance to our method.

In summary, we conclude that Places365 is an appropriate dataset for training the image-level con-
textual sampler from both quantitative. Qualitative discussions can be found in Figure 6.

A.9 PERFORMANCE WITH VARYING MEMORY SIZES

We conducted an additional experiment on the COCO-20-1 dataset under the 5-shot setting, where
we vary the number of fully-annotated images in the memory-replay buffer to investigate the per-
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Method Base Novel HM
PIFS(L2) 46.4± 0.2 20.7± 1.0 28.0

PIFS(L2)+MEM 49.4± 0.2 18.6± 0.9 27.0
PIFS(L2)+MEM+PL 48.4± 0.2 21.5± 1.0 29.8

PIFS(L2)+GAPS 48.9± 0.2 25.3± 0.9 33.3

Table 10: Comparisons of GAPS and various exemplar-only methods with PIFS(L2). Mean and
95% confidence intervals over 10 runs are reported.

Pretrained Model Base Novel HM
ImageNet 48.2± 0.2 24.3± 0.9 32.3

CLIP 48.5± 0.2 25.4± 1.0 33.3
Places365 48.9± 0.2 25.3± 0.9 33.3

Table 11: Performance different pretrained models for contextual guidance under the COCO-20-1
5-shot setting. Mean and 95% confidence intervals over 10 runs are reported.

formance of our method. As can be seen from Fig. 4, even with as few as 100 fully-annotated base
images, GAPS still consistently boosts the performance of the underlying PIFS(L2) method.

A.10 IMPLEMENTATION DETAILS

To allow fair comparisons with existing methods (Cermelli et al., 2021; Cha et al., 2021; Cermelli
et al., 2020), we use the same Deeplab-V3 (Chen et al., 2017) architecture with ResNet-101 (He
et al., 2016) backbone. Following existing works in incremental few-shot segmentation literature
(Cermelli et al., 2021; Tian et al., 2020a), before the beginning of base learning stage, the ResNet-
101 backbone is initialized using weights pre-trained on ImageNet.

For fine-tuning and PIFS(L2), during the base training stage, we use an initial learning rate of
0.007 and polynomial learning rate schedule with batch size of 32 and train for 20 epochs on both
the PASCAL-5i dataset and the COCO-20i dataset. SGD optimizer is used with 0.9 momentum
coefficient and 0.0001 weight decay. During the incremental learning stage, we apply initial learning
rates of 0.001 and 0.01 for the feature extractor and the classifier, respectively. Polynomial learning
rate schedule is used. For the PASCAL-5i dataset, we use batch size of 16 for 200 iterations and
λ = 0.1. For the COCO-20i dataset, we use batch size of 16 for 400 iterations and λ = 0.5. 100
iterations are used for 1-shot cases on COCO. For data augmentation, we follow implementations
in PIFS (Cermelli et al., 2021) and SSUL (Cha et al., 2021) and use standard random horizontal
flipping, random resizing, and random cropping to 512× 512.

The reproduction of SSUL and the re-implementation SSUL+GAPS uses the same set of hyperpa-
rameters and augmentations from the open-source release of SSUL except for the batch size which
is changed to 16.

The scene classification network is the original VGG16 (Simonyan & Zisserman, 2015) network
without batch normalization layers. We replace the last linear classification layer with a prototypical
learning layer to make the network generate unit vector embedding for comparison using cosine
similarity. The network is trained on the training split of the Places365 dataset (Zhou et al., 2017a)
for 6 epochs. We use initial learning rate of 0.01 and polynomial learning rate schedule with batch
size of 64. All images are bilinearly interpolated to size 224 × 224. The final scene classification
network achieves 0.51 accuracy on the validation split of the Places365 dataset.

A.11 QUALITATIVE RESULTS

Fig. 5 shows qualitative results of PIFS(L2), PIFS(L2)+NPS (naive copy-paste), and
PIFS(L2)+GAPS on the PASCAL-5-1 split dataset under the 1-shot setting using images on the
left column. We can see that PIFS and PIFS+NPS gives reasonably good predictions on classes
that are adapted recently (e.g., the cow class in the last row). However, they tend to exhibit catas-
trophic forgetting for classes learned earlier (e.g., the bus example in PIFS). On the other hand, the
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Figure 5: Qualitative results on the PASCAL-5-1 split under 1-shot setting. Sequential adaptation
to five classes are performed in the order indicated by the blue arrow on the left. Visualization is
done after all adaptation steps are completed. Observe, particularly in rows 1, 3, and 4, that our
method mitigates catastrophic forgetting and improves performance on both base and novel classes
compared to PIFS and PIFS+NPS. (Best viewed in color)

model trained using GAPS not only yields good result on recently learned classes, but also maintains
promising performance on classes adapted earlier.

In Fig. 6, we give some qualitative examples of the scene embedding network. We can see that given
an image of traffic lights on a railway, our scene embedding model is able to select contextually-
similar scenes such as railways and street scenes for subsequent synthesis.

Fig. 7 and Fig. 8 demonstrate how PIFS(L2)+GAPS compare to the baseline PIFS(L2) across mul-
tiple step. The set up is the same as Pascal-5i 1-shot incremental learning. These visualizations
demonstrate how PIFS(L2) forgets learned classes earlier as more incremental learning steps occur.
On the other hand, PIFS(L2)+GAPS is able to maintain good performance on learned classes as it
adapts to new classes.
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Training image of
novel class 'traffic

light'

Top-5 contextually similar images selected by our scene embedding model

Examples of other images not selected by our scene embedding model

Figure 6: Qualitative visualization of samples selected in the context-aware sampling process. Given
an image of traffic lights in railway, our scene embedding network is able to select contextually-
similar scenes (railway, street).

Train

Test

Ground Truth

Figure 7: Multi-step qualitative results of our method (GAPS) on the PASCAL-5-1 split under 1-
shot setting. (Best view in color.)
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Figure 8: Multi-step qualitative results of PIFS(L2) on the PASCAL-5-1 split under 1-shot setting.
(Best view in color.)
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