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ABSTRACT

Large language models (LLMs) have demonstrated impressive generalization and
emergent capabilities, yet their pre-training remains computationally expensive
and sensitive to optimization dynamics. While Adam-based optimizers offer fast
convergence by adapting learning rates coordinate-wise, recent studies reveal that
their updates often suffer from poor spectral conditioning and low-rank structures,
hindering efficiency. Muon addresses this issue via global spectral normalization
but lacks the per-coordinate adaptivity of Adam. In this work, we propose Column-
Normalized Adam (Conda), a novel optimizer that bridges the strengths of both
approaches. Conda projects updates into an orthogonal subspace and applies
column-wise second moment normalization based on the projected gradients,
thereby achieving both improved spectral conditioning and maintaining coordinate-
wise adaptivity. This design alleviates the spectral pathologies of Adam while
preserving its fast convergence behavior. Extensive experiments on the LLaMA
and GPT-2 series show that Conda consistently outperforms AdamW, Muon, and
other baselines in pre-training. Remarkably, on the LLaMA series, Conda achieves
2~2.5x the convergence speed of AdamW, measured in both training steps
and training time. Further ablations demonstrate its robustness under diverse
training setups. These results collectively highlight Conda as an effective and
broadly applicable optimizer for large-scale LLM training.

1 INTRODUCTION

Over the past decade, deep learning has driven transformative progress in fields such as computer
vision and natural language processing (Szegedy et al., 2015; He et al., 2016; Wang et al., 2024;
Dosovitskiy et al., 2020; Liu et al., 2022). This progress is particularly evident in the emergence of
large language models (LLMs) (Achiam et al., 2023; Liu et al., 2024a; Grattafiori et al., 2024; Team
et al., 2023; Yang et al., 2024), which have become a central paradigm, achieving strong performance
across a wide range of tasks, including text generation, reasoning, and multi-modal understanding.

Despite their advances, LLMs come with escalating computational and financial costs, making
optimization efficiency a critical bottleneck. Optimizers lie at the heart of this challenge. Transformer-
based architectures are known to exhibit significant heterogeneity in their gradients and Hes-
sians (Zhang et al., 2024a; Tomihari & Sato, 2025), rendering the uniform update rules of stochas-
tic gradient descent (SGD) (Bottou et al., 2018) ineffective. Adaptive methods like Adam and
AdamW (Kingma & Ba, 2014; Loshchilov & Hutter, 2017) address this issue by adjusting coordinate-
wise learning rates using second-moment estimates of gradients. This has made them the de facto
standard for training large-scale transformers (Zhang et al., 2020; Kunstner et al., 2023).

However, recent work has revealed a fundamental inefficiency in Adam’s update dynamics. For
the two-dimensional parameter matrices prevalent in transformers, Adam’s updates often exhibit
high condition numbers and low-rank structures (Jordan et al., 2024; Zhao et al., 2021; Yang et al.,
2023; Cosson et al., 2023). These spectral pathologies severely impair optimization efficiency. To
address this, Muon (Jordan et al., 2024) was proposed as a promising alternative. Building on SGD
with momentum (Sutskever et al., 2013), Muon employs a Newton—Schulz iteration to normalize
the update matrix by equalizing all singular values. This explicit spectral normalization suppresses
dominant directions and produces well-conditioned updates, accelerating convergence. Yet, Muon
discards the coordinate-wise adaptivity that makes Adam and AdamW highly effective in transformers.
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As a result, Muon’s uniform normalization, while spectrally elegant, risks overshooting updates
and neglecting fine-grained gradient variations, limiting its adaptability in large-scale LLM training.
Motivated by these observations, a natural yet challenging question arises: how can we integrate
similar normalization benefits of Muon into Adam? Such integration holds substantial promise for
achieving faster and more stable convergence than Muon, since Adam is often much faster than
SGD-momentum, upon which Muon is based, especially for transformer networks.

To answer this question, we first reformulate Muon into an equivalent form involving first and second
moment estimations, closely aligning it with Adam’s structure. While Muon originally performs
explicit spectral normalization through Newton—Schulz iteration without defining second moment
estimates, our reformulation reveals that this normalization implicitly corresponds to uniform second
moment scaling. Thus, a key structural difference emerges: Adam adopts coordinate-wise adaptivity
via element-wise second moment estimation, whereas Muon uniformly applies orthogonal projection
and singular-value normalization. Muon’s uniform normalization, although effective in spectral
conditioning, may overshoot updates and neglect coordinate-wise gradient variations, limiting its
adaptivity particularly in transformer training scenarios.

In this work, we propose Column-Normalized Adam (Conda). Conda retains Adam’s coordinate-
wise adaptivity while incorporating a milder, column-specific spectral normalization. Instead of
normalizing all directions uniformly, Conda projects updates into an orthogonal subspace and applies
separate second moment-based normalization to each column using projected gradients. This design
alleviates the spectral pathologies of Adam while preserving the structure and relative scaling of the
update matrix, resulting in better-conditioned updates and more stable convergence behavior.

We validate Conda extensively on large-scale LLM pre-training and fine-tuning. On LLaMA se-
ries (Touvron et al., 2023), Conda achieves 2~2.5x faster convergence than AdamW, measured by
both training steps and wall-clock time. It also shows consistent gains on GPT-2 (Radford et al., 2019)
and across diverse fine-tuning tasks. Comprehensive ablations on sequence length, hyperparameters,
subspace update frequency, and memory usage confirm Conda’s robustness and scalability.

2 RELATED WORKS

Adaptive optimizers adjust per-parameter learning rates using gradient history, enabling faster con-
vergence and robustness to sparse or noisy gradients. Adagrad (Duchi et al., 2011) introduced
per-parameter scaling but suffers from aggressive decay, while RMSprop (Hinton et al., 2012)
improved stability via exponential moving averages. Adam (Kingma & Ba, 2014), combining mo-
mentum and adaptive scaling, remains the default, with AdamW (Loshchilov & Hutter, 2017) further
improving generalization by decoupling weight decay. Recent variants enhance efficiency and con-
vergence: Adan (Xie et al., 2024) and Win (Zhou et al., 2024a; 2023) strengthen Adam with Nesterov
acceleration; Lion (Chen et al., 2023) removes second-moment tracking for memory efficiency;
Sophia (Liu et al., 2023a) leverages approximate second-order information; and Adam-mini (Zhang
et al., 2024b) reduces memory via block-wise learning rates.

Beyond vectorized updates, newer methods exploit matrix structure. KFAC (Martens & Grosse,
2015) and Shampoo (Gupta et al., 2018) use Kronecker-factored curvature approximations; Adafac-
tor (Shazeer & Stern, 2018) reduces memory via factorization; and LAMB (You et al., 2019)
stabilizes large-batch training with layer-wise normalization. More recent approaches improve
scalability and structural efficiency: GaLore (Zhao et al., 2024) projects gradients into low-rank
subspaces; SOAP (Vyas et al., 2024) combines Shampoo preconditioners with Adam-style updates;
Muon (Jordan et al., 2024) regularizes update spectra for stability; and AdaDiag (Nguyen et al., 2025)
employs SVD-based diagonalization for faster convergence. These advances highlight how structural
awareness can substantially improve large-scale training efficiency.

3 COLUMN-NORMALIZED ADAM
3.1 PRELIMINARY AND MOTIVATION

Here, we first briefly introduce Adam and Muon, and then analyze Muon for motivating our optimizer.

Adam Optimizer. Nowadays, Adam and its variants have been the most popular optimizers for Al
model training across diverse tasks (Radford et al., 2019; Brown et al., 2020; Chowdhery et al., 2023;
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Grattafiori et al., 2024). At training iteration ¢, let W, € R™*™ be the weight matrix, and assume
G, € R™*" is the stochastic gradient. Then Adam can first estimate the first moment M, and the
second moment N, and then update the parameters as follows':

M, =M1 + (1 — 51)Gy,
N = N1 + (1 — 52)GE, (D
Wt = Wt,1 — T]Mt/\/ Nt.

Recent studies have shown that gradients and Hessians in transformer-based architectures exhibit
significant heterogeneity (Zhang et al., 2024a; Tomihari & Sato, 2025), which limits the effectiveness
of uniform learning rate schemes used in traditional stochastic gradient descent (SGD) and its
momentum variant (Bottou et al., 2018; Sutskever et al., 2013). In contrast, Adam often achieves
significantly faster convergence due to its coordinate-wise adaptivity, which enables it to automatically
adjust the learning rate of each parameter coordinate (Xie et al., 2025; Kingma & Ba, 2014; Zhou
et al., 2024b; 2020). Concretely, for the (i, j)-th coordinate, its learning rate becomes 7/ | /Ni i j
which adaptively considers the current geometric curvature and dynamically changes, where N ; ; is
the (i, j)-th element in N;.

Muon Optimizer. Build upon SGD-momentum(SGDM) (Sutskever et al., 2013), Muon (Jordan
et al., 2024) is proposed, and has shown promising fast convergence speed with less GPU memory
cost when training larger Al models (Liu et al., 2025). At the training iteration ¢, SGD-momentum
and Muon update the parameters as follows:

M; = uM;_1 + Gy,
O; = NewtonSchulz5(M;), (only for Muon) )
Wi =W;_; — 1Oy,

Compared with SGDM, Muon has an extra Newton-Schulz iteration process which approximately
solves (M;M,)~2M, and indeed theoretically equals to U; V", where U, 3,V is the singular
value decomposition (SVD) of M;. One can observe that the output O; of the NS iteration is a
normalization version of IM,, since intuitively, it can ensure that the update matrices are isomorphic,
preventing the weight from learning along a few dominant directions (Jordan et al., 2024).

As observed in many works (Jordan et al., 2024; Zhao et al., 2021; Yang et al., 2023; Cosson et al.,
2023; An et al., 2025) and Fig. 1 (a, c) in this work, the updates produced by both SGD-momentum
and Adam for the 2D parameters in transformer-based neural networks typically exhibit very high
condition number, and are almost low-rank, severely slowing the parameter update speed. Specifically,
by applying SVD, M, in Eqn. 2 can be written as M; = Z?;hf(m’n) Etﬂ-,iUt,;inzi, where 2 ; ;
denotes the ¢-th singular value in 3, and U, .; and VI .; are respectively the ¢-th column of U,
and V. Accordingly, the parameter update is indeed performed in these subspaces (directions)
{U..V], :l-}z“:irll(m’”). However, since most singular values {3, ; ;} are close to zero, the parameters
are not well updated in the coressponding subspaces or directions {Um-VZ .}, leading to slow update
and convergence. Muon addresses this issue by normalizing (scaling) all singular values {33, ; ; } to
ones, and thus resolves the slow update issue of the subspaces with small singular values.

While Muon addresses these spectral inefficiencies for SGDM, Adam suffers from similar issues
due to the low-rank nature of its update matrices. So it is natural to ask how to integrate a similar
normalization technique of Muon into Adam? This is important, since as mentioned, Adam-like opti-
mizers often reveal much faster convergence speed than SGD and its momentum version, especially
for transformer-based neural networks, and thus integrating Muon with Adam has a big potential for
even faster convergence speed than vanilla Muon, which builds upon SGDM.

3.2 COLUMN-NORMALIZED ADAM

Sec. 3.1 shows that the key component of Muon lies in its normalization of the parameter update
M, of SGDM. Unfortunately, the normalization of all singular values in Muon is overly aggressive:

"Here we omit the bias correction and the small constant € during updating for numeric stability. We
emphasize that, except for matrix multiplication and SVD, all other arithmetic operations (such as squaring,
division, and square root) are performed element-wise.
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Figure 1: Spectral analysis of optimizer updates on LLaMA-60M (a, b) and LLaMA-350M (c, d).
(a, ¢): log, condition number of 2D update matrices over training steps. (b, d): Distribution of log

all singular values of 2D update matrices at the end of training.

even extremely small singular values like 10~ are scaled to one as shown in Fig. 1 (b, d). However,
the magnitudes of singular values do reflect, to some extent, the desired update strength for model
parameters in the corresponding subspaces. Smaller singular values typically suggest that only small
updates are needed in those directions at the current training iteration. As a result, the aggressive
normalization may distort the structure of the parameter update reflected by its singular values, leading
to overly aggressive updates in subspaces where the original singular values were excessively scaled.

From the updating formulation M; = Zﬁn(m’") %,,iUs: V] ,;, we know that the maximum
permissible learning rate 7 is mainly decided by the top singular values, since too big n leads to
the too aggressive update of the corresponding subspaces and results in significant loss oscillation.
Accordingly, to resolve the side effects of normalization in Muon, one straightforward solution is
to use a relatively small learning rate. Although a small learning rate benefits subspaces with small
singular values, it hampers the update efficiency in subspaces associated with large singular values,
which could accommodate a larger learning rate. Therefore, building upon Muon, it is necessary to

design an improved normalization for Adam.

To this end, we first reformulate Muon to align its formulation with Adam. Then, through comparing
both formulations, we introduce subspace projection in Muon into the second moment of Adam, and
finally adopt the second moment for normalizing parameter update in Adam.

Reformulation of Muon. Here we reformulate Muon so that its new but equivalent formulation aligns
with Adam, allowing us to easily compare their differences and perform algorithmic modification.

Lemma 1. For Muon in Eqgn. 2, it can be reformulated into the following equivalent one:
M; = uM;_1 + Gy,
U, %, V] = svdp(M,),
M, — UTM,, 3)
N; = diag(2,)17,
W, =W,;_1 —nU;(M;/Ny).

where diag(X;) maps the singular values into a vector of dimension R™™™™) and 1 € R™ denotes
a vector whose entries are always ones.

See its proof in Appendix A.4. One can observe that the formulation in Eqn. 3 replaces the Newton-
Schulz iteration process in Eqn. 2 with SVD, and also accordingly modifies other steps. Moreover,
Muon in Eqn. 3 aligns with Adam’s formulation 1, both having first and second moments. For first
moment IM;, Muon uses similar moving average in Adam to update it, but it further projects its M,
into the subspace spanned by U, . Regarding second moment N, Adam uses the moving average
of squared gradient N; = $oN;_1 + (1 — Bg)GtQ, while Muon directly uses N; = diag(3;)17.
Finally, both Adam and Muon uses element-wise division between first and second moments to
update the parameter, but Muon then projects this update back to the original subspace via Uy.

Column-Normalized Adam. With the above comparison between Adam and Muon, their key differ-
ences lie in their different second moments and the extra subspace projection in Muon. Accordingly,
we also perform the subspace projection in Adam to absorb the advantage of Muon. To this end,
we first modify the second moment in Adam for subspace projection. This is because the vanilla
second moment N; = $oN;_1 + (1 — Bg)Gf does not ensure that IN; resides within the subspace
induced by the first moment. To address this, we explicitly constrain the second moment estimate by
projecting the stochastic gradient into the subspace:

Ny = BoNi_1 + (1 — B2) (U] Gy)*. )
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This modification aligns the statistics of the first and second moments, leading to more stable and
coherent updates. Consequently, we arrive at a Column-normalized Adam (Conda) optimizer:

M, = BlMtfl + (1 - 51)Gt,
Uy, %, V] = svd(My),
=U/M,, )
N; = 5Ni_1 + (1= 82) (U] Gy)?,
W, =W, —nU,(M}/VN;).

Now we compare Muon and our Conda to show two benefits of Conda, including 1) a more adaptive
coordinate-wise learning rate in Conda over row-wise earning rate in Muon, and 2) structure-preserved
normalization in Conda over structure-unpreserved normalization in Muon.

We first analyze their different learning rate strategy by comparing Eqn. 3 and 5. Specifically, Muon’s
second moment matrix N; = diag(3;) 17 has identical singular value within each row, i.e., elements
in the i-th row being the ¢-th singular value 3J; ; ;. This structure indicates Muon adopts row-wise
adaptive learning rate. In contrast, Conda retains the coordinate-wise learning rate like Adam by
inheriting its element-wise second moment computation within the subspace, thereby preserving
fine-grained adaptation across individual coordinates.

Then, we compare the update of Conda and Muon to show their different normalization strategies.

Lemma 2. For Muon in Eqn. 3, its parameter update can be rewritten as
m

1 ; o1
Ot:Ut(M;/Nt):[ZZ UE)Mt7;1,ZE

i=1 t,2,1 i—1 t,1,1

i 1 i
UM, UE)Mt,:n] . (6)
i t,1,1

where 3, ; ; denotes the i-th singular value in 33, U,EZ) = Ut,:iU;l,—:i in which Uy .; is the i-th column
of Uy. In contrast, for optimizer in Egn. 5, its update is equivalent to

0,— UM, ., ... UM, n] 7

(N

UM
\/7t [Z \V Nt,z,l b Z 1V Nt 1,2 Z 1V Nt,z,n

where Ny ; ; denotes the (i, j)-th value in matrix Ny.

See its proof in Appendix A.4. Based on 6 and 7, one observe that for each column, both Muon and
Conda normalize it within a subspace ng) = UmUtT, .; but with different normalization factors.
Regarding Muon, its normalization factor is the inverse singular value 1/3; , ; for corresponding
subspace spanned by Ut,:iUZ .;» and could be too aggressive, leading to overshoot update in corre-
sponding subspaces as introduced above Moreover, for Muon, its all columns of update O, share the
same normalized subspace Y .- 21 -Uy, 1Ut .;» which does not consider the different properties

across columns. This could limit the adapt1v1ty of Muon on each column’s update.

By comparison in Conda, for column M., its normalized subspace projection is
Z:n 1 \/NiUt lU: ., which adopts all entries in the corresponding k-th column N .; as nor-
t,1 ” :

malization factor. So the normalization in our Conda is column-specific and is thus more adaptive.
Moreover, its normalization can also disproportionately compresses relatively large singular values so
that singular values are closer for easily seeking a learning rate for sufficient update of all subspaces

{U.. U], 1}mm(m ") Compared with Muon, this normalization is milder. What is critical, this mild
normalization in Conda can well preserve the structures of the update matrices: the relative order
of singular values is not changed. This preserves the desired update strength of the current model
parameter in the corresponding subspaces to some extent, and boosts the update and convergence
speed. This is also supported by the results in Fig. 1 (b, d), which visualizes the singular value
spectrum of the update matrices at the end of training for SGDM, Muon, Adam, and Conda. One
can observe that Muon exhibits a sharp peak of singular values around one, reflecting its strong
normalization on SGDM. By comparison, Conda’s singular values are smaller in scale and more
concentrated than those of Adam, while still preserving the overall shape of Adam’s singular value
distribution. This helps Conda to seek a learning rate for sufficient update of all subspaces.
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Table 1: Pre-training Results on Large Language Models. Comparison of various algorithms
on pre-training LLaMA and GPT-2 models of different sizes. Validation perplexity (]) is reported.
Results marked with * are collected from Zhao et al. (2024); Liu et al. (2023a); Zhu et al. (2024).

LLaMA GPT2

Method

60M  130M 350M 1B 125M  355M
AdamW* 34.06 25.08 18.80 1556 | 18.56 14.75
APOLLO* 31.55 2294 16.85 14.20 - -
Adafactor 2944 2243 1737 1487 | 1835 14.74
SOAP 29.16 22.03 16.75 14.55 | 1836 14.89
Muon 29.89 2215 16.51 14.17 | 1820 14.77

Conda (Ours) 28.32 2138 1644 13.59 | 1740 13.92

Training Tokens | 1.1B 2.2B 64B 13.1B | 492B 49.2B

To enhance efficiency, we adopt a lazy updating strategy for the SVD operation in Eqn. 5. Instead
of computing SVD per iteration, we perform SVD for each T iterations, where we set T' = 2, 000
which works well across all experiments. Finally, we also consider the omitted bias correction steps
and the small positive constant € in the second moment for numeric stability. The complete algorithm,
including all implementation details, is provided in the Appendix A.5. We also include a detailed
comparison between Conda and SOAP in the Appendix A.8.

4 EXPERIMENTS
4.1 LLM PRE-TRAINING

To demonstrate the generality of Conda, we conduct pre-training on both the LLaMA series (Touvron
etal., 2023) (60M-1B) and the GPT-2 series (Radford et al., 2019) (125M, 355M). We compare Conda
with widely used optimizers, including AdamW (Loshchilov & Hutter, 2017), Adafactor (Shazeer &
Stern, 2018), SOAP (Vyas et al., 2024), and Muon (Jordan et al., 2024). We exclude memory-efficient
optimizers such as GaLore (Zhao et al., 2024) and Adam-mini (Zhang et al., 2024b), which generally
match or underperform AdamW, making comparisons less meaningful.

Results on LLaMA series. Following Lialin et al. (2023) and Zhao et al. (2024), we pretrain the
vanilla LLaMA series models from scratch on the C4 dataset (Raffel et al., 2020). For all LLaMA
models, we follow Zhao et al. (2024) and set the batch size to 512, the maximum sequence length to
256, and use the bfloat16 precision format. For Conda, we employ a unified set of hyperparameters
across all model sizes ranging from 60M to 1B parameters. We use a learning rate of 0.01, betas of
(0.9, 0.99), and a update frequency of 7' = 2, 000. See detailed configurations in the Appendix A.6.

As shown in Table 1, Conda achieves lower perplexity than all baselines across the LLaMA models
ranging from 60M to 1B parameters, demonstrating superior performance. Specifically, as illustrated
in Fig. 2, Conda consistently achieves over 2x the convergence speed of AdamW across all model
sizes, in terms of both training steps and training time. In particular, on the LLaMA-1B model, Conda
achieves 2.7x the convergence speed of AdamW with respect to training steps, and approximately
2.5x with respect to training time. Moreover, when compared to the second-best baseline at each
model scale, Conda still demonstrates clear advantages. On LLaMA-60M and LLaMA-130M, Conda
achieves 1.33x and 1.38x the convergence speed of SOAP in terms of training steps, and 1.48x and
1.37x in training time, respectively. For larger models such as LLaMA-350M and LLaMA-1B, Conda
reaches 1.25x and 1.69x the convergence speed of Muon in training steps, and 1.48x and 1.80x
in training time, respectively. These results confirm that Conda consistently outperforms not only
AdamW, but also the strongest baseline at each scale, achieving higher convergence efficiency.

Results on GPT2 series. Following the experimental setup in Sophia (Liu et al., 2023a), we pre-train
GPT-2 Small (125M parameters) and GPT-2 Medium (355M parameters) (Radford et al., 2019) on
the OpenWebText dataset (Gokaslan & Cohen, 2019) using the nanoGPT implementation (Karpathy,
2022). We also use a batch size of 480, a sequence length of 1024, a cosine learning rate decay
schedule with 2000 warm-up iterations, global gradient clipping with a threshold of 1.0, and train all
models for 100,000 steps. See detailed configures in Appendix A.6.
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Figure 2: Validation loss curves for LLaMA models over training steps (top) and time (bottom).
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Figure 3: Validation loss curves for GPT2 models over training steps and time.

As shown in Table 1, Conda consistently outperforms all baselines on both GPT-2 Small (125M)
and GPT-2 Medium (355M) models. Specifically, Fig. 3 shows that Conda achieves 1.41x and
1.56x the convergence speed of AdamW in terms of training steps on GPT2-125M and GPT2-
355M, respectively. When measured by training time, Conda is 1.20x and 1.49x convergence speed
of AdamW on GPT2-125M and GPT2-355M. In contrast, all other baseline optimizers perform
comparably to or worse than AdamW, both in terms of training steps and wall-clock training time,
further highlighting Conda’s superior efficiency and robustness.

Performance of Downstream Tasks. While Conda achieves lower perplexity across LLaMA
and GPT-2 models of various scales, perplexity alone may not fully capture downstream effective-
ness (Jaiswal et al., 2023; Liu et al., 2023b; Springer et al., 2025). To further validate model quality,
we evaluate the zero-shot performance of the pre-trained models on diverse tasks, covering both
commonsense and mathematical reasoning (Clark et al., 2019; Bisk et al., 2020; Wang et al., 2018;
Sakaguchi et al., 2021; Clark et al., 2018; Zellers et al., 2019; Mihaylov et al., 2018; Welbl et al., 2017;
Amini et al., 2019). Following Zhu et al. (2024), we adopt the 1lm-evaluation-harness (Gao
et al., 2024) for assessment. As shown in Table 2, Conda achieves the highest average accuracy on
both LLaMA-350M (44.0%) and LLaMA-1B (45.8%), while remaining time-efficient. For LLaMA-
350M, Conda outperforms both Muon and SOAP with less training time, and significantly surpasses
AdamW. For LLaMA-1B, the model trained with Conda', using only half the total training steps,
achieves an average accuracy of 44.9%, surpassing both AdamW and Muon. Fig. 4 further illustrates
the progression of zero-shot average accuracy during pre-training. Across both training steps and
wall-clock time, Conda consistently outperforms all baselines during the entire training process.

4.2 LLM FINE-TUNING

Following Liu et al. (2024b), we evaluate the effectiveness of Conda in supervised fine-tuning. Since
LoRA (Hu et al., 2022) is one of the most widely adopted parameter-efficient fine-tuning methods,
we adopt it as the fine-tuning method and compare Conda with the standard AdamW baseline under
identical LoRA settings. Specifically, we fine-tune LLaMA-7B, LLaMA3.2-1B, and LLaMA3-8B on
the Commonsense 70K dataset (Hu et al., 2023), and assess their generalization on commonsense
reasoning benchmarks. Detailed experimental settings are provided in the Appendix A.7.

Table 3 presents the performance of models fine-tuned with Conda and AdamW using LoRA across
three LLaMA model scales. For LLaMA-7B, Conda consistently outperforms AdamW across all
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Table 2: Zero-shot performance of LLaMA-350M and LLaMA-1B models pretrained with different
optimizers on commonsense and math reasoning tasks. All results are reported as accuracy (T %).
Time refers to the corresponding training time, and PPL denotes perplexity. Conda' indicates the
model trained with Conda for only half of the total training steps.

LLaMA | Time | PPL |BoolQ RTE HS WG OBQA ARC-e ARC-c PIQA SciQ MathQA | Avg
AdamW 62h [16.86| 582 534 314 515 166 452 188 664 703 212 [433
Adafactor 69h |17.37| 53.1 509 31.0 513 156 446 196 653 688 210 [421
2 [ soap 150h |16.75] 589 480 315 51.8 170 467 200 660 725 220 434
& | Muon 7.7h |16.51| 547 542 318 529 174 464 191 661 735 216 |438
Conda' (Ours)| 3.3h |1644| 60.3 534 311 526 17.6 452 189 656 750 214 |44.1
AdamW 445h [1577] 562 545 328 49.6 194 480 213 678 722 210 [443
Adafactor 473h [ 14.87| 59.0 56.0 335 533 188 485 213 676 724 215 |452
e | SOAP 1162h | 14.55| 584 56.0 342 514 188 495 213 689 751 220 |456
= | Muon 61.9n | 14.17| 554 505 347 511 172 481 219 694 750 222 |446
Conda® (Ours) | 24.2h | 14.65| 53.6 51.6 34.6 525 198 492 213 687 754 222 |449
Conda (Ours) | 48.4h |13.59| 562 53.1 36.2 52.5 204 505 216 690 779 219 |458
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Figure 4: (a) Zero-shot average accuracy on downstream tasks plotted against training steps. (b)
Same as (a), but plotted against training time. (c) Validation loss curve on LLaMA-1B with sequence
length 1024. (d) Perplexity ({) under different subspace update frequencies 7.

benchmarks, achieving the highest average accuracy of 78.8%. Notably, it surpasses strong baselines
such as DoRA (Liu et al., 2024b) in most tasks. On the smaller LLaMA3.2-1B model, Conda delivers
a substantial improvement over AdamW (67.0% vs. 59.2%), especially on PIQA, HellaSwag (HS),
and ARC-e. For the larger LLaMA3-8B model, Conda also leads with an average accuracy of 84.1%,
outperforming AdamW by 3.3 points. These results demonstrate that Conda not only generalizes
better across tasks, but also scales effectively with model size.

Table 3: Accuracy (1 %) on commonsense reasoning tasks after fine-tuning on the Commonsense 170K
dataset. We compare Conda with AdamW across multiple LLaMA model scales. Results for all
methods except LORA (Conda) are taken from prior work (Liu et al., 2024b; Zhu et al., 2024).

Model | Method |BoolQ PIQA SIQA HS WG ARC-e ARC-c OBQA | Avg
Prefix 643 76.8 739 421 721 729 54.0 60.6 |64.6
Series 63.0 792 763 679 757 745 57.1 72.4 |70.8
LLaMA-7B Parallel 679 764 1788 69.8 789 737 573 752 |722
DoRA 69.7 834 786 872 81.0 819 66.2 79.2 |78.4

LoRA (AdamW) | 689 80.7 77.4 78.1 78.8 77.8 61.3 74.8 | 74.7
LoRA (Conda) | 70.6 834 788 87.3 80.7 82.2 67.0 80.0 |78.8

LoRA (AdamW) | 63.6 633 717 19.1 676 673 53.0 68.2 |59.2
LoRA (Conda) | 639 751 715 66.9 684 70.5 52.0 67.8 |67.0

LoRA (AdamW) | 70.8 852 799 91.7 843 842 71.2 79.0 |80.8
LoRA (Conda) | 749 88.7 78.6 87.3 86.0 90.0 79.8 87.6 |84.1

LLaMA3.2-1B

LLaMA3-8B

4.3 ABLATION STUDY

Second moment estimation without subspace projection. We ablate Conda’s subspace-based
second-moment estimation by replacing it with a vanilla estimator. As shown in Table 4, for smaller
models, the lower parameter count and shorter training duration render the optimization process more
robust, so removing subspace projection does not substantially hinder convergence. However, in
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Table 4: Perplexity (|) comparison with and Table 5: Perplexity (J) of Conda on LLaMA-

without subspace projection in Conda. 130M with varying ;1 and (5.
Method | 60M  130M 350M 1B B1/B2 | 0.95 099 0995 0.999
Conda 2832 2138 1644 13.59 0.9 2143 2144 2150 21.97
No proj. | 28.65 21.88 16.70  Fail 0.95 21.84 2181 21.79 22.26

Table 6: Peak GPU memory usage (in GB) of different optimizers. Results for 60M use 1 GPU,
130M use 2 GPUs, and 350M/1B use 8 GPUs. Batch size is reported per GPU.

Model Size ‘ Batch Size (per GPU) ‘ AdamW  Adafactor Muon SOAP Conda

60M 256 24.97G 24.96G 24.92G  2549G  25.00G
130M 256 40.98G 40.98G 40.82G  42.76G  41.09G
350M 64 27.51G 27.50G 26.95G 33.64G  27.84G
1B 32 35.81G 35.81G 33.56G 60.17G  37.13G

larger models such as LLaMA-1B, training dynamics become more sensitive to such inconsistencies.
This underscores the necessity of aligning second moment estimates within the subspace.

Sequence Length. To test Conda under longer sequence lengths, we increase the input sequence
length from 256 to 1,024 on LLaMA-1B, while keeping all other training settings the same as the
pre-training experiments. Fig. 4 (c) shows that Conda consistently achieves lower validation loss than
all baselines in this long-sequence setting, indicating Conda’s strong generalization performance.

Subspace Update Frequency. We conduct an ablation on the update frequency 7" using LLaMA-
60M and 130M. As shown in Fig. 4 (d), Conda maintains stable perplexity across a wide range
of T values, from 2 to 20000 steps. While 7" = 500 or 1,000 appears to be a sweet spot in the
figure, we adopt 7'=2000 in our main experiments in light of wall-clock efficiency and scalability to
larger pre-training; see the Appendix A.3 for details. This suggests that the subspace can be updated
infrequently without degrading performance, reducing computational overhead and eliminating the
need for sensitive tuning of the update interval.

Hyperparameter Sensitivity. To demonstrate the robustness of Conda, we conduct a hyper-
parameter sensitivity analysis on the LLaMA-130M model by varying $; € {0.9,0.95} and
B2 € {0.95,0.99,0.995,0.999}, while keeping all other settings consistent with pre-training. As
shown in Table 5, Conda achieves consistently low perplexity across all configurations, indicating
strong robustness to hyperparameter choices and reduced tuning burden in practice. We further assess
Conda’s sensitivity to the learning rate, results in Appendix A.3 show similar robustness.

Memory Usage. We compare the peak GPU memory usage across models ranging from LLaMA 60M
to 1B. To reflect real-world training conditions, we use practical configurations including per-GPU
batch size, number of GPUs, etc. As shown in Table 6, Conda introduces only a modest increase
in memory usage compared to AdamW, with a difference of less than 1-2 GB in most settings.
Therefore, the memory overhead of Conda remains practical for large-scale training scenarios.

5 CONCLUSION

In this paper, we introduced Conda, a novel optimizer addressing spectral inefficiencies in Adam-based
training of transformer architectures. By incorporating column-specific spectral normalization and
maintaining Adam’s coordinate-wise adaptivity, Conda achieves faster convergence. Experimental
results on LLaMA models demonstrate Conda’s substantial improvements, achieving 2~2.5x the
convergence speed of AdamW in terms of both training steps and training time. Extensive ablation
studies confirm its robustness across diverse training conditions, highlighting Conda as a promising
optimizer for efficient large-scale LLM training.

Limitations. Owing to computational resource constraints, we have not yet evaluated Conda on
larger-scale models (e.g., 13B parameters) or Mixture-of-Experts (MoE) architectures. While the
results on models up to 1B parameters are encouraging, future work is needed to assess the scalability
and applicability of Conda in these more complex and resource-intensive settings.
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A APPENDIX

A.1 DECLARATION OF LLM USAGE

During the preparation of this work, we used GPT-5 to polish the English expression and check for
spelling errors in our manuscript. No parts of the core research ideas, methods, results, or conclusions
were generated by LLMs. All experimental code and data analysis were conducted and verified by
the authors.

A.2 MORE EXPERIMENTAL RESULTS

Comparison with Sophia on GPT-2 Pre-training. To provide a more comprehensive evaluation of
Conda, we additionally compare it with Sophia (Liu et al., 2023a), an optimizer that has demonstrated
strong performance on GPT-2 pre-training. The implementation of Sophia follows the best-performing
configuration reported in the original publication (Liu et al., 2023a).
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Figure 5: Validation loss curves of GPT2 pre-training with Conda (Ours), AdamW, and Sophia-G.

As shown in Fig. 5, Conda consistently achieves lower validation loss and faster convergence than both
AdamW and Sophia-G on GPT2-125M and GPT2-355M. While Sophia-G shows slight improvements
over AdamW, it consistently lags behind Conda, further highlighting Conda’s superior optimization
performance.

A.3 MORE ABLATION STUDY

Learning-Rate Sensitivity of Different Optimizers In our experiments, Conda is used with larger
learning rates than Muon or Adam (see Table 11). To ensure a fair comparison, we evaluate all
three optimizers on LLaMA-130M under relatively large learning rates and report the final validation
perplexity. As shown in Table 7, only Conda trains stably and achieves rapid convergence at these
higher learning rates, whereas Muon and Adam exhibit pronounced training instabilities with large
loss spikes and ultimately fail to converge. These findings are consistent with previous study (Zhao
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Table 7: Validation perplexity across learning rates for different optimizers on LLaMA-130M pre-
training.

LLaMA-130M  3e-3 Se-3 Te-3 le-2 2e-2

AdamW 2543 Fail Fail Fail Fail
Muon 22.53 Fail Fail Fail Fail
Conda 2228 22,10 21.81 21.38 2192

Table 8: Training time and validation perplexity across update frequency 7" on LLaMA-60M pre-
training.

Update Frequency T’ 2 10 50 100 500 1000 2000 5000 10000

Training time 4h37min 3h14min 2h55min 2h53min 2h52min 2h51min 2h49min 2h49min 2h48min
Validation Perplexity 27.88  28.05  28.21 28.22  28.19 2822 2832 2850  28.57

et al., 2024), which also reported that AdamW becomes unstable beyond a learning rate of le—3.
In addition, for Muon and Adam, we conducted an additional sweep over smaller learning rates
on LLaMA-60M to 350M; the search procedure is detailed in Appendix A.6. We found that both
optimizers achieve their best performance at a learning rate of 1le—3.

Table 9: Training time and validation perplexity across update frequency 7' on LLaMA-130M
pretraining.

Update Frequency T' 2 10 50 100 500 1000 2000 5000 10000 20000

Training time 13h43min 3h36min 1h25min 1h9min 57min 55min 55min 54min 54min 53min
Validation Perplexity =~ 21.08 21.19 2136 2136 2136 2135 2143 21.55 21.64 21.68

Detailed Training Time across different Subspace Update Frequencies We recorded wall-clock
training time under different subspace update frequencies 7' on LLaMA-60M (2x A6000 GPUs)
and LLaMA-130M (8x A100 GPUs), as reported in Tables 8 and 9. The SVD step introduces
only negligible overhead for 7' > 100. Although Fig. 4(d) shows that 7' = 500 or 1,000 yields
strong training performance, the differences among 7' € {500, 1000, 2000} are relatively small. We
therefore set 7'=2,000 in our main experiments to reflect practical, large-scale pre-training scenarios,
where a larger 7' reduces the frequency of preconditioner updates without sacrificing performance.
This choice further highlights Conda’s robustness to the hyperparameter 7', simplifying tuning and
improving usability in real-world deployments.

So the decision to use T = 2000 was motivated by practical considerations rather than computational
limitations. Conda maintains stable performance and minimal overhead across a wide range of T'
values, making it an efficient and scalable choice for large-scale model training.

A.4 PROOFS OF LEMMAS

Muon Optimizer. Muon update the parameters as follows:
M; = pM;_1 + Gy,
O, = NewtonSchulz5(M;), )
W, =W;_; — 10y,
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Lemma 1. For Muon in Eqn. equation 1, it can be reformulated into the following equivalent one:

M; = pM;_1 + Gy, M; = pM;_1 + Gy,

U, %, V] = svd(My), U, %, V] = svp(My),

M} = UM, ) M} = M, V,, 3)
= diag(zt)l;zrv N = 1mdiag(2t)T7

W, = W,_; — nU,(M,/N,). W, = W,_; — n(M,/N,)V

where diag(3;) maps the singular values into a vector of dimension R™in(mn) - apd 1, € R™
denotes a vector whose entries are always ones.

Proof. Let M, € R™*™. We consider two cases.

Case 1: m < n. Denoting UtEtVtT be the SVD of M; with U; € R™*™ X, € R™*™ V,; €
R™>™ we have

o, =U, v/
=U,x;'u/uzv/]
=U,3;'U/ M, “)
U] M,
¢ diag(X;)1,})
where 1,, € R™ and diag(3;) € R™.

Case 2: m > n. Denoting UltE,thT be the SVD of M; with U; € R™*™ ¥, € R"*™ V,; € R"*",
we have

0o, =U, v/
=U, %V, Vv, 3 v/]
=M, V,2;'v/] ®)
__ MV T
1,,diag(3;) "

where 1,, € R™ and diag(X;) € R™.

The expressions (4) and (5) must be computed in a specific order to preserve equivalence with
O; = U, V. In both cases, the matrix product in the numerator must be computed first, followed by
element-wise division with the denominator matrix (e.g., diag(X;)1,) or 1,,diag(2;)"), and finally
followed by the remaining matrix multiplication. Element-wise division and matrix multiplication
are not interchangeable, computing them out of order would yield incorrect results.

O

Lemma 2. For Muon in Eqn. equation 2, its parameter update can be rewritten as
m 1 m

i 1 i %
0,=U,(M,/N,)= [Zz UMy 4, Zz UM, Y

i=1 t,2,1 i=1 t,2,7 i=1 t,2,1

Uﬁ“Mt,m] , (6)

where 3, ; ; denotes the i-th singular value in X3y, U,(E R = Uy, ,Ut .; in which Uy .; is the i-th column
of Uy. In contrast, the update in Conda is equivalent to

ot—Ut UM, 1, UM, .. UMy |
D Y i RSO B
@)
where Ny ; ; denotes the (i, j)-th value in matrix Ny.
Proof. For Muon:
U,/ M,. U, M,. U'M,.
0,=U,(M,/N,) = |U, b1y, —t b2y, 8
t t( t/ t) |: t Nt,;l y Ut Nt7;2 9 y Ut Nt7;n ()
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where N .; means the j-th column of N;. For the j-th column of Oy, we have

T
Ut,‘:le-,l]‘
N1,
EAIREY

l\/] u ,2Mt, J m T m
UM, Nia, U, M.
U— J U;.1, Ui, , Ui t,2,5 — E U, >
N, y [ tily Yt,:2, ) Vit ] : t,: Nt,i,j E Et o

5

For Conda:

Mé U UtTMt;?l U U;th7:2 U U;th,:n
= t st gy It T ——

Vv Nt \/ Nt,:l vV Nt,:2 vV Nt,:n

where /N .; means the j-th column of v/Ny. For the j-th column of O, we have

0,=0U, ©))

[ UlaMey; ]
\T/ Ny 1,

U/M,,; U. — UM, UM, .

Utirz[Ut,:la Ut,:27 T 7UtA:m] 62 = Ut 0

Nt,:j : . Z AV4 Nt 14,7 Z\/ Nt KN

UM

L V/Nimj

A.5 PSEUDOCODE FOR CONDA

Algorithm 1 Column-Normalized Adam (Conda)

1: Input: Weight matrix W € R"*™ with m < n, learning rate 17, RMS scale factor «, decay
rates 31, B2, subspace update frequency 7.

2: Initialize t < 0, My + 0, Vo < 0

3: repeat

4:  compute minibatch gradient G

5 Mg+ M1+ (1 - 51)Gy

6.

7

8

if t mod T = 0 then ~
Ut, Et,VtT <— SVD(Mt), Ut < Ut

: else
9: Ut — Ut 1
10:  end if

11: M, «+ UM, )

12: Ny < 52Vy_1 + (1 — 62)(U:Gt)2

130 M)« M;/(1-5), Ny« N/(1-55)
14: W, W,_1 +nUM;}/(v/V;+e¢)

150 t+t+1

16: until convergence criteria is met

17: return W,

In our experiments, we observe that the choice of projection matrix affects performance depending on
the dimensions of the weight matrix W € R™*", Specifically, when m < n, using a left projection
matrix U/ yields better results. Conversely, when m > n, a right projection matrix V is preferred.
Following the design in Liu et al. (2025), we also introduce a scale factor, which can be interpreted
as a proportional adjustment between the learning rates for one-dimensional and two-dimensional
parameters. In practice, the scale factor is selected via hyperparameter tuning based on validation
performance.

Listing 1: Conda code skeleton using Pytorch. Anonymous code is available at: https://
anonymous.4open.science/r/Conda.
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import torch
import math
from torch.optim import Optimizer

class Conda (Optimizer) :
def _ init__ (self, params, lr=le-3, betas=(0.9, 0.99), eps=le-8,
weight_decay=0.0, correct_bias=True, update_proj_gap
=2000, scale=1.0):

defaults = dict (lr=1r, betas=betas, eps=eps,

weight_decay=weight_decay, correct_bias=
correct_bias,

update_proj_gap=update_proj_gap, scale=scale)

super () .__init__ (params, defaults)

@torch.no_grad()
def step(self, closure=None):
for group in self.param_groups:
for p in group["params"]:
if p.grad is None or p.grad.is_sparse or p.grad.ndim !=
2:
continue

grad = p.grad.data
state = self.statelp]

if len(state) == :
state["step"] = 0

state["exp_avg"] = torch.zeros_like (p.data)
state["exp_avg_sg_proj"] = None
state["proj_basis"] = None
state["proj_type"] = None

exp_avg = state["exp_avg"]

betal, beta2 = group["betas"]
state["step"] +=1
step = state["step"]

exp_avg.mul_ (betal) .add_(grad, alpha=1 - betal)

if step % group["update_proj_gap"] == 0 or state["
proj_basis"] is None:
U, _, Vh = torch.linalg.svd(exp_avg, full matrices=
False)
if grad.shape[0] <= grad.shape[l]:
state["proj_basis"] = U
state["proj_type"] = "left"
else:
state["proj_basis"] = Vh
state["proj_type"] = "right"
P = state["proj_basis"]
if state["proj_type"] == "left":

G_proj = P.T @ grad
M _proj = P.T Q@ exp_avg

else:
G_proj = grad @ P.T
M _proj = exp_avg @ P.T
if state["exp_avg_sqg_proj"] is None:
state["exp_avg_sg proj"] = torch.zeros_like (G_proj)
exp_avg_sq_proj = state["exp_avg_sqg_proj"]

exp_avg_sqg proj.mul_ (beta2) .addcmul_ (G_proj, G_proj,
value=1 - betal)

bcl = 1 - betal xx step if group["correct_bias"] else 1.
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bc2 = 1 - beta2 ** step if group["correct_bias"] else 1.0
M_proj = M_proj / bcl

V_hat = exp_avg_sq_proj / bc2

denom = V_hat.sqrt () .add_(group["eps"])

if state["proj_type"] == "left":
update = P @ (M_proj / denom)
else:
update = (M_proj / denom) @ P

update.mul_ (group["scale"])
p.data.add_(-group["1lr"] % update)

if group["weight_decay"] > 0.0:
p.data.add_(p.data, alpha=-group["1lr"] % group["
weight_decay"])

Table 10: Architecture hyperparameters of LLaMA models for evaluation. Data amount are specified
in tokens.

Params Hidden Intermediate Heads Layers Steps Data amount

60M 512 1376 8 8 10K 1.3B
130M 768 2048 12 12 20K 2.6B
350M 1024 2736 16 24 60K 7.8 B
1B 2048 5461 24 32 100K 13.1B
7B 4096 11008 32 32 150K 19.7B

A.6 DETAILED PRE-TRAINING SETTING

In this section, we provide a detailed description of the pre-training setup, including the architectures
of LLaMA and GPT-2, as well as the hyperparameters used.

LLaMA series Following Zhao et al. (2024), we adopt most of the hyperparameters for LLaMA
models across different model sizes as shown in Table 10. We use a max sequence length of 256 for
all models, with a batch size of 131K tokens. For all experiments, we adopt learning rate warmup for
the first 10% of the training steps and use cosine annealing for the learning rate schedule, decaying to
10% of the initial learning rate. In addition, for models smaller than 1B parameters, we set the weight
decay to 0 and apply global gradient clipping with a threshold of 0. For models with 1B parameters
or larger, we set the weight decay to 0.1 and use global gradient clipping with a threshold of 1.0.

For Conda, we employ a unified set of hyperparameters across all model sizes ranging from 60M
to 1B parameters. We use a learning rate of 0.01, betas of (0.9, 0.99), scale factor of 0.25, and a
subspace update frequency of 7' = 2, 000.

For all baselines and each model size (ranging from 60M to 350M parameters), we tune the learning
rate and select the optimal value based on the lowest validation perplexity. For AdamW, since larger
learning rates (greater than le-3) tend to cause spikes in the training loss (Zhao et al., 2024), we
search over {le — 3,7e — 4,5¢ — 4,3e — 4, le — 4}. For Muon, following Liu et al. (2025), which
matches the update RMS to that of AdamW, we directly use the best learning rate identified for
AdamW. For Adafactor and SOAP, the optimal learning rate is selected from {5e — 3,4e — 3,3e —
3,2e — 3,1e — 3,5e — 4, 1le — 4}. Due to computational resource constraints, we are unable to
perform exhaustive learning rate tuning for all methods on the 1B model. Therefore, for the 1B
model, we adopt the best learning rate found for the 350M model for each method, provided that
training remains stable without significant fluctuations. The optimal learning rates for all methods
and model sizes are summarized in Table 11. In addition, we provide a sensitivity analysis of Conda,
Muon, and Adam to different learning rates; detailed results can be found in Appendix 7.
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Table 11: Selected learning rates for each opti- Table 12: Selected values of (1, 32) for each

mizer across different LLaMA model sizes. optimizer across different LLaMA model sizes.
Learning rate | 60M 130M 350M 1B (B1, B2) |60M 130M 350M 1B
AdamW le-3 AdamW (0.9, 0.999)
Muon le-3 Muon —
Adafactor 3e-3 3e-3 le-3 le-3 Adafactor £1=0.9
SOAP 2e-3  2e-3 le-3 le-3 SOAP (0.9, 0.99) (0.9, 0.95)
Conda (Ours) le-2 Conda (Ours) (0.9, 0.99)

We also conduct a grid search over other hyperparameters for all optimizers. As shown in Table 12,
for AdamW, we follow the settings in Zhao et al. (2024); Zhu et al. (2024); Chen et al. (2024); Huang
et al. (2025), using 81 = 0.9 and B = 0.999. For Muon,we set u = 0.95, since one-dimensional
parameters require Adam for training, we accordingly adopt 81 = 0.9 and 32 = 0.95 for Adam in
this case. For Adafactor, we use 81 = 0.9. For SOAP, we use 5; = 0.9 and 82 = 0.99 for models
smaller than 1B parameters, and 5; = 0.9 and 83 = 0.95 for models with 1B parameters or larger.
All other optimizer hyperparameters not otherwise specified are set to their default values.

GPT-2 series Following the experimental setup in Sophia (Liu et al., 2023a), we pre-train GPT-2
Small (125M parameters) and GPT-2 Medium (355M parameters) (Radford et al., 2019) on the
OpenWebText dataset (Gokaslan & Cohen, 2019) using the nanoGPT implementation (Karpathy,
2022). We use a batch size of 480, a sequence length of 1024, a cosine learning rate decay schedule
with 2000 warm-up iterations, global gradient clipping with a threshold of 1.0, and train all models
for 100,000 steps. The detailed architecture hyperparameters for GPT-2 are provided in Table 13.

For the AdamW baseline, we adopt the hyperparameter settings from Sophia (Liu et al., 2023a), who
performed extensive hyperparameter searches that have become the de facto standard for training
GPT-2. For Muon, as mentioned above, we can directly use the same hyperparameter settings as
AdamW. However, due to computational resource constraints, we are unable to perform extensive
hyperparameter searches for all other methods. Therefore, for fairness, we scale the learning rates of
other methods (including Conda) according to their relative ratios to AdamW as used on LLaMA-1B.
Specifically, AdamW, Adafactor, and SOAP all use a learning rate of 1e-3 on LLaMA-1B, while
Conda uses le-2. Accordingly, on GPT-2 125M, Adafactor and SOAP are assigned the same learning
rate as AdamW, i.e., 6e-4, while Conda uses a learning rate ten times that of AdamW, i.e., 6e-3.
The same scaling strategy is applied for GPT-2 355M. All other hyperparameters in Conda remain
consistent with those used in the LLaMA experiments, including an scale factor of 0.25 and a
subspace update frequency 7' = 2000. Detailed hyperparameter settings are summarized in Table 14.

Table 13: Architecture hyperparameters of GPT-2 models for evaluation. Data amount are specified
in tokens.

Params Heads Layers demp  Steps Data amount

125M 12 12 768 100K 49.2B
355M 16 24 1024 100K 49.2B

Table 14: Experimental hyperparameters for GPT-2 models.

Hyperparameter | GPT-2 | AdamW  Muon Adafactor SOAP | Conda (Ours)
Max learnine rate small (125M) 6e-4 6e-3
X learning medium (355M) 3e-4 3e-3
Min learning rate small (125M) 3e-5 3e-5
& medium (355M) 6e-5 6e-5
Weight decay | small/medium | le-1 | le-2
(B1, B2) ‘ small/medium ‘ (0.9, 0.95) — (0.9, 0.95) ‘ (0.9, 0.99)
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Table 15: Hyperparameters for fine-tuning different LLaMA models using Conda on commonsense
reasoning tasks.

Model LLaMA-7B LLaMA3.2-1B LLaMA3-8B
Rank r 32
« 64
Scale 1.0
Update Frequency T' 200
Dropout 0.05
LR le-4 3e-4 le-4
LR Scheduler Linear
Batch size 16
Warmup Steps 100
Epochs 3
Where Q, K, V, Up, Down

A.7 DETAILED FINE-TUNING SETTING

Following Liu et al. (2024b), we evaluate the effectiveness of Conda in supervised fine-tuning. Since
LoRA (Hu et al., 2022) is one of the most widely adopted parameter-efficient fine-tuning methods,
we adopt it as the fine-tuning method and compare Conda with the standard AdamW baseline under
identical LoRA settings. Specifically, we fine-tune LLaMA-7B, LLaMA3.2-1B, and LLaMA3-8B on
the Commonsense 170K dataset (Hu et al., 2023), and assess their generalization on commonsense
reasoning benchmarks (Clark et al., 2019; Bisk et al., 2020; Sap et al., 2019; Sakaguchi et al., 2021;
Clark et al., 2018; Mihaylov et al., 2018; Zellers et al., 2019). Detailed hyperparameters are provided
in Table 15.

A.8 CONCEPTUAL AND ALGORITHMIC DIFFERENCES FROM SOAP

On the novelty of Conda’s design motivation. The design of Conda is motivated by a fundamen-
tally different perspective: to integrate the coordinate-wise adaptivity of Adam into the spectrally
normalized framework of Muon—a direction that none of the aforementioned methods explicitly
pursue. To this end, our work introduces a novel reformulation of Muon, which reveals conceptual
connections to widely-used adaptive optimizers such as Adam and Adafactor. This reformulation not
only provides a deeper theoretical understanding of Muon’s behavior, but also serves as a foundation
for principled algorithmic improvements. Building upon this reformulation, we further investi-
gate how to effectively incorporate Adam-style adaptivity. Specifically, we experimented with two
approaches for estimating the second-moment statistics:

(i) using the original (vanilla) second-moment estimator from Adam.

(ii) computing the second-moment estimate from projected gradients in the same subspace as the first
moment.

We found that the native second-moment estimator, which is not aligned with the subspace of the
first moment, leads to instability and even divergence in the training of larger models. In contrast,
using the projected gradients to compute the second-moment estimate ensures consistency between
the curvature estimation and the update direction, thereby stabilizing training. As a result, Conda
achieves a principled integration of spectral conditioning and coordinate-wise adaptivity. Importantly,
we view Conda not merely as an improved version of Muon, but also as a vehicle to raise a broader
and promising question:

How can we design new second-moment estimators, grounded in the novel reformulation of Muon,
that simultaneously achieve strong spectral conditioning and retain the full coordinate-wise adaptivity
of Adam?

We believe this direction opens up exciting opportunities for future research. In contrast, SOAP
reveals that Shampoo can be interpreted as Adafactor operating in the eigenbasis of its preconditioner,
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thereby establishing a conceptual connection between the two optimizers. It leverages this insight to
propose a simplified variant that performs Adam-style updates within the same eigenbasis.

Algorithmic formulation and empirical performance. SOAP construct the projection subspace (),
by first computing the second-moment matrix L = B3L+(1—f33)GG " and R = B3 R+(1-3)G " G,
followed by eigenvalue decomposition. In contrast, Conda eliminates the need to compute any second-
moment statistics and directly obtains the projection subspace U through singular value decomposition
(SVD) of the first-moment estimate. On the one hand, it is known that gradient matrices in deep
networks often exhibit significant outliers (Xi et al., 2023; Anil et al., 2019). Computing GG tends
to exacerbate these outliers, and since eigenvectors in eigenvalue decomposition are sensitive to
perturbations (Stewart, 1998), the resulting subspace estimation becomes less reliable, potentially
impairing convergence speed. By contrast, Conda defines the orthogonal subspace on the momentum,
which effectively suppresses the noise introduced by stochastic gradient estimates and yields a more
accurate and stable subspace estimate.

On the other hand, in comparison to Conda, maintaining the second-moment matrix L and R intro-
duces not only an additional hyperparameter (3, but also extra memory overhead. Furthermore, we
note that SOAP employs a much higher projection update frequency (i.e., T = 10) in the experiments,
whereas Conda uses T = 2000, resulting in significantly lower runtime overhead for Conda. This
efficiency is enabled by using momentum to define the subspace, which suppresses gradient noise,
stabilizes update directions, and promotes more consistent traversal of the loss landscape—thereby
allowing infrequent updates without sacrificing performance.
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