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ABSTRACT

Graph-structure data is ubiquitous, and graph learning models have recently been
further extended to address complex problems like mixed-integer linear program-
ming (MILP). However, recent literature has shown that classic graph neural
networks (GNNs) suffer fundamental limitations in learning MILP graph repre-
sentation, i.e., GNNs may map two different MILP graphs to the same representa-
tion. To overcome the limitations of classical GNNs, we introduce an expressive
quantum-driven graph learning approach, leveraging quantum machine learning
(QML) to recognize patterns that are difficult for classical methods to learn. Specif-
ically, the proposed versatile quantum graph learning architecture, composed of
a node feature layer, a graph message interaction layer, and an optional auxiliary
layer. Its versatility is reflected in effectively encoding features of nodes and edges
while ensuring node permutation equivariance and flexibly creating different circuit
structures for various expressive requirements and downstream tasks. VQGLA
is well suited for learning complex graph tasks like MILP representation. Exper-
imental results highlight the effectiveness of VQGLA in capturing and learning
representations for MILPs. In comparison to traditional GNNs, VQGLA exhibits
superior discriminative capabilities and demonstrates enhanced generalization
across various problem instances, making it a more promising solution for complex
optimization tasks.

1 INTRODUCTION

Mixed-integer linear programming (MILP) serves as a general optimization formulation ap-
plicable to diverse real-world optimization scenarios, such as transportation (Schouwenaars
et al., 2001), scheduling (Floudas & Lin, 2005b), and production planning (Askari-Nasab et al.,
2011). MILP aims to minimize a linear objective function while adhering to linear constraints.
Apart from the classic non-learning solvers that often resort to heuristics, recent learning-based
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Figure 1: A pair of GNN-intractable MILPs G1 and
G2. (a) is feasible and (b) is infeasible. Although
their edge connectivity and feasibility are different,
GNNs embed them into the same representation.

models have been actively studied, and graph
neural networks (GNNs) are considered a suit-
able backbone to represent the mappings for
MILP instances in various stages of MILP solv-
ing processes (Khalil et al., 2022; Gupta et al.,
2022; Wang et al., 2023). A MILP instance can
be regarded as a weighted bipartite graph with
node features, as illustrated in Fig. 1 and Fig. 2.
Due to the beneficial property of GNN, permu-
tations on variables or constraints of a MILP
do not essentially change the problem itself.
This can prevent the model from overfitting the
variable/constraint orders in the training data.
However, a recent study (Chen et al., 2023)
revealed that the classical GNNs based on the
message-passing mechanism suffer fundamen-
tal limitations in graph representation, especially for MILP graphs, i.e., GNNs do not have sufficient
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Table 1: Comparison of QNNs for classical graph data on several aspects: whether the models provide
implementable circuits, enjoy permutation equivariance, consider multi-dimensional node or edge
features, utilize quantum (Q) layers or classical (C) layers, and the manner of readout. Compared to
other methods, our proposed model addresses multiple aspects, can be applied to both node-level and
graph-level tasks, and achieves advantage validation over GNNs in learning graph representations.

Method Quantum Circuit
Embodied

Permutation
Equivariance Attribute Layer Readout Application

QGNN (Verdon et al., 2019) % ! Q Tomography Learning Hamiltonian Dynamics
& Graph Isomorphism Classification

QGCN (Zheng et al., 2021) ! % Node & Edge Q Estimation Image Classification
egoQGNN (Ai et al., 2022) ! % Node Q & C Tomography Graph Classification

EQGC (Mernyei et al., 2022) % ! Node Q & C Estimation Synthetic Cycle Graph Classification
Ours ! ! Node & Edge Q Estimation Graph Classification & Regression

power to distinguish some different instances. Specifically, as shown in Fig. 1, two different MILP
instances can be eventually embedded into the identical representation by GNNs, thus failing to
predict the feasibility of MILP. Moreover, in real-world scenarios, there are numerous MILPs that
GNNs cannot distiguish (Chen et al., 2023), which means that practitioners using GNNs may not
benefit from this.

As we can see, classical GNNs face fundamental limitations in learning graph representation. To
overcome this challenge, we turn to quantum machine learning (QML), which is an emerging field
that combines the power of quantum computing with the capabilities of machine learning. QML
has shown immense potential in recent years, such as recognizing patterns that are intractable using
classical methods (Biamonte et al., 2017). In this paper, we aim to associate nodes with qubits and
edges with quantum entanglement, investigating graph structures that are indistinguishable from
classical GNNs and exploring effective approaches for constructing quantum graph neural networks.

Designing a quantum learning framework for unstructured data, such as graph data, is still in its
nascent stages. Although some quantum neural networks (Verdon et al., 2019; Zheng et al., 2021; Ai
et al., 2022; Mernyei et al., 2022) designed to handle graph data have been proposed, they struggle
to effectively apply to complex graph tasks such as MILP graphs because they fail to address the
following challenges simultaneously. i) Since complex graph data usually contains node and edge
features, it is important to design a reasonable node/edge feature encoding strategy that enables the
quantum circuit to utilize these features to learn effective node representations.ii) As mentioned earlier,
classic GNNs possess the beneficial property of permutation equivariance. However, designing a
quantum circuit that conforms to permutation equivariance is nontrivial and requires careful design.
iii) Unlike building hybrid classical-quantum layers, designing full quantum circuits for classical
graph data and verifying them in practical graph tasks is challenging. Moreover, we provide a detailed
discussion of related works in Appendix A and Table 1 here as a summary.

To tackle the above challenges, we propose a versatile quantum graph learning architecture named
VQGLA. This method aims to provide a quantum solution for complex graph tasks like learning
MILP representation and to demonstrate superior discriminative power over classical GNNs. The
versatility of VQGLA is reflected in the following five aspects. i) VQGLA can encode node and edge
features. We design learnable features associated with each feature and flexible encoding schemes to
better learn node representations. ii) With the proposed parameter-sharing strategy, all the layers in
VQGLA possess the beneficial property of permutation equivariance, and we provide the theoretical
proof in Sec. 4.3. iii) VQGLA can incorporate an optional auxiliary layer to enhance the expressive
power of the model. iv) The types of quantum gates in VQGLA are adjustable under our configuration
principle, allowing flexible use across different scenarios. v) By designing different measurement
layers, VQGLA can be applied to graph tasks at various levels, such as graph classification, graph
regression, and node property prediction. We summarize the main contributions:

1) To explore the potential of quantum machine learning for learning graph-structured data, we
present a versatile quantum graph learning architecture (VQGLA). The method is based on fully
quantum circuits compatible with current devices and is capable of effectively encoding the features
of nodes and edges while ensuring node permutation equivariance. VQGLA can flexibly create
different circuit structures to meet various expressive requirements and downstream tasks. Moreover,
we theoretically prove the permutation equivariance of VQGLA.

2) We implement VQGLA in an application for learning MILP representation, which is evaluated on
three tasks: predicting feasibility, the optimal value, and the optimal solution. Numerical experiments
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demonstrate the advantage of VQGLA over classic GNNs in learning MILP representations. VQGLA
has better discriminative power to handle GNN-intractable MILPs. It also shows that VQGLA has
better generalization and uses fewer parameters.

3) The superior discriminative power of VQGLA over GNNs not only provides a promising solution
for handling more challenging graph tasks but also offers positive support for the capacity of quantum
machine learning methods. This will encourage further exploration of the potential of QNNs over
their classical counterparts.

2 PRELIMINARIES

We provide the basics of quantum computing and quantum machine learning in a simple and
understandable way in Appendix B, ensuring that readers with a background in linear algebra but not
familiar with quantum computing can gain a basic understanding of the quantum technologies used
in our paper. The matrix forms of all quantum gates mentioned in the paper are provided in Table 10.
Next, we will introduce the specific form of MILP graphs and the types of MILP datasets.

2.1 MILP GRAPHS AND THE LIMITATION OF CLASSIC GNNS

Graph Representation for MILPs. An instance is defined as follows A ∈ Rp×q , b ∈ Rp, c ∈ Rq:
min
x∈Rq

c⊤x, s.t. Ax ◦ b, l ≤ x ≤ u, xi ∈ Z, ∀ i ∈ I, (1)

𝑓1
v = (𝑐1, 𝑙1, 𝑢1, 𝜖1)

𝑓2
𝑣 = (𝑐2, 𝑙2, 𝑢2, 𝜖2)
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Figure 2: A weighted bipartite graph of a MILP
instance. vi is the variable node associated with
feature fVi and sj indicates the constraint node asso-
ciated with feature fSj . The edge between vi and sj
means the j-th constraint involves the i-th variable.

where l and u represent the upper and lower
bounds on variables, where l ∈ (R∪ {−∞})q ,
u ∈ (R ∪ {+∞})q and ◦ ∈ {≤,=,≥}p. Con-
sistent with Chen et al. (2023), the mathe-
matical operators {≤,=,≥} are mapped into
numerical value {0, 1, 2}, respectively. I ⊆
{1, · · · , q} represents the index set of integer
variables. The feasible solution is defined as
the set Xfea = {x ∈ Rq | Ax ◦ b, l ≤
x ≤ u, xi ∈ Z, ∀i ∈ I}, while Xfea = ∅
means the MILP problem is infeasible. Fea-
sible MILPs have an optimal objective value
yobj = inf{c⊤x | x ∈ Xfea}. If there exists
x̂ ∈ Xfea such that c⊤x̂ ≤ c⊤x, ∀ x ∈ Xfea,
then x̂ is an optimal solution. Nevertheless, the optimal solution may not always exist because the op-
timal objective value can be arbitrarily good, where the MILP problem is unbounded and categorized
as feasible with an optimal objective value of −∞. Following the protocol in Gasse et al. (2019) and
Chen et al. (2023), we formulate MILP as a weighted bipartite graph to interpret variable-constraint
relationships, as illustrated in Fig. 2. The vertex set is V ∪ S, where V = {v1, · · · , vi, · · · , vq}
with vi representing the i-th variable and S = {s1, · · · , sj , · · · , sp} with sj representing the j-th
constraint. The edge connected vi and sj has weight Ai,j . Based on Eq. (1), the vertex vi ∈ V is
associated with a feature vector fVi = (ci, li, ui, ϵi), where ϵi ∈ {0, 1} represents whether variable
vi takes an integer value. The vertex sj is equipped with a two-dimensional vector fSj = (bj , ◦j).
There is no edge between vertices in the same vertex set (V or S). The weighted bipartite graph with
node features is named an MILP-induced graph or MILP graph.

Classic GNNs may Fail on General MILPs. Recall that Chen et al. (2023) has shown that GNNs
may embed two different (one feasible and one not) MILPs into an identical embedding. In fact, there
are infinitely many pairs of MILP instances that can puzzle GNNs. Therefore, Chen et al. (2023) call
this class of MILPs that confuse GNNs as foldable MILPs, while the rest of the MILPs are named
unfoldable MILPs. In this paper, we refer to them as GNN-intractable MILPs and GNN-tractable
MILPs, respectively. Fig. 1 gives an example of a pair of MILPs in the GNN-intractable MILP
dataset. In this case, fVi = (1, 0, 1, 1), for all vi ∈ V and fSj = (1,=), for all sj ∈ S. All edge
weights are equal to 1, which means that the only difference between the two bipartite graphs lies in
the connectivity of edges. However, these two MILP instances have different feasibility. Fig. 1 (a) is
feasible, e.g. x = (0, 1, 0, 1, 0, 1) is a feasible solution, while Fig. 1 (b) is infeasible as there are no
integer decision variables that can satisfy the equality constraint 2(x1 + x2 + x3) = 3. Appendix E.1
illustrates why GNN has no ability to distinguish between them. The limitation of GNNs means that
directly applying GNNs to represent general MILPs may fail.
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Figure 3: The overall architecture of our VQGLA. The node feature layer encodes and learns node
features into the quantum circuit, and the graph message interaction layer contains a variable update
layer and a constraint update layer. The auxiliary layer is optional and is used to enhance the model’s
capacity. All layers are designed to preserve the equivariance of the node permutation.

Remark. Quantum machine learning is still in its infancy, especially quantum graph machine learning.
VQGLA can be regarded as the most basic graph neural network in the field of quantum computing.
We aim for VQGLA to play a similar foundational role in quantum graph learning as message-passing
GNNs do in classical graph learning.

3 VERSATILE QUANTUM GRAPH LEARNING ARCHITECTURE

Fig. 3 shows the overall framework of VQGLA, which consists of the node feature layer, graph
message interaction layer, auxiliary layer, and measurement layer. The first three layers form a
block. After the block is iteratively repeated Γ times, Pauli-Z measurement is performed. This
section introduces the design details of each layer in VQGLA using MILP graphs as an example.
The next section presents how VQGLA can be applied to various levels of graph tasks of MILP and
demonstrates its permutation equivariance and discriminative power.

3.1 NODE FEATURE LAYER

Node Feature Layer
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Figure 4: Node features are encoded into the circuit
using angle encoding, and each feature is associated
with a trainable parameter to learn the node repre-
sentation. For node permutation equivariance, the
same feature dimension (e.g., c1 and c2) shares the
identical trainable parameter (i.e., αt,1).

Fig. 4 (a) exemplifies a node feature layer with
two variable nodes and two constraint nodes.
The variable nodes vi have four features
(ci, li, ui, ϵi), and the constraint nodes sj have
two features (bj , ◦j). Suppose that each qubit
encodes two features, as shown in Fig. 4 (c).
Specifically, W (θ) and D(θ) represent two
different types of single-qubit quantum gates,
including {RX(θ), RY (θ), RZ(θ)}, where θ
indicates the parameter of the gate. We can
set θ as either trainable parameters or a con-
stant that need to be encoded. The selection
principle of single-qubit quantum gates (W (θ)
and D(θ)) will be described in Sec. 3.4. In
this case, the first qubit encodes the features
c1 and l1, and the second qubit encodes the
features u1 and ϵ1. That is, the first two qubits
are used to represent the node v1. When fewer features are encoded on each qubit, more qubits
are used to represent a node, resulting in a richer node representation. However, this also leads to
increased model complexity, so we set ω as a hyperparameter to denote the maximum number of
features that each qubit can encode, balancing the speed and accuracy of the model. Fig. 4 shows the
situation where ω = 2, and we also provide another illustration of ω = 4 in Fig. 8 in the Appendix.
Moreover, the same feature dimension (e.g., c1 and c2) shares the identical trainable parameter (i.e.,
αt,1 in the W (c1 + αt,1) and W (c2 + αt,1)). In other words, the trainable parameters are related
only to the feature dimension, not to the permutation of the nodes. Thereby, even if the order of nodes
changes (e.g., encoding node v2 using the first two qubits), each node’s features are assigned the same
trainable parameters, ensuring that the learned node feature representation remains invariant. In this
way, the node feature layer can preserve the node permutation equivariance, see Sec. 4.3 for proof.
The node feature layer encodes all variable features HV ∈ Rq×4 and constraint features HS ∈ Rp×2

can be defined as:
Ux(H,αt) = UW (c, u, b, αt)UD(l, ϵ, ◦, αt), (2)
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Figure 5: The quantum graph message interaction layer. (a) Variable update layer. Controlled-K
gates are used to learn the information interaction between variable nodes and constraint nodes, while
controlled-G(θ) gates are utilized to learn the internal interaction between qubits representing the
same variable nodes. (b) Constraint update layer. Controlled-K gates are turned upside down and are
followed by G(θ) gates to update the representation of constraint nodes. (c) Omitted node feature
layers and graph message interaction layers. (d) Measurement layer using Pauli-Z measurement.

3.2 QUANTUM GRAPH MESSAGE INTERACTION LAYER

We employ two-qubit quantum gates to entangle the qubits representing two nodes connected by
an edge. By harnessing the mechanism of quantum entanglement, we can learn the information
interaction in MILP graphs. Fig. 5 exemplifies the graph message interaction layer for the MILP
graph in Fig. 4 (a), which contains three edges. Specifically, this layer includes two parts: the variable
update layer and the constraint update layer. We set the two-qubit quantum gates as controlled-
K(θ) ∈ {RX(θ), RY (θ), RZ(θ)}. In the variable update layer, the control qubit of controlled-K(θ)
gate is the constraint node, and its target qubit is the variable node. Different edges share an identical
trainable parameter βt, as illustrated in the first three gates in Fig. 5 (a). In this case, one variable
node is represented by two qubits. Interestingly, the order of controlled-K gates can be arbitrary
due to the character of bipartite graphs, i.e., whether the controlled-K(A11 + β) or the controlled-
K(A22 + β) is applied first does not change the unitary of the U ·

K layer. We refer to this property as
edge permutation invariance. In the MILP graph, the edge feature is the edge weight, but VQGLA
can also be applied to cases with multi-dimensional edge features, as illustrated in Fig. 9 in the
Appendix. Moreover, the controlled-G gate is applied to these two qubits to learn the interaction of
internal information within one node, where controlled-G(θ) ∈ {CRX(θ), CRY (θ), CRZ(θ)}. In
the constraint update layer, the controlled-K gates are turned upside down and are followed by G(θ)
gates to update the feature representation of constraint nodes. The selection principle of K and G
gates will be described in Sec. 3.4. The unitary of the t-th graph message interaction layer can be
represented by Ug(A, βt) = Ugv(A, βt) ·Ugs(A, βt), with formulas shown in Eq. 8. We also provide
a simple and intuitive explanation in Appendix D.2.4. Furthermore, we theoretically prove the node
permutation invariance of this layer in Sec. 4.3.

3.3 AUXILIARY LAYER

To further enhance the expressiveness of the model, inspired by Wu et al. (2021), we introduce
an optional auxiliary layer, which can facilitate the interaction of information within the graph.
Specifically, each auxiliary qubit is connected to all other nodes through symmetric two-qubit gates
RZZ(γ). In this way, the model can increase the width and number of parameters. For the two qubits
representing one variable, trainable parameters γt,1 and γt,2 are assigned, while the parameter γt,3 is
assigned to the qubit representing constraints. The unitary of the auxiliary layer is defined as Ua(γt).
We can choose a varying number of auxiliary qubits based on the requirements of different tasks. The
node feature layer, graph message interaction layer, and auxiliary layer are regarded as a block. After
iterating this block Γ times, the unitary matrix of the overall circuit is equal to

Uqgl(A,H,Θ) =
∏Γ

t=1
Ux(H,αt)Ug(A, βt)Ua(γt), (3)

where Θ contains all trainable parameters α, β, and γ.

3.4 CONFIGURATION PRINCIPLE OF VQGLA
In VQGLA, the quantum gates W (θ), D(θ), K(θ), and G(θ) are selected from {RX(θ), RY (θ),
RZ(θ)} = {exp(−iθσx), exp(−iθσy), exp(−iθσz)}, where {σx, σy, σz} are Pauli matrices form a
basis for the real vector space of 2× 2 Hermitian matrices. {iσx, iσy, iσz} form a basis for the real
Lie algebra su(2), which exponentiates to the special unitary group SU(2). When two quantum gates
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are adjacent in VQGLA, they are expected to be of different types. This enables the encoding of
various features or trainable parameters on different bases, thereby enriching the information encoded
in the circuit and preventing the quantum circuit from confusing different features. There are six
possible configurations of VQGLA, which are summarized in Table 11.

4 VQGLA WITH APPLICATION TO MILP
As the application of VQGLA, predicting feasibility, optimal objective value, and optimal solution of
MILP graphs can be regarded as the task of graph classification, graph regression, and node property
prediction, respectively. As we can see, learning the MILP representation is a sufficiently complex
task that fully utilizes VQGLA, thereby comprehensively showcasing its capabilities.

4.1 MEASUREMENT LAYER

As shown in Fig. 5 (d), we add a measurement layer at the end of the quantum circuit. After
the measurement operation, the quantum information can be translated into classical information.
In the measurement layer, we measure only the first qubit representing each node using Pauli-Z
measurement. That is, for q variable nodes and p constraint nodes, VQGLA outputs q + p results.
The output of the VQGLA is defined as Φ(A,H,Θ) = {⟨0|U†

qgl(A,H,Θ)OiUqgl(A,H,Θ)|0⟩}q+pi=1 ,
where Oi represents i-th observable. For predicting the feasibility and optimal value of MILP
graphs, we define ϕfea(A,H) =

∑q+p
i=1 Φ(A,H,Θfea)i, ϕobj(A,H) =

∑q+p
i=1 Φ(A,H,Θobj)i. For

predicting the optimal solution, we define ϕsol(A,H) = {Φ(A,H,Θsol)i}qi=1. As can be seen, the
three tasks use the same circuit structure of VQGLA but employ different trainable parameters and
different ways to utilize the information obtained by measurements.

4.2 TRAINING AND TESTING

For predicting the feasibility, ŷfea = ϕfea(A,H), we utilize the negative log-likelihood as the loss
to train VQGLA. In the testing, we set an indicator function Iŷfea>1/2 to calculate the error rate:
1
M (

∑M
m=1 y

m
fea · Imŷfea>1/2), where M indicates the number of tested MILP instances, to evaluate

the number of correct predictions for feasibility.

For predicting the optimal solutions, ŷsol = λϕsol(A,H), where λ is the maximum range of
variables of the training sample, i.e., max{{{abs(lei ), abs(uei )}

q
i=1}Ee=1}. We use the mean square

error as the training and testing metric: 1
Mq

∑M−1
m=0 ∥ysol − ŷmsol∥22, where ymsol is the ground truth.

For predicting the optimal values, ŷobj = δλϕobj(A,H), where δ = max{{{cei}
q
i=1}Ee=1} is the

maximum range of coefficients of training sample. We also use the mean square error to train or
evaluate, i.e., 1

M

∑M−1
m=0 (y

m
obj − ŷmobj)

2.

4.3 PERMUTATION EQUIVARIANCE AND INVARIANCE

Permutation equivariance and invariance are fundamental requirements for graph neural networks. In
this section, we will demonstrate that the proposed quantum graph learning architecture possesses
these desirable properties. Let G = (A,HV,HS) represent a MILP graph with q variable nodes
and p constraint nodes. πq and πp are the permutations of variable nodes and constraint nodes,
respectively. Λq ∈ Bq×q and Λp ∈ Bp×p are permutation matrices representing a permutation πq
and πp, respectively. Additionally, we define a permutation πq+p on the (q + p) elements to indicate
the overall permutation on all nodes of the MILP graph. Λq+p is the permutation matrix of the
permutation πq+p. Λ̃ is the unitary representation of πq+p, which indicates the permutation of qubits
representing nodes. Based on this, we give the definition of a permutation equivariant circuit.

Defintion 1. (Permutation Equivariant Circuit). A parameterized quantum circuit U is
permutation equivariant for MILP graphs (A,HV,HS) if it satisfies

U(ΛpAΛq,ΛqHV,ΛpHS,Θ) = Λ̃† · U(A,HV,HS,Θ) · Λ̃. (4)

Appendix D.1 provides the formulation and detailed explanation of Definition 1. After measuring the
quantum circuit, we can consider the model to be a mapping ϕ ∈ Rq+p. According to Definition 1,
we can obtain the permutation equivariance of the mapping.
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Defintion 2. (Permutation Equivariant Mapping). A mapping ϕ(·) ∈ Rq+p is permutation
equivariant for MILP graphs (A,HV,HS) if it satisfies

ϕ(ΛpAΛq,ΛqHV,ΛpHS) = Λq+p · ϕ(A,HV,HS).

It indicates that the mapping result after node permutation ϕ(ΛpAΛq,ΛqHV) is equal to the result of
applying the permutation πq+p to the original result ϕ(A,HV,HS). In addition, we can aggregate the
result of the permutation equivariant mapping as a value to obtain the other mapping κ ∈ R. The
mapping is permutation invariant if changing the order of inputs does not alter the mapping output.

Defintion 3. (Permutation Invariant Mapping). A mapping κ(·) ∈ R is permutation invariant
for MILP graphs if it satisfies

κ(ΛpAΛq,ΛqHV,ΛpHS) = κ(A,HV,HS).

Theorem 1. In the proposed VQGLA, the circuit Upeqg(A,HV,HS,Θ) is a permutation equiv-
ariant circuit. After Pauli-Z measurement, the output of the circuit Φ(A,H,Θsol) = ϕsol(A,H)

is a permutation equivariant mapping. ϕfea(A,H) =
∑q+p
i=1 Φ(A,H,Θfea)i and ϕobj(A,H) =∑q+p

i=1 Φ(A,H,Θobj)i are permutation invariant mapping.

Appendix D.2 provides a detailed proof of Theorem 1, offering theoretical guarantees of permutation
equivariance and invariance for our proposed VQGLA.

4.4 SUPERIOR DISCRIMINATIVE POWER OVER GNNS

As mentioned earlier, Chen et al. (2023) have shown that GNNs may fail to distinguish two MILP
graphs, which is because of the fundamental limitations of GNNs. Xu et al. (2018) have shown
that GNNs are at most as powerful as the Weisfeiler-Lehman (WL) test (Weisfeiler & Leman,
1968) in distinguishing graph structures. However, as the WL test iteratively updates the label of
vertices in a graph only based on the label of their neighboring vertices, if two graphs exhibit subtle
structural differences not reflected in the degree of vertices or the patterns of local neighbors, the
WL test will fail to distinguish between these two graphs, as shown in Fig. 1. See Appendix E.1
for a detailed explanation of why GNN fails on the MILPs. By contrast, benefiting from quantum
entanglement between nodes, VQGLA can capture the difference in edge connectivity between
two MILP graphs. Different edges result in variations in graph-message interaction layer Uk, i.e.,
exp(−i(

∑
(i,j)∈E Ai,j(I − σz)iP

K
q+j)). We give the detailed proof in Appendix E.2.

5 EXPERIMENTS

In the experimental section, we compare the performance between classical GNNs and quantum
machine learning algorithms on the learning representation of MILP graphs. The construction of the
MILP dataset is in line with Chen et al. (2023) (see details in Appendix G). We use Adam (Kingma &
Ba, 2014) with an initial learning rate of 0.1 to find the optimal parameters of VQGLA, and batch size
is set at 16. Experiments are performed on a single machine with 4 2.20GHz CPUs and four NVIDIA
A100 GPU. The source code is written using TorchQuantum (Wang et al., 2022a), a PyTorch-based
library for quantum computing, which can simulate quantum circuits with up to 26 qubits. In Table 11
of Appendix F, the performance of all possible types of VQGLA are compared, and we finally select
(W (θ), D(θ),K(θ), G(θ)) = (RX(θ), RZ(θ), RY (θ), RZ(θ)) for the following experiments.

5.1 COMPARISON WITH CLASSICAL GNNS

We first compare the GNN used in Chen et al. (2023) named MILP-GNN as it is designed for MILP.
Our VQGLA model has a hyperparameter to control the number of circuit parameters, i.e., the number
of blocks T . The number of parameters for predicting feasibility is 12× T . MILP-GNN also has a
hyperparameter embedding size d controlling the number of parameters. Taking predicting feasibility
as an example, the number of parameters is 30d2+30d. We vary these two hyperparameters separately
for evaluation. In all our experiments, we first gradually increase their embedding size or our blocks
to test the performance of the models and find d∗ or T ∗ corresponding to the best performance. Then,
we select the values near d∗ or T ∗ and show their corresponding results.
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Table 2: Performance Comparison on the GNN-tractable MILP dataset.

Feasibility (Rate of Error ↓)/10−2 Optimal Value (MSE ↓) /10−2 Optimal Solution (MSE ↓) /10−1

MILP-GNN
(Chen et al., 2023)

# E.Size 4 6 8 4 6 8 16 24 32

Train 6.72 ± 0.17 5.42± 0.21 4.29± 0.12 1.52± 0.04 1.12± 0.06 0.66± 0.03 7.84± 0.21 6.39± 0.26 5.47± 0.15
Test 7.96± 0.19 6.74± 0.20 5.62± 0.11 2.35± 0.07 1.64± 0.05 1.76± 0.04 8.82± 0.27 7.57± 0.21 6.31± 0.25

VQGLA
# Block 4 6 8 6 8 10 8 10 12

Train 7.22± 0.11 6.53± 0.13 5.57± 0.08 1.10± 0.04 1.00± 0.02 0.98± 0.01 6.10± 0.14 5.79± 0.10 5.70± 0.09
Test 7.34± 0.12 6.65± 0.12 5.74± 0.09 1.26± 0.05 1.13± 0.03 1.11± 0.02 6.37± 0.11 6.03± 0.08 5.99± 0.07

5.1.1 EXPERIMENTS ON GNN-INTRACTABLE MILP DATASET

GNN-intractable MILPs contain many pairs of WL indistinguishable graphs that cannot be dis-
tinguished by classic GNNs (Chen et al., 2023). Here, we randomly generate 2, 000 GNN-
intractable MILPs with 12 variables and 6 constraints, and there are 1, 000 feasible MILPs
while the others are infeasible. The error rate serves as the evaluation criterion for pre-
dicting the feasibility of GNN-intractable MILPs. We compare our VQGLA with the clas-
sical GNNs, i.e., MILP-GNN (Chen et al., 2023) and MILP-GNN with random features.

2 4 6 8
Block Number  of Ours

0

0.01

0.1

0.5

R
at

e 
of

 E
rr

or

4 8 16 32
Embedding Size of GNN

GNN (train & test)
GNN + Rand. Feat (train)
GNN + Rand. Feat (test)
Ours  (train)
Ours  (test)

Figure 6: Comparison on GNN-intractable
MILPs. GNN refers to MILP-GNN (Chen et al.,
2023), and GNN + Rand. feat. indicates the MILP-
GNN with random features.

MILP-GNN with random features is proposed
by Chen et al. (2023) to alleviate the limitations of
the original GNN by appending random features to
the MILP graphs. As shown in Fig. 6, the error rate
of MILP-GNN is highest regardless of the embed-
ding size, as it cannot distinguish GNN-intractable
MILPs. Although MILP-GNN with random features
can improve performance, it achieves the best when
the embedding size is 32, which will cost 30, 565
parameters. Moreover, adding random features may
cause additional issues, i.e., changing the feasibility
or solution of the original problem, resulting in the
change of ground truth of the dataset. In contrast,
VQGLA can capture the edge connectivity of GNN-
intractable MILPs, so it can achieve accurate test
results with just 4 blocks, i.e., 48 parameters. The
results show that VQGLA has better discriminative
power than GNNs with fewer parameters.

5.1.2 EXPERIMENTS ON GNN-TRACTABLE MILP DATASET

We further compare our VQGLA and MILP-GNN on the GNN-tractable MILPs that GNNs can
distinguish. We randomly generate 8, 290 GNN-tractable MILPs with four variables and four con-
straints, with feasible and infeasible MILPs each accounting for half. The experiments evaluate the
rate of error in predicting the feasibility and the mean squared error (MSE) of predicting optimal
values and optimal solutions of MILPs. As reported in Table 2, as the embedding size increases,
the training error of MILP-GNN decreases, but its generalization error on the test set increases.
The reason is that GNN-tractable datasets are challenging, with diverse training and test sets,

Table 3: Comparison of VQGLA and other GNNs on
the GNN-intractable and GNN-tractable dataset.

Embedding Size/
# Blocks 2 4 6 8

GNN-tractable
dataset

GAT 0.856 0.926 0.930 0.940
GATv2 0.914 0.927 0.936 0.943
Graph Transformer 0.875 0.914 0.920 0.930
MILP-GNN 0.872 0.910 0.911 0.902
VQGLA 0.933 0.936 0.942 0.946

GNN-intractable
dataset

GAT 0.500 0.500 0.500 0.500
GATv2 0.500 0.500 0.500 0.500
Graph Transformer 0.500 0.500 0.500 0.500
MILP-GNN 0.500 0.500 0.500 0.500
VQGLA 0.987 0.998 1.000 1.000

making it difficult for MILP-GNN to generalize
well on the test set. In contrast, our VQGLA ben-
efits from quantum mechanisms, leading to better
generalization performance.

5.1.3 COMPARISON WITH ADVANCED GNNS

We utilize the PyG (PyTorch Geometric) library 1

to extend more GNN models into frameworks
suitable for MILP graphs. We modify each
GNN to update variable nodes and constraint
nodes using different weights. Table 3 compares
our methods with GAT (Graph Attention Net-
work) (Veličković et al., 2018), GATv2 (Brody
et al., 2022), and Graph Transformer (Shi et al.,

1https://pytorch-geometric.readthedocs.io/en/latest/
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Table 4: Comparison between different quantum models on
predicting the feasibility of MILPs.

HEA
(Kandala et al., 2017)

QGCN
(Zheng et al., 2021) VQGLA (ours)

Train 0.4613± 0.024 0.3419± 0.015 0.1086± 0.008
Test 0.4665± 0.020 0.3475± 0.018 0.1127± 0.012

Table 5: Performance changes as the num-
ber of auxiliary qubits increases on predict-
ing optimal solution.

# Aux. qubits 0 1 2 3

Train 0.6580 0.6166 0.5694 0.6099
Test 0.6853 0.6410 0.5993 0.6354

2021), w.r.t the accuracy of feasibility prediction
on GNN-intractable and GNN-tractable datasets. As we can see, in the GNN-tractable dataset, our
method remains competitive with advanced GNNs, achieving nearly the best results, and advanced
GNNs still struggle with GNN-intractable datasets, whereas our model is more effective.

5.2 COMPARISON WITH OTHER QUANTUM ALGORITHMS

Recall in Table 1 that most quantum GNNs have not considered edge features, which yet are vital for
solving MILP. Therefore, we only compare QGNNs that consider edge features, such as the quantum
graph CNN (QGCN) (Zheng et al., 2021). We also compare a problem-agnostic, hardware-efficient
ansatz (HEA) (Kandala et al., 2017). The circuit structure of HEA is typically fixed, making it
unable to encode the edge information of a graph, but can encode the node feature information of the
graph. Table 4 reports the error rates on the GNN-tractable MILP dataset with three variables and
three constraints. In this MILP dataset, QGCN requires more qubit resources to compute than our
VQGLA. Moreover, we set the number of parameters for all quantum models to 96 for performance
comparison. The results show that the problem-agnostic ansatz cannot effectively learn from graph
data. Although QGCN is a problem-inspired ansatz and designs an equivariant graph convolution
layer, their pooling layers violate permutation invariance, leading to performance degradation in
predicting MILP feasibility. By contrast, VQGLA ensures the permutation invariance to achieve
better performance.

5.3 ABLATION STUDY
Table 5 investigates the contribution of auxiliary layers to VQGLA, which shows the performance
of VQGLA in predicting the optimal solution with an increasing number of auxiliary qubits. The
results indicate that increasing the number of auxiliary qubits can enhance performance, yet there
may exist an optimal threshold for a specific problem scale. We can select appropriate auxiliary
qubits to enhance performance for tasks of different complexity.

Table 6: Ablation study w.r.t our components.

Repeated
Encoding

Syn. Encoding
Learning

Double
Interaction Train Test

% % % 0.0924 0.0953
% % ! 0.0876 0.0898
! % ! 0.0708 0.0726
! % % 0.0738 0.0765
! ! % 0.0623 0.0659
! ! ! 0.0557 0.0574

Furthermore, we delve into the individual compo-
nents that shape VQGLA’s design, as shown in Ta-
ble 6. Repeated encoding refers to encoding features
at every block. Synchronous encoding and learning
refers to adding features and learnable parameters
as new learnable parameters. Double interaction
refers to using a constraint and a variable layer in the
graph message interaction layer. All configurations
employ the same number of parameters. Results
indicate that these three components are useful for
the design of VQGLA.

In addition, we studied the parameter transferability and the impact of noise on the model’s perfor-
mance. We train on the 20-qubit GNN-intractable MILPs and transfer their parameters into problems
with 30, 40, and 50 qubits to test. n qubit represents a MILP graph dataset containing 200 different
graphs with n nodes. Specifically, we use Qiskit’s (Javadi-Abhari et al., 2024) matrix product state
simulator, as well as IBM’s noise model FakeWashingtonV2, with the backends built to mimic
the behaviors of IBM Quantum systems. As shown in Table 7, the model parameters trained on
the 20-qubit remain effective for the 50-qubit data, benefiting from VQGLA’s parameter-sharing
mechanism. This means that the parameters trained on small qubit datasets can provide a good
initialization for larger qubit datasets, speeding up the training process. Moreover, while noise does
have an impact on performance, the effect is within an acceptable range.

5.4 COMPARISON WITH HIGHER ORDER GNNS

To verify the expressiveness of our methods, we conducted an experiment on the recent dataset
BREC (Wang & Zhang, 2024) used to evaluate GNN expressiveness, compared higher order
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Table 7: Parameter transferability across
qubits under noiseless and noisy conditions.

Qubit 20 (base) 30 40 50

Noiseless 1.0 0.967 0.908 0.862
Nosiy 0.995 0.928 0.864 0.825

Table 8: Performance comparison of GNNs on BREC datasets.

Graphormer δ-k-LGNN NGNN GSN Ours

Basic 0.267 1.0 0.983 1.0 1.0
Regular 0.086 0.357 0.343 0.707 0.964
Extension 0.41 1.0 0.59 0.95 1.0

GNNs, including Transformer-based model Graphormer (Ying et al., 2021), k-WL hierarchy-based
model δ-k-LGNN (Morris et al., 2020), subgraph-based model NGNN (Zhang & Li, 2021), and
substructure-based model GSN (Bouritsas et al., 2022). The Basic dataset in BREC consists of
1-WL-indistinguishable graphs generated through exhaustive search and is designed to be non-regular.
The Regular dataset contains regular graphs, further divided into simple regular graphs and strongly
regular graphs, where 1-WL and 3-WL test fail, respectively. Including 4-vertex condition graphs and
distance-regular graphs further increases the dataset’s complexity. The Extension graphs bridge the
gap between 1-WL and 3-WL, offering a more granular comparison for evaluating models beyond
1-WL. We employ Reliable Paired Comparison (RPC) (Wang & Zhang, 2024) to verify whether
GNNs genuinely produce distinct outputs for a pair of graphs. As shown in Table 8, the results show
that the proposed VQGLA not only achieves good performance on the Basic and Extension datasets
but also outperforms other classical methods on the challenging Regular dataset.

6 THE COMPLEXITY AND SCALABILITY OF VQGLA
For a graph with N nodes and E edges, the node feature encoding layer involves O(N) single-qubit
gates, while the graph message interaction layer introduces O(E) two-qubit gates. For a circuit with
T blocks, the total number of gates scales as O(T (N +E)). For a graph with N nodes, our VQGLA
typically requires O(N) qubits. However, in the current NISQ era, both real quantum devices and
classical simulators have a limited number of qubits. Therefore, inspired by how classical GNN
algorithms handle large graph computations with limited resources, we have presented S-VQGLA to
process large graphs with limited qubits. Specifically, we first employ the graph sampling technique
GraphSAINT (Zeng et al.) to extract appropriately connected subgraphs, then apply our VQGLA
model to these sample subgraphs and combine the obtained information of these subgraphs together
so that the training process overall learns information of the full graph. In this way, for a graph with
N nodes, we can sample m subgraphs for training, with each subgraph using at most k qubits.

Table 9: Performance comparison of graph classification accuracy on PROTEINS dataset.
Methods GraphSAGE GIN GAT-GC U2GNN UGT S-VQGLA

(Hamilton et al., 2017) (Xu et al., 2018) (Zhang & Xie, 2020) (Nguyen et al., 2022a) (Lee et al., 2024) (Ours)

Accuracy (%) 73.0 76.2 76.8 78.5 80.1 80.4

Table 9 shows the performance of VQGLA on a commonly used graph classification dataset, PRO-
TEINS, which consists of 1,113 graphs, and each graph has between 4 to 620 nodes. We extract
appropriately connected subgraphs with at most 14 nodes, which can be processed using our 14-qubit
VQGLA with 6 blocks. All subgraphs are input as a batch into the VQGLA, and we combine their
results to predict the classification of the full graph. As we have observed, S-VQGLA not only out-
performs message-passing based GNN methods (Hamilton et al., 2017; Xu et al., 2018; Zhang & Xie,
2020), but also slightly exceeds the recently proposed Graph Transformer-based methods (Nguyen
et al., 2022a; Lee et al., 2024).

7 CONCLUSION

This paper introduces an expressive quantum graph learning framework aimed at addressing complex
graph structural data, such as learning the MILP graph representation. Our proposed framework,
VQGLA, uses the synchronous encoding and learning module to handle node and edge features, and
presents a parameter-sharing mechanism and a carefully designed graph information interaction layer.
We theoretically prove that VQGLA possesses permutation equivariance and invariance for nodes and
edges. Moreover, the proposed graph information interaction layer leverages quantum entanglement
to model the edges, enabling the capture of graph patterns that are challenging for classical methods.
Numerical experiments demonstrate that our approach can overcome the fundamental limitations
of traditional GNNs, achieving superior performance on MILP tasks that include GNN-intractable
graphs. VQGLA also offers flexibility in configuration for general graphs, and the results of the
BREC dataset highlight the versatility and separating power of VQGLA.
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A RELATED WORK
Quantum Graph Neural Networks Various quantum graph neural networks have been presented.
(Verdon et al., 2019) proposed a class of graph neural networks by defining operations in terms of
Hamiltonians based on the graph structure. However, their models are restricted to Hamiltonians
of specific forms, thereby cannot flexibly and efficiently encode classical high-dimensional node or
edge features of the graphs to solve some classical tasks. (Zheng et al., 2021) designed a specific
quantum graph convolutional neural network (QGCN), which uses an amplitude encoding method
to encode node and edge features and employs qubits representing edges as control qubits to apply
unitaries to the two qubits representing nodes connected by that edge. Nevertheless, the usage of
edge qubits will lead to the number of qubits of the model scales quadratically with the number of
nodes. Moreover, the pooling layer and measurement operator of QGCN will indeed result in the
loss of permutation invariance of the entire model. (Ai et al., 2022) presented an ego-graph based
Quantum Graph Neural Network (egoQGNN), which decomposes the input graph into smaller-scale
subgraphs and feeds them into the circuit. However, due to the use of entanglement layers within the
model, it still does not possess permutation invariance.
Equivariant Quantum Neural Networks Recently, a nascent field named geometric quantum
machine learning (GQML) (Larocca et al., 2022; Nguyen et al., 2022b) has been developed, which
leverages the machinery of group and representation theory (Ragone et al., 2022) to build quantum
architectures that encode symmetry information about the problem. Schatzki et al. (2022) provide
an analytical study of Sn-equivariant QNNs and prove that they do not suffer from barren plateaus,
quickly reach overparametrization, and can generalize well from small amounts of data. The
equivariant QNNs can used to learn various problems with permutation symmetries abound, such
as molecular systems, condensed matter systems, and distributed quantum sensors (Peruzzo et al.,
2014; Guo et al., 2020), namely, they are also not specifically designed to solve classical graph tasks.
(Mernyei et al., 2022) first proposed a theoretical recipe for building permutation equivariant quantum
graph circuits (EQGC) and aggregated the output of the quantum circuit by classical functions to
ensure permutation invariance of the model. Nevertheless, the EQGC does not provide the specific
circuit implementation and does not consider the case of weighted graphs in their model. In addition,
another QNN with permutation equivariance (Ye et al., 2023) is proposed, which is specially designed
for solving quadratic assignment problems, but their model only encodes the graph information and
then employs the shared problem-agnostic ansatz to learn the representation of each node. Thus, their
model does not contain the learnable graph message interaction layer.

Quantum Algorithms for MILP Mixed-Integer Linear Programming (MILP) is a mathematical
optimization approach that aims to find the best solution to a linear objective function while imposing
constraints on some or all of the variables to be integers. MILP is widely used in various practical
applications such as process scheduling (Floudas & Lin, 2005a), transportation (Richards & How,
2002), and network design (Fortz & Poss, 2009). Recently, researchers have endeavored to employ
quantum computing to assist in solving the MILP. (Zhao et al., 2022) proposed a hybrid quantum-
classical Benders’ decomposition algorithm, which decomposes an MILP problem into a Quadratic
unconstrained binary optimization (QUBO) problem solved by quantum computer and a subproblem
easily tackled by classical computers. (Ossorio-Castillo & Pena-Brage, 2022) described an algorithm
based on Dantzig–Wolfe decomposition. Different from (Zhao et al., 2022), the algorithm then
solves several either continuous or binary subproblems instead of a mixed one. (Wang et al., 2022b)
pointed out that quantum-inspired Ising machines can be used to solve MILPs by reducing them
into Ising models. However, the above algorithms are based on unconstrained Ising models, while
MILPs are subject to complex constraints. Their common solution is to introduce a penalty to the
algorithm. A proper penalty is of great importance because an extremely large penalty may cause
the quantum annealer to malfunction since it will explode the coefficients, while a soft penalty may
make the quantum annealer ignore the corresponding constraints (Zhao et al., 2022). However,
there is no instruction on how to tune the penalty, and it may even be different for various MILP
problems. In contrast, our approach leverages QML to represent MILP problems, thereby pioneering
a novel direction for harnessing quantum computing in aiding MILP solutions, there is promising for
witnessing the emergence of new paradigms that combine quantum and classical methods for MILP
solving.

B THE BASICS OF QUANTUM COMPUTING

Single-qubit Quantum State. In quantum computing, the fundamental building blocks of compu-
tation are qubits (short for quantum bits), which are the quantum analog of classical bits. Unlike
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classical bits, which can only take on one of two possible values (0 or 1), a qubit can exist in a
superposition of the two states, represented by the vector:

|ψ⟩ = α1|0⟩+ α2|1⟩, (5)

where |0⟩ and |1⟩represent the two basis states of one qubit, and α1 and α2 are complex numbers
that satisfy the normalization condition |α1|2 + |α2|2 = 1. When |ψ⟩ is measured, it will collapse to
either the |0⟩ or |1⟩ state with a probability |α1|2 or |α2|2.

Mathematically, the quantum state of one qubit can be denoted as a complex 2-dimensional vector,
e.g., |0⟩ = [1, 0]T , |1⟩ = [0, 1]T , and |ψ⟩ = [α1, α2]

T . The Bloch sphere is a sphere of radius 1,
which is a useful tool for visualizing the state of a single qubit. Any other state of one qubit can be
represented by a point on the surface of the sphere, and you can see them through this online tool 2.

Multi-qubit Quantum State. Multi-qubit quantum states are an extension of single-qubit quantum
states, and aN -qubit quantum state can be represented as a complex 2N -dimensional vector in Hilbert
space. This is why quantum systems are often described as living in a 2N -dimensional Hilbert space.
More specifically, a two-qubit system can be represented as |ϕ⟩ = α1|00⟩+α2|01⟩+α3|10⟩+α4|11⟩,
where

∑22

i=1 |α2
i | = 1 and |00⟩ represent the tensor product |0⟩ ⊗ |0⟩.

Quantum Circuits. Quantum circuits are constructed using quantum gates, which are analogous to
classical logic gates. Some commonly used single-qubit gates include the Pauli-X gate, the Pauli-Y
gate, and the Pauli-Z gate. They can be represented by the unitary matrix:

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
. (6)

The Controlled-NOT (CNOT) gate is a two-qubit gate that flips the second qubit (target) if the first
qubit (control) is in the |1⟩ state. We provide the matrix forms of common quantum gates in Table 10.
When a quantum gate acts on a quantum state |ψ⟩, it transforms this state to another quantum state
|ψ′⟩, according to the mathematical operation |ψ′⟩ = U |ψ⟩, where U represents the unitary matrix
associated with the quantum gate.
Parameterized Quantum Circuits. Parameterized quantum circuits (PQCs) consist of parameterized
gates and offer a concrete way to implement quantum machine learning algorithms. Specifically, the
common parameterized quantum gates are listed in Table 10. The parameters (e.g., θ) in the quantum
gate can be either learnable parameters for optimizers or classical information that we want to encode.

Quantum Machine Learning. A quantum machine learning model can be constructed using a
sequence of parameterized quantum gates. The initial quantum states can be transformed into the
output quantum states. By measuring the output of the quantum circuit, we can convert quantum
information into classical information, which can be used to calculate the cost function of the
optimization task. We can use classical optimizers to minimize the cost function by adjusting the
parameters of quantum gates.

C FORMULAS OF EACH LAYER IN VQGLA

In VQGLA, the single-qubit gate can be written as the unitary matrix from. For example,
K(θ) = exp(−i θ2P

K), where PK ∈ {σx, σy, σz}. Similarly, W (θ) = exp(−i θ2P
W ), D(θ) =

exp(−i θ2P
D), G(θ) = exp(−i θ2P

G).

Based on this, the unitary matrix of the node feature layer of Fig. 4 contains:

UW (c, u, b, αt) = exp(−i(
∑q

i=1
((ci+αt,1)P

W
2i +(ui+αt,2)P

W
2i+1)+

∑p

j=1
(bj+αt,5)P

W
2q+j)),

UD(l, ϵ, ◦, αt) = exp(−i(
∑q

i=1
((li+αt,3)P

D
2i +(ϵi+αt,4)P

D
2i+1)+

∑p

j=1
(◦j +αt,6)P

D
2q+j)),

(7)where PW2i = I ⊗ · · ·⊗︸ ︷︷ ︸
2i−1

PW ⊗ · · · ⊗ I︸ ︷︷ ︸
q+p−2i

.

2https://javafxpert.github.io/grok-bloch/
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Table 10: Common quantum gates.

Operator Gate(s) Matrix

Pauli-X (X, σx) X

[
0 1

1 0

]

Pauli-Y (Y, σy) Y

[
0 −i
i 0

]

Pauli-Z (Z, σz) Z

[
1 0

0 −1

]

Rotation-Z (RZ(θ)) RZ

[
e−i θ2 0

0 ei θ2

]

Rotation-Y (RY (θ)) RY

[
cos( θ2 ) − sin( θ2 )

sin( θ2 ) cos( θ2 )

]

Rotation-X (RX(θ)) RX

[
cos( θ2 ) −i sin( θ2 )

−i sin( θ2 ) cos( θ2 )

]

Controlled Not (CNOT, CX)


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0



Controlled RZ (CRZ(θ)) RZ


1 0 0 0

0 1 0 0

0 0 e−i θ2 0

0 0 0 ei θ2



Controlled RY (CRY (θ)) RY


1 0 0 0

0 1 0 0

0 0 cos( θ2 ) − sin( θ2 )

0 0 sin( θ2 ) cos( θ2 )



Controlled RX (CRX(θ)) RX


1 0 0 0

0 1 0 0

0 0 cos( θ2 ) −i sin( θ2 )
0 0 −i sin( θ2 ) cos( θ2 )



The graph message interaction layer of Fig. 5 contains:

UVK (A, βt,1) = exp(−i(
∑

(i,j)∈E

(Ai,j + βt,1)(I − σz)2iP
K
2q+j)),

UV
′

K (A, βt,2) = exp(−i(
∑

(i,j)∈E

(Ai,j + βt,2)(I − σz)2i+1P
K
2q+j)),

UVG (βt,3) = exp(−i(
∑
i

βt,3(I − σz)2i+1P
G
2i )),

USK(A, βt,4) = exp(−i(
∑

(i,j)∈E

(Ai,j + βt,4)(I − σz)2q+jP
K
2i )),

US
′

K (A, βt,5) = exp(−i(
∑

(i,j)∈E

(Ai,j + βt,5)(I − σz)2q+jP
K
2i+1)),

USG(βt,6) = exp(−i(
∑
j

βt,6P
G
2q+j)).

(8)
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Figure 7: Diagram of the properties of equivariant (a) and invariant (b) models. For equivariant
models, when the input node has a permutation σ, the output is equivalent to the original one with the
same permutation σ. For invariant models, the permutation of input nodes will not affect output Y .

D THEOREMS AND PROOFS OF THE EQUIVARIANCE

D.1 THE DETAILS OF DEFINITION 1

Λq ∈ Bq×q and Λp ∈ Bp×p are permutation matrices representing a permutation πq ∈ Sq and
πp ∈ Sp, respectively. Sq and Sp are the groups containing all permutations on the q variable nodes
and p constraint nodes, respectively. After the MILP graph undergoes permutation πq and πp, the
feature set of the variable nodes and the feature set of the constraint nodes become ΛqHV and ΛpHS,
respectively. Then, the adjacency matrix between variable nodes and constraint nodes of the MILP
graph A ∈ Rp×q is transformed to ΛpAΛq . We define a permutation πq+p on the (q+ p) elements to
indicate the overall permutation on all nodes of the MILP graph. πq+p consists of two distinct parts:
the first q elements follow the permutation πq, and the subsequent p elements follow πp. Λ̃ is the
unitary representation of πq+p, which indicates the permutation of qubits representing nodes. Λ̃ can
be implemented by applying a series of SWAP gates to the quantum circuit. The detailed proof and
formulation are as follows.

It is known that any permutation can be expressed as a product of transpositions. The transposition
refers to a simple permutation that just swaps two elements. Suppose that the permutation πq+p con-
tains z transpositions, i.e., πq+p = (δ11, δ12)...(δi1, δi2)...(δz1, δz2). Given that a n-qubit quantum
circuit and suppose that one qubit represents one node, i.e., n = p + q, a transposition (δz1, δz2)
can be represented by a SWAP(δz1,δz2) gate to exchange the δz1-th qubit and δz2-th qubit of the
quantum circuit. Hence, the corresponding unitary Λ̃ = Λ̃δ1Λ̃δ2 ...Λ̃δi ...Λ̃δz is equal to

SWAP(δ11,δ12)...SWAP(δi1,δi2)...SWAP(δz1,δz2). (9)

That is, we decompose a complex permutation into a series of transposition, so that we can get:

Defintion D.1. If the quantum circuit U is equivariant for any transpositions (δi1, δi2), i.e.,

U(ΛpδiAΛqδi ,ΛqδiH
V,ΛpδiH

S,Θ) = Λ̃†
δi
· U(A,HV,HS,Θ) · Λ̃δi ,

the circuit is equivariant for the permutation πq+p, where Λpδi and Λqδi are the permutation
matrices corresponding to the permutation (δi1, δi2).
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Based on Definition D.1, we can derive Definition 1 by using Eq. 9.

Λ̃† · U(A,HV,HS,Θ) · Λ̃

= SWAP(δz1,δz2)...SWAP(δ11,δ12) · U(A,HV,HS,Θ) · SWAP(δ11,δ12)...SWAP(δz1,δz2),

= SWAP(δz1,δz2)...SWAP(δ21,δ22)U(Λpδ1AΛqδ1 ,Λqδ1HV,Λpδ1HS,Θ)SWAP(δ21,δ22)...SWAP(δz1,δz2)

= U(Λpδ1...δzAΛqδ1...δz ,Λqδ1...δzHV,Λpδ1...δzHS,Θ)

= U(ΛpAΛq,ΛqHV,ΛpHS,Θ)
(10)

By the associative law of matrix multiplication, we can combine the middle three terms of the formula
until the last transpositions. In the final, Λpδ1...δz = Λp and Λqδ1...δz = Λq reprsent the permutation
matrices corresponding to the permutation πq+p = (δ11, δ12)...(δi1, δi2)...(δz1, δz2). Thereby, we
can obtain Definition 1.

D.2 THE DETAILS OF THEOREM 1

We can decompose Theorem 1 into the following theorems and corollary for clearer proof.

Theorem D.1. ( Uqgl is Equivariant). The circuit Uqgl(A,HV,HS,Θ) of the proposed VQGLA
is a permutation equivariant circuit.

Theorem D.2. ( Φ(A,H,Θ) is an Equivariant Mapping). After Pauli-Z measurement, the
output of the VQGLA is permutation equivariant.

Corollary D.1. ( ϕ(A,H)fea is an Invariant Mapping). The mapping of VQGLA to predict
the feasibility of instance ϕ(A,H)fea is permutation invariant.

D.2.1 THE PROOF OF THEOREM D.1

These two circuits in the quantum circuit are permutation-dependent and permutation-independent
circuits. Permutation-dependent circuit refers to the quantum circuit composed of gates related to
input node features or edge features. Permutation independent circuit is defined as:

Defintion D.2. (Permutation Independent Circuit). A parameterized quantum circuit Uind)
is permutation independent for MILP graphs (A,HV,HS) if Uind(ΛpAΛq,ΛqHV,ΛpHS,Θ) =
Uind(Θ), and

Λ̃†Uind(Θ) = Uind(Θ)Λ̃ = Uind(Θ). (11)

We can derive the permutation equivariance of the circuit that only contain permutation equivariant
circuit and permutation indepentent circuit.

Corollary D.2. ( Equivariant × Independent = Equivariant). If a quantum circuit U =
UeqUind, where Ueq represents the permutation equivariant circuit and Uind represents the
permutation independent circuit, then U is the permutation equivariant circuit.

Proof. It is known that

Ueq(A,HV,HS) = Λ̃ · Ueq(ΛpAΛq,ΛqHV,ΛpHS) · Λ̃†,

Λ̃†Uind(Θ) = Uind(Θ)Λ̃† = Uind(Θ).

Therefore, we can obtain

U(A,HV,HS,Θ) = Ueq(A,HV,HS)Uindd(Θ) = Λ̃ · Ueq(ΛpAΛq,ΛqHV,ΛpHS) · Λ̃† · Uind(Θ)

= Λ̃ · Ueq(ΛpAΛq,ΛqHV,ΛpHS) · Λ̃† · Λ̃ · Uind(Θ) · Λ̃†

= Λ̃ · Ueq(ΛpAΛq,ΛqHV,ΛpHS) · Uind(Θ) · Λ̃†

= Λ̃ · U(ΛpAΛq,ΛqHV,ΛpHS,Θ) · Λ̃†,

which indicates the circuit satisfies the definition of permutation equivariance.

On the other hand, VQGLA contains many layers, and we can demonstrate the permutation equivari-
ance of VQGLA by proving the permutation equivariance of each layer in VQGLA.
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𝐷(∘1 +𝛼𝑡,6)

𝐷(∘2 +𝛼𝑡,6)

𝑊(𝑐1 + 𝛼𝑡,1)

𝑊(𝑐2 + 𝛼𝑡,1)
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𝑊(𝑢2 + 𝛼𝑡,2) 𝐷(𝜖2 + 𝛼𝑡,4)

𝐾(𝐴11 + 𝛽𝑡,1) 𝐾(𝐴21 + 𝛽𝑡,1)

𝐾(𝐴22 + 𝛽𝑡,1)

G(𝛽𝑡,2)

𝐺(𝛽𝑡,2)

𝐾(𝐴22 + 𝛽𝑡,3)

𝐾(𝐴11 + 𝛽𝑡,3)

𝐾(𝐴21 + 𝛽𝑡,3)

G(𝛽𝑡,4)

𝐺(𝛽𝑡,4)

Graph Message Interaction Layer (𝜔 = 1)

…

Variable update layer

Constraint Update Layer

Figure 8: The framework of VQGLA with one qubit represents one node (i.e., ω = 1).

Theorem D.3. (Equivariance of Γ-layered circuit). A Γ-layered quantum circuit
U(A,HV,HS,Θ) =

∏Γ
t=1 U

t(A,HV,HS,Θt) is permutation equivariant iff every layer U t
is permutation equivariant.

Proof. U t is permutation equivariant means that

U t(A,HV,HS,Θt) = Λ̃ · U t(ΛpAΛq,ΛqHV,ΛpHS,Θt) · Λ̃†.

Therefore,

U(A,HV,HS,Θ) =

Γ∏
t=1

U t(A,HV,HS,Θt) =

Γ∏
t=1

Λ̃ · U⊤(ΛpAΛq,ΛqHV,ΛpHS,Θt) · Λ̃†,

where Λ̃ and Λ̃†Λ̃ = I . Hence,

U(A,HV,HS,Θ) = Λ̃(

Γ∏
t=1

U (ΛpAΛq,ΛqHV,ΛpHS,Θt))Λ̃
† = Λ̃U(ΛpAΛq,ΛqHV,ΛpHS,Θ)Λ̃†.

Each layer of VQGLA has the same circuit structure and can be decomposed into
Ux(HV,HS, αt)Ug(A, βt)Ua(γt). Moreover, Ua(γt) is a permutation independent circuit. Therefore,
by Corollary D.2 and Corollary D.1, we only need to prove that Ux(HV,HS, αt) and Ug(A, βt) are
permutation equivariant for any transpositions (δi1, δi2).

Equivariance of the Node Feature Layer

Take Fig. 8 as an example, i.e., one qubit represents one node, Ux(HV,HS, αt) can be written as
Uv1⊗Uv2⊗Us1⊗Us2 , whereUvi =W (ci+αt,1)D(li+αt,3)W (ui+αt,2)D(ϵi+αt,4), i = {1, ..., q}
and Usj = W (bj + αt,5)D(◦j + αt,6), j = {1, ..., p}. When the node permutation changes,
Ux(ΛqHV,ΛpHS, αt) = Uvπq(1)

⊗Uvπq(2)
⊗Usπp(1)

⊗Usπp(2)
. As we can see, the node permutation

is transformed into the permutation of the order of tensor products of unitary matrices on individual
qubits. Suppose there is a n-qubit arbitrary quantum state

|ψ⟩ =
∑

Cd1...dj ...dn |d1...dj ...dn⟩, dj ∈ {0, 1},

where Cd1...dj ...dn is the amplitude of the basic state |d1...dj ...dn⟩. Take |ψ⟩ as input to U =
U1 ⊗ ...Uj ...⊗ Un. For a transposition (δi1, δi2),

SWAP(δi1,δi2)|ψ⟩ =
∑

Cd1...dδi1
...dδi2

...dn |d1...dδi2 ...dδi1 ...dn⟩,

USWAP(δi1,δi2)|ψ⟩ =
∑

Cd1...dδi1
...dδi2

...dnU1|d1⟩ ⊗ ...⊗ Uδi1
|dδi2 ⟩ ⊗ ...Uδi2

|dδi1 ⟩ ⊗ ...Un|dn⟩,

SWAP(δi1,δi2)USWAP(δi1,δi2)|ψ⟩ =
∑

Cd1...dδi1
...dδi2

...dnU1|d1⟩ ⊗ ...⊗ Uδi2
|dδi1 ⟩ ⊗ ...Uδi1

|dδi2 ⟩ ⊗ ...Un|dn⟩

= U1 ⊗ ...⊗ Uδi2
⊗ ...⊗ Uδi1

⊗ ...⊗ Un|ψ⟩.
(12)

Therefore, we can obtain SWAP(δi1,δi2)U1 ⊗ ... ⊗ Uδi1 ⊗ ... ⊗ Uδi2 ⊗ ... ⊗ UnSWAP(δi1,δi2) =
U1 ⊗ ...⊗ Uδi2 ⊗ ...⊗ Uδi1 ⊗ ...⊗ Un, which indicates the unitary U satisfies the definition of the
equivariance.

Equivariance of the Graph Interaction Layer

As shown in Fig. 8, the variable update layer has a similar structure to the constraint update layer.
Moreover, the layer that consists of G(βt) is the permutation independent circuit. Therefore, ac-
cording to Corollary D.2, we only need to prove that the layer that consists of controlled-K gates is
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permutation equivariant. It is known that CK(θ)2,1 = I ⊗ |0⟩⟨0|+K(θ)⊗ |1⟩⟨1|, where the first
qubit is the target qubit and the second qubit is the control qubit. Moreover,

SWAP(2,1)CK(θ)2,1SWAP(2,1) = |0⟩⟨0| ⊗ I + |1⟩⟨1| ⊗K(θ) = CK(θ)1,2. (13)

For n(= q + p)-qubit circuit,

CK(Ajk+βt)q+j,k = I1⊗ ...⊗|0⟩⟨0|q+j⊗ ...⊗In+I1⊗K(Ajk+βt)k⊗ ...⊗|1⟩⟨1|q+j⊗ ...⊗In,
where the index of the matrix represents the index of qubit that the matrix acted on. For brevity, we
set θjk = Ajk + βt, 0 = |0⟩⟨0|, 1 = |1⟩⟨1|, and the edge set of the graph is E . As we can see, the
double-qubit quantum gate is only related to the permutation of the qubit (q + j) or qubit k. Assume
that there are two transpositions (q + j, q + δs(j)) and (k, ) to exchange the place of the qubits, and
SWAP ′ denot Considering a n-qubit arbitrary quantum state

|ψ⟩ =
∑

Cd1...di...dn |d1...dk...dδv(k)...dq+j ...dq+δs(j)...dn⟩, di ∈ {0, 1}.

SWAP ′|ψ⟩ =
∑

Cd1...di...dn |d1...dδv(k)...dk...dq+δs(j)...dq+j ...dn⟩

CK(θjk)q+j,kSWAP ′|ψ⟩ =
∑

Cd1...di...dn((|d1⟩ ⊗ ...⊗ 0dq+δs(j) ⊗ ...⊗ |dq+j⟩ ⊗ ...⊗ |dπ(n)⟩)

+ (|d1⟩ ⊗ ...⊗K(θjk)|dδv(k)⟩ ⊗ ...⊗ |dk⟩ ⊗ ...⊗ 1|dq+δs(j)⟩ ⊗ ...⊗ |dq+j⟩ ⊗ ...⊗ |dπ(n)⟩,

SWAP ′TCK(θjk)q+j,kSWAP ′|ψ⟩ =
∑

Cd1...di...dn((|d1⟩ ⊗ ...⊗ dq+j ⊗ ...⊗ 0|dq+δs(j)⟩⊗

...⊗ |dπ(n)⟩) + (|d1⟩ ⊗ ...⊗ |dk⟩ ⊗ ...⊗K(θjk)|dδv(k)⟩ ⊗ ...⊗ |dq+j⟩ ⊗ ...⊗ 1|dq+δs(j)⟩ ⊗ ...⊗ |dπ(n)⟩,
= CK(Ajk + βt)q+δs(j),δv(k).|ψ⟩

(14)

Therefore, we can obtain

SWAP ′TCK(Ajk + βt)q+j,kSWAP ′|ψ⟩ = CK(Ajk + βt)q+δs(j),δv(k) = CK(Aδs(j′)δv(k′) + βt)q+j′,k′ ,
(15)

where j = δs(j′) and k = δv(k′). It is known that UVK (A, β) =
∏

(j,k)∈E CK(Ajk + βt)q+j,k

SWAP ′TUV
K (A, βt)SWAP ′ =

∏
(j,k)∈E

SWAP ′TCK(Ajk + βt)q+j,kSWAP ′

=
∏

(j,k)∈E

CK(Aδs(j′)δv(k′) + βt)q+j′,k′ =
∏

(j′,k′)∈E′

CK(A′
δs(j)δv(k) + βt)q+j,k

= UV
K (A′, βt) = UV

K (ΛδsAΛδv , βt),

(16)

where Λδs and Λδv are the permutation matrices of the permutation δs and δv . The equation indicates
the equivariance of the graph message interaction layer.

D.2.2 PROOF OF THEOREM D.2

As mentioned earlier,

Φ(A,H,Θ) = Φ(A,HV,HS,Θ) = {⟨0|U†
peqg(A,H

V,HS,Θ)OiUpeqg(A,HV,HS,Θ)|0⟩}q+pi=1 ,
(17)

and we have proven that Upeqg is permutation equivariant. i.e.,

Λ̃† · Upeqg(A,HV,HS,Θ) · Λ̃ = Upeqg(ΛpAΛq,ΛqHV,ΛpHS,Θ). (18)

Therefore, Φ(ΛpAΛq,ΛqHV,ΛpHS,Θ)

= {⟨0|U†
peqg(ΛpAΛq,ΛqH

V,ΛpHS,Θ)OiUpeqg(ΛpAΛq,ΛqHV,ΛpHS,Θ)|0⟩}q+pi=1

= {⟨0|Λ̃†U†
peqg(A,H

V,HS,Θ))Λ̃OiΛ̃
†Upeqg(A,HV,HS,Θ))Λ̃|0⟩}q+pi=1

= {⟨0|Λ̃†U†
peqg(A,H

V,HS,Θ))Oπq+p(i)Upeqg(A,H
V,HS,Θ))Λ̃|0⟩}q+pi=1

= Λq+pΦ(A,HV,HS,Θ),

(19)

which indicates Φ(A,HV,HS,Θ) is a permutation equivariant mapping.

D.2.3 PROOF OF COROLLARY D.1
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Corollary D.3. (From Equivariance to Invariance). If a mapping ϕ(A,HV,HS) ∈ Rq+p is
permutation equivariant,

∑
(ϕ(A,HV,HS)) is permutation invariant.

Proof. Assume that ϕ(A,HV,HS) = [y1, ..., yq+p]
⊤, According to Definition 2,

ϕ(ΛpAΛq,ΛqHV,ΛpHS) = [yπq+p(1), ..., yπq+p(q+p)]
⊤. Therefore, we can obtain∑

(ϕ(A,HV,HS)) =
∑q+p
i=1 yi =

∑q+p
i=1 yπq+p(i) =

∑
(ϕ(ΛpAΛq,ΛqHV,ΛpHS)).

By Theorem D.2 and Corollary D.3, we can obtain ϕfea(A,H) =
∑q+p
i=1 Φ(A,H,Θfea)i is

permutation invariant. Similarly, the mapping of predicting objective value ϕobj(A,H) =∑q+p
i=1 Φ(A,H,Θobj)i also holds.

D.2.4 AN INTUITIVE EXAMPLE OF GRAPH MESSAGE INTERACTION LAYERS

In graph message interaction layers, each edge is mapped into a two-qubit quantum gate acted
on qubits representing two nodes. For example, here is a graph G with three nodes a, b, c. After
the first feature encoding layer, the quantum state |ψ⟩ = |ψa⟩ ⊗ |ψb⟩ ⊗ |ψc⟩. If there is an edge
connecting nodes a and b, the model will apply a two-qubit quantum gate between qubit qa and qubit
qb. Suppose the used two-qubit gate is RZZ(θ) = exp(−iθZ ⊗ Z) gate, then it is equivalent to
multiplying the quantum state by a matrix U = RZZ(θ) ⊗ I . Thus, the quantum state is changed
as |ψ′⟩ = U |ψ⟩ = (RZZ(θ) ⊗ I)(|ψa⟩ ⊗ |ψb⟩ ⊗ |ψc⟩) = |ψ′

a⟩ ⊗ |ψ′
b⟩ ⊗ |ψc⟩. In other words, the

two-qubit gate alters the quantum states corresponding to nodes a and b, thereby achieving the goal
of information exchange.

E VQGLA CAN DISTINGUISH MILP GRAPHS THAT GNN CANNOT
DISTINGUISH

E.1 WHY GNN FAILS ON THE GNN-INTRACTABLE MILPS

The discriminative power of GNN is defined as whether it can distinguish two non-isomorphic graphs.
The representation power of GNN refers to its ability to approximate mappings with permutation
equivariant/invariant properties. Moreover, Xu et al. (2018) have shown that GNNs are at most as
powerful as the Weisfeiler-Lehman (WL) test Weisfeiler & Leman (1968) in distinguishing graph
structures. The WL test is a well-known algorithm to identify whether two graphs are isomorphic
or not, i.e., whether two graphs are topologically identical. However, there are numerous WL test
indistinguishable graphs, and the most well-known class is regular graphs, where every vertex has
the same number of neighbors, i.e., the same degree. According to the above, if a pair of graphs is
indistinguishable by the WL test, GNN will also fail to distinguish them. In fact, the MILP graph
dataset just contains numerous WL-indistinguishable graphs, so directly using GNN to represent
general MILP graphs will lead to poor performance. Chen et al. (2023) extracted this subset of
WL-indistinguishable graphs from the entire MILP dataset and named it the ”GNN-intractable MILP”.
A variant of the WL test specially modified for MILP is provided in Algorithm 1. Based on the
algorithm, it can intuitively show why the WL test cannot distinguish some non-isomorphic graphs,
thereby showing why GNN cannot discriminate GNN-intractable MILPs.

Algorithm 1 WL test for MILP-Graphs

Input: A graph instance (A,H) ∈ Gq,p ×HV
q ×HS

p , and iteration limit L > 0.
Initialize with c0v = hash(fV ) for all v ∈ V , c0s = hash(fS) for all s ∈ S.
for l = 1 to L do

clvi = hash(cl−1
vi ,

∑p−1
j=0 Ai,jhash(c

l−1
sj )), for all v ∈ V .

clsj = hash(cl−1
sj ,

∑q−1
i=0 Ai,jhash(c

l−1
vi )), for all s ∈ S.

end for
Output: The multisets contain all colors {{clv : v ∈ V, cls : s ∈ S}}.

In the algorithm, hash(·) is a function that maps its input feature to a color in C. The algorithm
flow can be seen as follows. First, all nodes in V supS are assigned to an initial color c0v and c0s
according to their node features. Then, for each vi ∈ V , the hash function maps the previous color
cl−1
vi and aggregates the color of the neighbors of {cl−1

sj }sj∈N (vi). Similarly, the hash function maps
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the previous color cl−1
sj and aggregates the color of the neighbors of {cl−1

vi }vi∈N (sj). This process is
repeated until L reaches the maximum iteration number. Finally, a histogram hG of the node colors
can be obtained according to {{clv : v ∈ V, cls : s ∈ S}}, which can be used as a canonical graph
representation. The notation {{·}} denotes a multiset, which is a generalisation of the concept of
a set in which elements may appear multiple times. That is, the -WL test transforms a graph into
a canonical representation. If the canonical representation of two graphs is equal, the WL test will
consider them isomorphic.

Assume that there are two n-regular MILP graphs G1 = (A1, H1) and G2 = (A2, H2), where each
node has n neighbors in both graphs. And we set A1 ̸= A2 and H1 = H2, i.e., they have the same
features but different topology structures (the connectivity of edges). For clarity, we set {fVi }qi=1

is the same, and {fSi }
p
j=1is the same. Fig. 1 is an example of this type of graph. Initially, in the

WL-test, (c0v)g1 = (c0v)g2 and (c0s)g1 = (c0s)g2. Then, the representation of each vertex is updated
iteratively based on itself and information from its neighbors. In both graphs, each variable node has
the same number of constraint nodes, and all constraint features are the same, so all clvi are identical
at this step. Similarly, each constraint node has the same number of variable nodes, so all clsj are
identical. Until the maximum number of iterations is reached, the algorithm will output the same
representation for these two graphs. Therefore, the WL-test or GNNs cannot distinguish them.

E.2 PROOF OF THE DISCRIMINATIVE POWER OF VQGLA BETTER THAN GNNS

Theorem E.1. VQGLA can capture the difference in edge connectivity between two MILP graphs.

Proof. Suppose that G1 = (A1, H1) and G2 = (A2, H2), and the two graphs have only different
edge connectivity or edge weights, i.e., A1 ̸= A2. In VQGLA, the layer related to A is the graph
message interaction layer. As shown in Eq. 8, the sublayers related to A are UK layers. All UK
layers have similar structures. For clarity, we consider the following a simplified UK layer (where
one qubit represents one node) to showcase how VQGLA captures the topological structure. i.e.,

UVK (A) = exp(−i(
∑

(i,j)∈E

Ai,j(I − σz)iP
K
q+j)).

Note that i ∈ {1, ..., q} and j ∈ {1, ..., p}, and (I − σz)i is equal to I ⊗ ...⊗ ...︸ ︷︷ ︸
i−1

⊗(I − σz) ⊗

...⊗ I︸ ︷︷ ︸
q−i

⊗ ...⊗ I︸ ︷︷ ︸
p

. Similarly, PKq+j = I ⊗ ...⊗ I︸ ︷︷ ︸
q

⊗...⊗︸ ︷︷ ︸
j−1

PK ⊗...⊗ I︸ ︷︷ ︸
p−j

. Therefore, (I − σz)iP
K
q+j =

I ⊗ ...⊗︸ ︷︷ ︸
i−1

(I − σz)⊗...⊗ I︸ ︷︷ ︸
q−i

⊗...⊗︸ ︷︷ ︸
j−1

PK ⊗...⊗ I︸ ︷︷ ︸
p−j

.

As we can see, for (I−σz)iPKq+j , I−σz appears in one of the first q positions, and PK is acted in one
of the last p positions. For different edges, (I −σz)iP

K
q+j is different. More importantly, for different

edge sets,
∑

(i,j)∈E Ai,j(I − σz)iP
K
q+j is also different due to the properties of tensor products.

Therefore, if A1 ̸= A2, resulting in UVK (A1) ̸= UVK (A2), which indicates the VQGLA can capture
the difference in edge connectivity between two MILP graphs. Although two non-isomorphic regular
graphs have the same degree, the edge connectivity is different. That is, VQGLA can distinguish
GNN-intractable MILP graphs that GNN fails to distinguish.

F THE PERFORMANCE OF ALL POSSIBLE TYPES OF VQGLAS

Table 11 lists all possible selections of the quantum gate in VQGLA. The type represents
(Pw, PD, PK , PG). For example, when the type is equal to (σx, σz, σy, σz), it indicates W (θ) =
RX(θ), D(θ) = RZ(θ), CK(θ) = CRY (θ), and G(θ) = RZ(θ). To compare the performance of
different settings, we test them on the task of predicting the feasibility of the GNN-tractable MILP
dataset. In the experiment, we set the block of VQGLA is 8, the number of epochs to 15, the learning
rate to 0.1, and the batch size to 16. Table 11 shows VQGLA with (σx, σz, σy, σz) can achieve the
best result, so we adopt this scheme in our all experiments.
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Table 11: All possible selections of VQGLA and their performance results on predicting the feasibility
of GNN-tractable MILP datasets. Results demonstrated that (σx, σz, σy, σz) can achieve the best
performance.

Types (σx, σy, σz, σy) (σx, σz, σy, σz) (σy, σx, σz, σx) (σy, σz, σx, σz) (σz, σx, σy, σx) (σz, σy, σx, σy)

Train 0.0598 0.0557 0.0724 0.0623 0.0635 0.0615
Test 0.0606 0.0574 0.0741 0.0625 0.0647 0.0635

G MILP DATASET GENERATION

For GNN-tractable MILPs, we first set the number of variables and constraints to m and n.

• For each variable, cj ∼ N (0, 0.01), lj , uj ∼ U(0, 2π). If lj > uj , then switch lj and uj .
The probability that xj is an integer variable is 0.5.

• For each constraint, ◦i ∼ U(≤,=,≥) and bi ∼ U(−1, 1).
• After randomly generating all the MILP samples, we use the WL test algorithm to calculate

their graph representation for each instance, ensuring that there are no duplicate graph
representations in the dataset, so that we can determine that this dataset does not contain
WL-test indistinguishable pairs of MILP instances.

The GNN-intractable dataset is constructed by many pairs of WL indistinguishable graphs, and Fig. 1
in our paper is a GNN-intractable example, which is a pair of non-isomorphic graphs that cannot be
distinguished by the WL-test or by GNNs. The GNN-intractable dataset randomly generates 2000
GNN-intractable MILPs with 12 variables and 6 constraints, and there are 1000 feasible MILPs with
feasible optimal solutions while the others are infeasible. We construct the (2k − 1)-th and 2k-th
problems via the following approach, where (1 ≤ k ≤ 500).

• Sample J = {j1, j2, ..., j6} as a random subset of {1, 2, ..., 12} with 6 elements. 1) For
j ∈ J , xj ∈ {0, 1}, i.e., xj is a binary integer variable. 2) For j /∈ J , xj is a continuous
variable with bounds lj ∼ U(0, π), uj ∼ U(0, π). If lj > uj , then switch lj and uj .

• c1 = ... = c12 = 0.01.
• The constraints for the (2k − 1)-th problem (feasible) is xj1 + xj2 = 1, xj2 + xj3 = 1,
xj3+xj4 = 1, xj4+xj5 = 1, xj5+xj6 = 1, xj6+xj1 = 1. For example, x = (0, 1, 0, 1, 0, 1)
is a feasible solution.

• The constraints for the 2k-th problem (infeasible) is xj1 + xj2 = 1, xj2 + xj3 = 1,
xj3 + xj1 = 1, xj4 + xj5 = 1, xj5 + xj6 = 1, xj6 + xj4 = 1.
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Figure 9: (a) The controlled K layer for multi-dimensional edge features. (b) The controlled G layer
for m > 1, where m is the number of qubits representing one node vj or si.
H THE CAPACITY OF VQGLA
The proposed framework can also be used for situations where the edge dimension is more than
one. As shown in Fig. 9 (a), the controlled K gates can be repeatedly applied with different
edge dimensions. In addition, Fig. 9 (b) illustrates the detailed circuit when the number of qubits
representing one node is more than one. Moreover, although VQGLA is designed for MILP graphs,
i.e., bipartite graphs, it can be easily extended to arbitrary graphs. Specifically, in the quantum graph
message interaction layer, we can apply symmetric two-qubit gates, such as RZZ gate, between two
nodes, representing edges in an arbitrary graph and preserving the edge permutation invariance. The
remaining structure can remain completely unchanged when applied to an arbitrary graph.
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Figure 10: Variance v.s qubits (log-linear scale).
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It has been shown that general QNNs may suf-
fer from barren plateau (McClean et al., 2018),
i.e., the loss gradients vanish exponentially with
the system size, causing the trainability of QNNs
becomes an important issue. However, Fig. 10
shows the variance of our cost function par-
tial derivatives for a parameter in the middle of
VQGLA. The variance only decreases polyno-
mially with the system size, which shows that
VQGLA has good trainability.

I THE DETAILS OF UK LAYER

In the training process, the types (e.g., RX(θ), RY (θ), or RZ(θ)) and positions of gates are fixed,
but their internal parameters are not fixed in the quantum machine learning. Therefore, it should
be noted that when implementing the proposed graph message interaction layer, there is actually
a controlled K gate between each variable node and each constraint node (like a fully connected
bipartite graph). However, if there is no edge between the two nodes, we will set the parameters
of the corresponding controlled K gate to 0. CK(0) is an identity matrix that will not affect the
overall circuit. Specifically, in code engineering, we first obtain the binary adjacency matrix T of the
bipartite graph. Tij = 1 indicates that there is an edge connecting constraint node si and variable
node vj , while Tij = 0 indicates that there is no edge connecting them. Then, CK(Tij(Aij + β)) is
acted on the two qubits representing constraint node si and variable node vj . As we can see, when
there is an edge between the two qubits, CK(Aij + β) is acted on the two qubits, while when there
is no edge between the two qubits, CK(0) is acted on the two qubits. In this way, we can achieve the
modeling of the graph message interaction layer under the premise of fixed gate types and positions.

J THE IMPLEMENTATION ON REAL QUANTUM DEVICES
Thanks for your suggestions. Our proposed VQGLA quantum circuit consists of only simple single-
qubit and two-qubit gates, making it easy to deploy on existing NISQ devices. To verify this, we
use the Qiskit package and the IBM Quantum platform to directly execute our circuits on real
IBM quantum hardware. The circuits are first compiled and optimized, then mapped to the real
quantum hardware’s topology using the generate preset pass manager function. Subsequently,
the expectation values of the quantum circuits are estimated using the Estimator V2 primitive. The
Estimator primitive supports three resilience levels: Resilience Level 0 represents no error mitigation
techniques are applied. Resilience Level 1 applies readout error mitigation and measurement twirling
using a model-free technique known as Twirled Readout Error eXtinction (TREX) (Van Den Berg
et al., 2022). Resilience Level 2 includes the error mitigation techniques from Level 1 and further
applies gate twirling and the Zero Noise Extrapolation (ZNE) (Temme et al., 2017).

We conducted experiments using 10 minutes of free usage on the 127-qubit IBM Brisbane quantum
computer, and evaluate the mean square error (MSE) compared to ground truth on MILP dataset with
three different scales, as shown in the table below.

18 qubit 26 qubit 36 qubit

Noise (ibm brisbane) 0.2627 0.2850 0.3461
resilience level = 1 0.2107 0.2428 0.3336
resilience level = 2 0.2077 0.2174 0.3176

Table 12: Performance comparison across different qubit numbers and resilience levels.

The results demonstrate that employing error mitigation strategies can improve performance. Higher
resilience levels produce more accurate results, but at the cost of increased processing time, which is
a trade-off between cost and accuracy.
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