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ABSTRACT

Large language models (LLMs) have demonstrated impressive generalization and
emergent capabilities, yet their pre-training remains computationally expensive
and sensitive to optimization dynamics. While Adam-based optimizers offer fast
convergence by adapting learning rates coordinate-wise, recent studies reveal that
their updates often suffer from poor spectral conditioning and low-rank structures,
hindering efficiency. Muon addresses this issue via global spectral normalization
but lacks the per-coordinate adaptivity of Adam. In this work, we propose Column-
Normalized Adam (Conda), a novel optimizer that bridges the strengths of both
approaches. Conda projects updates into an orthogonal subspace and applies
column-wise second moment normalization based on the projected gradients,
thereby achieving both improved spectral conditioning and maintaining coordinate-
wise adaptivity. This design alleviates the spectral pathologies of Adam while
preserving its fast convergence behavior. Extensive experiments on the LLaMA
and GPT-2 series show that Conda consistently outperforms AdamW, Muon, and
other baselines in pre-training. Remarkably, on the LLaMA series, Conda achieves
2∼2.5× the convergence speed of AdamW, measured in both training steps
and training time. Further ablations demonstrate its robustness under diverse
training setups. These results collectively highlight Conda as an effective and
broadly applicable optimizer for large-scale LLM training.

1 INTRODUCTION

Over the past decade, deep learning has driven transformative progress in fields such as computer
vision and natural language processing (Szegedy et al., 2015; He et al., 2016; Wang et al., 2024;
Dosovitskiy et al., 2020; Liu et al., 2022). This progress is particularly evident in the emergence of
large language models (LLMs) (Achiam et al., 2023; Liu et al., 2024a; Grattafiori et al., 2024; Team
et al., 2023; Yang et al., 2024), which have become a central paradigm, achieving strong performance
across a wide range of tasks, including text generation, reasoning, and multi-modal understanding.

Despite their advances, LLMs come with escalating computational and financial costs, making
optimization efficiency a critical bottleneck. Optimizers lie at the heart of this challenge. Transformer-
based architectures are known to exhibit significant heterogeneity in their gradients and Hes-
sians (Zhang et al., 2024a; Tomihari & Sato, 2025), rendering the uniform update rules of stochas-
tic gradient descent (SGD) (Bottou et al., 2018) ineffective. Adaptive methods like Adam and
AdamW (Kingma & Ba, 2014; Loshchilov & Hutter, 2017) address this issue by adjusting coordinate-
wise learning rates using second-moment estimates of gradients. This has made them the de facto
standard for training large-scale transformers (Zhang et al., 2020; Kunstner et al., 2023).

However, recent work has revealed a fundamental inefficiency in Adam’s update dynamics. For
the two-dimensional parameter matrices prevalent in transformers, Adam’s updates often exhibit
high condition numbers and low-rank structures (Jordan et al., 2024; Zhao et al., 2021; Yang et al.,
2023; Cosson et al., 2023). These spectral pathologies severely impair optimization efficiency. To
address this, Muon (Jordan et al., 2024) was proposed as a promising alternative. Building on SGD
with momentum (Sutskever et al., 2013), Muon employs a Newton–Schulz iteration to normalize
the update matrix by equalizing all singular values. This explicit spectral normalization suppresses
dominant directions and produces well-conditioned updates, accelerating convergence. Yet, Muon
discards the coordinate-wise adaptivity that makes Adam and AdamW highly effective in transformers.
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As a result, Muon’s uniform normalization, while spectrally elegant, risks overshooting updates
and neglecting fine-grained gradient variations, limiting its adaptability in large-scale LLM training.
Motivated by these observations, a natural yet challenging question arises: how can we integrate
similar normalization benefits of Muon into Adam? Such integration holds substantial promise for
achieving faster and more stable convergence than Muon, since Adam is often much faster than
SGD-momentum, upon which Muon is based, especially for transformer networks.

To answer this question, we first reformulate Muon into an equivalent form involving first and second
moment estimations, closely aligning it with Adam’s structure. While Muon originally performs
explicit spectral normalization through Newton–Schulz iteration without defining second moment
estimates, our reformulation reveals that this normalization implicitly corresponds to uniform second
moment scaling. Thus, a key structural difference emerges: Adam adopts coordinate-wise adaptivity
via element-wise second moment estimation, whereas Muon uniformly applies orthogonal projection
and singular-value normalization. Muon’s uniform normalization, although effective in spectral
conditioning, may overshoot updates and neglect coordinate-wise gradient variations, limiting its
adaptivity particularly in transformer training scenarios.

In this work, we propose Column-Normalized Adam (Conda). Conda retains Adam’s coordinate-
wise adaptivity while incorporating a milder, column-specific spectral normalization. Instead of
normalizing all directions uniformly, Conda projects updates into an orthogonal subspace and applies
separate second moment-based normalization to each column using projected gradients. This design
alleviates the spectral pathologies of Adam while preserving the structure and relative scaling of the
update matrix, resulting in better-conditioned updates and more stable convergence behavior.

We validate Conda extensively on large-scale LLM pre-training and fine-tuning. On LLaMA se-
ries (Touvron et al., 2023), Conda achieves 2∼2.5× faster convergence than AdamW, measured by
both training steps and wall-clock time. It also shows consistent gains on GPT-2 (Radford et al., 2019)
and across diverse fine-tuning tasks. Comprehensive ablations on sequence length, hyperparameters,
subspace update frequency, and memory usage confirm Conda’s robustness and scalability.

2 RELATED WORKS

Adaptive optimizers adjust per-parameter learning rates using gradient history, enabling faster con-
vergence and robustness to sparse or noisy gradients. Adagrad (Duchi et al., 2011) introduced
per-parameter scaling but suffers from aggressive decay, while RMSprop (Hinton et al., 2012)
improved stability via exponential moving averages. Adam (Kingma & Ba, 2014), combining mo-
mentum and adaptive scaling, remains the default, with AdamW (Loshchilov & Hutter, 2017) further
improving generalization by decoupling weight decay. Recent variants enhance efficiency and con-
vergence: Adan (Xie et al., 2024) and Win (Zhou et al., 2024a; 2023) strengthen Adam with Nesterov
acceleration; Lion (Chen et al., 2023) removes second-moment tracking for memory efficiency;
Sophia (Liu et al., 2023a) leverages approximate second-order information; and Adam-mini (Zhang
et al., 2024b) reduces memory via block-wise learning rates.

Beyond vectorized updates, newer methods exploit matrix structure. KFAC (Martens & Grosse,
2015) and Shampoo (Gupta et al., 2018) use Kronecker-factored curvature approximations; Adafac-
tor (Shazeer & Stern, 2018) reduces memory via factorization; and LAMB (You et al., 2019)
stabilizes large-batch training with layer-wise normalization. More recent approaches improve
scalability and structural efficiency: GaLore (Zhao et al., 2024) projects gradients into low-rank
subspaces; SOAP (Vyas et al., 2024) combines Shampoo preconditioners with Adam-style updates;
Muon (Jordan et al., 2024) regularizes update spectra for stability; and AdaDiag (Nguyen et al., 2025)
employs SVD-based diagonalization for faster convergence. These advances highlight how structural
awareness can substantially improve large-scale training efficiency.

3 COLUMN-NORMALIZED ADAM

3.1 PRELIMINARY AND MOTIVATION

Here, we first briefly introduce Adam and Muon, and then analyze Muon for motivating our optimizer.

Adam Optimizer. Nowadays, Adam and its variants have been the most popular optimizers for AI
model training across diverse tasks (Radford et al., 2019; Brown et al., 2020; Chowdhery et al., 2023;
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Grattafiori et al., 2024). At training iteration t, let Wt ∈ Rm×n be the weight matrix, and assume
Gt ∈ Rm×n is the stochastic gradient. Then Adam can first estimate the first moment Mt and the
second moment Nt, and then update the parameters as follows1:





Mt = β1Mt−1 + (1− β1)Gt,

Nt = β2Nt−1 + (1− β2)G
2
t ,

Wt = Wt−1 − ηMt/
√
Nt.

(1)

Recent studies have shown that gradients and Hessians in transformer-based architectures exhibit
significant heterogeneity (Zhang et al., 2024a; Tomihari & Sato, 2025), which limits the effectiveness
of uniform learning rate schemes used in traditional stochastic gradient descent (SGD) and its
momentum variant (Bottou et al., 2018; Sutskever et al., 2013). In contrast, Adam often achieves
significantly faster convergence due to its coordinate-wise adaptivity, which enables it to automatically
adjust the learning rate of each parameter coordinate (Xie et al., 2025; Kingma & Ba, 2014; Zhou
et al., 2024b; 2020). Concretely, for the (i, j)-th coordinate, its learning rate becomes η/

√
Nt,i,j

which adaptively considers the current geometric curvature and dynamically changes, where Nt,i,j is
the (i, j)-th element in Nt.

Muon Optimizer. Build upon SGD-momentum(SGDM) (Sutskever et al., 2013), Muon (Jordan
et al., 2024) is proposed, and has shown promising fast convergence speed with less GPU memory
cost when training larger AI models (Liu et al., 2025). At the training iteration t, SGD-momentum
and Muon update the parameters as follows:





Mt = µMt−1 +Gt,

Ot = NewtonSchulz5(Mt), (only for Muon)
Wt = Wt−1 − ηOt,

(2)

Compared with SGDM, Muon has an extra Newton-Schulz iteration process which approximately
solves (MtM

⊤
t )

− 1
2Mt and indeed theoretically equals to UtV

⊤
t , where UtΣtV

⊤
t is the singular

value decomposition (SVD) of Mt. One can observe that the output Ot of the NS iteration is a
normalization version of Mt, since intuitively, it can ensure that the update matrices are isomorphic,
preventing the weight from learning along a few dominant directions (Jordan et al., 2024).

As observed in many works (Jordan et al., 2024; Zhao et al., 2021; Yang et al., 2023; Cosson et al.,
2023; An et al., 2025) and Fig. 1 (a, c) in this work, the updates produced by both SGD-momentum
and Adam for the 2D parameters in transformer-based neural networks typically exhibit very high
condition number, and are almost low-rank, severely slowing the parameter update speed. Specifically,
by applying SVD, Mt in Eqn. 2 can be written as Mt =

∑min(m,n)
i=1 Σt,i,iUt,:iV

⊤
t,:i, where Σt,i,i

denotes the i-th singular value in Σt, and Ut,:i and V⊤
t,:i are respectively the i-th column of Ut

and V⊤
t . Accordingly, the parameter update is indeed performed in these subspaces (directions)

{Ut,:iV
⊤
t,:i}

min(m,n)
i=1 . However, since most singular values {Σt,i,i} are close to zero, the parameters

are not well updated in the coressponding subspaces or directions {Ut,:iV
⊤
t,:i}, leading to slow update

and convergence. Muon addresses this issue by normalizing (scaling) all singular values {Σt,i,i} to
ones, and thus resolves the slow update issue of the subspaces with small singular values.

While Muon addresses these spectral inefficiencies for SGDM, Adam suffers from similar issues
due to the low-rank nature of its update matrices. So it is natural to ask how to integrate a similar
normalization technique of Muon into Adam? This is important, since as mentioned, Adam-like opti-
mizers often reveal much faster convergence speed than SGD and its momentum version, especially
for transformer-based neural networks, and thus integrating Muon with Adam has a big potential for
even faster convergence speed than vanilla Muon, which builds upon SGDM.

3.2 COLUMN-NORMALIZED ADAM

Sec. 3.1 shows that the key component of Muon lies in its normalization of the parameter update
Mt of SGDM. Unfortunately, the normalization of all singular values in Muon is overly aggressive:

1Here we omit the bias correction and the small constant ϵ during updating for numeric stability. We
emphasize that, except for matrix multiplication and SVD, all other arithmetic operations (such as squaring,
division, and square root) are performed element-wise.
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Figure 1: Spectral analysis of optimizer updates on LLaMA-60M (a, b) and LLaMA-350M (c, d).
(a, c): loge condition number of 2D update matrices over training steps. (b, d): Distribution of log10
all singular values of 2D update matrices at the end of training.

3.2 Column-Normalized Adam132

Sec. 3.1 shows the key of Muon is its normalization on the parameter update Mt of SGD-Momentum.133

Unfortunately, the normalization of all singular values in Muon is too aggressive: even very small134

singular values like 10→6 are scaled to one as shown in Fig. 1. However, the magnitudes of singular135

values indeed reflect the desired update strength of the current model parameter in the corresponding136

subspaces to some extent: smaller singular values indicate the necessity of small update of the137

network parameter in the corresponding spaces at current training iteration. As a result, the aggressive138

normalization could destroy the structure of the parameter update reflected by its singular value, and139

results in aggressive update in some subspaces whose corresponding singular values are scaled too140

much. From the updating formulation Mt =
∑min(m,n)

i=1 !t,i,iUt,:iQ
↑
t,:i, we know that the biggest141

learning rate ω is mainly decided by the top singular values, since too big ω leads to the too aggressive142

update of the corresponding subspaces and results in big loss oscillation. Accordingly, to resolve143

the side effects of normalization in Muon, one straightforward solution is to use a relatively small144

learning rate. While well updating subspaces with small corresponding singular values, a small145

learning rate indeed impairs the update efficiency of other subspaces with big singular values, since146

these subspaces indeed allow larger learning rate to update. So build upon Muon, it is necessary to147

design an improved normalization for Adam.148

To this end, we first reformulate Muon to align its formulation with Adam. Then through comparing149

both formulations, we introduce subspace projection in Muon into the second moment of Adam, and150

finally adopt the second moment for normalizing parameter update in Adam.151

Reformulation of Muon. Here we reformulate Muon so that its new but equivalent formulation aligns152

with Adam, allowing us to easily compare their differences and perform algorithmic modification.153

Lemma 1. For Muon in Eqn. (2), it can be reformulated into the following equivalent one:154





Mt = µMt→1 + Gt,

Ut,!t,Qt = SVD(Mt),

M↓
t = U↑

t Mt,

Vt = diag(!t)1
↑,

Wt = Wt→1 → ωUt(M
↓
t/Vt).

(3)

where diag(!t) maps the singular values into a vector of dimension Rmin(m,n), and 1 ↑ Rn denotes155

a vector whose entries are always ones.156

See its proof in Appendix A. One can observe that the formulation in Eqn. (3) replaces the Newton-157

Schulz iteration process in Eqn. (2) with SVD, and also accordingly modifies other steps. Moreover,158

Muon in Eqn. (3) aligns with Adam’s formulation (1), both having first and second moments. For first159

moment Mt, Muon uses similar moving average in Adam to update it, but it further projects its Mt160

into the subspace spanned by U↑
t . Regarding second moment Vt, Adam uses the moving average161

of squared gradient Vt = ε2Vt→1 + (1 → ε2)Gt
2, while Muon directly uses Vt = diag(!t)1

↑.162

Finally, both Adam and Muon uses element-wise division between first and second moments to163

update the parameter, but Muon has one extra projection Ut before the update.164

Column-Normalized Adam. With the above comparison between Adam and Muon, their key differ-165

ences lie on their different second moments and the extra subspace projection in Muon. Accordingly,166

we also perform the subspace projection in Adam to absorb the advantage of Muon. To this end, we167

first modify second moment in Adam for subspace projection. This is because the vanilla second168
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Figure 1: Spectral analysis of optimizer updates on LLaMA-60M (a, b) and LLaMA-350M (c, d).
(a, c): loge condition number of 2D update matrices over training steps. (b, d): Distribution of log10
all singular values of 2D update matrices at the end of training.

even extremely small singular values like 10−6 are scaled to one as shown in Fig. 1 (b, d). However,
the magnitudes of singular values do reflect, to some extent, the desired update strength for model
parameters in the corresponding subspaces. Smaller singular values typically suggest that only small
updates are needed in those directions at the current training iteration. As a result, the aggressive
normalization may distort the structure of the parameter update reflected by its singular values, leading
to overly aggressive updates in subspaces where the original singular values were excessively scaled.
From the updating formulation Mt =

∑min(m,n)
i=1 Σt,i,iUt,:iV

⊤
t,:i, we know that the maximum

permissible learning rate η is mainly decided by the top singular values, since too big η leads to
the too aggressive update of the corresponding subspaces and results in significant loss oscillation.
Accordingly, to resolve the side effects of normalization in Muon, one straightforward solution is
to use a relatively small learning rate. Although a small learning rate benefits subspaces with small
singular values, it hampers the update efficiency in subspaces associated with large singular values,
which could accommodate a larger learning rate. Therefore, building upon Muon, it is necessary to
design an improved normalization for Adam.

To this end, we first reformulate Muon to align its formulation with Adam. Then, through comparing
both formulations, we introduce subspace projection in Muon into the second moment of Adam, and
finally adopt the second moment for normalizing parameter update in Adam.

Reformulation of Muon. Here we reformulate Muon so that its new but equivalent formulation aligns
with Adam, allowing us to easily compare their differences and perform algorithmic modification.
Lemma 1. For Muon in Eqn. 2, it can be reformulated into the following equivalent one:




Mt = µMt−1 +Gt,

Ut,Σt,V
⊤
t = SVD(Mt),

M′
t = U⊤

t Mt,

Nt = diag(Σt)1
⊤,

Wt = Wt−1 − ηUt(M
′
t/Nt).

(3)

where diag(Σt) maps the singular values into a vector of dimension Rmin(m,n), and 1 ∈ Rn denotes
a vector whose entries are always ones.

See its proof in Appendix A.4. One can observe that the formulation in Eqn. 3 replaces the Newton-
Schulz iteration process in Eqn. 2 with SVD, and also accordingly modifies other steps. Moreover,
Muon in Eqn. 3 aligns with Adam’s formulation 1, both having first and second moments. For first
moment Mt, Muon uses similar moving average in Adam to update it, but it further projects its Mt

into the subspace spanned by U⊤
t . Regarding second moment Nt, Adam uses the moving average

of squared gradient Nt = β2Nt−1 + (1 − β2)Gt
2, while Muon directly uses Nt = diag(Σt)1

⊤.
Finally, both Adam and Muon uses element-wise division between first and second moments to
update the parameter, but Muon then projects this update back to the original subspace via Ut.

Column-Normalized Adam. With the above comparison between Adam and Muon, their key differ-
ences lie in their different second moments and the extra subspace projection in Muon. Accordingly,
we also perform the subspace projection in Adam to absorb the advantage of Muon. To this end,
we first modify the second moment in Adam for subspace projection. This is because the vanilla
second moment Nt = β2Nt−1 + (1− β2)G

2
t does not ensure that Nt resides within the subspace

induced by the first moment. To address this, we explicitly constrain the second moment estimate by
projecting the stochastic gradient into the subspace:

Nt = β2Nt−1 + (1− β2)(U
⊤
t Gt)

2. (4)

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

This modification aligns the statistics of the first and second moments, leading to more stable and
coherent updates. Consequently, we arrive at a Column-normalized Adam (Conda) optimizer:





Mt = β1Mt−1 + (1− β1)Gt,

Ut,Σt,V
⊤
t = SVD(Mt),

M′
t = U⊤

t Mt,

Nt = β2Nt−1 + (1− β2)(U
⊤
t Gt)

2,

Wt = Wt−1 − ηUt(M
′
t/
√
Nt).

(5)

Now we compare Muon and our Conda to show two benefits of Conda, including 1) a more adaptive
coordinate-wise learning rate in Conda over row-wise earning rate in Muon, and 2) structure-preserved
normalization in Conda over structure-unpreserved normalization in Muon.

We first analyze their different learning rate strategy by comparing Eqn. 3 and 5. Specifically, Muon’s
second moment matrix Nt = diag(Σt)1

⊤ has identical singular value within each row, i.e., elements
in the i-th row being the i-th singular value Σt,i,i. This structure indicates Muon adopts row-wise
adaptive learning rate. In contrast, Conda retains the coordinate-wise learning rate like Adam by
inheriting its element-wise second moment computation within the subspace, thereby preserving
fine-grained adaptation across individual coordinates.

Then, we compare the update of Conda and Muon to show their different normalization strategies.

Lemma 2. For Muon in Eqn. 3, its parameter update can be rewritten as

Ot=Ut(M
′
t/Nt)=

[
m∑

i=1

1

Σt,i,i
U

(i)
t Mt,:1,

m∑

i=1

1

Σt,i,i
U

(i)
t Mt,:2, . . . ,

m∑

i=1

1

Σt,i,i
U

(i)
t Mt,:n

]
, (6)

where Σt,i,i denotes the i-th singular value in Σt, U
(i)
t = Ut,:iU

⊤
t,:i in which Ut,:i is the i-th column

of Ut. In contrast, for optimizer in Eqn. 5, its update is equivalent to

Ot=Ut
M′

t√
Nt

=

[
m∑

i=1

1√
Nt,i,1

U
(i)
t Mt,:1,

m∑

i=1

1√
Nt,i,2

U
(i)
t Mt,:2, . . . ,

m∑

i=1

1√
Nt,i,n

U
(i)
t Mt,:n

]
,

(7)

where Nt,i,j denotes the (i, j)-th value in matrix Nt.

See its proof in Appendix A.4. Based on 6 and 7, one observe that for each column, both Muon and
Conda normalize it within a subspace U

(i)
t = Ut,:iU

⊤
t,:i but with different normalization factors.

Regarding Muon, its normalization factor is the inverse singular value 1/Σt,i,i for corresponding
subspace spanned by Ut,:iU

⊤
t,:i, and could be too aggressive, leading to overshoot update in corre-

sponding subspaces as introduced above. Moreover, for Muon, its all columns of update Ot share the
same normalized subspace

∑m
i=1

1
Σt,i,i

Ut,:iU
⊤
t,:i, which does not consider the different properties

across columns. This could limit the adaptivity of Muon on each column’s update.

By comparison, in Conda, for column M:k, its normalized subspace projection is∑m
i=1

1√
Nt,i,k

Ut,:iU
⊤
t,:i which adopts all entries in the corresponding k-th column Nt,:k as nor-

malization factor. So the normalization in our Conda is column-specific and is thus more adaptive.
Moreover, its normalization can also disproportionately compresses relatively large singular values so
that singular values are closer for easily seeking a learning rate for sufficient update of all subspaces
{Ut,:iU

⊤
t,:i}

min(m,n)
i=1 . Compared with Muon, this normalization is milder. What is critical, this mild

normalization in Conda can well preserve the structures of the update matrices: the relative order
of singular values is not changed. This preserves the desired update strength of the current model
parameter in the corresponding subspaces to some extent, and boosts the update and convergence
speed. This is also supported by the results in Fig. 1 (b, d), which visualizes the singular value
spectrum of the update matrices at the end of training for SGDM, Muon, Adam, and Conda. One
can observe that Muon exhibits a sharp peak of singular values around one, reflecting its strong
normalization on SGDM. By comparison, Conda’s singular values are smaller in scale and more
concentrated than those of Adam, while still preserving the overall shape of Adam’s singular value
distribution. This helps Conda to seek a learning rate for sufficient update of all subspaces.
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Table 1: Pre-training Results on Large Language Models. Comparison of various algorithms
on pre-training LLaMA and GPT-2 models of different sizes. Validation perplexity (↓) is reported.
Results marked with * are collected from Zhao et al. (2024); Liu et al. (2023a); Zhu et al. (2024).

Method LLaMA GPT2
60M 130M 350M 1B 125M 355M

AdamW* 34.06 25.08 18.80 15.56 18.56 14.75
APOLLO* 31.55 22.94 16.85 14.20 – –
Adafactor 29.44 22.43 17.37 14.87 18.35 14.74
SOAP 29.16 22.03 16.75 14.55 18.36 14.89
Muon 29.89 22.15 16.51 14.17 18.20 14.77
Conda (Ours) 28.32 21.38 16.44 13.59 17.40 13.92

Training Tokens 1.1B 2.2B 6.4B 13.1B 49.2B 49.2B

To enhance efficiency, we adopt a lazy updating strategy for the SVD operation in Eqn. 5. Instead
of computing SVD per iteration, we perform SVD for each T iterations, where we set T = 2, 000
which works well across all experiments. Finally, we also consider the omitted bias correction steps
and the small positive constant ϵ in the second moment for numeric stability. The complete algorithm,
including all implementation details, is provided in the Appendix A.5. We also include a detailed
comparison between Conda and SOAP in the Appendix A.8.

4 EXPERIMENTS

4.1 LLM PRE-TRAINING

To demonstrate the generality of Conda, we conduct pre-training on both the LLaMA series (Touvron
et al., 2023) (60M–1B) and the GPT-2 series (Radford et al., 2019) (125M, 355M). We compare Conda
with widely used optimizers, including AdamW (Loshchilov & Hutter, 2017), Adafactor (Shazeer &
Stern, 2018), SOAP (Vyas et al., 2024), and Muon (Jordan et al., 2024). We exclude memory-efficient
optimizers such as GaLore (Zhao et al., 2024) and Adam-mini (Zhang et al., 2024b), which generally
match or underperform AdamW, making comparisons less meaningful.

Results on LLaMA series. Following Lialin et al. (2023) and Zhao et al. (2024), we pretrain the
vanilla LLaMA series models from scratch on the C4 dataset (Raffel et al., 2020). For all LLaMA
models, we follow Zhao et al. (2024) and set the batch size to 512, the maximum sequence length to
256, and use the bfloat16 precision format. For Conda, we employ a unified set of hyperparameters
across all model sizes ranging from 60M to 1B parameters. We use a learning rate of 0.01, betas of
(0.9, 0.99), and a update frequency of T = 2, 000. See detailed configurations in the Appendix A.6.

As shown in Table 1, Conda achieves lower perplexity than all baselines across the LLaMA models
ranging from 60M to 1B parameters, demonstrating superior performance. Specifically, as illustrated
in Fig. 2, Conda consistently achieves over 2× the convergence speed of AdamW across all model
sizes, in terms of both training steps and training time. In particular, on the LLaMA-1B model, Conda
achieves 2.7× the convergence speed of AdamW with respect to training steps, and approximately
2.5× with respect to training time. Moreover, when compared to the second-best baseline at each
model scale, Conda still demonstrates clear advantages. On LLaMA-60M and LLaMA-130M, Conda
achieves 1.33× and 1.38× the convergence speed of SOAP in terms of training steps, and 1.48× and
1.37× in training time, respectively. For larger models such as LLaMA-350M and LLaMA-1B, Conda
reaches 1.25× and 1.69× the convergence speed of Muon in training steps, and 1.48× and 1.80×
in training time, respectively. These results confirm that Conda consistently outperforms not only
AdamW, but also the strongest baseline at each scale, achieving higher convergence efficiency.

Results on GPT2 series. Following the experimental setup in Sophia (Liu et al., 2023a), we pre-train
GPT-2 Small (125M parameters) and GPT-2 Medium (355M parameters) (Radford et al., 2019) on
the OpenWebText dataset (Gokaslan & Cohen, 2019) using the nanoGPT implementation (Karpathy,
2022). We also use a batch size of 480, a sequence length of 1024, a cosine learning rate decay
schedule with 2000 warm-up iterations, global gradient clipping with a threshold of 1.0, and train all
models for 100,000 steps. See detailed configures in Appendix A.6.
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Results.225

Table 1: Pretraining Results on Large Language Models. Comparison of various algorithms on
pre-training LLaMA and GPT-2 models of different sizes. Validation perplexity (→) is calculated as
eloss. Results marked with * are collected from GaLore [35] and Sophia [27].

Method LLaMA GPT2
60M 130M 350M 1B 125M 355M

AdamW* 34.06 25.08 18.80 15.56 18.56 14.75
Adafactor 29.44 22.43 17.37 14.87 18.35 14.74
SOAP 29.16 22.03 16.75 14.55 18.36 14.89
Muon 29.89 22.15 16.51 14.17 18.20 14.77
Ours 28.32 21.38 16.44 13.59 17.40 13.92

Training Tokens 1.1B 2.2B 6.4B 13.1B 49.2B 49.2B
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Figure 2: Validation loss curves for LLaMA models of increasing scale.

Figure 3: Validation loss curves for GPT2 models of increasing scale.

4.1.3 Downstream Task Performance226

While our algorithm achieves lower perplexity than all baselines across LLaMA and GPT-2 models of227

various scales, perplexity alone may not fully reflect downstream effectiveness [55–57]. To further val-228

idate model quality, we evaluate zero-shot performance on ten diverse tasks, covering common-sense229

and mathematical reasoning. Following Zhu et al. [58], we adopt the lm-evaluation-harness [59]230

for standardized evaluation. Downstream task details are provided in Appendix.231

4.2 LLM Fine-tuning232

Setup. Following Hu et al. [60] and Liu et al. [61], we conduct experiments to evaluate the effec-233

tiveness of Conda in supervised fine-tuning. Given that LoRA [62] has become one of the most234

widely adopted parameter-efficient fine-tuning methods, we adopt it as the underlying framework and235

compare Conda with the standard AdamW baseline under the same LoRA setup. Specifically, we236

fine-tune LLaMA-7B, LLaMA3.2-1B, and LLaMA3-8B on the Commonsense170K dataset [60], and237
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Table 1: Pretraining Results on Large Language Models. Comparison of various algorithms on
pre-training LLaMA and GPT-2 models of different sizes. Validation perplexity (→) is calculated as
eloss. Results marked with * are collected from GaLore [35] and Sophia [27].

Method LLaMA GPT2
60M 130M 350M 1B 125M 355M

AdamW* 34.06 25.08 18.80 15.56 18.56 14.75
Adafactor 29.44 22.43 17.37 14.87 18.35 14.74
SOAP 29.16 22.03 16.75 14.55 18.36 14.89
Muon 29.89 22.15 16.51 14.17 18.20 14.77
Ours 28.32 21.38 16.44 13.59 17.40 13.92
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Figure 2: Validation loss curves for LLaMA models of increasing scale.
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Figure 3: Validation loss curves for GPT2 models of increasing scale.

4.1.3 Downstream Task Performance226

While our algorithm achieves lower perplexity than all baselines across LLaMA and GPT-2 models of227

various scales, perplexity alone may not fully reflect downstream effectiveness [55–57]. To further val-228

idate model quality, we evaluate zero-shot performance on ten diverse tasks, covering common-sense229

and mathematical reasoning. Following Zhu et al. [58], we adopt the lm-evaluation-harness [59]230

for standardized evaluation. Downstream task details are provided in Appendix.231

4.2 LLM Fine-tuning232

Setup. Following Hu et al. [60] and Liu et al. [61], we conduct experiments to evaluate the effec-233

tiveness of Conda in supervised fine-tuning. Given that LoRA [62] has become one of the most234

widely adopted parameter-efficient fine-tuning methods, we adopt it as the underlying framework and235

compare Conda with the standard AdamW baseline under the same LoRA setup. Specifically, we236

fine-tune LLaMA-7B, LLaMA3.2-1B, and LLaMA3-8B on the Commonsense170K dataset [60], and237
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Figure 3: Validation loss curves for GPT2 models over training steps and time.

As shown in Table 1, Conda consistently outperforms all baselines on both GPT-2 Small (125M)
and GPT-2 Medium (355M) models. Specifically, Fig. 3 shows that Conda achieves 1.41× and
1.56× the convergence speed of AdamW in terms of training steps on GPT2-125M and GPT2-
355M, respectively. When measured by training time, Conda is 1.20× and 1.49× convergence speed
of AdamW on GPT2-125M and GPT2-355M. In contrast, all other baseline optimizers perform
comparably to or worse than AdamW, both in terms of training steps and wall-clock training time,
further highlighting Conda’s superior efficiency and robustness.

Performance of Downstream Tasks. While Conda achieves lower perplexity across LLaMA
and GPT-2 models of various scales, perplexity alone may not fully capture downstream effective-
ness (Jaiswal et al., 2023; Liu et al., 2023b; Springer et al., 2025). To further validate model quality,
we evaluate the zero-shot performance of the pre-trained models on diverse tasks, covering both
commonsense and mathematical reasoning (Clark et al., 2019; Bisk et al., 2020; Wang et al., 2018;
Sakaguchi et al., 2021; Clark et al., 2018; Zellers et al., 2019; Mihaylov et al., 2018; Welbl et al., 2017;
Amini et al., 2019). Following Zhu et al. (2024), we adopt the lm-evaluation-harness (Gao
et al., 2024) for assessment. As shown in Table 2, Conda achieves the highest average accuracy on
both LLaMA-350M (44.0%) and LLaMA-1B (45.8%), while remaining time-efficient. For LLaMA-
350M, Conda outperforms both Muon and SOAP with less training time, and significantly surpasses
AdamW. For LLaMA-1B, the model trained with Conda†, using only half the total training steps,
achieves an average accuracy of 44.9%, surpassing both AdamW and Muon. Fig. 4 further illustrates
the progression of zero-shot average accuracy during pre-training. Across both training steps and
wall-clock time, Conda consistently outperforms all baselines during the entire training process.

4.2 LLM FINE-TUNING

Following Liu et al. (2024b), we evaluate the effectiveness of Conda in supervised fine-tuning. Since
LoRA (Hu et al., 2022) is one of the most widely adopted parameter-efficient fine-tuning methods,
we adopt it as the fine-tuning method and compare Conda with the standard AdamW baseline under
identical LoRA settings. Specifically, we fine-tune LLaMA-7B, LLaMA3.2-1B, and LLaMA3-8B on
the Commonsense170K dataset (Hu et al., 2023), and assess their generalization on commonsense
reasoning benchmarks. Detailed experimental settings are provided in the Appendix A.7.

Table 3 presents the performance of models fine-tuned with Conda and AdamW using LoRA across
three LLaMA model scales. For LLaMA-7B, Conda consistently outperforms AdamW across all

7
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Table 2: Zero-shot performance of LLaMA-350M and LLaMA-1B models pretrained with different
optimizers on commonsense and math reasoning tasks. All results are reported as accuracy (↑%).
Time refers to the corresponding training time, and PPL denotes perplexity. Conda† indicates the
model trained with Conda for only half of the total training steps.

LLaMA Time PPL BoolQ RTE HS WG OBQA ARC-e ARC-c PIQA SciQ MathQA Avg

35
0M

AdamW 6.2h 16.86 58.2 53.4 31.4 51.5 16.6 45.2 18.8 66.4 70.3 21.2 43.3
Adafactor 6.9h 17.37 53.1 50.9 31.0 51.3 15.6 44.6 19.6 65.3 68.8 21.0 42.1
SOAP 15.0h 16.75 58.9 48.0 31.5 51.8 17.0 46.7 20.0 66.0 72.5 22.0 43.4
Muon 7.7h 16.51 54.7 54.2 31.8 52.9 17.4 46.4 19.1 66.1 73.5 21.6 43.8
Conda† (Ours) 3.3h 16.44 60.3 53.4 31.1 52.6 17.6 45.2 18.9 65.6 75.0 21.4 44.1

1B

AdamW 44.5h 15.77 56.2 54.5 32.8 49.6 19.4 48.0 21.3 67.8 72.2 21.0 44.3
Adafactor 47.3h 14.87 59.0 56.0 33.5 53.3 18.8 48.5 21.3 67.6 72.4 21.5 45.2
SOAP 116.2h 14.55 58.4 56.0 34.2 51.4 18.8 49.5 21.3 68.9 75.1 22.0 45.6
Muon 61.9h 14.17 55.4 50.5 34.7 51.1 17.2 48.1 21.9 69.4 75.0 22.2 44.6
Conda† (Ours) 24.2h 14.65 53.6 51.6 34.6 52.5 19.8 49.2 21.3 68.7 75.4 22.2 44.9
Conda (Ours) 48.4h 13.59 56.2 53.1 36.2 52.5 20.4 50.5 21.6 69.0 77.9 21.9 45.8

(a) (b) (c) (d)

Table 2: Zero-shot performance of LLaMA-350M and LLaMA-1B models pretrained with different
optimizers on commonsense and math reasoning tasks. All results are reported as accuracy (→%).
Time refers to the corresponding training time, and PPL denotes perplexity. Conda† indicates the
model trained with Conda for only half of the total training steps.
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Figure 4: (a) Zero-shot average accuracy on downstream tasks plotted against training steps. (b)
Same as (a), but plotted against training time. (c) Validation loss curve on LLaMA-1B with sequence
length 1024. (d) Ablation study on subspace update frequency T .

tical LoRA settings. Specifically, we fine-tune LLaMA-7B, LLaMA3.2-1B, and LLaMA3-8B on275

the Commonsense170K dataset [79], and assess their generalization on commonsense reasoning276

benchmarks [66, 67, 69–72, 80]. Detailed experimental settings are provided in the Appendix.277

Table 3 presents the performance of models fine-tuned with Conda and AdamW using LoRA across278

three LLaMA model scales. For LLaMA-7B, Conda consistently outperforms AdamW across279

all benchmarks, achieving the highest average accuracy of 78.8%. Notably, it surpasses strong280

baselines such as DoRA [77] in most tasks, including BoolQ [66], SIQA [80], HellaSwag (HS) [71],281

ARC-c [70], and OBQA [72]. On the smaller LLaMA3.2-1B model, Conda delivers a substantial282

improvement over AdamW (67.0% vs. 59.2%), especially on PIQA [67], HellaSwag (HS) [71] and283

ARC-e [70]. For the larger LLaMA3-8B model, Conda also leads with an average accuracy of 84.1%,284

outperforming AdamW by 3.3 points. These results demonstrate that Conda not only generalizes285

better across tasks, but also scales effectively with model size under LoRA fine-tuning.286

Table 3: Accuracy (→ %) on commonsense reasoning tasks after supervised fine-tuning on the
Commonsense170K dataset. We compare Conda with AdamW across multiple LLaMA model scales.
Results for all methods except LoRA (Conda) are taken from prior work [75, 77, 79].

Model Method BoolQ PIQA SIQA HS WG ARC-e ARC-c OBQA Avg

LLaMA-7B

Prefix 64.3 76.8 73.9 42.1 72.1 72.9 54.0 60.6 64.6
Series 63.0 79.2 76.3 67.9 75.7 74.5 57.1 72.4 70.8

Parallel 67.9 76.4 78.8 69.8 78.9 73.7 57.3 75.2 72.2
DoRA 69.7 83.4 78.6 87.2 81.0 81.9 66.2 79.2 78.4

LoRA (AdamW) 68.9 80.7 77.4 78.1 78.8 77.8 61.3 74.8 74.7
LoRA (Conda) 70.6 83.4 78.8 87.3 80.7 82.2 67.0 80.0 78.8

LLaMA3.2-1B LoRA (AdamW) 63.6 63.3 71.7 19.1 67.6 67.3 53.0 68.2 59.2
LoRA (Conda) 63.9 75.1 71.5 66.9 68.4 70.5 52.0 67.8 67.0

LLaMA3-8B LoRA (AdamW) 70.8 85.2 79.9 91.7 84.3 84.2 71.2 79.0 80.8
LoRA (Conda) 74.9 88.7 78.6 87.3 86.0 90.0 79.8 87.6 84.1

8

Figure 4: (a) Zero-shot average accuracy on downstream tasks plotted against training steps. (b)
Same as (a), but plotted against training time. (c) Validation loss curve on LLaMA-1B with sequence
length 1024. (d) Perplexity (↓) under different subspace update frequencies T .

benchmarks, achieving the highest average accuracy of 78.8%. Notably, it surpasses strong baselines
such as DoRA (Liu et al., 2024b) in most tasks. On the smaller LLaMA3.2-1B model, Conda delivers
a substantial improvement over AdamW (67.0% vs. 59.2%), especially on PIQA, HellaSwag (HS),
and ARC-e. For the larger LLaMA3-8B model, Conda also leads with an average accuracy of 84.1%,
outperforming AdamW by 3.3 points. These results demonstrate that Conda not only generalizes
better across tasks, but also scales effectively with model size.
Table 3: Accuracy (↑%) on commonsense reasoning tasks after fine-tuning on the Commonsense170K
dataset. We compare Conda with AdamW across multiple LLaMA model scales. Results for all
methods except LoRA (Conda) are taken from prior work (Liu et al., 2024b; Zhu et al., 2024).

Model Method BoolQ PIQA SIQA HS WG ARC-e ARC-c OBQA Avg

LLaMA-7B

Prefix 64.3 76.8 73.9 42.1 72.1 72.9 54.0 60.6 64.6
Series 63.0 79.2 76.3 67.9 75.7 74.5 57.1 72.4 70.8

Parallel 67.9 76.4 78.8 69.8 78.9 73.7 57.3 75.2 72.2
DoRA 69.7 83.4 78.6 87.2 81.0 81.9 66.2 79.2 78.4

LoRA (AdamW) 68.9 80.7 77.4 78.1 78.8 77.8 61.3 74.8 74.7
LoRA (Conda) 70.6 83.4 78.8 87.3 80.7 82.2 67.0 80.0 78.8

LLaMA3.2-1B LoRA (AdamW) 63.6 63.3 71.7 19.1 67.6 67.3 53.0 68.2 59.2
LoRA (Conda) 63.9 75.1 71.5 66.9 68.4 70.5 52.0 67.8 67.0

LLaMA3-8B LoRA (AdamW) 70.8 85.2 79.9 91.7 84.3 84.2 71.2 79.0 80.8
LoRA (Conda) 74.9 88.7 78.6 87.3 86.0 90.0 79.8 87.6 84.1

4.3 ABLATION STUDY

Second moment estimation without subspace projection. We ablate Conda’s subspace-based
second-moment estimation by replacing it with a vanilla estimator. As shown in Table 4, for smaller
models, the lower parameter count and shorter training duration render the optimization process more
robust, so removing subspace projection does not substantially hinder convergence. However, in
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Table 4: Perplexity (↓) comparison with and
without subspace projection in Conda.

Method 60M 130M 350M 1B

Conda 28.32 21.38 16.44 13.59
No proj. 28.65 21.88 16.70 Fail

Table 5: Perplexity (↓) of Conda on LLaMA-
130M with varying β1 and β2.

β1/β2 0.95 0.99 0.995 0.999

0.9 21.43 21.44 21.50 21.97
0.95 21.84 21.81 21.79 22.26

Table 6: Peak GPU memory usage (in GB) of different optimizers. Results for 60M use 1 GPU,
130M use 2 GPUs, and 350M/1B use 8 GPUs. Batch size is reported per GPU.

Model Size Batch Size (per GPU) AdamW Adafactor Muon SOAP Conda

60M 256 24.97G 24.96G 24.92G 25.49G 25.00G
130M 256 40.98G 40.98G 40.82G 42.76G 41.09G
350M 64 27.51G 27.50G 26.95G 33.64G 27.84G
1B 32 35.81G 35.81G 33.56G 60.17G 37.13G

larger models such as LLaMA-1B, training dynamics become more sensitive to such inconsistencies.
This underscores the necessity of aligning second moment estimates within the subspace.

Sequence Length. To test Conda under longer sequence lengths, we increase the input sequence
length from 256 to 1,024 on LLaMA-1B, while keeping all other training settings the same as the
pre-training experiments. Fig. 4 (c) shows that Conda consistently achieves lower validation loss than
all baselines in this long-sequence setting, indicating Conda’s strong generalization performance.

Subspace Update Frequency. We conduct an ablation on the update frequency T using LLaMA-
60M and 130M. As shown in Fig. 4 (d), Conda maintains stable perplexity across a wide range
of T values, from 2 to 20000 steps. While T = 500 or 1, 000 appears to be a sweet spot in the
figure, we adopt T =2000 in our main experiments in light of wall-clock efficiency and scalability to
larger pre-training; see the Appendix A.3 for details. This suggests that the subspace can be updated
infrequently without degrading performance, reducing computational overhead and eliminating the
need for sensitive tuning of the update interval.

Hyperparameter Sensitivity. To demonstrate the robustness of Conda, we conduct a hyper-
parameter sensitivity analysis on the LLaMA-130M model by varying β1 ∈ {0.9, 0.95} and
β2 ∈ {0.95, 0.99, 0.995, 0.999}, while keeping all other settings consistent with pre-training. As
shown in Table 5, Conda achieves consistently low perplexity across all configurations, indicating
strong robustness to hyperparameter choices and reduced tuning burden in practice. We further assess
Conda’s sensitivity to the learning rate, results in Appendix A.3 show similar robustness.

Memory Usage. We compare the peak GPU memory usage across models ranging from LLaMA 60M
to 1B. To reflect real-world training conditions, we use practical configurations including per-GPU
batch size, number of GPUs, etc. As shown in Table 6, Conda introduces only a modest increase
in memory usage compared to AdamW, with a difference of less than 1–2 GB in most settings.
Therefore, the memory overhead of Conda remains practical for large-scale training scenarios.

5 CONCLUSION

In this paper, we introduced Conda, a novel optimizer addressing spectral inefficiencies in Adam-based
training of transformer architectures. By incorporating column-specific spectral normalization and
maintaining Adam’s coordinate-wise adaptivity, Conda achieves faster convergence. Experimental
results on LLaMA models demonstrate Conda’s substantial improvements, achieving 2∼2.5× the
convergence speed of AdamW in terms of both training steps and training time. Extensive ablation
studies confirm its robustness across diverse training conditions, highlighting Conda as a promising
optimizer for efficient large-scale LLM training.

Limitations. Owing to computational resource constraints, we have not yet evaluated Conda on
larger-scale models (e.g., 13B parameters) or Mixture-of-Experts (MoE) architectures. While the
results on models up to 1B parameters are encouraging, future work is needed to assess the scalability
and applicability of Conda in these more complex and resource-intensive settings.
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A APPENDIX

A.1 DECLARATION OF LLM USAGE

During the preparation of this work, we used GPT-5 to polish the English expression and check for
spelling errors in our manuscript. No parts of the core research ideas, methods, results, or conclusions
were generated by LLMs. All experimental code and data analysis were conducted and verified by
the authors.

A.2 MORE EXPERIMENTAL RESULTS

Comparison with Sophia on GPT-2 Pre-training. To provide a more comprehensive evaluation of
Conda, we additionally compare it with Sophia (Liu et al., 2023a), an optimizer that has demonstrated
strong performance on GPT-2 pre-training. The implementation of Sophia follows the best-performing
configuration reported in the original publication (Liu et al., 2023a).

0 20 40 60 80 100
Training Steps (k)

2.85

2.90

2.95

3.00

3.05

3.10

3.15

3.20

Va
lid

at
io

n 
Lo

ss

GPT2-125M
AdamW
Sophia-G
Conda

0 20 40 60 80 100
Training Steps (k)

2.65

2.70

2.75

2.80

2.85

2.90

2.95

3.00

Va
lid

at
io

n 
Lo

ss

GPT2-355M
AdamW
Sophia-G
Conda

0 20 40 60 80 100
Training Steps (k)

2.65

2.70

2.75

2.80

2.85

2.90

2.95

3.00

Va
lid

at
io

n 
Lo

ss

GPT2-355M
AdamW
Sophia-G
Conda

0 5 10 15 20 25
Training Time (hours)

2.65

2.70

2.75

2.80

2.85

2.90

2.95

3.00

Va
lid

at
io

n 
Lo

ss

GPT2-355M
AdamW
Sophia-G
Conda

Figure 5: Validation loss curves of GPT2 pre-training with Conda (Ours), AdamW, and Sophia-G.

As shown in Fig. 5, Conda consistently achieves lower validation loss and faster convergence than both
AdamW and Sophia-G on GPT2-125M and GPT2-355M. While Sophia-G shows slight improvements
over AdamW, it consistently lags behind Conda, further highlighting Conda’s superior optimization
performance.

A.3 MORE ABLATION STUDY

Learning-Rate Sensitivity of Different Optimizers In our experiments, Conda is used with larger
learning rates than Muon or Adam (see Table 11). To ensure a fair comparison, we evaluate all
three optimizers on LLaMA-130M under relatively large learning rates and report the final validation
perplexity. As shown in Table 7, only Conda trains stably and achieves rapid convergence at these
higher learning rates, whereas Muon and Adam exhibit pronounced training instabilities with large
loss spikes and ultimately fail to converge. These findings are consistent with previous study (Zhao
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Table 7: Validation perplexity across learning rates for different optimizers on LLaMA-130M pre-
training.

LLaMA-130M 3e-3 5e-3 7e-3 1e-2 2e-2

AdamW 25.43 Fail Fail Fail Fail
Muon 22.53 Fail Fail Fail Fail
Conda 22.28 22.10 21.81 21.38 21.92

Table 8: Training time and validation perplexity across update frequency T on LLaMA-60M pre-
training.

Update Frequency T 2 10 50 100 500 1000 2000 5000 10000

Training time 4h37min 3h14min 2h55min 2h53min 2h52min 2h51min 2h49min 2h49min 2h48min
Validation Perplexity 27.88 28.05 28.21 28.22 28.19 28.22 28.32 28.50 28.57

et al., 2024), which also reported that AdamW becomes unstable beyond a learning rate of 1e−3.
In addition, for Muon and Adam, we conducted an additional sweep over smaller learning rates
on LLaMA-60M to 350M; the search procedure is detailed in Appendix A.6. We found that both
optimizers achieve their best performance at a learning rate of 1e−3.

Table 9: Training time and validation perplexity across update frequency T on LLaMA-130M
pretraining.

Update Frequency T 2 10 50 100 500 1000 2000 5000 10000 20000

Training time 13h43min 3h36min 1h25min 1h9min 57min 55min 55min 54min 54min 53min
Validation Perplexity 21.08 21.19 21.36 21.36 21.36 21.35 21.43 21.55 21.64 21.68

Detailed Training Time across different Subspace Update Frequencies We recorded wall-clock
training time under different subspace update frequencies T on LLaMA-60M (2× A6000 GPUs)
and LLaMA-130M (8× A100 GPUs), as reported in Tables 8 and 9. The SVD step introduces
only negligible overhead for T ≥ 100. Although Fig. 4(d) shows that T = 500 or 1,000 yields
strong training performance, the differences among T ∈ {500, 1000, 2000} are relatively small. We
therefore set T =2,000 in our main experiments to reflect practical, large-scale pre-training scenarios,
where a larger T reduces the frequency of preconditioner updates without sacrificing performance.
This choice further highlights Conda’s robustness to the hyperparameter T , simplifying tuning and
improving usability in real-world deployments.

So the decision to use T = 2000 was motivated by practical considerations rather than computational
limitations. Conda maintains stable performance and minimal overhead across a wide range of T
values, making it an efficient and scalable choice for large-scale model training.

A.4 PROOFS OF LEMMAS

Muon Optimizer. Muon update the parameters as follows:





Mt = µMt−1 +Gt,

Ot = NewtonSchulz5(Mt),

Wt = Wt−1 − ηOt,

(1)
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Lemma 1. For Muon in Eqn. equation 1, it can be reformulated into the following equivalent one:




Mt = µMt−1 +Gt,

Ut,Σt,V
⊤
t = SVD(Mt),

M′
t = U⊤

t Mt,

Nt = diag(Σt)1
⊤
n ,

Wt = Wt−1 − ηUt(M
′
t/Nt).

(2)





Mt = µMt−1 +Gt,

Ut,Σt,V
⊤
t = SVD(Mt),

M′
t = MtVt,

Nt = 1mdiag(Σt)
⊤,

Wt = Wt−1 − η(M′
t/Nt)V

⊤
t .

(3)

where diag(Σt) maps the singular values into a vector of dimension Rmin(m,n), and 1n ∈ Rn

denotes a vector whose entries are always ones.

Proof. Let Mt ∈ Rm×n. We consider two cases.

Case 1: m < n. Denoting UtΣtV
⊤
t be the SVD of Mt with Ut ∈ Rm×m,Σt ∈ Rm×m,Vt ∈

Rn×m, we have

Ot =UtV
⊤
t

=UtΣ
−1
t U⊤

t UtΣtV
⊤
t

=UtΣ
−1
t U⊤

t Mt

=Ut
U⊤

t Mt

diag(Σt)1⊤
n

(4)

where 1n ∈ Rn and diag(Σt) ∈ Rm.

Case 2: m ≥ n. Denoting UtΣtV
⊤
t be the SVD of Mt with Ut ∈ Rm×n,Σt ∈ Rn×n,Vt ∈ Rn×n,

we have
Ot =UtV

⊤
t

=UtΣtV
⊤
t VtΣ

−1
t V⊤

t

=MtVtΣ
−1
t V⊤

t

=
MtVt

1mdiag(Σt)⊤
V⊤

t

(5)

where 1m ∈ Rm and diag(Σt) ∈ Rn.

The expressions (4) and (5) must be computed in a specific order to preserve equivalence with
Ot = UtV

⊤
t . In both cases, the matrix product in the numerator must be computed first, followed by

element-wise division with the denominator matrix (e.g., diag(Σt)1
⊤
n or 1mdiag(Σt)

⊤), and finally
followed by the remaining matrix multiplication. Element-wise division and matrix multiplication
are not interchangeable, computing them out of order would yield incorrect results.

Lemma 2. For Muon in Eqn. equation 2, its parameter update can be rewritten as

Ot=Ut(M
′
t/Nt)=

[
m∑

i=1

1

Σt,i,i
U

(i)
t Mt,:1,

m∑

i=1

1

Σt,i,i
U

(i)
t Mt,:2, . . . ,

m∑

i=1

1

Σt,i,i
U

(i)
t Mt,:n

]
, (6)

where Σt,i,i denotes the i-th singular value in Σt, U
(i)
t = Ut,:iU

⊤
t,:i in which Ut,:i is the i-th column

of Ut. In contrast, the update in Conda is equivalent to

Ot=Ut
M′

t√
Nt

=

[
m∑

i=1

1√
Nt,i,1

U
(i)
t Mt,:1,

m∑

i=1

1√
Nt,i,2

U
(i)
t Mt,:2, . . . ,

m∑

i=1

1√
Nt,i,n

U
(i)
t Mt,:n

]
,

(7)

where Nt,i,j denotes the (i, j)-th value in matrix Nt.

Proof. For Muon:

Ot=Ut(M
′
t/Nt)=

[
Ut

U⊤
t Mt,:1

Nt,:1
,Ut

U⊤
t Mt,:2

Nt,:2
, . . . ,Ut

U⊤
t Mt,:n

Nt,:n

]
(8)
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where Nt,:j means the j-th column of Nt. For the j-th column of Ot, we have

Ut
U⊤

tMt,:j

Nt,:j
=[Ut,:1,Ut,:2, · · · ,Ut,:m]




U⊤
t,:1Mt,:j

Nt,1,j

U⊤
t,:2Mt,:j

Nt,2,j

...
U⊤

t,:mMt,:j

Nt,m,j



=

m∑

i=1

Ut,:i

U⊤
t,:iMt,:j

Nt,i,j
=

m∑

i=1

1

Σt,i,i
U

(i)
t Mt,:j

For Conda:

Ot=Ut
M′

t√
Nt

=

[
Ut

U⊤
t Mt,:1√
Nt,:1

,Ut
U⊤

t Mt,:2√
Nt,:2

, . . . ,Ut
U⊤

t Mt,:n√
Nt,:n

]
(9)

where
√
Nt,:j means the j-th column of

√
Nt. For the j-th column of Ot, we have

Ut
U⊤

tMt,:j√
Nt,:j

=[Ut,:1,Ut,:2, · · · ,Ut,:m]




U⊤
t,:1Mt,:j√
Nt,1,j

U⊤
t,:2Mt,:j√
Nt,2,j

...
U⊤

t,:mMt,:j√
Nt,m,j



=

m∑

i=1

Ut,:i

U⊤
t,:iMt,:j√
Nt,i,j

=

m∑

i=1

1√
Nt,i,j

U
(i)
t Mt,:j

A.5 PSEUDOCODE FOR CONDA

Algorithm 1 Column-Normalized Adam (Conda)
1: Input: Weight matrix W ∈ Rm×n, with m ≤ n, learning rate η, RMS scale factor α, decay

rates β1, β2, subspace update frequency T .
2: Initialize t← 0, M0 ← 0, V0 ← 0
3: repeat
4: compute minibatch gradient Gt

5: Mt ← β1Mt−1 + (1− β1)Gt

6: if t mod T = 0 then
7: Ut,Σt,V

⊤
t ← SVD(Mt), Ūt ← Ut

8: else
9: Ūt ← Ūt−1

10: end if
11: M′

t ← Ū⊤
t Mt

12: Nt ← β2Vt−1 + (1− β2)(Ū
⊤
t Gt)

2

13: M′
t ←M′

t/(1− β⊤
1 ), Nt ← Nt/(1− β⊤

2 )
14: Wt ←Wt−1 + ηŪtM

′
t/(
√
Vt + ϵ)

15: t← t+ 1
16: until convergence criteria is met
17: return Wt

In our experiments, we observe that the choice of projection matrix affects performance depending on
the dimensions of the weight matrix W ∈ Rm×n. Specifically, when m ≤ n, using a left projection
matrix U⊤

t yields better results. Conversely, when m > n, a right projection matrix Vt is preferred.
Following the design in Liu et al. (2025), we also introduce a scale factor, which can be interpreted
as a proportional adjustment between the learning rates for one-dimensional and two-dimensional
parameters. In practice, the scale factor is selected via hyperparameter tuning based on validation
performance.

Listing 1: Conda code skeleton using Pytorch. Anonymous code is available at: https://
anonymous.4open.science/r/Conda.
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import torch
import math
from torch.optim import Optimizer

class Conda(Optimizer):
def __init__(self, params, lr=1e-3, betas=(0.9, 0.99), eps=1e-8,

weight_decay=0.0, correct_bias=True, update_proj_gap
=2000, scale=1.0):

defaults = dict(lr=lr, betas=betas, eps=eps,
weight_decay=weight_decay, correct_bias=

correct_bias,
update_proj_gap=update_proj_gap, scale=scale)

super().__init__(params, defaults)

@torch.no_grad()
def step(self, closure=None):

for group in self.param_groups:
for p in group["params"]:

if p.grad is None or p.grad.is_sparse or p.grad.ndim !=
2:
continue

grad = p.grad.data
state = self.state[p]

if len(state) == 0:
state["step"] = 0
state["exp_avg"] = torch.zeros_like(p.data)
state["exp_avg_sq_proj"] = None
state["proj_basis"] = None
state["proj_type"] = None

exp_avg = state["exp_avg"]
beta1, beta2 = group["betas"]
state["step"] += 1
step = state["step"]

exp_avg.mul_(beta1).add_(grad, alpha=1 - beta1)

if step % group["update_proj_gap"] == 0 or state["
proj_basis"] is None:
U, _, Vh = torch.linalg.svd(exp_avg, full_matrices=

False)
if grad.shape[0] <= grad.shape[1]:

state["proj_basis"] = U
state["proj_type"] = "left"

else:
state["proj_basis"] = Vh
state["proj_type"] = "right"

P = state["proj_basis"]
if state["proj_type"] == "left":

G_proj = P.T @ grad
M_proj = P.T @ exp_avg

else:
G_proj = grad @ P.T
M_proj = exp_avg @ P.T

if state["exp_avg_sq_proj"] is None:
state["exp_avg_sq_proj"] = torch.zeros_like(G_proj)

exp_avg_sq_proj = state["exp_avg_sq_proj"]
exp_avg_sq_proj.mul_(beta2).addcmul_(G_proj, G_proj,

value=1 - beta2)

bc1 = 1 - beta1 ** step if group["correct_bias"] else 1.0
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bc2 = 1 - beta2 ** step if group["correct_bias"] else 1.0
M_proj = M_proj / bc1
V_hat = exp_avg_sq_proj / bc2
denom = V_hat.sqrt().add_(group["eps"])

if state["proj_type"] == "left":
update = P @ (M_proj / denom)

else:
update = (M_proj / denom) @ P

update.mul_(group["scale"])
p.data.add_(-group["lr"] * update)

if group["weight_decay"] > 0.0:
p.data.add_(p.data, alpha=-group["lr"] * group["

weight_decay"])

Table 10: Architecture hyperparameters of LLaMA models for evaluation. Data amount are specified
in tokens.

Params Hidden Intermediate Heads Layers Steps Data amount

60M 512 1376 8 8 10K 1.3 B
130M 768 2048 12 12 20K 2.6 B
350M 1024 2736 16 24 60K 7.8 B
1 B 2048 5461 24 32 100K 13.1 B
7 B 4096 11008 32 32 150K 19.7 B

A.6 DETAILED PRE-TRAINING SETTING

In this section, we provide a detailed description of the pre-training setup, including the architectures
of LLaMA and GPT-2, as well as the hyperparameters used.

LLaMA series Following Zhao et al. (2024), we adopt most of the hyperparameters for LLaMA
models across different model sizes as shown in Table 10. We use a max sequence length of 256 for
all models, with a batch size of 131K tokens. For all experiments, we adopt learning rate warmup for
the first 10% of the training steps and use cosine annealing for the learning rate schedule, decaying to
10% of the initial learning rate. In addition, for models smaller than 1B parameters, we set the weight
decay to 0 and apply global gradient clipping with a threshold of 0. For models with 1B parameters
or larger, we set the weight decay to 0.1 and use global gradient clipping with a threshold of 1.0.

For Conda, we employ a unified set of hyperparameters across all model sizes ranging from 60M
to 1B parameters. We use a learning rate of 0.01, betas of (0.9, 0.99), scale factor of 0.25, and a
subspace update frequency of T = 2, 000.

For all baselines and each model size (ranging from 60M to 350M parameters), we tune the learning
rate and select the optimal value based on the lowest validation perplexity. For AdamW, since larger
learning rates (greater than 1e-3) tend to cause spikes in the training loss (Zhao et al., 2024), we
search over {1e− 3, 7e− 4, 5e− 4, 3e− 4, 1e− 4}. For Muon, following Liu et al. (2025), which
matches the update RMS to that of AdamW, we directly use the best learning rate identified for
AdamW. For Adafactor and SOAP, the optimal learning rate is selected from {5e− 3, 4e− 3, 3e−
3, 2e − 3, 1e − 3, 5e − 4, 1e − 4}. Due to computational resource constraints, we are unable to
perform exhaustive learning rate tuning for all methods on the 1B model. Therefore, for the 1B
model, we adopt the best learning rate found for the 350M model for each method, provided that
training remains stable without significant fluctuations. The optimal learning rates for all methods
and model sizes are summarized in Table 11. In addition, we provide a sensitivity analysis of Conda,
Muon, and Adam to different learning rates; detailed results can be found in Appendix 7.
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Table 11: Selected learning rates for each opti-
mizer across different LLaMA model sizes.

Learning rate 60M 130M 350M 1B

AdamW 1e-3
Muon 1e-3
Adafactor 3e-3 3e-3 1e-3 1e-3
SOAP 2e-3 2e-3 1e-3 1e-3
Conda (Ours) 1e-2

Table 12: Selected values of (β1, β2) for each
optimizer across different LLaMA model sizes.

(β1, β2) 60M 130M 350M 1B

AdamW (0.9, 0.999)
Muon —
Adafactor β1 = 0.9
SOAP (0.9, 0.99) (0.9, 0.95)
Conda (Ours) (0.9, 0.99)

We also conduct a grid search over other hyperparameters for all optimizers. As shown in Table 12,
for AdamW, we follow the settings in Zhao et al. (2024); Zhu et al. (2024); Chen et al. (2024); Huang
et al. (2025), using β1 = 0.9 and β2 = 0.999. For Muon,we set µ = 0.95, since one-dimensional
parameters require Adam for training, we accordingly adopt β1 = 0.9 and β2 = 0.95 for Adam in
this case. For Adafactor, we use β1 = 0.9. For SOAP, we use β1 = 0.9 and β2 = 0.99 for models
smaller than 1B parameters, and β1 = 0.9 and β2 = 0.95 for models with 1B parameters or larger.
All other optimizer hyperparameters not otherwise specified are set to their default values.

GPT-2 series Following the experimental setup in Sophia (Liu et al., 2023a), we pre-train GPT-2
Small (125M parameters) and GPT-2 Medium (355M parameters) (Radford et al., 2019) on the
OpenWebText dataset (Gokaslan & Cohen, 2019) using the nanoGPT implementation (Karpathy,
2022). We use a batch size of 480, a sequence length of 1024, a cosine learning rate decay schedule
with 2000 warm-up iterations, global gradient clipping with a threshold of 1.0, and train all models
for 100,000 steps. The detailed architecture hyperparameters for GPT-2 are provided in Table 13.

For the AdamW baseline, we adopt the hyperparameter settings from Sophia (Liu et al., 2023a), who
performed extensive hyperparameter searches that have become the de facto standard for training
GPT-2. For Muon, as mentioned above, we can directly use the same hyperparameter settings as
AdamW. However, due to computational resource constraints, we are unable to perform extensive
hyperparameter searches for all other methods. Therefore, for fairness, we scale the learning rates of
other methods (including Conda) according to their relative ratios to AdamW as used on LLaMA-1B.
Specifically, AdamW, Adafactor, and SOAP all use a learning rate of 1e-3 on LLaMA-1B, while
Conda uses 1e-2. Accordingly, on GPT-2 125M, Adafactor and SOAP are assigned the same learning
rate as AdamW, i.e., 6e-4, while Conda uses a learning rate ten times that of AdamW, i.e., 6e-3.
The same scaling strategy is applied for GPT-2 355M. All other hyperparameters in Conda remain
consistent with those used in the LLaMA experiments, including an scale factor of 0.25 and a
subspace update frequency T = 2000. Detailed hyperparameter settings are summarized in Table 14.

Table 13: Architecture hyperparameters of GPT-2 models for evaluation. Data amount are specified
in tokens.

Params Heads Layers demb Steps Data amount

125M 12 12 768 100K 49.2B
355M 16 24 1024 100K 49.2B

Table 14: Experimental hyperparameters for GPT-2 models.

Hyperparameter GPT-2 AdamW Muon Adafactor SOAP Conda (Ours)

Max learning rate small (125M) 6e-4 6e-3
medium (355M) 3e-4 3e-3

Min learning rate small (125M) 3e-5 3e-5
medium (355M) 6e-5 6e-5

Weight decay small/medium 1e-1 1e-2

(β1, β2) small/medium (0.9, 0.95) — (0.9, 0.95) (0.9, 0.99)
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Table 15: Hyperparameters for fine-tuning different LLaMA models using Conda on commonsense
reasoning tasks.

Model LLaMA-7B LLaMA3.2-1B LLaMA3-8B

Rank r 32
α 64

Scale 1.0
Update Frequency T 200

Dropout 0.05
LR 1e-4 3e-4 1e-4

LR Scheduler Linear
Batch size 16

Warmup Steps 100
Epochs 3
Where Q, K, V, Up, Down

A.7 DETAILED FINE-TUNING SETTING

Following Liu et al. (2024b), we evaluate the effectiveness of Conda in supervised fine-tuning. Since
LoRA (Hu et al., 2022) is one of the most widely adopted parameter-efficient fine-tuning methods,
we adopt it as the fine-tuning method and compare Conda with the standard AdamW baseline under
identical LoRA settings. Specifically, we fine-tune LLaMA-7B, LLaMA3.2-1B, and LLaMA3-8B on
the Commonsense170K dataset (Hu et al., 2023), and assess their generalization on commonsense
reasoning benchmarks (Clark et al., 2019; Bisk et al., 2020; Sap et al., 2019; Sakaguchi et al., 2021;
Clark et al., 2018; Mihaylov et al., 2018; Zellers et al., 2019). Detailed hyperparameters are provided
in Table 15.

A.8 CONCEPTUAL AND ALGORITHMIC DIFFERENCES FROM SOAP

On the novelty of Conda’s design motivation. The design of Conda is motivated by a fundamen-
tally different perspective: to integrate the coordinate-wise adaptivity of Adam into the spectrally
normalized framework of Muon—a direction that none of the aforementioned methods explicitly
pursue. To this end, our work introduces a novel reformulation of Muon, which reveals conceptual
connections to widely-used adaptive optimizers such as Adam and Adafactor. This reformulation not
only provides a deeper theoretical understanding of Muon’s behavior, but also serves as a foundation
for principled algorithmic improvements. Building upon this reformulation, we further investi-
gate how to effectively incorporate Adam-style adaptivity. Specifically, we experimented with two
approaches for estimating the second-moment statistics:

(i) using the original (vanilla) second-moment estimator from Adam.

(ii) computing the second-moment estimate from projected gradients in the same subspace as the first
moment.

We found that the native second-moment estimator, which is not aligned with the subspace of the
first moment, leads to instability and even divergence in the training of larger models. In contrast,
using the projected gradients to compute the second-moment estimate ensures consistency between
the curvature estimation and the update direction, thereby stabilizing training. As a result, Conda
achieves a principled integration of spectral conditioning and coordinate-wise adaptivity. Importantly,
we view Conda not merely as an improved version of Muon, but also as a vehicle to raise a broader
and promising question:

How can we design new second-moment estimators, grounded in the novel reformulation of Muon,
that simultaneously achieve strong spectral conditioning and retain the full coordinate-wise adaptivity
of Adam?

We believe this direction opens up exciting opportunities for future research. In contrast, SOAP
reveals that Shampoo can be interpreted as Adafactor operating in the eigenbasis of its preconditioner,
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thereby establishing a conceptual connection between the two optimizers. It leverages this insight to
propose a simplified variant that performs Adam-style updates within the same eigenbasis.

Algorithmic formulation and empirical performance. SOAP construct the projection subspace QL

by first computing the second-moment matrix L = β3L+(1−β3)GG⊤ and R = β3R+(1−β3)G
⊤G,

followed by eigenvalue decomposition. In contrast, Conda eliminates the need to compute any second-
moment statistics and directly obtains the projection subspace U through singular value decomposition
(SVD) of the first-moment estimate. On the one hand, it is known that gradient matrices in deep
networks often exhibit significant outliers (Xi et al., 2023; Anil et al., 2019). Computing GG⊤ tends
to exacerbate these outliers, and since eigenvectors in eigenvalue decomposition are sensitive to
perturbations (Stewart, 1998), the resulting subspace estimation becomes less reliable, potentially
impairing convergence speed. By contrast, Conda defines the orthogonal subspace on the momentum,
which effectively suppresses the noise introduced by stochastic gradient estimates and yields a more
accurate and stable subspace estimate.

On the other hand, in comparison to Conda, maintaining the second-moment matrix L and R intro-
duces not only an additional hyperparameter β3, but also extra memory overhead. Furthermore, we
note that SOAP employs a much higher projection update frequency (i.e., T = 10) in the experiments,
whereas Conda uses T = 2000, resulting in significantly lower runtime overhead for Conda. This
efficiency is enabled by using momentum to define the subspace, which suppresses gradient noise,
stabilizes update directions, and promotes more consistent traversal of the loss landscape—thereby
allowing infrequent updates without sacrificing performance.
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