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ABSTRACT

In-context learning (ICL) converts static encoders into task-conditioned reason-
ers, enabling adaptation to new data from just a few examples without updating
pretrained parameters. This capability is essential for graph foundation models
(GFMs) to approach LLM-level generality. Yet current GFMs struggle with cross-
domain alignment, typically relying on modality-specific encoders that fail when
graphs are pre-vectorized or raw data is inaccessible. In this paper, we introduce
Modality-Free Graph In-context Alignment (MF-GIA), a framework that makes a
pretrained graph encoder promptable for few-shot prediction across heterogeneous
domains without modality assumptions. MF-GIA captures domain characteristics
through gradient fingerprints, which parameterize lightweight transformations that
align pre-encoded features and indexed labels into unified semantic spaces. During
pretraining, a dual prompt-aware attention mechanism with episodic objective
learns to match queries against aligned support examples to establish prompt-based
reasoning capabilities. At inference, MF-GIA performs parameter-update-free
adaptation using only a few-shot support set to trigger cross-domain alignment and
enable immediate prediction on unseen domains. Experiments demonstrate that
MF-GIA achieves superior few-shot performance across diverse graph domains
and strong generalization to unseen domains. The code is anonymously available
here.

1 INTRODUCTION

Table 1: Comparison of methods with respect to
the three main criteria of true ICL.

Method Post-Training Free Domain Alignment Modality-Free

SSL-GNN ✗ ✗ ✓
All in One (Sun et al., 2023) ✗ ✗ ✓
GPF (Fang et al., 2023) ✓ ✗ ✓
GCOPE (Zhao et al., 2024) ✗ ✓ ✓
GFT (Wang et al., 2024b) ✗ ✓ ✗
Prodigy (Huang et al., 2023) ✓ ✗ ✓
Unigraph (He et al., 2025a) ✓ ✓ ✗
AutoGFM (Chen et al., 2025) ✗ ✓ ✗
GraphAlign (Hou et al., 2024) ✓ ✓ ✗
OFA (Liu et al., 2024a) ✓ ✓ ✗
GOFA (Kong et al., 2025) ✓ ✓ ✗

MF-GIA ✓ ✓ ✓

The remarkable success of Large Language
Models (LLMs) has fundamentally revolution-
ized AI, with in-context learning (Brown et al.,
2020; Zhang et al., 2023; Lu et al., 2022) emerg-
ing as a pivotal capability that enables these
models to adapt to new tasks through mere expo-
sure to a few demonstration examples, without
any parameter updates like fine-tuning. This
paradigm shift, from task-specific fine-tuning
to prompt-based adaptation, naturally sparks a
profound question for the graph learning com-
munity: Can we achieve similar foundation-level generality for graph-structured data? Unlike
sequential text where context flows naturally, graphs encode complex topological patterns, multi-
hop dependencies, and heterogeneous node and edge attributions that demand fundamentally new
approaches to demonstration selection, prompt design, and reasoning.

Achieving true graph in-context learning demands three fundamental criteria that remain elusive in
existing methods. First, post-training-free inference is essential for genuine ICL, where models
must adapt to new tasks through demonstrations alone, without fine-tuning or learnable prompt
engineering. Second, cross-domain alignment enables a single model to reason across diverse
graph types within a unified semantic space, mirroring LLMs’ domain-agnostic capabilities. Third,
modality-free operation ensures that the model can process arbitrary pre-encoded graphs without
requesting raw data, crucial for the heterogeneous domains of real-world graphs. As shown in
Table 1, prior approaches fall short of meeting all three criteria at once: self-supervised GNNs (You
et al., 2020; Qiu et al., 2020) and GFMs like All in One (Sun et al., 2023), GCOPE (Zhao et al.,
2024), and GFT (Wang et al., 2024b) compromise ICL through required post-training on downstream
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graphs, where All in One trains task-specific prompts while GCOPE and GFT require fine-tuning;
GPF (Fang et al., 2023) and Prodigy (Huang et al., 2023) lack cross-domain alignment, limiting
their generalization on graphs from unseen domains; recent advances like UniGraph (He et al.,
2025a) and OFA (Liu et al., 2024a) achieve alignment and post-training-free inference, yet sacrifice
modality freedom by requiring conversion to a single unified modality (e.g., text-attributed graphs)
for alignment, making them inapplicable when raw data are inaccessible or when graphs are already
pre-encoded by domain-specific pipelines. More related work is elaborated in Appendix A.

In this work, we present Modality-free Graph In-context Alignment (MF-GIA), the first GFM to
achieve all three criteria for true in-context learning on graphs. Our key insight is that the interaction
between a graph and a shared frozen encoder reveals its domain characteristics, which can be
captured by a gradient fingerprint: a single-step parameter update that encodes how features, labels,
and structure jointly influence the model. This fingerprint drives lightweight domain-conditioned
transformations that align pre-encoded features and graph-local label IDs into unified semantic
spaces, where related domains occupy neighboring subspaces while preserving intra-domain geometry,
thereby achieving modality-free domain alignment. The aligned features and labels are then processed
by Dual Prompt-Aware Attention (DPAA) optimized with an episodic objective that learns to match
queries against support examples. This approach establishes prompt-based in-context reasoning
that simulates the few-shot scenarios faced at test time. At inference, given a few labeled examples
as prompts, MF-GIA computes the fingerprint, instantiates the aligners, and performs parameter-
update-free prediction on unseen domains. Experiments across diverse benchmarks demonstrate that
MF-GIA excels at few-shot node-level tasks, generalizes to entirely unseen domains, and transfers
seamlessly to edge-level tasks, bringing GFMs closer to the universal in-context learning exhibited
by LLMs.

2 PRELIMINARIES

Following the ICL setup of the pioneering work Prodigy, we study few-shot, prompt-based node
and edge classification. In this section, we formalize ICL as episodic classification over graphs and
introduce a modality-free alignment perspective that standardizes features and labels across domains.

2.1 GRAPH IN-CONTEXT LEARNING

Let G = {G1, G2, · · · , GM} denote a collection of M graphs drawn from heterogeneous domains,
where each graph Gi = (Vi, Ei,Xi,Yi) comprises a node set Vi, an edge set Ei ⊆ Vi × Vi, node
features Xi = {xi,1, · · · , xi,|Vi|} ∈ R|Vi|×di , and labels Yi. The node features Xi may exist in
domain-specific formats (e.g., dense vectors, categorical attributes, IDs), with potentially different
dimensions di. To pretrain a universal model across these graphs with a common input width,
following (Yu et al., 2025; Zhao et al., 2024), we first unify feature dimensions to do by applying
SVD on each Xi ← SVD(Xi) ∈ R|Vi|×do . Depending on the task, Yi is either a node-label vector
Ynode

i = {0, 1, · · · , Cnode
i − 1}|Vi| or an edge-label vector Yedge

i = {0, 1, · · · , Cedge
i − 1}|Ei|, where

Cnode
i and Cedge

i denote the number of node and edge classes in Gi, respectively. A universal GNN
encoder fθ : Rdo → Rd maps graph items (nodes or edges) to d-dimensional representations. For
node classification, the representation of v ∈ Vi is hi,v = fθ(v;Gi) ∈ Rd. For edge classification,
we analogously obtain hi,e = fθ(e;Gi) for e ∈ Ei using endpoint features and structure as needed.
We use the generic symbol w to denote an item (w = v or w = e).

Given G as a pretraining corpus with M graphs and a target graph Gnew = (Vnew, Enew,Xnew,Ynew)
from an unseen domain with Cnew classes, graph in-context learning aims to classify graph items in
Gnew using a few labeled examples per class as in-context demonstrations, without updating model
parameters. Formally, the graph ICL operates in two phases. During pretraining, we learn a unified
model MΦ : G → Y on the corpus G. At test time, given a support set S = {(wj , yj)}k·Cnew

j=1

containing k labeled graph items per class from Gnew as prompts, the model predicts labels for query
items Q = {q : q ∈ Gnew\S} as:

ŷq =MΦ (q,Gnew ,S) , ∀q ∈ Q, (1)

where the pretrained modelMΦ is parameterized by Φ. Crucially, Φ remains frozen during inference,
so the model leverages the in-context demonstrations in S to adapt to the new domain without
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Figure 1: Overview of MF-GIA. (Left) Modality-free Alignment: The pretraining graphs are
mapped to a unified space via domain-conditioned transformations. Domain descriptors e ensure
similar domains occupy neighboring subspaces. (Middle) Episodic Pretraining: The model learns
from m-way k-shot episodes using domain-aligned features and labels. The DPAA mechanism
matches queries to classes using only prompts as context. (Right) In-context Prediction: For an
unseen graph, the frozen model performs few-shot classification using the support set as a prompt.

fine-tuning. For example, considerMΦ pretrained on citation and E-commerce networks. When
tested on a social network Gnew from an unseen domain, the model can classify users in Gnew without
fine-tuning. Instead, we provide a support set containing a few labeled users from each class. By
leveraging these in-context demonstrations as prompts,MΦ identifies patterns between the support
examples and query users to classify the remaining users, all while keeping its parameters frozen.

Episodic Meta Learning. To enable in-context adaptation, we adopt an episodic training
paradigm (Vinyals et al., 2016; Li et al., 2019). Specifically, for each pretraining graph Gi ∈ G, we
construct m-way k-shot episodes by sampling m classes and k examples per class as a support set
S, with additional samples as queries Q. The modelMΦ consumes (Gi,S) as the prompt and is
optimized to maximize the likelihood of the ground-truth labels on Q:

min
Φ

E[− 1

|Q|
∑
q∈Q

log p̂ (yq | q,S, Gi)]. (2)

This episodic formulation teaches the model to recognize patterns from limited examples. By
pretraining on numerous episodes that simulate the few-shot scenarios encountered at test time, the
model acquires the capacity to perform in-context reasoning. At inference, this enables adaptation to
new domains through few-shot prompts alone, with all pretrained parameters Φ remaining frozen.

2.2 MODALITY-FREE ALIGNMENT

The pretraining graphs in G often differ in both input modalities and label systems. Features range
from dense vectors to categorical attributes or domain-specific identifiers. Likewise, label spaces are
graph-local and vary in cardinality, with no global alignment across domains. These heterogeneities
make direct in-context transfer across graphs challenging.

Recent GFMs (Wang et al., 2024b; He et al., 2025a; Liu et al., 2024a) attempt to unify graphs from
heterogeneous domains with Text-Attributed Graphs (TAGs), which convert all features and labels
to natural language, then map them with language models into shared semantic spaces. However,
this approach has fundamental limitations. Real-world graph data is typically already vectorized
through domain-specific methods, such as word2vec (Mikolov et al., 2013) for documents, molecular
fingerprints (Rogers & Hahn, 2010) for compounds, and user behavior embeddings (Pan & Ding,
2019). Converting these optimized representations to text and back introduces information loss and
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computational overhead. Furthermore, privacy constraints often restrict access to raw data, and data
providers usually release only pre-encoded datasets, making modality-aware conversions infeasible
in sensitive domains. Instead, we adopt a modality-free alignment perspective, which aligns graphs
directly in their existing representations without modality-aware conversion.

Definition 1. (Modality-free Alignment) Let {(Gi, Li)}Mi=1 be graphs from M domains, whose
item features are already pre-encoded by (unknown) domain-specific pipelines, Xi ∈ Rdo , and
whose labels have been indexed by Li = {0, · · · , Ci − 1}. A modality-free alignment is a domain-

conditioned transformation system T =
{
(Kfeat

i ,Klabel
i )

}M

i=1
with:

Kfeat
i : Rdo → Rd (feature alignment) and Klabel

i : Li → Rd (label alignment) (3)

that maps domain-specific features and label IDs directly into a unified d-dimensional feature space
and label space, respectively, without reconstructing or converting to any intermediate modality. The
transformations should be conditioned on the domain descriptors ei ∈ Rde that capture domain
characteristics of Gi, such that for any two domain i, j,

∥Kfeat
i −K

feat
j ∥ ∝ ∥ei − ej∥ and ∥Klabel

i −Klabel
j ∥ ∝ ∥ei − ej∥. (4)

This ensures that similar domains with close descriptors ei ≈ ej produce similar transformations,
causing their aligned features and labels to occupy neighboring subspaces in the unified space.

Fig. 1-left illustrates the idea intuitively. Modality-free alignment maps every graph into a unified
semantic space according to domain relationships: graphs from related domains (e.g., two citation
networks G1 and G2) have similar domain descriptors and thus map to neighboring subspaces,
whereas unrelated domains (social network G3) sit far away. The domain-conditioned transformations
Kfeat

i and Klabel
i project each graph’s pre-encoded features and indexed labels into unified feature

and label spaces, preserving intra-domain semantics while enabling cross-domain transfer. This
is essential because numerically similar feature vectors from different domains can carry entirely
different meanings (each domain’s encoder defines its own coordinate system), and indexed label IDs
[0, 1, 2, · · · ] are reused with domain-specific semantics. Modality-free alignment reconciles these
differences by calibrating features and labels via the domain descriptor, unifying them in shared
spaces without requiring any knowledge of the original data modality like TAGs.

3 MF-GIA: MODALITY-FREE GRAPH IN-CONTEXT ALIGNMENT

In this section, we present MF-GIA for enabling in-context learning across heterogeneous graph
domains without modality-specific priors. MF-GIA addresses the fundamental challenge of aligning
graphs with incompatible feature spaces and label systems through three key components: (1) domain
embedder encodes domain characteristics, (2) domain-conditioned alignment maps pre-encoded
features and indexed labels to unified spaces, and (3) episodic pretraining realizes few-shot adaptation
during pretraining. We then describe in-context inference on graphs from unseen domains.

3.1 DOMAIN EMBEDDER

one gradient step

Figure 2: Domain embedder.

Reliable domain embeddings are the pivot of MF-GIA: they
summarize graphs’ domain characteristics, parameterize the
domain-conditioned aligners (Kfeat

i ,Klabel
i ), and ensure that

graphs with related domains are mapped to neighboring sub-
spaces while preserving intra-/cross- domain semantics. Prior work represents graph domains using
learnable tokens, but depends on external signals, such as domain labels (Yu et al., 2025) or modality
metadata (He et al., 2025a), which are often unavailable in practice. We instead induce the domain
embeddings {ei}Mi=1 directly from each graph’s intrinsic properties by capturing the interactions
between the graph and a shared encoder, without external signals. Starting from a single shared
weight initialization θ0 ∈ Rdo×d for a one-layer GNN encoder followed by a fixed all-ones projection
matrix 1d×Ci

from embedding to label space as shown in Fig. 2, we take a single gradient step on each
pretraining graph Gi ∈ G as θi = θ0 − η∇θLi (θ0), where η is a small learning rate uniformly set to
0.01 and Li is the task loss w.r.t. the available labels on Gi. The resulting single-step displacement
∆θi = θi − θ0 serves as a gradient fingerprint that captures how the graph’s features, labels, and
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structure jointly influence the shared encoder. Intuitively, graphs with similar gradient patterns are
likely to come from related domains, making ∆θi a natural descriptor of domain-level information.
To obtain compact domain embeddings, we project these fingerprints through a learnable domain
embedder fϕde : Rdo×d → Rde :

ei = fϕde (∆θi) = MLP (Flatten (Conv2D (∆θi))) ∈ Rde , (5)
where the fingerprint ∆θi ∈ Rdo×d is treated as a single-channel image to be embedded. The
embedder fϕde is trained to preserve domain relationships by minimizing:

Lde =
∑

Gi,Gj∈G

(
∥∆θi −∆θj∥F − ∥ei − ej∥2

)2
, (6)

so that pairwise relationships among graphs are retained in the embedding space. This approach
naturally captures domain characteristics without domain labels or modality priors, as the gradient
pattern inherently reflects the unique way each domain’s data distribution interacts with the shared
model initialization.

The domain embedding induced by the gradient fingerprint is central to MF-GIA, and the subsequent
alignment operations are established on it. To justify its effectiveness, we provide a theoretical analysis
showing that this embedding faithfully preserves domain characteristics (Proof in Appendix B.1).
Definition 2. (Graph Domain) A graph domain Di is characterized by a joint distribution Pi(G,Y)
over graphs G = (V,E,X) and labels Y, where the feature distribution Pi(X), label distribution
Pi(Y), and structure distribution Pi(E|V ) jointly define the domain characteristics.

Then we define the domain distance used in Eq. (8) to measure the inherent similarity between
domains.
Definition 3. (Domain Distance) The distance between two domains Di and Dj is measured by the
Wasserstein distance:

W2 (Di,Dj) = inf
κ∈Γ(Pi,Pj)

(
E(Gi,Gj)∼κ

[
d2G(Gi, Gj)

])1/2
, (7)

where Γ (Pi, Pj) denotes all joint distributions with marginals Pi and Pj , dG(Gi, Gj) is a graph
distance metric that captures both feature and structural differences between graphs.
Definition 4 (Graph Distance). For two graphs Gi = (Vi, Ei, Xi) and Gj = (Vj , Ej , Xj)
with normalized adjacency matrices Ai and Aj , we define the graph distance as dG (Gi, Gj) =
∥Xi −Xj∥F +∥Ai −Aj∥F , where we assume |Vi| = |Vj | (padding with isolated nodes if necessary
for comparison).
Theorem 3.1. Let Gi and Gj be graphs sampled from domains Di and Dj respectively, with
corresponding gradient fingerprints ∆θi,∆θj ∈ Rdo×d computed using task loss Li and Lj (e.g.,
cross-entropy). The domain embedder fϕde produces domain embeddings ei and ej . Assuming every
task loss L is Ltask-smooth with respect to model parameters, and fϕde has Lipschitz constant Lde,
the domain embeddings preserve domain relationships:

∥ei − ej∥2 ≤ C̃ · W2 (Di,Dj) (8)

whereW2(·, ·) measures inherent distance between two domains, and C̃ is a constant.

This upper bound ensures that if two domains are inherently similar, their embeddings learned by
fϕde will be close in the embedding space, while dissimilar domains produce distant embeddings.

In-context Domain Embedding. For a downstream graph Gnew from an unseen domain, we
compute its domain embedding using the same fingerprinting process. Given a few labeled items
S = {(wi, yi))}k·Cnew

i=1 as a Cnew-way k-shot prompt from Gnew, we perform a single gradient step
from the same initialization θ0, which is a component of the pretraining model M (θ0 ∈ Φ), as
θnew = θ0 − η∇θLnew(θ0,S), where Lnew is computed using only the prompt S. The in-context
domain embedding of Gnew is then computed by passing the gradient fingerprint through the pretrained
domain embedder:

enew = fϕde(θnew − θ0). (9)
This process automatically captures Gnew’s characteristics and positions it within the learned domain
space. Since the domain embedder fϕde has been trained to preserve domain relationships during
pretraining, it naturally maps the new graph’s fingerprint to an appropriate location based on the
knowledge learned from existing domains.

5
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3.2 DOMAIN-CONDITIONED ALIGNMENT

With the domain embedding ei for Gi ∈ G, MF-GIA instantiates two lightweight transformations
(Kfeat

i ,Klabel
i ) as aligners that respectively align Gi’s item features and graph-local label IDs into

unified semantic spaces. Because the transformations are conditioned on ei, related domains with
nearby ei induce similar transformations and occupy neighboring subspaces after alignment, while
dissimilar domains remain separated.

3.2.1 FEATURE ALIGNMENT

For each pretraining graph Gi, we learn a domain-conditioned feature transformation Kfeat
i mapping

pre-encoded item features to a unified feature space. Given an item w ∈ Gi with its feature xw ∈ Rdo ,
we first obtain its base representation via a shared GNN encoder fθ, whose first-layer weight matrix
is initialized from the stored θ0:

hi,w = fθ(w,Gi) ∈ Rd. (10)
Then we apply Feature-wise Linear Modulation (FiLM) (Perez et al., 2018) to generate domain-
conditioned transformations from the domain embedding:(

γfeat
i , βfeat

i

)
= fϕfeat (ei) , γfeat

i , βfeat
i ∈ Rd,

zi,w = Kfeat
i (hi,w) = γfeat

i ⊙ hi,w + βfeat
i ,

(11)

where fϕfeat : Rde → R2d is a two-layer MLP that outputs scale γfeat
i (with SoftPlus head for

positivity) and shift βfeat
i parameters, ⊙ denotes element-wise product, and zi,w is the aligned feature

for w in Gi. The FiLM-based transformation Kfeat
i is affine, so it calibrates scales and offset across

domains to map features to a domain-specific subspace determined by ei, while preserving the intra-
domain geometry already present in hi,w. Formally, the alignment satisfies (Proof in Appendix B.2):

Property 1. If fϕfeat is L -Lipschitz continuous, then ∥γfeat
i −γfeat

j ∥2+∥β
feat
i −βfeat

j ∥2 ≤ L ∥ei−ej∥2
for two graph Gi and Gj , so nearby domains yield similar feature transforms and thus neighboring
subspaces in the unified feature space.

The domain-conditioned transformations {Kfeat
i }Mi=1 parameterized by shared ϕfeat, are learned jointly

over all pre-training graphs G using their domain embeddings {ei}Mi=1 to form a unified and general
feature space. Together with the GNN encoder fθ, they constitute part of the pretrained modelM
(i.e., θ, ϕfeat ∈ Φ).

In-context Feature Alignment. At test time, for a downstream graph Gnew with domain embed-
ding enew computed via the pretrained domain embedder, we generate its alignment parameters
(γfeat

new, β
feat
new) = fϕfeat(enew). For any item w ∈ Gnew, its aligned feature is computed as:

znew,w = γfeat
new ⊙ fθ(w,Gnew) + βfeat

new. (12)

3.2.2 LABEL ALIGNMENT Domain-agnostic Domain-specific Label Distributions

Figure 3: Domain-conditioned label alignment.

Different graphs have their own label systems,
leading to label IDs across domains having in-
consistent semantics, such as label ID 0 rep-
resenting different concepts across graphs. To
reconcile graph-local label systems, we main-
tain a shared label base Elabel ∈ RLmax×d with
Lmax = maxi Ci, where each row Elabel

l serves as a domain-agnostic label prototype for ID l, initial-
ized as Elabel

l ∼ N (0, Id). Given domain embedding ei of Gi, we instantiate a domain-conditioned
label transformation with FiLM, architecturally identical to the feature-side transformation, that maps
ei to scale and shift parameters for label alignment:(

γlabel
i , βlabel

i

)
= fϕlabel (ei) , γlabel

i , βlabel
i ∈ Rd,

ui,l = Klabel
i (El) = γlabel

i ⊙Elabel
l + βlabel

i , l ∈ Li = {0, · · · , Ci − 1},
(13)

where fϕlabel : Rd → R2d is a two-layer MLP with a SoftPlus for γlabel
i . ui,l is the aligned label

embeddings conditioned on ei for label l. As illustrated in Fig. 3, this mechanism transforms a single

6
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domain-agnostic distribution into domain-specific label distributions. The shared base Elabel provides
a common reference, while FiLM parameters shift and scale these prototypes based on domain
characteristics, ensuring semantically distinct labels occupy different subspaces in a unified label
space even when sharing the same ID. fϕlabel is a component of the pretrained modelM (ϕlabel ∈ Φ).

In-context Label Alignment. For a new graph Gnew with Cnew classes, we compute label align-
ments using the pretrained transformation (γlabel

new , βlabel
new ) = fϕlabel(enew). The aligned label embeddings

for Gnew are:
unew,l = γlabel

new ⊙Elabel
l + βlabel

new , l ∈ {0, . . . , Cnew − 1} (14)

which yields domain-aware label prototypes that are compatible with the unified feature space and
ready for few-shot matching.

3.3 EPISODIC PRETRAINING

MF-GIA is pretrained with an episodic, prompt-based objective that teaches the model to match
aligned item features to aligned label prototypes, mimicking the few-shot scenarios encountered
during inference.

For each pretraining graph Gi ∈ G, we construct m-way k-shot episodes to simulate in-context
learning scenarios. Specifically, in each episode, we select m classes and sample k labeled items

per class to form a support set S =
⋃m

c=1

{(
w

(c)
j , l(c)

)}k

j=1
, where w

(c)
j is the j-th item of the

c-th selected class and l(c) = yj is its label ID. We also sample T items per class for the query
set Q =

⋃m
c=1{q

(c)
t , l(c)}Tt=1. Using the domain embedding ei, we compute aligned item features

with Eq. (11) and aligned label prototypes with Eq. (13), yielding z
i,w

(c)
j

= Kfeat
i (h

i,w
(c)
j
), z

i,q
(c)
t

=

Kfeat
i (h

i,q
(c)
t
), and ui,l(c) = Klabel

i (Elabel
l(c)

). The prompt-query pairs become:

Prompt S :
{(

z
i,w

(c)
j
, ui,l(c)

)}
c∈[m],j∈[k]

, Query Q :
{
z
i,q

(c)
t

}
c∈[m],t∈[T ]

. (15)

Recalling the episodic meta learning objective in Eq. (2), which requires matching queries to classes
using only the prompt, we propose a Dual Prompt-Aware Attention (DPAA) mechanism. It allows
queries to attend to prompt examples but prevents prompts from interacting with each other, strictly
following the principle of in-context learning. Specifically, let Zpmt =

[
z
i,w

(1)
1

, · · · , z
i,w

(m)
k

]
∈

Rmk×d be the matrix of row-stacked support features and Upmt =
[
ui,l(1) , · · · , ui,l(m)

]
∈ Rm×d be

the label prototype matrix. DPAA consists of two single-query attention layers, one feature-side and
one label-side, both sharing the same projection matrices WK ,WV ∈ Rd×d. For an aligned query
feature zi,q ∈ Q from Gi, the feature-side attention computes:

Kfeat = ZpmtWK , Vfeat = ZpmtWV , Qfeat = zi,qWQ,

zout
i,q = softmax

(
Qfeat (Kfeat)⊤√

d

)
Vfeat ,

(16)

where the attended representation zout
i,q aggregates features from prompt examples relevant to the

query. In other words, Eq. (16) aims to use the support features Zpmt to prompt the query feature zi,q ,
producing the prompt-conditioned feature zout

i,q for the query. zout
i,q is then projected to label space via

a learnable function fΩ : Rd → Rd, which is also prompted by the support set. Thus, the label-side
attention lets the query interact with label prototypes:

Klabel = UpmtWK , Vlabel = UpmtWV , Qlabel = fΩ(z
out
i,q ),

uout
i,q = softmax

(
Qlabel (Klabel)⊤√

d

)
Vlabel ,

(17)

Analogous to LLMs, where prompt examples guide task completion, here (Zpmt,Upmt) serves as
the few-shot demonstrations, zi,q as the query to be answered, and zout

i,q as the prompt-conditioned
intermediate, and uout

i,q as the answer produced from the prompt for the task objective zi,q. Thus,
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Table 2: Few-shot node classification accuracy (%) with standard deviation over 10 runs. Best and
second-best results are shown in bold and underlined. “–” denotes datasets where only encoded
features and indexed labels are available, making modality-dependent models inapplicable.

Method
Cora-7 way ogbn-Products-47 way Computers-10 way Physics-5 way BlogCatalog-6 way

Citation E-commerce E-commerce Co-authorship Social Media

1-shot 3-shot 5-shot 1-shot 3-shot 5-shot 1-shot 3-shot 5-shot 1-shot 3-shot 5-shot 1-shot 3-shot 5-shot

GCN 43.07±7.37 42.38±7.42 42.55±2.09 8.27±1.48 7.85±1.62 8.77±1.71 36.42±6.28 39.33±6.87 41.09±6.35 65.43±5.12 73.28±4.44 77.15±3.96 43.22±3.95 49.08±3.02 52.16±2.88

GAT 46.12±7.10 47.31±7.58 47.71±8.66 7.14±1.55 7.90±1.74 8.39±1.86 37.15±6.43 40.27±6.92 42.03±6.61 66.80±5.05 75.22±4.31 78.41±3.88 46.37±3.88 52.47±3.10 56.42±2.76

GraphSAGE 40.50±6.11 42.07±6.12 42.40±6.12 7.36±1.68 8.59±1.74 9.42±1.70 35.89±6.34 38.76±6.79 40.58±6.41 67.12±5.23 71.95±4.57 77.36±4.02 40.56±4.02 53.12±3.21 58.03±2.93

GraphMAE 42.41±6.38 43.36±6.94 44.22±6.49 8.58±1.63 9.87±1.69 9.94±1.71 40.86±6.31 42.72±6.83 43.35±6.51 68.23±4.89 77.04±3.92 80.35±3.51 43.25±3.71 57.93±2.86 62.14±2.64

DGI 41.28±6.54 42.18±6.75 43.27±6.33 9.04±1.49 10.08±1.52 10.87±1.59 39.91±6.22 41.77±6.75 45.54±6.39 66.12±5.01 74.83±4.20 78.09±3.76 42.11±3.79 56.08±2.94 60.91±2.71

GraphCL 40.22±6.47 44.68±6.88 45.56±6.42 11.93±1.65 11.26±1.71 13.14±1.77 38.74±6.39 41.55±6.91 43.19±6.58 74.35±4.95 82.12±4.05 85.40±3.62 44.87±3.66 57.20±2.90 63.55±2.69

GCOPE 42.63±6.33 43.89±6.77 44.74±6.36 11.18±1.60 11.73±1.68 12.54±1.72 43.02±6.36 43.84±6.87 47.46±6.55 76.18±4.81 84.65±3.88 85.07±3.42 45.02±3.58 58.76±2.81 63.05±2.61

GPF 41.12±6.45 40.26±6.84 43.16±6.41 11.12±1.57 12.65±1.63 13.43±1.70 37.02±6.28 39.84±6.79 41.62±6.48 69.28±4.95 76.91±4.22 83.85±3.73 43.08±3.63 58.01±2.83 63.47±2.62

All in One 42.66±6.38 43.92±6.81 44.78±6.37 8.15±1.54 8.77±1.61 8.83±1.68 35.64±6.36 40.48±6.82 44.07±6.50 73.43±5.10 81.36±4.37 85.20±3.85 42.54±3.75 56.72±2.96 61.31±2.70

GFT 41.40±0.04 43.31±1.11 43.55±7.43 11.12±1.57 14.65±1.63 15.43±1.70 – – – – – – – – –
AutoGFM 46.29±7.24 47.33±7.80 47.76±8.06 – – – – – – – – – – – –

Prodigy 43.27±6.52 42.23±7.65 44.29±5.50 9.53±1.69 10.89±2.01 11.46±1.74 40.29±6.87 41.03±7.52 45.82±5.61 67.26±7.33 71.98±5.25 79.47±4.62 39.85±3.97 46.56±2.62 53.44±2.78

OFA 30.38±2.39 36.03±2.11 32.10±1.79 7.42±1.44 7.98±1.51 8.66±1.60 – – – – – – – – –
GraphAlign 44.37±8.64 48.96±8.25 52.64±7.53 12.42±1.62 13.07±1.69 15.92±1.73 – – – – – – – – –

MF-GIA 47.64±8.77 57.38±9.02 63.98±7.13 16.86±2.55 19.16±2.19 22.61±1.71 41.49±7.49 46.21±14.16 53.71±3.28 79.12±11.54 86.48±0.96 88.92±0.84 49.46±4.02 62.69±2.53 67.31±2.60

the pretraining objective is to build the matching between uout
i,q and the ground-truth label. The final

prediction is obtained by scoring the query’s prompted representation against all label prototypes:
si,q = uout

i,q (U
pmt)⊤ ∈ Rm, (18)

where si,q contains the per-class scores for the query item q. For each episode from Gi, we minimize
the cross-entropy loss over all queries in Q:

Lepisode(Gi) = −
1

mT

m∑
c=1

T∑
t=1

log
exp(s

i,q
(c)
t
[c]/τ)∑m

j=1 exp(si,q(c)t
[j]/τ)

, (19)

where τ > 0 is a temperature that controls the sharpness of the softmax, s
i,q

(c)
t
[c] denotes the score

of the ground-truth class for the query q
(c)
t . The complete pretraining loss aggregates episodes across

all pretraining graphs:
Lpretrain = EGi∼GEepisode∼Gi [Lepisode(Gi)]. (20)

Note that the domain embedder fϕde is optimized with Lde prior to episodic pretraining and then kept
fixed. Overall, the pretraining modelMΦ comprises the frozen encoder initialization fθ0 , the domain
embedder fϕde , the domain-conditioned transformation fϕfeat and fϕlabel , the DPAA projection matrices
and the projection head fΩ. This episodic regime trains the model to leverage prompt examples for
prediction, establishing the feature-label matching capability essential for ICL on unseen domains.

3.4 IN-CONTEXT PREDICTION ON UNSEEN DOMAINS

At test time, MF-GIA freezes all pretrained parameters. Given an unseen graph Gnew together with a
Cnew-way k-shot support set S = {(wi, yi))}k·Cnew

i=1 as prompts, we compute the in-context domain
embedding enew using the gradient fingerprint and the pretrained domain embedder described in
Section 3.1. With the pretrained domain-conditioned transformations, any item w ∈ Gnew is mapped
to its aligned feature znew,w via Eq. (12). For label IDs l ∈ Lnew = {0, · · · , Cnew − 1}, the aligned
label prototypes are {unew,l}l∈Lnew obtained by Eq. (14). We then form the prompt matrices Zpmt

new =[
znew ,w

(1)
1

, . . . , znew ,w
(Cnew )
k

]
∈ R(kCnew )×d and Upmt

new =
[
unew ,l(1) , . . . , unew ,l(Cnew )

]
∈ RCnew ×d. To

make a prediction on a query item q, we apply the pretrained DPAA on it. Specifically, the feature-
side attention produces the prompt-conditioned feature zout

new ,q by Eq. (16), which is then fed to the
label-side attention Eq. (17) to yield uout

new ,q . The final scores and prediction are:

snew ,q = uout
new ,q

(
Upmt

new

)⊤ ∈ RCnew , ŷq = arg max
j∈[Cnew ]

snew ,q[j]. (21)

This inference procedure is parameter-update-free w.r.t. the pretrained model M, and the same
pipeline applies to node or edge items by letting w range over Vnew or Enew. The detailed algorithms
and complexity analysis of MF-GIA are provided in Appendix C.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

We employ cross-domain graph datasets to evaluate MF-GIA, which is pretrained exclusively on
node classification tasks using four datasets: WikiCS (web link), PubMed and ogbn-Arxiv (citation),

8
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Table 3: Few-shot edge classification accuracy (%) with standard deviation over 20 episodes.

Method
FB15K237-5 way FB15K237-10 way FB15K237-40 way WN18RR-5 way WN18RR-10 way
Encyclopedic KG Encyclopedic KG Encyclopedic KG Lexical KG Lexical KG

1-shot 3-shot 5-shot 1-shot 3-shot 5-shot 1-shot 3-shot 5-shot 1-shot 3-shot 5-shot 1-shot 3-shot 5-shot

GCN 82.45±1.20 84.30±1.05 85.12±0.98 70.28±3.50 74.61±2.85 78.94±2.43 55.72±0.95 58.11±0.78 60.05±0.70 32.14±2.90 38.62±2.35 42.57±2.01 24.05±1.60 28.93±1.42 31.20±1.35

GraphSAGE 83.11±1.14 85.05±1.01 86.02±0.92 71.36±3.28 75.43±2.71 79.45±2.36 56.40±0.90 58.86±0.74 60.72±0.68 33.05±2.80 39.41±2.26 43.28±1.96 24.83±1.55 29.62±1.39 31.88±1.31

DGI 84.22±1.08 85.67±0.96 86.30±0.88 72.48±3.10 76.58±2.59 80.12±2.21 56.95±0.88 59.44±0.72 61.31±0.65 34.57±2.75 40.28±2.20 44.05±1.92 25.67±1.50 30.18±1.34 32.41±1.28

GraphMAE 84.90±1.02 86.12±0.90 88.05±0.83 73.35±2.98 79.02±2.47 83.66±2.14 57.43±0.85 59.96±0.70 61.82±0.63 35.42±2.70 41.16±2.13 44.83±1.86 26.31±1.47 30.71±1.32 32.95±1.25

GCOPE 80.12±1.08 81.56±0.96 82.41±0.90 68.03±2.85 71.22±2.43 74.18±2.05 51.08±0.97 53.12±0.85 56.74±0.79 30.47±3.10 36.05±2.62 40.21±2.34 22.18±1.72 26.73±1.55 29.31±1.42

Prodigy 87.59±0.84 88.02±0.48 88.05±0.68 66.10±9.89 79.61±8.28 84.30±7.80 54.30±0.69 59.58±0.22 62.03±0.59 46.57±6.63 47.28±4.06 53.94±4.88 27.01±2.58 28.46±3.77 33.54±4.29

GFT 87.67±0.89 86.00±1.84 86.27±1.10 79.17±1.76 79.13±1.57 78.83±1.80 60.79±1.41 61.48±1.32 61.12±1.64 48.13±4.37 48.53±3.68 48.80±3.61 35.33±4.20 35.50±5.02 35.50±4.59

AutoGFM – – – – – – – – – 48.47±4.38 49.10±3.31 49.93±3.63 39.34±3.03 39.55±2.46 40.02±2.26

GraphAlign 83.02±1.28 83.15±1.07 84.92±0.98 73.25±3.05 76.14±2.58 77.02±2.20 53.10±8.32 54.26±3.93 59.35±6.70 45.08±10.55 47.47±9.88 60.19±10.31 27.80±3.05 30.65±2.82 32.10±2.60

MF-GIA 98.77±1.03 99.42±0.38 99.64±0.20 87.57±4.03 91.24±1.27 91.38±1.01 57.17±3.79 61.18±3.66 62.03±3.79 55.64±10.30 64.54±6.42 68.05±4.39 28.87±3.89 33.12±4.67 35.12±3.80

Table 4: Effect of core components.

Method Cora Computers Pyhsics

1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

GraphSAGE+FT 40.50 42.40 35.89 40.58 67.12 77.36
+ Feat. Align. 42.78 45.26 37.86 45.97 75.83 85.29
++ Label Alig. 43.96 49.16 37.93 47.00 76.54 87.66

+++ DPAA & Lepisode 47.64 63.98 41.49 53.71 79.12 88.92 Cora Computers Physics BlogCatalog
30
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Figure 4: Backbone selections.

and Amazon-ratings (e-commerce rating). These datasets are pre-encoded with heterogeneous feature
spaces and label systems, enabling us to learn domain alignment without modality priors. For
downstream evaluation, we test on both node-level and edge-level classification tasks across seen and
unseen domains. For node classification, we evaluate on Cora (citation), and unseen domains including
ogbn-Products and Computers (e-commerce product), Physics (co-authorship), and BlogCatalog
(social media). For link classification, we assess performance on two knowledge graphs (KGs) from
different domains to predict the relation types: FB15K237 (encyclopedic) and WN18RR (lexical),
which represent entirely new tasks not encountered in pretraining. To unify the task formulation, we
transform the edge-level task into the node-level task by converting edges to nodes in a line graph,
as detailed in Appendix D. This task allows us to evaluate our model’s generalization capability
on an entirely new task and domains not seen during pretraining. More information about baseline
configurations, datasets, and implementation details is provided in Appendix E.

4.2 IN-CONTEXT LEARNING RESULTS

Table 2 demonstrate that MF-GIA achieves state-of-the-art node classification results across diverse
graph domains. Remarkably, MF-GIA reaches 63.98% on Cora with 5-shot prompting, which is an
11.34% absolute improvement over the second-best baseline. Across all 15 configurations, MF-GIA
consistently outperforms existing methods with an average margin of 4.2%, despite using pure prompt-
based inference without any parameter updates. In contrast, methods like GFT and AutoGFM require
extensive fine-tuning on target domains yet still achieve inferior results. This superiority reveals a
fundamental insight: when equipped with proper cross-domain alignment, ICL beats fine-tuning. The
critical role of alignment is also evident when comparing MF-GIA with Prodigy, which is a true ICL
model without domain alignment. MF-GIA consistently outperforms Prodigy on unseen domains,
demonstrating that domain embeddings capture domain characteristics for successful cross-domain
transfer. Recent modality-dependent GFMs fail on graphs without raw text data (marked “–”), while
MF-GIA operates universally on any pre-encoded graphs. Moreover, as shown in Table 3, MF-GIA
excels at edge-level tasks, an entirely new task formulation never encountered during pretraining.
It demonstrates that MF-GIA captures generalizable patterns for in-context reasoning rather than
memorizing dataset/task-specific features. On WN18RR dataset with a 10-way setting, our MF-GIA
does not surpass the state-of-the-art baselines GFT and AutoGFM, achieving third-best performance
across all shot settings. It is because MF-GIA is pretrained exclusively on node classification tasks,
while WN18RR is a dataset for edge-level tasks, which is an entirely different task formulation
never encountered during pretraining. We deliberately evaluate on this dataset to assess our model’s
generalization capacity to unseen tasks, as we believe a genuine graph foundation model should
generalize not only to unseen domains but also to unseen task types. While GFT and AutoGFM
achieve superior performance on WN18RR-10way, they are pretrained on both node-level and
edge-level tasks. Therefore, edge classification is not an unseen task for these baselines, so their
performance advantage does not necessarily demonstrate stronger cross-task generalization.
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4.3 MODEL ANALYSIS

Effect of Core Components. We analyze the contribution of each component in MF-GIA, starting
from its GraphSAGE backbone. GraphSAGE+FT is pretrained on the same datasets and fine-tuned
on support sets of test graphs. Adding a domain embedder with FiLM-based feature alignment (+Feat.
Align.) improves cross-domain adaptability. Extending alignment to the label space (++Label Align.)
further boosts performance by unifying class indices across graphs. Finally, incorporating DPAA
with an episodic objective yields the full MF-GIA, which achieves the largest gains across datasets
and shots. Table 4 shows a clear step-wise improvement, underscoring that both domain-conditioned
alignment and prompt-aware reasoning are crucial for effective graph ICL.

Table 5: Effect of ICL scheme.

Computers Physics

MF-GIAsup 38.73 75.26
MF-GIA 41.49 79.12

Effect of Episodic Inference. ICL can be achieved through two
paradigms: episodic meta-learning, which unifies pretraining and
inference by training the model to perform inference episodes (MF-
GIA and Prodigy), and supervised pretraining with test-time proto-
type construction, where class prototypes are built from support sets
and queries are classified by proximity (GraphAlign). As shown in
Table 5, episodic inference (MF-GIA) consistently outperforms the supervised variant (MF-GIAsup).

Effect of Backbone GNNs. In MF-GIA, we adopt GraphSAGE as the default backbone. Fig. 4
shows MF-GIA exhibits minor accuracy fluctuations across different GNN backbones under 1-shot
settings, demonstrating that MF-GIA is robust to backbone selections. More analytical results are
provided in Appendix F.

5 CONCLUSION

We introduced MF-GIA, a pretraining framework for graph neural networks that enables in-context
learning across heterogeneous domains without relying on modality assumptions. By capturing do-
main characteristics via gradient fingerprints and aligning pre-encoded features and graph-local labels
through domain-conditioned transformations, MF-GIA supports parameter-update-free adaptation
from few-shot prompts. This design overcomes key limitations of existing GFMs by removing the
need for post-training fine-tuning and modality-specific conversions. Experiments demonstrate strong
performance on both seen and unseen domains, with seamless transfer to new tasks.

Future Directions. Beyond our current design, MF-GIA opens up several promising avenues for
future work. One direction is to couple our gradient fingerprints with large language models (LLMs)
to generate semantic domain descriptions, enabling human-interpretable summaries of latent domain
characteristics and more transparent cross-domain reasoning. Another is to leverage these fingerprints
to automatically discover latent domain structure from large unlabeled graph collections, moving
from manually curated domains to data-driven domain decomposition. We believe these extensions
will further enhance the interpretability, automation, and scalability of modality-free graph foundation
models.
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A RELATED WORK

In-context Learning. The modern paradigm of in-context learning (ICL) emerged with GPT-
3 (Brown et al., 2020), which demonstrated that large autoregressive transformers can adapt to new
tasks using only a few labeled demonstrations, without any parameter updates. This breakthrough
sparked extensive research along multiple dimensions. From a theoretical perspective, subsequent
work has clarified the fundamental mechanisms underlying ICL. Several studies establish connections
between ICL and classical meta learning frameworks, drawing parallels to metric-based few-shot
methods, including Matching Networks (Vinyals et al., 2016), Prototypical Networks (Snell et al.,
2017), and Model-Agnostic Meta Learning (Finn et al., 2017). More recent theoretical analyses reveal
that transformers can implement gradient descent algorithms within their forward pass (Von Oswald
et al., 2023; Ren & Liu, 2024; Zhang et al., 2024), effectively learning to optimize in-context.
Complementary work by (Garg et al., 2022) demonstrates that transformers can learn entire function
classes from context, providing an alternative computational perspective on ICL capabilities. On the
methodological front, researchers have developed techniques to enhance ICL performance through
improved prompt engineering. Min et al. (2022) introduce MetaICL, which explicitly trains models
to perform in-context learning. Practical advances focus on demonstration selection and ordering:
retrieval-based methods identify optimal examples (Rubin et al., 2022; Luo et al., 2024), while active
selection strategies iteratively refine the demonstration set (Zhang et al., 2022; Qin et al., 2024). The
sensitivity of ICL to prompt construction has motivated calibration techniques (Zhao et al., 2021)
and continuous prompt optimization (Lester et al., 2021), with recent work revealing substantial
impacts from demonstration ordering (Guo et al., 2024). However, extending ICL to graph-structured
data presents unique challenges due to the heterogeneous nature of graph domains and the complex
interplay between topology, features, and labels.

Graph Foundation Models. Graph Foundation Models (GFMs) have evolved from early self-
supervised methods like GraphCL (You et al., 2020) and GraphMAE (Hou et al., 2022) toward
comprehensive cross-domain and cross-task generalization. This evolution follows three primary
research directions. First, cross-domain unification is achieved by using text-attributed graphs
(TAGs) as a universal modality. Specifically, OFA (Liu et al., 2024a), GOFA (Kong et al., 2025), and
UniGraph (He et al., 2025a) convert graphs to textual representations, then adopt LLMs and GNNs to
learn semantic and structural information, respectively. UniGLM (Fang et al., 2025) trains unified
language models over multiple TAGs, GraphCLIP (Zhu et al., 2025) aligns graph summaries with
language via contrastive learning, and (Wang et al., 2024b) introduces transferable tree vocabularies.
AutoGFM (Chen et al., 2025) studies the automatically adapting architectures to different TAGs.
In contrast, text-free methods avoid modality conversion. For example, SAMGPT (Yu et al., 2025)
employs learnable domain tokens for domain alignment, and GCOPE (Zhao et al., 2024) connects
disparate graphs with virtual nodes to enable cross-domain pretraining. Second, for prompt-based
adaptation, GraphPrompt (Liu et al., 2023) and All in One (Sun et al., 2023) nifies pretraining
and downstream tasks via learnable prompts; Prodigy (Huang et al., 2023) enables graph ICL with
prompt graphs and shows few-zero transfer to unseen graphs; ARC (Liu et al., 2024b) achieves
generalist anomaly detection via contextual cues. Knowledge graph models (Wang et al., 2024a) have
particularly benefited from this paradigm. For example, ULTRA (Galkin et al., 2024) learns universal
relational representations, KG-ICL (Cui et al., 2024) frames reasoning as prompting, and theoretical
analysis (Huang et al., 2025) links expressivity to learned relation motifs. Third, for multimodal
extensions, emerging work extends GFMs beyond single modalities. UniGraph2 (He et al., 2025b)
unifies text and visual features with graph structure, while Graph World Model (Feng et al., 2025)
integrates graph-structured states for planning and control. These advances establish a trajectory
toward GFMs that function as universal encoders and reasoners across domains, tasks, and modalities.

Our MF-GIA framework is particularly suited to privacy-constrained settings where schemas and
modalities differ across organizations but raw features cannot be shared, such as cross-organization
fraud detection over transaction graphs from different banks and multi-hospital patient networks
with heterogeneous EHR systems. In such scenarios, each party can locally encode its graph, while
MF-GIA uses gradient fingerprints and lightweight domain aligners to align these heterogeneous
domains without any modality assumptions, such as TAGs. This complements recent trends in GFMs
toward realistic cross-domain deployment, including text-based cross-domain models (Chen et al.,
2024b) and graph prompt optimization frameworks like HGMP (Jiao et al., 2025), all of which
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highlight the growing need for privacy-preserving, modality-agnostic foundation models in practical
applications.

B PROOFS

B.1 PROOF OF THEOREM 3.1

The theorem shows that the domain embedder fϕde acts as a distance-preserving map from the domain
space to the embedding space. To prove it, we first give a formal definition of the graph domain.
Before proving this theorem, we establish a technical lemma that characterizes the properties of
gradient fingerprints.
Lemma B.1. For a graph G = (V,E,X,Y) and the one-layer GNN encoder initialization θ0 ∈
Rdo×d, the gradient of the task loss at θ0 can be decomposed as:

∇θL (θ0, G) =
1

|V |
X⊤A · diag(g) · 1d, (22)

where A is the normalized adjacency matrix, g =
[
g1, · · · , g|V |

]⊤ ∈ R|V | is a vector of per-node
loss gradients with gv = ∇hv

ℓ (hv, yv), ℓ is the node-level loss function, and 1d is the all-ones vector.

Proof. Consider the forward pass of a one-layer GNN with weight matrix θ ∈ Rd0×d:

H = σ(AXθ), (23)

where σ is the nonlinear activation function (e.g., ReLU). The task loss over the graph is:

L(θ,G) =
1

|V |
∑
v∈V

ℓ (hv, yv) , (24)

where hv is the representation of v, which is the v-th row of H, and ℓ is the node-level loss function
(e.g., cross-entropy). Computing the gradient with respect to θ via the chain rule:

∇θL(θ,G) =
1

|V |
∑
v∈V

∇θh
⊤
v · ∇hvℓ (hv, yv) . (25)

For the gradient of hv w.r.t. θ, it can be represented as:

∇θhv =

 ∑
u∈N (v)

Avuxu

⊤

⊗ σ′ ((AXθ)v) . (26)

At initialization θ0, assuming ReLU activation with appropriate initialization ensuring positive
pre-activations, we have σ′ ((AXθ0)v) ≈ 1d. Therefore, the gradient can be represented as:

∇θL (θ0, G) =
1

|V |
∑
v∈V

 ∑
u∈N (v)

Avuxu

⊤

· gv, (27)

where gv = ∇hv
ℓ (hv, yv) is the gradient of the loss with respect to node v’s representation. This

can be rewritten in matrix form as:

∇θL (θ0, G) =
1

|V |
X⊤A⊤ · diag(g) · 1d. (28)

For undirected graphs with symmetric normalized adjacency matrices, A⊤ = A, yielding:

∇θL (θ0, G) =
1

|V |
X⊤A · diag(g) · 1d, (29)

which completes the proof.

Building on the above definitions and lemmas, we now present the proof of Theorem 3.1.
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Proof. Since the gradient fingerprint for Gi sampled from domain Di, gradient fingerprint is defined
as:

∆θi = θ0 − η∇θLi (θ0, Gi) . (30)
For two graphs Gi and Gj from two domains, we have:

∆θi −∆θj = −η (∇θLi (θ0, Gi)−∇θLj (θ0, Gj)) . (31)

Then the Frobenius norm can be represented as:

∥∆θi −∆θj∥F = η ∥∇θLi (θ0, Gi)−∇θLj (θ0, Gj)∥F . (32)

Based on the Theorem B.1, and assuming |Vi| = |Vj | = n (we can pad with isolated nodes if
necessary) for simplicity, the gradient difference becomes:

∇θLi (θ0, Gi)−∇θLj (θ0, Gj) =
1

n

[
X⊤

i Ai · diag (gi)−X⊤
j Aj · diag (gj)

]
· 1d, (33)

where gi = [gi,1, gi,2, · · · , gi,n]⊤ ∈ Rn is the vector of per-node loss gradient with gi,v =
∇hi,v

ℓ (hi,v, yi,v) for node v in Gi. Let Mi = X⊤
i Ai · diag (gi) ∈ Rdo×n and Mj =

X⊤
j Aj · diag (gj) ∈ Rdo×n, taking into Eq. (33) and computing the Frobenius norm, we have:

∥∇θLi (θ0, Gi)−∇θLj (θ0, Gj)∥F =
1

n
∥(Mi −Mj) · 1d∥2 . (34)

Since ∥1d∥2 =
√
d, with the property of operator norm, the following inequality holds:

∥(Mi −Mj) · 1d∥2 ≤ ∥Mi −Mj∥op · ∥1d∥2 = ∥Mi −Mj∥op ·
√
d, (35)

where ∥ · ∥op denotes the operator norm. To bound ∥Mi −Mj∥op, we decompose it by adding and
subtracting intermediate terms as:

Mi −Mj = X⊤
i Ai · diag(gi)−X⊤

j Aj · diag(gj)

= (Xi −Xj)
⊤Ai · diag(gi) +X⊤

j (Ai −Aj) · diag(gi)

+X⊤
j Aj · (diag(gi)− diag(gj)).

(36)

Taking the operator norm and using the triangle inequality on Eq. (36), we can bound the
∥Mi −Mj∥op with:

∥Mi −Mj∥op ≤
∥∥∥(Xi −Xj)

⊤
∥∥∥

op
∥Ai∥op ∥diag (gi)∥op

+
∥∥X⊤

j

∥∥
op
∥(Ai −Aj)∥op ∥diag (gi)∥op

+
∥∥X⊤

j

∥∥
op
∥Aj∥op ∥diag (gi)− diag (gj)∥op .

(37)

For a diagonal matrix, the operator norm is the maximum absolute value of its diagonal entries.
Therefore, for the diagonal matrix of the per-node gradient vector diag(gi) of graph Gi, its operator
norm can be computed by ∥diag (gi)∥op = maxv∈Vi |gi,v|. Based on the assumption in Theorem 3.1
that the task loss L is Ltask-smooth with respect to model parameters, it means that its gradient
is Ltask-Lipschitz continuous. Let the task loss L be a cross-entropy loss with Ci classes, the

node-level loss on node v in Gi is ℓ (hi,v, yv) = − log

(
exp

(
h
(yv)
i,v

)
∑Ci

c=1 exp
(
h
(c)
i,v

)). The gradient on v is

gi,v = ∇hi,v
ℓ(hi,v, yv) = pv − ryv

, where pv = softmax(hi,v) ∈ [0, 1]Ci and ryv
is the one-hot

encoding of the ground-truth label of v. Therefore, the following inequality holds:

∥gi,v∥2 = ∥pv − ryv∥2 ≤ ∥pv∥2 + ∥ryv∥2 ≤
√
Ci + 1. (38)

Since we are considering gi,v as a scalar after projection, we have:

|gi,v| ≤
√
Ci + 1 =: Ĉi (39)

Thus, we have ∥diag (gi)∥op ≤ Ĉi. Based on the nature of the operator norm, we have∥∥∥(Xi −Xj)
⊤
∥∥∥

op
= ∥Xi −Xj∥op ≤ ∥Xi −Xj∥F ,

∥∥X⊤
j

∥∥
op

= ∥Xj∥op ≤ B (bounded by fea-

ture norms), and ∥Ai∥op, ∥Aj∥op ≤ 1 where A is the normalized adjacency matrix, we get:

∥Mi −Mj∥op ≤ Ĉi ∥Xi −Xj∥F +BĈi ∥Ai −Aj∥F +B ∥diag (gi)− diag (gj)∥op . (40)
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For the last term of Eq. (40), since the task loss L is Ltask-smooth, the node-level loss ℓ inherits
smoothness with Lipschitz gradient constant Lℓ. Given node v with the same index in Gi and Gj ,
the gradient difference between gi and gj is ∥diag(gi) − diag(gj)∥op = maxv |gi,v − gj,v|. Since
gi,v = ∇hi,v

ℓ(hi,v, yi,v) and the gradient is Lipschitz, we have:

∥gi,v − gj,v∥ ≤ Lℓ∥hi,v − hj,v∥. (41)

In the one-layer message passing defined in Eq. (23), the activation function σ(·) is typically ReLU,
which is 1-Lipschitz. Thus, we have:

∥hi,v − hj,v∥ ≤
∥∥[(AiXi −AjXj) θ0]v

∥∥ ≤ ∥∥(AiXi −AjXj)v
∥∥ · ∥θ0∥ , (42)

where the node v in AiXi −AjXj can be rewritten as (AiXi)v − (AjXj)v =
∑

u Ai,vux
T
i,u −∑

u Aj,vux
T
j,u, which can be further bounded by:

∥(AiXi −AjXj)v∥ ≤ ∥(Ai −Aj)vXi∥+ ∥(Aj)v(Xi −Xj)∥
≤ ∥(Ai −Aj)v∥∥Xi∥op + ∥(Aj)v∥∥Xi −Xj∥op.

(43)

Since A is normalized where ∥(Aj)v∥1 = 1 and thus ∥(Aj)v∥2 ≤ 1. Taking Eq. (43) into Eq. (42),
we can bound the difference between hi,v and hj,v as:

∥hi,v − hj,v∥ ≤ ∥θ0∥ ·
(∥∥(Ai −Aj)v

∥∥B + ∥Xi −Xj∥op

)
. (44)

To get a uniform bound over all nodes, we have:

max
v
∥hi,v − hj,v∥ ≤ ∥θ0∥ ·

(
∥Ai −Aj∥F B + ∥Xi −Xj∥F

)
, (45)

which gives us:

∥diag (gi)− diag (gj)∥op ≤ Lℓ ∥θ0∥ ·
(
B ∥Ai −Aj∥F + ∥Xi −Xj∥F

)
. (46)

Since Lℓ, θ0, and B are fixed, we can use L ′ = Lℓ ∥θ0∥max(B, 1) to combine them. There,
Eq. (46) can be rewritten as:

∥diag (gi)− diag (gj)∥op ≤ L ′ (∥Xi −Xj∥F + ∥Ai −Aj∥F
)
. (47)

To measure the inherently distance between two graphs, we define the graph distance as dG(Gi, Gj) =
∥Xi −Xj∥F + ∥Ai −Aj∥F . Then, taking the graph distance and Eq. (47) into Eq. (40), we have:

∥Mi −Mj∥op ≤ C̃ · dG (Gi, Gj) , (48)

where C̃ = Ĉi + BĈi + BL ′. Recall Eq. (32), Eq. (34), and Eq. (35), we can integrate the used
constants, such as

√
d and 1

n , into C̃. Then the difference between the gradient fingerprints of two
domains is bounded as:

∥∆θi −∆θj∥F ≤ ηC̃ · dG (Gi, Gj) . (49)

For the graph distance dG , we have:

dG (Gi, Gj) = ∥Xi −Xj∥F + ∥Ai −Aj∥F ≤
√
2

√
∥Xi −Xj∥2F + ∥Ai −Aj∥2F . (50)

The Wasserstein distance can be rewritten as:

W2 (Di,Dj) = inf
γ∈Γ(Pi,Pj)

√
E(Gi,Gj)∼κ

[
d2G (Gi, Gj)

]
(51)

For the optimal coupling κ∗ that achieves the Wasserstein distance, by Jensen’s inequality for the
concave square root function, we have:

E(Gi,Gj)∼κ∗ [dG (Gi, Gj)] ≤
√

E(Gi,Gj)∼κ∗
[
d2G (Gi, Gj)

]
=W2 (Di,Dj) . (52)

Combining Eq. (52) and Eq. (49), the bound of ∥∆θi −∆θj∥F can be expressed as:

∥∆θi −∆θj∥F ≤ ηC̃ · E[dG(Gi, Gj)] ≤ ηC̃ · W2(Di,Dj). (53)
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Eq. (53) shows that the similarity between gradient fingerprints can effectively reflect the
domain similarity. Recall the domain embedder defined in Eq. (5), we can conduct the Lipschitz
analysis on it. First, the Conv2D with kernel weights Wconv satisfy ∥Conv2D(x)−Conv2D(y)∥ ≤
∥Wconv ∥op ·∥x−y∥, the Flatten operation preserves norms ∥ Flatten (A) ∥2 =∥A∥F , and the MLP

with R-layer weight matrices W1 · · · ,WR satisfy ∥MLP(x)−MLP(y)∥ ≤
∏R

r=1 ∥Wr∥op·∥x−y∥.
Thus, the overall Lipschitz constant of the domain embedder fϕde is:

Lde = ∥Wconv∥op ·
R∏

r=1

∥Wr∥op . (54)

Thus, the following Lipschitz inequality holds:
∥ei − ej∥2 = ∥fde (∆θi)− fde (∆θj)∥2 ≤ Lde ∥∆θi −∆θj∥F . (55)

We can substitute Eq. (53) into Eq. (55) and merge all constants into C̃, we can get:

∥ei − ej∥2 ≤ C̃ · W2(Di,Dj) (56)
This shows that the domain embedding function preserves domain relationships: similar domains
with smallW2 map to nearby embeddings with small ∥ei − ej∥2.

B.2 PROOF OF PROPERTY 1

Proof. By definition, fϕfeat being L -Lipschitz means that for all e, e′ ∈ Rde ,
∥fϕfeat (e)− fϕfeat (e

′)∥2,1 ≤ L ∥e− e′∥2 . (57)

Applying this with e = ei and e′ = ej for domain embeddings of Gi and Gj , we have:

fϕfeat (ei)− fϕfeat (ej) =
(
γfeat (ei)− γfeat (ej) , β

feat (ei)− βfeat (ej)
)
= (∆γ,∆β). (58)

Then using the definition of ∥ · ∥2,1 gives:
∥∆γ∥2 + ∥∆β∥2 = ∥fϕfeat (ei)− fϕfeat (ej)∥2,1 ≤ L ∥ei − ej∥2 , (59)

which is exactly the claimed inequality in Property 1. For the graph Gi, the domain-conditioned
transformation for its domain i on an item w is Kfeat

i : Rd → Rd:

Kfeat
i = γfeat

i ⊙ h+ βfeat
i . (60)

Then for any h ∈ Rd, the following inequality holds:∥∥Kfeat
i (h)− T feat

j (h)
∥∥
2
=

∥∥(γfeat
i − γfeat

j

)
⊙ h+

(
βfeat
i − βfeat

j

)∥∥
2

≤
∥∥(γfeat

i − γfeat
j

)
⊙ h

∥∥
2
+
∥∥βfeat

i − βfeat
j

∥∥
2

≤ ∥h∥∞
∥∥γfeat

i − γfeat
j

∥∥
2
+
∥∥βfeat

i − βfeat
j

∥∥
2

≤ ∥h∥2
∥∥γfeat

i − γfeat
j

∥∥
2
+

∥∥βfeat
i − βfeat

j

∥∥
2
,

(61)

Combining Eq. (59) and Eq. (61) yields:∥∥Kfeat
i (h)− T feat

j (h)
∥∥
2
≤ max {∥h∥2, 1}L ∥ei − ej∥2 . (62)

Thus, as domains move closer in the embedding space, their induced feature transforms move closer
uniformly on any set of bounded ∥h∥2, so the collections {Kfeat

i (hi,w)}w and {Kfeat
j (hj,w)}w occupy

neighboring subspaces in the unified feature space.

C ALGORITHMS AND COMPLEXITY ANALYSIS

C.1 ALGORITHMS

Algorithm 1 presents the episodic pretraining procedure for MF-GIA. Algorithm 2 details parameter-
update-free in-context inference on unseen graphs. At a high level, pretraining teaches the model to
(1) extract a gradient-fingerprint domain embedding from a small support set, (2) map that embedding
to domain-conditioned feature and label transforms that place heterogeneous graphs in a shared space,
and (3) perform prompt-aware matching between queries and aligned supports. At test time, we
reuse the same pipeline with frozen parameters, computing the domain embedding and transforms
on-the-fly from a few labeled examples only.
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Algorithm 1: MF-GIA Pretraining

Input : Pretraining graphs G = {Gi = (Vi, Ei,Xi,Yi)}Mi=1; unified item dim do; embedding
dim d; GNN encoder fθ with stored initialization θ0 (kept frozen); base label table
Elabel ∈ RLmax×d; Domain embedder fϕde ; FiLM aligners fϕfeat , fϕlabel ; DPAA params
WK ,WV ,WQ and head fΩ; Episode spec (m-way, k-shot, T queries), temperature τ ,
learning rate η.

Output :Pretrained modelMΦ = {θ0, fϕde , fϕfeat , fϕlabel ,WK ,WV ,WQ, fΩ}.
1 (Optional) feature unification. For each Xi, map to Rdo via SVD. // unify dims

2 Stage A: Train domain embedder fϕde . // gradient fingerprints
3 for i = 1, . . . ,M do
4 Compute one gradient step on Gi from θ0: θi ← θ0 − η∇θLi(θ0).
5 Store fingerprint ∆θi ← θi − θ0.
6 end
7 repeat
8 ei ← fϕde(∆θi) for all i.
9 Lde ←

∑
i,j

(
∥∆θi −∆θj∥F − ∥ei − ej∥2

)2
.

10 Update fϕde by descending ∇Lde.
11 until converged
12 Freeze fϕde (and keep fθ at θ0).

13 Stage B: Episodic pretraining with DPAA (encoder init frozen).
14 for episodes do
15 Sample a graph Gi and an m-way k-shot support set S plus T queries per class as the query

set Q .
16 ei ← fϕde(∆θi); (γfeat

i , βfeat
i )← fϕfeat(ei); (γlabel

i , βlabel
i )← fϕlabel(ei).

// Aligned features / labels
17 For any item w, hi,w ← fθ0(w,Gi), zi,w ← γfeat

i ⊙ hi,w + βfeat
i .

18 For each class l used in the episode, ui,l ← γlabel
i ⊙ Elabel

l + βlabel
i .

19 Form Zpmt ∈ R(mk)×d from support {zi,w} and Upmt ∈ Rm×d from {ui,l}.
// Dual Prompt-Aware Attention (single-query attention)

20 for each query item q with class c do
21 Kfeat← ZpmtWK , Vfeat← ZpmtWV , Q

feat← zi,qWQ.

22 zout
i,q← softmax

(
QfeatKfeat⊤

√
d

)
Vfeat.

23 Klabel← UpmtWK , Vlabel← UpmtWV , Q
label← fΩ(z

out
i,q).

24 uout
i,q← softmax

(
QlabelKlabel⊤

√
d

)
Vlabel.

25 si,q← uout
i,q(U

pmt)⊤ ∈ Rm; Lepisode← − log
exp(si,q [c]/τ)∑m

j=1 exp(si,q [j]/τ)
.

26 end
27 Update {fϕfeat , fϕlabel , E

label,WK ,WV ,WQ, fΩ} to minimize the mean query loss Lpretrain
of the episode.

28 end

C.2 COMPLEXITY ANALYSIS

Let Gi = (Vi, Ei,Xi,Yi) be a pretraining graph with |Vi| nodes and |Ei| edges, GNN encoder
width d, input width do, and domain embedding width de. Offline, the domain embedder com-
putes a single gradient fingerprint per graph by one forward–backward through the shared J-layer
GNN fθ from θ0, which costs O(J(|Ei| + |Vi|), d) per Gi. Each fingerprint ∆θi ∈ Rdo×d

is then embedded via fϕde , giving O (dedod) time. After caching ∆θi, training fϕde with the
pairwise metric-preserving loss adds O

(
M2de

)
per epoch for M pretraining graphs. In each

episode on Gi with m-way k-shot support and T queries per way, generating FiLM parameters
for domain-conditioned transformations

(
γfeat
i , βfeat

i

)
= fϕfeat (ei) and

(
γlabel
i , βlabel

i

)
= fϕlabel (ei)

costs O (ded), and applying Kfeat
i to (mk +mT ) item embeddings and Klabel

i to m label rows of
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Algorithm 2: MF-GIA Test-time In-Context Inference (Parameter-Update-Free w.r.t.MΦ)
Input : Frozen pretrained Φ from Algorithm 1; unseen graph Gnew = (Vnew, Enew,Xnew)

with Cnew classes;
Cnew-way k-shot support set S = {(wj , yj)}kCnew

j=1 ; queries Q ⊆ Gnew \ S.
Output :Predictions {ŷq}q∈Q.

// In-context domain embedding (from support only)
1 Compute a one-step fingerprint from θ0 on S: θnew ← θ0 − η∇θLnew(θ0;S);

enew ← fϕde(θnew − θ0).

// Domain-conditioned alignment for Gnew

2 (γfeat
new, β

feat
new)← fϕfeat(enew); (γlabel

new , β
label
new)← fϕlabel(enew).

3 For any item w: hnew,w ← fθ0(w,Gnew), znew,w ← γfeat
new ⊙ hnew,w + βfeat

new.
4 For l = 0, . . . , Cnew − 1: unew,l ← γlabel

new ⊙Elabel
l + βlabel

new .
5 Form Zpmt

new ∈ R(kCnew)×d from {znew,w}(w,y)∈S and Upmt
new ∈ RCnew×d from {unew,l}.

// Dual Prompt-Aware Attention inference (no parameter update)
6 for each query q ∈ Q do
7 Kfeat← Zpmt

newWK , Vfeat← Zpmt
newWV , Q

feat← znew,qWQ.

8 zout
new,q← softmax

(
QfeatKfeat⊤

√
d

)
Vfeat.

9 Klabel← Upmt
newWK , Vlabel← Upmt

newWV , Q
label← fΩ(z

out
new,q).

10 uout
new,q← softmax

(
QlabelKlabel⊤

√
d

)
Vlabel.

11 sq ← uout
new,q(U

pmt
new)⊤; ŷq ← argmaxj sq[j].

12 end

the shared base Elabel ∈ RLmax×d costs O((mk +mT )d+md). The time complexity of DPAA is
O
(
(mk +m)d2 +mT

(
d2 +mkd+md

))
, which is typically secondary to the encoder when m

and k are few-shot. Typically, we have M,J, T, k,m ≪ |Vi|, |Ei|, d, do, de, therefore the overall
time complexity can be represented as O

(∑M
i=1 (|Ei|+ |Vi|) d+ dedod

)
, which is linear in graph

size.

Moreover, we report inference overhead in terms of FLOPs, memory and latency. For a Cnew-way
k-shot experimental setting with hidden dimension d and average degree D for query nodes, the
per-query computational cost is 2Dd + (kCnew + Cnew + 1)d2 FLOPs, requiring (kCnew + 1)d
memory and achieving 1.3-4.5 ms latency per query. The one-time domain characterization overhead
(computing the gradient fingerprint and domain embedding) ranges from 108-427 ms depending on
the support set size, which is amortized across all queries.

D TASK UNIFICATION

With a bit of notation abuse, in knowledge graphs FB15K237 and WN18RR, link classification
aims to predict the relation type r for a given triple (h, r, t), where h and t are head and tail entities,
respectively. To leverage our node classification framework for this task, we transform the link
classification problem into node classification through line graph construction. Given a knowledge
graph G = (V,E,R,X) with entities V , edges E, relation types R, and node feature matrix X, we
construct a line graph LG(G) = (VLG, ELG,XLG), where each edge ε = (h, r, t) ∈ E becomes a
node vε ∈ VLG. Two nodes vεi , vεi ∈ VLG and are connected if the corresponding edges εi, εj share
a common entity (head or tail). Formally, the edge set ELG is defined as:

ELG =
{(

vεi , vεj
)
: εi = (hi, ri, ti) , εj = (hj , rj , tj) , {hi, ti} ∩ {hj , tj} ̸= ∅

}
(63)

For each node vε ∈ VLG in the line graph corresponding to edge ε = (h, r, t), we construct features
by aggregating the embeddings of the connected entities and relation as xve = [xh∥xt], where [·∥·]
denotes concatenation. The concatenated features are then projected to the unified dimension using
PCA to maintain consistency with the node classification framework. After transformation, link
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Table 6: Dataset statistics.

Usage Dataset Domain Task #Nodes #Edges # Classes
Pretrain WikiCS Web link Node 11,701 216,123 10

PubMed Citation Node 19,717 44,338 3
ogbn-Arxiv Citation Node 169,343 1,166,243 40
Amazon-ratings E-commerce (Ratings) Node 24,492 93,050 5

Evaluation Cora Citation Node 11,701 216,123 10
ogbn-Products E-commerce (Product Category) Node 2,449,029 61,859,140 47
Computers E-commerce (Product Category) Node 13,752 491,722 10
Physics Co-authorship Node 34,493 495,924 5
BlogCatalog Social Media Node 5,196 343,486 6
FB15K237 Encyclopedic KG Link 14,541 310,116 237
WN18RR Lexical KG Link 40,943 93,003 11

classification becomes a node classification problem on the line graph, where each node (representing
an edge in the original graph) needs to be classified into one of R relation types.

E EXPERIMENTAL DETAILS

E.1 DATASETS

We pretrain MF-GIA on four source graphs: WikiCS (Mernyei & Cangea, 2020), PubMed (Yang et al.,
2016), ogbn-Arxiv (Hu et al., 2020), and Amazon-ratings (Leskovec & Sosič, 2016; Platonov et al.,
2023). The pretrained model is evaluated on five held-out graphs on node-level tasks: Cora (Yang
et al., 2016), ogbn-Products (Hu et al., 2020), Computers (Shchur et al., 2018), Physics (Shchur et al.,
2018), and BlogCatalog (Yang et al., 2023), spanning citation, e-commerce, co-authorship, and social
media domains. The pretrained model is also evaluated on edge-level tasks on FB15K237 (Bordes
et al., 2013) and WN18RR (Dettmers et al., 2018), which are knowledge graphs from encyclopedic
and lexical domains to predict relation types. Dataset statistics are summarized in Table 6. Note
that although Amazon-ratings, ogbn-Products, and Computers are E-commerce networks, they form
distinct domains: Amazon-ratings is labeled by average user rating per item, whereas ogbn-Products
and Computers use product-category labels. We therefore treat them as separate domains.

E.2 BASELINE CONFIGURATIONS

We compare MF-GIA against two categories of baselines: (1) Traditional GNNs: GCN (Kipf &
Welling, 2017), GAT (Veličković et al., 2018), and GraphSAGE (Hamilton et al., 2017); (2) Self-
supervised GNNs: GraphMAE (Hou et al., 2022), DGI (Veličković et al., 2019), and GraphCL (You
et al., 2020); (3) GFM with post-training: GCOPE (Zhao et al., 2024), GFT (Wang et al., 2024b),
AutoGFM (Chen et al., 2025), GPF (Fang et al., 2023), and All in One (Sun et al., 2023); (4) GFM
with ICL: Prodigy (Huang et al., 2023), OFA (Liu et al., 2024a), and GraphAlign (Hou et al., 2024).

For traditional GNNs and Self-Supervised Methods, we pretrain on the same four datasets as our
MF-GIA. Since these models lack in-context learning capabilities, we fine-tune them on the support
set and evaluate on the query set for each episode. For GFMs with post-training (no ICL), we consider
two pretraining regimes and report the stronger results: (1) pretraining on the same four graphs as
MF-GIA, and (2) pretraining on the datasets used by the methods’ official implementations. For
Prodigy, we compare two variants: one pretrained on our datasets and another on MAG240M (Hu
et al., 2021) as in the original work, reporting the better result. For modality-dependent models
(OFA, GraphAlign), which require text-attributed graphs (TAGs) and cannot operate on pre-encoded
features, we use their original TAG datasets and implementations. To ensure fairness, all baselines
follow the same episode protocol (identical m-way, k-shot support/query splits), use comparable
backbones when applicable, and tune hyperparameters on validation episodes within the authors’
recommended ranges.
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Figure 5: Pretraining curves of MF-GIA.

Table 7: Effect of pretraining dataset composition on few-shot node classification accuracy (%). We
systematically vary domain coverage from single to full four-domain pretraining. Results are 5-shot
accuracy averaged over 20 episodes. Best results are bold.

Configuration Pretraining Datasets Domain Coverage In-Domain Out-of-Domain Avg OOD Overall
Cora Products Physics BlogCatalog

Si
ng

le

PubMed Citation 42.76 12.43 68.15 41.28 40.62 40.91
Arxiv Citation 48.31 13.86 76.42 43.67 44.65 45.57
WikiCS Web 39.23 14.72 65.83 45.91 42.15 41.67
Amazon E-commerce 35.47 17.28 61.26 38.74 39.09 38.19

Tw
o

PubMed + Arxiv Citation 52.14 14.92 79.87 47.35 47.38 48.57
WikiCS + Amazon Web + E-commerce 41.68 18.35 67.42 48.26 44.68 43.93
PubMed + WikiCS Citation + Web 47.92 15.76 73.21 49.84 46.27 46.68
Arxiv + Amazon Citation + E-commerce 50.36 19.14 78.53 46.72 48.13 48.69

T
hr

ee

PubMed + Arxiv + WikiCS w/o E-commerce 56.47 16.82 83.74 54.38 51.65 52.85
PubMed + Arxiv + Amazon w/o Web 57.82 20.67 85.91 52.16 52.91 54.14
PubMed + WikiCS + Amazon w/o Citation (Arxiv) 51.36 19.43 77.62 57.83 51.63 51.56
Arxiv + WikiCS + Amazon w/o Citation (PubMed) 59.24 21.38 86.73 60.47 56.19 56.96

Fu
ll

All Four Datasets Complete 63.98 22.61 88.92 67.31 59.61 60.73

E.3 IMPLEMENTATION

We evaluate MF-GIA under the few-shot learning paradigm without any fine-tuning. For each
test graph, we randomly sample k-shot support sets, where k = {1, 3, 5}, and evaluate on the
remaining nodes. For node classification tasks, we measure classification accuracy and report the
mean performance across 10 independent trials, each with randomly sampled support/query splits to
ensure robustness of our results. For edge classification tasks, we focus on relation type prediction
and conduct evaluation over 20 episodes to account for variance in the few-shot sampling process.

For the dimension alignment, we use SVD to unify all graphs’ feature dimensions to do = 64. The
domain embedder uses a 2-layer CNN followed by a 1-layer MLP to project gradient fingerprints into
64-dimensional domain embeddings. For feature alignment, we also employ a 1-layer GNN encoder
with a hidden dimension 64, followed by FiLM-based transformations. The label alignment uses a
shared label base of dimension Lmax × 64. The DPAA mechanism consists of 1 attention layer with
1 head each. During pretraining, we use episodic meta learning with 10-way 5-shot tasks sampled
from the pretraining graphs. We train for 10000 episodes using AdamW (Loshchilov & Hutter,
2017) with learning rate 0.005 and weight decay 0.0005. For gradient fingerprint computation,
we use a fixed learning rate η = 0.01 for single-step updates. Fig. 5 illustrates the pretraining
dynamics of MF-GIA. The training loss exhibits stable convergence, while validation accuracy shows
consistent improvement before plateauing at approximately 6000 epochs, indicating effective model
convergence.

F MORE EXPERIMENTS

F.1 EFFECT OF DOMAIN DIVERSITY IN PRETRAINING

Table 7 demonstrates that domain diversity is critical for MF-GIA to construct an effective domain
embedding space that enables robust alignment of downstream graphs. Single-dataset pretraining
yields limited performance, where Arxiv shows the strongest individual results due to its diverse
academic content, providing richer domain signals. When combining two datasets, cross-domain
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pairs (e.g., Arxiv + Amazon: 48.69%) perform comparably to same-domain pairs (PubMed + Arxiv:
48.57%) despite Amazon’s weaker individual performance, indicating that structural diversity helps
the domain embedder learn more generalizable alignment patterns beyond surface-level similarities.
This effect amplifies with three datasets, where the configuration without PubMed (Arxiv + WikiCS +
Amazon) achieves 56.96%, notably outperforming the configuration without Arxiv (51.56%), despite
Arxiv’s superior standalone performance. This counterintuitive result reveals that once sufficient
domain signals are captured, maintaining diverse structural patterns (Web link, E-commerce) becomes
more valuable than redundant citation networks for constructing a comprehensive domain space. The
full four-dataset model achieves optimal performance (60.73%), with remarkable generalization to
entirely unseen domains like BlogCatalog (67.31%), validating that comprehensive domain coverage
during pretraining enables the domain embedder to map novel graphs into appropriate subspaces of
the learned domain space. These results confirm that MF-GIA’s domain-conditioned transformations
require diverse pretraining to establish a rich domain embedding space where graphs from any
domain, seen or unseen, can be effectively mapped and aligned based on their intrinsic characteristics.

F.2 EFFECT OF GRAPH PRE-ENCODER

Table 8: Performance of MF-GIA on Cora with
different feature encodings.

Pre-encoder 1-shot 3-shot 5-shot

BoW 47.64 57.38 63.98
ST 48.37 62.79 68.54
RoBERTa 48.24 61.53 69.85
LLaMa2-7B 47.93 58.64 65.33

While the raw text data of the Cora dataset has
been made available by Chen et al. (2024a), pop-
ular end-to-end GNN models typically utilize
the pre-encoded version from Yang et al. (2016),
which employs bag-of-words (BoW) encoding
for node features. Modality-dependent GFMs
such as GFT, AutoGFM, and OFA require ac-
cess to raw text data and rely on specific lan-
guage models, such as Sentence Transformer
(ST) 1 (Reimers & Gurevych, 2019), LLaMa2-
7B 2 (Touvron et al., 2023), or RoBERTa 3 (Liu et al., 2019), to align the semantic space between the
Cora dataset and their pretraining graphs. In contrast, MF-GIA demonstrates modality freedom, i.e.,
it operates directly on graphs with arbitrary pre-encoded features without requiring knowledge of the
encoding method. Whether a graph has been encoded using bag-of-words, advanced language models,
or even unknown proprietary encoders, MF-GIA can seamlessly adapt to these features. The results
in Table 2 employ the public bag-of-words features for MF-GIA. To validate our modality-free claim,
in Table 8, we conduct additional experiments applying our pretrained model (without re-pretraining)
to the graph pre-encoded through different pipelines. The results show that MF-GIA maintains its
effectiveness regardless of the underlying feature encoding, confirming its ability to generalize across
diverse pre-processing methods and enabling practical deployment in scenarios where encoding
details are unknown or heterogeneous.

F.3 DIMENSION UNIFICATION

For GFMs, feature dimensions are unified before feeding data into the model because GFMs require
inputs in a consistent format. We adopt SVD-based unification to achieve a fair comparison with
baselines which isolates the contribution of our core innovation from preprocessing effects. Dedicated
methods such as Domain-Invariant Aligner (DIA) (Yuan et al., 2025) provide more expressive and
learnable pre-unifiers, which can be seamlessly integrated into our MF-GIA framework. Table 9
shows that our framework remains effective and compatible with advanced dimension unification
techniques.

F.4 MORE PRETRAINING TASKS

Table 10: Performance of MF-GIA with additional
pretraining tasks (5-shot).

ogbn-Products Computers FB15K237

MF-GIA 22.61 53.71 91.38
MF-GIA (w. link) 24.59 56.60 92.36

In this work, we pretrain our model on a small
number of datasets to showcase its ability to
adapt to diverse unseen domains and task types.
The four datasets we use are among the widely

1https://huggingface.co/sentence-transformers/multi-qa-distilbert-cos-v1
2https://huggingface.co/meta-llama/Llama-2-7b
3https://huggingface.co/FacebookAI/roberta-base
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Table 9: Performance on MF-GIA with expressive dimension unification component.

Method Computers Physics BlogCatalog

1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

MF-GIA 41.49 53.71 79.12 88.92 49.46 67.31
MF-GIA (w. DIA) 41.96 54.60 80.15 89.74 48.37 66.53

adopted, publicly available, and easily accessi-
ble graph benchmarks. This design ensures that
anyone can reproduce or extend our pretraining process without the need for extensive dataset cura-
tion, as common benchmarks already provide sufficient diversity to pretrain our model effectively.
Here, we expand pretraining beyond node classification by adding link existence prediction and
re-pretrain the model, denoted as MF-GIA (w. link), and report the inference results under the 5-shot
setting in Table 10. It shows that a broader pretraining corpus yields consistent improvements on
unseen domains.

F.5 STABILITY OF GRADIENT FINGERPRINTS

Table 11: Stability of gradient fingerprints.

Datasets Avg. Cosine Similarity Std. Dev. Min. Similarity

Physics 0.931 0.015 0.896
BlogCatalog 0.917 0.021 0.873

The stability of the gradient fingerprints is de-
pendent on the size of the support set. From
Theorem B.1, the gradient decomposes as
∇0L (θ0, G) = 1

|V |X
⊤A · diag(g) · 1d, which

reveals that the fingerprint aggregates informa-
tion from domain-specific components including feature distribution X, graph structure A and
label distribution g. As the support set size increases, the law of large numbers ensures that these
aggregated statistics converge to their population expectations, making the gradient fingerprints
increasingly stable. Here, we examine the fingerprint stability under a 5-shot setting. Take Physics
and BlogCatalog datasets as examples, we randomly sample 20 different 5-shot support sets from
all classes, and compute fingerprints ∆θ for each support set and feed it into the domain embedder
to get the domain embedding. Then we can measure the stability by computing the pairwise cosine
similarity between all domain embedding pairs from the same graph. The results are shown in
Table 11, where the high average cosine similarity and low standard deviation demonstrate that
different support sets from the same domain produce highly consistent domain embeddings.

F.6 SENSITIVITY ANALYSIS

Sensitivity of the Temperature τ . The temperature parameter τ in Eq. (19) controls the sharpness
of the softmax distribution over class predictions. We conduct systematic experiments varying τ ∈
{0.05, 0.2, 0.5, 1} across multiple datasets in Table 12. We can find that the default τ = 0.2 provides
optimal balance, but the model is not highly sensitive to this hyperparameter within a reasonable
range [0.2, 1]. However, as a foundation model, all trainable parameters and hyperparameters must
remain fixed across all datasets and tasks. Thus, we set τ = 0.2 uniformly for all experiments both
during pretraining and in-context inference without any task- and dataset-specific tuning.

Table 12: Effect of τ on different datasets (5-shot).

τ ogbn-Products Computers FB15K237

0.05 21.45 52.10 91.82
0.2 (Default) 22.61 53.71 91.38
0.5 22.60 53.93 90.45
1 22.15 53.29 90.27

Sensitivity of DPAA Configurations For the DPAA depth and number of heads, we directly adopt
a single-layer and single-head design for complexity and generalization considerations. Adding more
layers and heads would increase computational and memory costs and could introduce a higher risk
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Table 13: Sensitivity of DPAA configurations

Computers Physics BlogCatalogs

1-layer, 1-head (Shared) 53.71 88.92 67.31
1-layer, 1-head (Separated) 51.25 88.10 67.05
1-layer, 4-head 52.47 86.58 66.15
2-layer, 1-head 54.05 88.53 67.46
2-layer, 4-head 53.39 87.52 66.83

of overfitting, whereas our goal is to keep the learning process efficient, lightweight, yet expressive.
The results Table 2 and Table 3 already show that this simplest DPAA configuration outperforms
baselines, which highlights the architectural strength of our approach rather than relying on heavy
over-parameterization. Table 13 shows that the 1-layer 1-head and 2-layer 1-head settings achieve the
best performance, with 1-layer 1-head offering the best trade-off between efficiency and effectiveness.
Therefore, we adopt the 1-layer 1-head configuration as the unified default setting for all datasets
in our experiments. Moreover, we conduct an ablation study comparing shared and separate weight
matrices WK and WV in this table. The shared setting outperforms the separate setting, possibly
because the latter introduces more parameters and is more prone to over-fitting, and shared parameters
can effectively improve efficiency.

Sensitivity of Initialization Seeds, Learning Rates, and Gradient Steps. In Table 14, we investi-
gate the robustness of our model to the initialization seeds, where we conduct the experiments under
10 random seeds. The low standard deviations across seeds demonstrate that gradient fingerprints are
highly stable to initialization variations of θ0. In Table 15, we show the robustness to the learning rate
η. We observe that the default value of η achieves near-optimal performance, while the framework
demonstrates robustness as neighboring values produce comparable results. Besides, η naturally
acts as a fixed scaling factor that uniformly scales the fingerprints across all datasets, thus having
minimal impact on the overall results due to the metric-preserving property of the domain embedder.
Regarding the number of gradient steps, we emphasize that a single-step gradient update is sufficient
to capture how the domain influences the shared initialization θ0. Since our goal is domain characteri-
zation rather than optimization of θ0, additional gradient steps provide no benefit while increasing
computational overhead. To empirically validate this design choice, we compare single-step and
multi-step gradient fingerprints in Table 16, where stability is equal to the average cosine similarity
between fingerprints computed from the same graph with different initialization seeds. The results
show that multi-step gradients consistently underperform single-step gradients, with performance
degrading as step count increases. Moreover, the fingerprint stability metric reveals that multi-step
gradients become increasingly sensitive to initialization. It demonstrates that our single-step design is
optimal.

Table 14: Performance over 10 random seeds (5-shot).

Cora Computers Physics-5 shot BlogCatalog

10 random seeds 64.02± 0.21 53.61± 0.29 88.86± 0.19 67.28± 0.24

G THE USE OF LARGE LANGUAGE MODELS (LLMS)

In this paper, LLMs have been used solely for polishing the writing and identifying typographical
errors. No LLMs were used for generating research content, analysis, or conclusions.
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Table 15: Effect of η.

η Computers Physics

0.001 52.85 88.52
0.05 52.92 88.46
0.01 53.71 88.92
0.05 53.45 89.27

Table 16: Effect of gradient steps.

#Steps Computers Physics Stability

1 53.71 88.92 0.92
2 52.18 87.34 0.78
3 52.20 86.89 0.71
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