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Abstract

Sleep is a complex physiological process involving multiple
modalities across the body. We curate a large dataset of si-
multaneous polysomnography (PSG) recordings comprising
electrical brain activity (EEG), heart rhythms (ECG), and res-
piratory patterns from over 14,000 participants, totaling over
100,000 hours of sleep data. We develop SleepFM, the first
multi-modal foundation model for sleep learned through con-
trastive learning on this highly heterogeneous physiological
data. When evaluated on a held-out test set, SleepFM signifi-
cantly improves retrieval performance over 500x over random
chance. A logistic regression model trained on SleepFM’s
learned embeddings achieves strong performance on sleep
stage classification (macro AUPRC 0.69) and apnea detection
(AUPRC 0.71), outperforming an end-to-end trained CNN
for sleep stage classification (AUPRC 0.579) and apnea de-
tection (AUPRC 0.56). We find representations learned us-
ing an innovative leave-one-out approach during contrastive
learning significantly improve downstream task performance
compared to representations from standard pairwise con-
trastive learning. This work demonstrates the value of holistic
multi-modal sleep modeling.

Introduction
Sleep monitoring is a critical aspect for not only under-
standing sleep disorders but also gaining valuable insights
into overall brain, pulmonary, and heart health (Worley
2018). Polysomnography (PSG), a comprehensive overnight
sleep study, serves as a powerful tool by recording vari-
ous physiological signals during sleep, including electroen-
cephalogram (EEG), electrooculograms (EOG), and electro-
cardiogram (ECG) (Kryger, Roth, and Dement 2010). Tra-
ditionally, PSG data analysis involved manual visual inspec-
tion, a labor-intensive and time-consuming process prone
to errors (Boashash and Ouelha 2016; Hassan and Bhuiyan
2017). Recent advancements in supervised deep learning
have shown promise in automating sleep stage classification,
particularly for disorders like apnea (Nassi et al. 2021; Ole-
sen et al. 2021). However, most methods rely on labeled data
from a narrow task. They rarely leverage the full breadth of
physiological dynamics across diverse PSG modalities.
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In parallel, contrastive learning has emerged as a powerful
technique in other domains, such as radiology and pathol-
ogy, where it pairs images with corresponding medical re-
ports to learn rich medical image representations (Zhuang
et al. 2022; Huang et al. 2021; Boecking et al. 2022; Bannur
et al. 2023; Lu et al. 2023). However, PSG representation
learning by pairing different channels via multi-modal con-
trastive learning has been less explored. While some uni-
modal contrastive learning methods have been applied to
ECG data (Kiyasseh, Zhu, and Clifton 2021; Diamant et al.
2022; Gopal et al. 2021; Mehari and Strodthoff 2022; Oh
et al. 2022), they lack the ability to compare different modal-
ities effectively in latent space, which is crucial for trans-
fer learning. Additionally, (Raghu et al. 2022) developed
SimCLR-like contrastive learning models pre-trained using
multi-modal clinical time series data including ECG signals
and structured time series data, and (Lalam et al. 2023) uti-
lized a large collection of electronic health records (EHRs)
to learn ECG representations through contrastive learning
between ECG, structured and unstructured EHR data. How-
ever, these studies primarily focused on ECG data rather
than the broader spectrum of PSG modalities investigated
here.

Our Contribution We introduce SleepFM, a sleep foun-
dation model trained using contrastive learning on a multi-
modal PSG dataset comprising of 14K instances from a
sleep study conducted at a major US academic hospital dat-
ing back to 1999. By capitalizing on EEG, ECG, and respi-
ratory modalities from PSG, SleepFM exhibits superior per-
formance in tasks such as retrieval, sleep stage classifica-
tion, and apnea event classification, outperforming end-to-
end trained CNN models. Additionally, our study highlights
the potential of our methodology in scenarios with limited
data availability, demonstrating promising results in a few-
shot evaluation setting. To our knowledge, this is the first
attempt to build and evaluate a foundation model for sleep.

Method
Datasets and Preprocessing
Our dataset encompasses PSG records from a US Sleep
Clinic dating back to 1999. Comprising 14,068 recordings,
this dataset features diverse waveforms, such as EEG, ECG,
and EOG, collected over 8 hours per individual. All the



ECG 
Encoder

Respiratory 
Encoder

EEG 
Encoder

E1

E2

EN

ECG Channels

Respiratory Channels

CNN EncodersRaw Sleep Data Embeddings

Pairwise

...

R1

R2

RN

...

S1

S2

SN

...

Types of Contrastive Learning

E1

E2

EN

...

R1

R2

RN

...

E1

E2

EN

S1

S2

SN

S1

S2

SN

R1

R2

RN

... ...

... ...

E1

E2

EN

...

R1

R2

RN

...

E1

E2

EN

S1

S2

SN

S1

S2

SN

R1

R2

RN

... ...

... ...

S1

S2

SN

...

R1

R2

RN

...

E1

E2

EN

...

EEG Channels

vs.

vs.

vs.

+

+

+

vs.

vs.

vs.

Leave-One-Out

Figure 1: Overview of multi-modal PSG pre-training with
contrastive learning.

data are deidentified to protect Protected Health Information
(PHI) of the participants.

Cohort selection was based on three primary modalities:
Respiratory, EEG, and ECG, encompassing 7, 10, and 2
channels, respectively. The specific channel names and de-
scriptions are detailed in Table 6. The Respiratory modal-
ity includes channels measuring chest and abdomen move-
ments, pulse readings, nasal and oral measurements, while
EEG comprise electrodes gauging brain activity from vari-
ous brain regions. ECG contains channels that measure car-
diac function. Subsequently, we converted the total sleep du-
ration into 30-second epochs for all participants and resam-
pled the dataset to 256 Hz. Furthermore, we extracted labels
corresponding to each epoch, as annotated by expert sleep
technicians. Extracted labels include: Wake, Stage 1, Stage
2, Stage 3, REM, Sleep Apnea. To maintain data integrity
and prevent leakage, the dataset is split into patient-level pre-
train/train/validation/test sets: 11,261, 1,265, 141, and 1,401
participants respectively. Each patient contributes multiple
clips to our dataset. The pretrain dataset is only ever used to
pretrain our foundation model. The remaining set serves to
train and test our model and baseline models for downstream
applications. The validation set is used to optimize the hy-
perparameters. Demographic statistics for different splits are
presented in Table 5. An illustrative snapshot of our data, ac-
companied by associated labels, can be found in Figures 3.

Embedding Model

We used Convolutional Neural Network (CNN) to generate
embedding from respiratory, EEG, and ECG channels. To
handle the three distinct modalities of data, we developed
three separate models. These models mainly differ in their
input layers, which accommodate the number of channels
specific to each modality: 10 for EEG, 2 for ECG, and 7 for
respiratory channels. The architecture of these embedding
models is rooted in the lightweight CNN architectures of
MobileNetV2 and EfficientNet (Sandler et al. 2018; Tan and
Le 2019). The architecture starts with atrous convolutions
followed by subsequent multi-channel 1D convolutions. The
layer count aligns with the original design of EfficientNet
(Tan and Le 2019), but we significantly reduced the num-
ber of layers to less than 1/10th the size of the referenced
architectures, aiming to optimize model runtime efficiency
and minimize complexity. Following the initial atrous lay-
ers, our model incorporates convolutional layers utilizing a
residual structure, mirroring the input and output bottleneck
layers with an expansion layer (Sandler et al. 2018).

Multi-modal Contrastive Learning

We explore two contrastive learning frameworks for learning
joint representations: pairwise and leave-one-out contrastive
learning (CL). The key idea is to bring positive pairs of em-
beddings from different modalities closer in the latent space
while pushing apart negative pairs. The positive pairs are de-
rived from either temporally aligned 30-second clips across
modalities. All other non-matching instances within a train-
ing batch are treated as negative pairs.

In pairwise CL, we construct contrastive prediction tasks
between all pairs of modalities. Specifically, for an embed-
ding xi from modality i and an embedding xj from modality
j, we use a contrastive loss to encourage agreement between
positive pairs while discouraging agreement between nega-
tive pairs. The contrastive prediction task is defined as:

li,j,k = − log
exp(sim(xi,k, xj,k) ∗ τ)∑N

m=1 exp(sim(xi,k, xj,m) ∗ τ)
(1)

where, N is the number of samples in a batch. This is the
loss for a sample k from modality i in a given batch. We
sum this loss over all the samples in a batch and repeat the
process for all pairs of modalities i, j. The final loss is the
sum of pairwise contrastive losses over all modality pairs.

In leave-one-out CL, we construct a predictive task where
an embedding from one modality tries to identify the cor-
responding embeddings from the remaining modalities. In
particular, for each modality i, we construct an embedding
x̄ ̸=i by averaging over embeddings from other modalities,
excluding modality i. We apply a contrastive loss between
modality i’s and this leave-one-out representation:

li,j,k = − log
exp(sim(xi,k, x ̸=i,k) ∗ τ)∑N

m=1 exp(sim(xi,k, x ̸=i,m) ∗ τ)
(2)



Model Training
Our model pretraining, involves contrastive learning opti-
mization with stochastic gradient descent (SGD) using a mo-
mentum of 0.9 and an initial learning rate set to 1e-2. We use
cross-entropy as our loss function. Training spans 20 epochs
with early stopping based on validation loss, employing a
batch size of 32. Hyperparameters draw from similar mod-
els in prior literature (Ouyang et al. 2022).

Upon pretraining completion, we generate embeddings
for the train, validation, and test sets, utilizing the learned
modality encoders. These training embeddings drive the
training of a logistic regression classifier. The classifier’s
performance undergoes evaluation on the test set for both
sleep stage and apnea detection tasks. For comparison, we
define a baseline EfficientNet architecture akin to our pre-
trained model encoder but solely trained via supervised
learning on the entire (pretraining + training) dataset for
classification tasks. This model is trained end-to-end from
scratch using cross-entropy loss between predicted and true
labels, optimized by SGD with a step decay learning rate
schedule. Mirroring the pretraining phase, this model under-
goes training for 20 epochs with a batch size of 32, align-
ing hyperparameters with our model pretraining strategy.
All model training was executed on a single NVIDIA Tesla
V100S GPU with 32GB of memory. Pretraining each epoch
consumed approximately 4 hours, while baseline supervised
training required roughly 2 hours on the same GPU.

Experiments
Retrieval Analysis
We assessed our model’s capabilities by retrieving one
modality’s closest embeddings from the test set based on an-
other modality’s embeddings. Computing cosine similarity
between ECG and EEG embeddings generated a ranked list,
allowing us to gauge retrieval performance. Evaluation was
measured using recall@10 and median rank metrics. Re-
call@10: Measures the true paired item’s appearance within
the top 10 recommendations. Higher values indicate more
accurate retrieval. Median rank: Determines the median po-
sition of the true paired item in rankings; a lower median
rank signifies a more consistent ranking of the correct pair.
We assessed the retrieval performance using 90,000 ran-
domly selected 30-second clips encompassing all modali-
ties from the test set. The baseline Recall@10 performance
stands at 10/90000 = 0.0001.

Downstream Classification Tasks
We used the embeddings learned by the three models to train
a logistic regression model. This model was employed to
classify sleep stages and apnea events, and evaluation was
performed on a held-out test dataset. Sleep stage classifica-
tion is a multi-class classification task, with 5 classes: Wake,
Stage 1, Stage 2, Stage 3, and REM. Apnea classification is a
binary classification task. We compared our model’s perfor-
mance with baseline model, trained on all three modalities,
for sleep stage and apnea event classification. Our evalua-
tion relied on two primary metrics: AUROC (Area Under the

Table 1: Retrieval on the test set for model trained with pair-
wise contrastive learning. Resp is for Respiratory. Random
baseline for Recall@10 = 0.0001

Median Rank Recall@10
ECG Resp EEG ECG Resp EEG

ECG - 2 1 - 0.81 0.74
Resp 2 - 5 0.82 - 0.60
EEG 1 6 - 0.82 0.58 -

Table 2: Retrieval on the test set for model trained with
leave-one-out contrastive learning. Resp is for Respiratory.
Random baseline for Recall@10 = 0.0001

Median Rank Recall@10
ECG Resp EEG ECG Resp EEG

ECG - 19 7 - 0.39 0.58
Resp 21 - 400 0.38 - 0.05
EEG 13 416 - 0.46 0.05 -

Receiver Operating Characteristic curve) and AUPRC (Area
Under the Precision-Recall Curve).

Few-Shot Evaluation

We performed few-shot evaluation by steadily increase the
number of participants k that each model sees from k = 1
to the full training dataset, and record the model’s AU-
ROC and AUPRC at each k. Note that each patient con-
tributes multiple training clips. We consider values of k ∈
{1, 2, 4, 8, 16, 32, 64, 128, 1265}, where 1265 is the size of
the full training set. For supervised CNN, few-shot exam-
ples are the only training examples seen by the model. For
the pretrained models, we use embeddings of these few-shot
examples to train a logistic regression model.

Results

Retrieval Analysis

Retrieval evaluation exhibited significant improvement com-
pared to baseline metrics. Our model achieved over 500x-
7000x higher recall@10 than the baseline as shown in Ta-
bles 2 and 1. Pairwise contrastive learning yield better over-
all retrieval performance than leave-one-out, most likely be-
cause the retrieval evaluation directly maps the training pro-
cedure of pairwise. One observable trend across both re-
trieval evaluation is relatively lower retrieval performance
between Respiratory and other modalities, specially, Respi-
ratory and EEG. The discrepancy in retrieval performance
between EEG-Respiratory signals compared to EEG-ECG
or ECG-Respiratory pairs might stem from the closer sim-
ilarity and shared electrical nature between EEG and ECG
signals. Both EEG and ECG capture electrical activities
within the body, potentially resulting in more recognizable
patterns and facilitating better correspondence.



Table 3: Sleep stage classification. Baseline here is an end-to-end CNN trained on the entire (pretraining + training) dataset to
classify sleep stages. The leave-one-out and pairwise models are logistic regression models trained on the embeddings generated
from only the training dataset. Prevalence of Wake, Stage 1, Stage 2, Stage 3, and REM are 0.21, 0.07, 0.51, 0.09, and 0.12
respectively. ± represents 95% CI.

AUROC AUPRC
Leave-One-Out Pairwise Supervised CNN Leave-One-Out Pairwise Supervised CNN

Wake 0.945±.001 0.930±.001 0.869±.001 0.862±.002 0.827±.002 0.711±.002

Stage 1 0.814±.002 0.782±.002 0.706±.002 0.233±.003 0.186±.002 0.130±.002

Stage 2 0.891±.001 0.861±.001 0.840±.001 0.876±.001 0.849±.001 0.822±.001

Stage 3 0.928±.001 0.918±.001 0.918±.001 0.676±.003 0.615±.003 0.695±.002

REM 0.951±.001 0.891±.001 0.878±.001 0.778±.003 0.565±.002 0.540±.003

Avg 0.906 0.876 0.842 0.685 0.608 0.579

(a) Sleep Stages AUROC (b) Sleep Stages AUPRC (c) Apnea AUROC (d) Apnea AUPRC

Figure 2: Sleep apnea classification. The x-axis represents number of participants that the model was trained on. In case of
pairwise and leave-one-out, we select embeddings from k number of participants to train a logistic regression model. In case of
supervised CNN, we train the model end-to-end on k number of participants to classify either sleep stages or apnea. Testing is
done on the entire test set. For each shot, we average the performance across 3 replicates.

Table 4: Apnea classification metrics. Baseline here is a su-
pervised CNN trained on the entire (pretraining + training)
dataset to classify apnea. The leave-one-out and pairwise
models are logistic regression models trained on the embed-
dings generated from only the training dataset. Prevalence
of apnea event is 0.017. ± represents 95% CI.

AUROC AUPRC
Leave-One-Out CL 0.941±.002 0.711±.006

Pairwise CL 0.902±.003 0.586±.007

Supervised CNN 0.843±.002 0.555±.005

Downstream Classification Tasks
We focused on two relevant sleep study tasks: sleep stage
and apnea classification as shown in Table 3. Notably, across
all metrics, the logistic regression model trained using repre-
sentations from our pretrained model outperforms the end-
to-end trained CNN. This superiority holds true across all
sleep stage classes as well as on aggregated class metrics.
Model pretrained with leave-one-out contrastive learning
performs better than the one pretrained with pairwise con-
trastive learning. Similarly, the apnea classification metrics,
displayed in Table 4, underscore our approach’s superiority
over supervised CNN models. Here as well, the model pre-
trained with leave-one-out contrastive learning significantly

outperforms the model pretrained with pairwise.

Few-Shot Evaluation
The results for our few shot analysis is presented in Fig-
ure 2. We observe that across all the few shot settings, our
model significantly outperforms baseline supervised CNN
model for both sleep stage and apnea classification. Notably,
the leave-one-out model significantly outperforms pairwise
model across all shots, specially for apnea classification.

Conclusion
Our study utilizes multi-modal PSG data and represen-
tation learning to improve identification of sleep events,
advancing sleep medicine. The primary contributions in-
volve developing and evaluating SleepFM, a multi-modal
contrastive learning model, on a 14K PSG recordings.
SleepFM exhibited strong performance across retrieval,
sleep stage, and apnea classification, surpassing supervised
CNNs. The methodology centers on two contrastive learn-
ing approaches, leave-one-out and pairwise, which both ef-
fectively unified ECG, EEG, and respiratory signal repre-
sentations and demonstrated efficacy in limited data scenar-
ios. For retrieval, pairwise contrastive learning outperformed
leave-one-out. For all downstream tasks, leave-one-out sig-
nificantly outperforms pairwise.

Limitations. We primarily trained and evaluated on one



dataset, thus model generalizability to other datasets is un-
known. Testing on diverse datasets from different sleep clin-
ics and demographics is crucial for validating robustness
across populations. Additionally, while we focused on sleep
stage and apnea detection, exploring other tasks like arousal
detection, periodic leg movements, and narcolepsy could
provide a more comprehensive clinical assessment.
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Table 5: Demographics table. REM: Rapid Eye Movement; AHI: Apnea-Hypopnea Index, a measure used in sleep medicine
to assess the severity of sleep apnea; WASO: Wake After Sleep Onset, the total time spent awake after initially falling asleep;
SL: Sleep Latency, the time it takes to transition from wakefulness to sleep; REML: REM Sleep Latency, the time it takes to
enter REM sleep after falling asleep; SE: Sleep Efficiency, the percentage of time spent asleep while in bed; TSD: Total Sleep
Duration, the overall duration of sleep.

pretrain train valid test

participants (count) 11,261 1,265 141 1,401
events (count) 10,611,314 1,190,392 130,380 1,314,267
Duration (hours) 88,427 9,920 1,086 10,952

Male (%) 49.85 50.15 47.12 53.04
Female (%) 43.83 43.99 48.08 41.79
Unknown (%) 6.32 5.86 4.8 5.17
Age (years) 42.19 ± 19.63 43.02 ± 20.33 40.41 ± 19.98 41.9 ± 19.92

TSD (mins) 376.78 ± 90.84 376.44 ± 90.62 371.22 ± 84.9 374.25 ± 87.49
WASO (mins) 79.4 ± 60.54 79.68 ± 62.3 78.76 ± 57.27 81.46 ± 62.76
SE (mins) 88.63 ± 246.43 91.93 ± 91.68 91.49 ± 53.46 92.36 ± 64.17
SL (mins) 22.16 ± 32.75 21.23 ± 31.57 28.99 ± 87.76 22.53 ± 32.6
REML (mins) 151.97 ± 102.64 149.41 ± 97.72 148.63 ± 99.93 154.87 ± 103.53

Stage 1 (%) 9.35 ± 9.18 9.31 ± 8.75 8.18 ± 7.68 9.04 ± 8.86
Stage 2 (%) 64.97 ± 14.67 64.79 ± 14.72 64.76 ± 14.66 64.97 ± 14.72
Stage 3 (%) 10.18 ± 13.22 10.2 ± 13.19 10.9 ± 12.68 10.32 ± 13.57
REM (%) 15.5 ± 7.85 15.7 ± 8.01 16.16 ± 6.84 15.67 ± 7.88

AHI (h−1) 22.15 ± 79.3 22.77 ± 19.14 22.15 ± 18.48 20.89 ± 16.96

(a) 30-second clip of raw patient data. The x-axis is time and
y-axis is different channels across all three modalities: EEG,
ECG, and Respiratory.

(b) Distribution of events across an entire patient sleep. The x-axis represents
approximately 8 hours in seconds, and y-axis is distribution of different sleep
events during the entire duration of sleep.

Figure 3: Raw signal data and corresponding events from a patient PSG.



Table 6: Data modalities, their associated channels and descriptions.

Modality Channel Description
Respiratory Chest Measures expansion and effort to breathe. Vital in detecting

sleep apnea and hypopneas.
Snore Detects vibrations or sound near airway openings during breath-

ing. Identifies snoring patterns.
SpO2 Measures blood oxygen saturation using a clip on the fingertip

or earlobe. Important for identifying variations in oxygen levels.
Abdomen Measures expansion and effort to breathe. Complements the

chest belt in detecting respiratory efforts.
Pulse Rate Calculated from fingertip or ECG signals. Indicates respiratory

disturbances.
Nasal Pressure Detects airflow limitations and obstructions, aiding in identify-

ing nasal breathing difficulties.
Oral Therm Assesses nasal/oral breathing temperature. Detects mouth

breathing affecting sleep quality.

Sleep Stages E1 Electrooculogram near the left eye, monitoring eye movements
for sleep stages.

M1 Electromyogram on chin muscles. Monitors muscle activity for
sleep cycles.

M2 Monitors chin muscle activity, aiding in differentiating REM and
NREM sleep.

C3 EEG on the left hemisphere. Captures brainwave patterns for
sleep staging.

C4 EEG on the right hemisphere. Captures brainwave patterns for
sleep staging.

O1 EEG on the back left of the head. Captures brainwave patterns
during NREM sleep.

O2 EEG on the back right of the head. Captures brainwave patterns
during NREM sleep.

Fz Frontal EEG on the forehead. Captures brainwave patterns re-
lated to cognitive processes.

Fp1 Prefrontal EEG on the left forehead. Monitors brainwave pat-
terns related to emotional processing.

Fp2 Prefrontal EEG on the right forehead. Monitors brainwave pat-
terns related to emotional processing.

ECG ECG L Left ECG electrode measures heart’s electrical activity, aiding in
detecting arrhythmias.

ECG R Right ECG electrode monitors heart’s electrical activity to iden-
tify arrhythmias.

Table 7: Sleep stage classification metrics for model trained with leave-one-out contrastive learning. After having trained the
model with all three modalities, we extract embeddings for each modality separately and train a logistic regression with each
modality to identify sleep stages. ± represents 95% confidence intervals.

AUROC AUPRC
ECG Respiratory EEG ECG Respiratory EEG

Wake 0.934±.001 0.846±.001 0.942±.001 0.829±.004 0.652±.003 0.857±.002

Stage 1 0.786±.002 0.676±.002 0.801±.002 0.193±.002 0.127±.001 0.211±.003

Stage 2 0.874±.001 0.728±.001 0.888±.001 0.860±.001 0.708±.001 0.873±.001

Stage 3 0.919±.001 0.788±.001 0.927±.001 0.638±.003 0.307±.002 0.679±.002

REM 0.939±.001 0.789±.001 0.944±.001 0.745±.003 0.388±.003 0.724±.003

Macro Avg 0.891 0.765 0.900 0.436 0.484 0.669



Table 8: Apnea classification metrics for model trained with leave-one-out contrastive learning. After having trained the model
with all three modalities, we extract embeddings for each modality separately and train a logistic regression with each modality
to identify apnea. ± represents 95% confidence intervals.

ECG Respiratory EEG
AUROC 0.735±.004 0.925±.002 0.735±.004

AUPRC 0.040±.001 0.697±.006 0.040±.001

Table 9: Sleep stage classification metrics for model trained with pairwise contrastive learning. After having trained the model
with all three modalities, we extract embeddings for each modality separately and train a logistic regression with each modality
to identify sleep stages. ± represents 95% confidence intervals.

AUROC AUPRC
ECG Respiratory EEG ECG Respiratory EEG

Wake 0.940±.001 0.877±.001 0.945±.001 0.838±.002 0.710±.002 0.866±.001

Stage 1 0.791±.002 0.701±.002 0.812±.002 0.199±.002 0.140±.001 0.225±.002

Stage 2 0.876±.001 0.760±.001 0.891±.001 0.862±.001 0.737±.001 0.872±.001

Stage 3 0.917±.001 0.806±.001 0.925±.001 0.627±.002 0.339±.003 0.645±.003

REM 0.939±.001 0.839±.001 0.953±.001 0.761±.003 0.499±.003 0.797±.002

Macro Avg 0.892 0.796 0.905 0.657 0.484 0.680

Table 10: Apnea classification metrics for model trained with pairwise contrastive learning. After having trained the model with
all three modalities, we extract embeddings for each modality separately and train a logistic regression with each modality to
identify apnea. ± represents 95% confidence intervals.

ECG Respiratory EEG
AUROC 0.750±.003 0.916±.003 0.733±.004

AUPRC 0.041±.001 0.456±.006 0.036±.001


