

000 MODALITY-FREE GRAPH IN-CONTEXT ALIGNMENT

001
002
003 **Anonymous authors**

004 Paper under double-blind review

005 006 007 ABSTRACT

008
009 In-context learning (ICL) converts static encoders into task-conditioned reasoners, enabling adaptation to new data from just a few examples without updating
010 pretrained parameters. This capability is essential for graph foundation models
011 (GFMs) to approach LLM-level generality. Yet current GFMs struggle with cross-
012 domain alignment, typically relying on modality-specific encoders that fail when
013 graphs are pre-vectorized or raw data is inaccessible. In this paper, we introduce
014 Modality-Free Graph In-context Alignment (MF-GIA), a framework that makes a
015 pretrained graph encoder promptable for few-shot prediction across heterogeneous
016 domains without modality assumptions. MF-GIA captures domain characteristics
017 through gradient fingerprints, which parameterize lightweight transformations that
018 align pre-encoded features and indexed labels into unified semantic spaces. During
019 pretraining, a dual prompt-aware attention mechanism with episodic objective
020 learns to match queries against aligned support examples to establish prompt-based
021 reasoning capabilities. At inference, MF-GIA performs **parameter-update-free**
022 adaptation using only a few-shot support set to trigger cross-domain alignment and
023 enable immediate prediction on unseen domains. Experiments demonstrate that
024 MF-GIA achieves superior few-shot performance across diverse graph domains
025 and strong generalization to unseen domains. The code is anonymously available
026 [here](#).

027 028 1 INTRODUCTION

029 The remarkable success of Large Language
030 Models (LLMs) has fundamentally revolution-
031 ized AI, with in-context learning (Brown et al.,
032 2020; Zhang et al., 2023; Lu et al., 2022) emerg-
033 ing as a pivotal capability that enables these
034 models to adapt to new tasks through mere expo-
035 sure to a few demonstration examples, without
036 any parameter updates like fine-tuning. This
037 paradigm shift, from task-specific fine-tuning
038 to prompt-based adaptation, naturally sparks a
039 profound question for the graph learning com-
040 munity: *Can we achieve similar foundation-level generality for graph-structured data?* Unlike
041 sequential text where context flows naturally, graphs encode complex topological patterns, multi-
042 hop dependencies, and heterogeneous node and edge attributions that demand fundamentally new
043 approaches to demonstration selection, prompt design, and reasoning.

044 Achieving true graph in-context learning demands three fundamental criteria that remain elusive in
045 existing methods. First, **post-training-free** inference is essential for genuine ICL, where models
046 must adapt to new tasks through demonstrations alone, without fine-tuning or learnable prompt
047 engineering. Second, **cross-domain alignment** enables a single model to reason across diverse
048 graph types within a unified semantic space, mirroring LLMs' domain-agnostic capabilities. Third,
049 **modality-free** operation ensures that the model can process arbitrary pre-encoded graphs without
050 requesting raw data, crucial for the heterogeneous domains of real-world graphs. As shown in
051 Table 1, prior approaches fall short of meeting all three criteria at once: self-supervised GNNs (You
052 et al., 2020; Qiu et al., 2020) and GFM like All in One (Sun et al., 2023), GCOPE (Zhao et al.,
053 2024), and GFT (Wang et al., 2024b) compromise ICL through required post-training on downstream

054 Table 1: Comparison of methods with respect to
055 the three main criteria of true ICL.

Method	Post-Training Free	Domain Alignment	Modality-Free
SSL-GNN	✗	✗	✓
All in One (Sun et al., 2023)	✗	✗	✓
GPF (Fang et al., 2023)	✓	✗	✓
GCOPE (Zhao et al., 2024)	✗	✓	✓
GFT (Wang et al., 2024b)	✗	✓	✗
Prodigy (Huang et al., 2023)	✓	✗	✓
Unigraph (He et al., 2025a)	✓	✓	✗
AutoGFM (Chen et al., 2025)	✗	✓	✗
GraphAlign (Hou et al., 2024)	✓	✓	✗
OFA (Liu et al., 2024a)	✓	✓	✗
GOFA (Kong et al., 2025)	✓	✓	✗
MF-GIA	✓	✓	✓

graphs, where All in One trains task-specific prompts while GCOPE and GFT require fine-tuning; GPF (Fang et al., 2023) and Prodigy (Huang et al., 2023) lack cross-domain alignment, limiting their generalization on graphs from unseen domains; recent advances like UniGraph (He et al., 2025a) and OFA (Liu et al., 2024a) achieve alignment and post-training-free inference, yet sacrifice modality freedom by requiring conversion to a single unified modality (e.g., text-attributed graphs) for alignment, making them inapplicable when raw data are inaccessible or when graphs are already pre-encoded by domain-specific pipelines. More related work is elaborated in Appendix A.

In this work, we present Modality-free Graph In-context Alignment (MF-GIA), the first GFM to achieve all three criteria for true in-context learning on graphs. Our key insight is that the interaction between a graph and a shared frozen encoder reveals its domain characteristics, which can be captured by a gradient fingerprint: a single-step parameter update that encodes how features, labels, and structure jointly influence the model. This fingerprint drives lightweight domain-conditioned transformations that align pre-encoded features and graph-local label IDs into unified semantic spaces, where related domains occupy neighboring subspaces while preserving intra-domain geometry, thereby achieving modality-free domain alignment. The aligned features and labels are then processed by Dual Prompt-Aware Attention (DPAA) optimized with an episodic objective that learns to match queries against support examples. This approach establishes prompt-based in-context reasoning that simulates the few-shot scenarios faced at test time. At inference, given a few labeled examples as prompts, MF-GIA computes the fingerprint, instantiates the aligners, and performs **parameter-update-free** prediction on unseen domains. Experiments across diverse benchmarks demonstrate that MF-GIA excels at few-shot node-level tasks, generalizes to entirely unseen domains, and transfers seamlessly to edge-level tasks, bringing GFMs closer to the universal in-context learning exhibited by LLMs.

2 PRELIMINARIES

Following the ICL setup of the pioneering work Prodigy, we study few-shot, prompt-based node and edge classification. In this section, we formalize ICL as episodic classification over graphs and introduce a modality-free alignment perspective that standardizes features and labels across domains.

2.1 GRAPH IN-CONTEXT LEARNING

Let $\mathcal{G} = \{G_1, G_2, \dots, G_M\}$ denote a collection of M graphs drawn from heterogeneous domains, where each graph $G_i = (V_i, E_i, \mathbf{X}_i, \mathbf{Y}_i)$ comprises a node set V_i , an edge set $E_i \subseteq V_i \times V_i$, node features $\mathbf{X}_i = \{x_{i,1}, \dots, x_{i,|V_i|}\} \in \mathbb{R}^{|V_i| \times d_i}$, and labels \mathbf{Y}_i . The node features \mathbf{X}_i may exist in domain-specific formats (e.g., dense vectors, categorical attributes, IDs), with potentially different dimensions d_i . To pretrain a universal model across these graphs with a common input width, following (Yu et al., 2025; Zhao et al., 2024), we first unify feature dimensions to d_o by applying SVD on each $\mathbf{X}_i \leftarrow \text{SVD}(\mathbf{X}_i) \in \mathbb{R}^{|V_i| \times d_o}$. Depending on the task, \mathbf{Y}_i is either a node-label vector $\mathbf{Y}_i^{\text{node}} = \{0, 1, \dots, C_i^{\text{node}} - 1\}^{|V_i|}$ or an edge-label vector $\mathbf{Y}_i^{\text{edge}} = \{0, 1, \dots, C_i^{\text{edge}} - 1\}^{|E_i|}$, where C_i^{node} and C_i^{edge} denote the number of node and edge classes in G_i , respectively. A universal GNN encoder $f_\theta : \mathbb{R}^{d_o} \rightarrow \mathbb{R}^d$ maps graph items (nodes or edges) to d -dimensional representations. For node classification, the representation of $v \in V_i$ is $h_{i,v} = f_\theta(v; G_i) \in \mathbb{R}^d$. For edge classification, we analogously obtain $h_{i,e} = f_\theta(e; G_i)$ for $e \in E_i$ using endpoint features and structure as needed. We use the generic symbol w to denote an item ($w = v$ or $w = e$).

Given \mathcal{G} as a pretraining corpus with M graphs and a target graph $G_{\text{new}} = (V_{\text{new}}, E_{\text{new}}, \mathbf{X}_{\text{new}}, \mathbf{Y}_{\text{new}})$ from an unseen domain with C_{new} classes, *graph in-context learning* aims to classify graph items in G_{new} using a few labeled examples per class as in-context demonstrations, without updating model parameters. Formally, the graph ICL operates in two phases. During pretraining, we learn a unified model $\mathcal{M}_\Phi : \mathcal{G} \rightarrow \mathcal{Y}$ on the corpus \mathcal{G} . At test time, given a support set $\mathcal{S} = \{(w_j, y_j)\}_{j=1}^{k \cdot C_{\text{new}}}$ containing k labeled graph items per class from G_{new} as prompts, the model predicts labels for query items $\mathcal{Q} = \{q : q \in G_{\text{new}} \setminus \mathcal{S}\}$ as:

$$\hat{y}_q = \mathcal{M}_\Phi(q, G_{\text{new}}, \mathcal{S}), \quad \forall q \in \mathcal{Q}, \quad (1)$$

where the pretrained model \mathcal{M}_Φ is parameterized by Φ . Crucially, Φ remains frozen during inference, so the model leverages the in-context demonstrations in \mathcal{S} to adapt to the new domain without

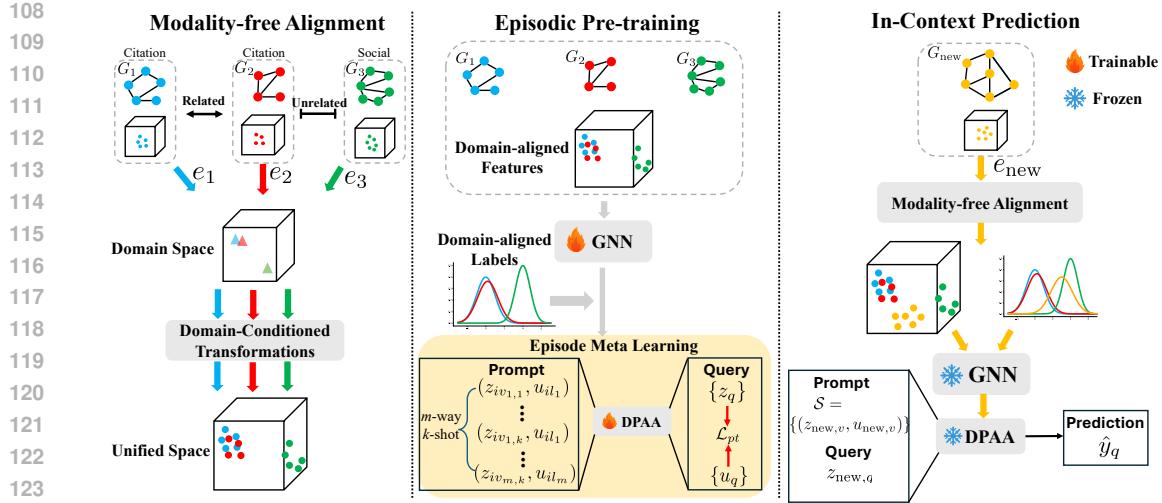


Figure 1: Overview of MF-GIA. **(Left) Modality-free Alignment:** The pretraining graphs are mapped to a unified space via domain-conditioned transformations. Domain descriptors e ensure similar domains occupy neighboring subspaces. **(Middle) Episodic Pre-training:** The model learns from m -way k -shot episodes using domain-aligned features and labels. The DPAA mechanism matches queries to classes using only prompts as context. **(Right) In-context Prediction:** For an unseen graph, the frozen model performs few-shot classification using the support set as a prompt.

fine-tuning. For example, consider \mathcal{M}_Φ pretrained on citation and E-commerce networks. When tested on a social network G_{new} from an unseen domain, the model can classify users in G_{new} without fine-tuning. Instead, we provide a support set containing a few labeled users from each class. By leveraging these in-context demonstrations as prompts, \mathcal{M}_Φ identifies patterns between the support examples and query users to classify the remaining users, all while keeping its parameters frozen.

Episodic Meta Learning. To enable in-context adaptation, we adopt an episodic training paradigm (Vinyals et al., 2016; Li et al., 2019). Specifically, for each pretraining graph $G_i \in \mathcal{G}$, we construct m -way k -shot episodes by sampling m classes and k examples per class as a support set \mathcal{S} , with additional samples as queries \mathcal{Q} . The model \mathcal{M}_Φ consumes (G_i, \mathcal{S}) as the prompt and is optimized to maximize the likelihood of the ground-truth labels on \mathcal{Q} :

$$\min_{\Phi} \mathbb{E} \left[-\frac{1}{|\mathcal{Q}|} \sum_{q \in \mathcal{Q}} \log \hat{p}(y_q | q, \mathcal{S}, G_i) \right]. \quad (2)$$

This episodic formulation teaches the model to recognize patterns from limited examples. By pretraining on numerous episodes that simulate the few-shot scenarios encountered at test time, the model acquires the capacity to perform in-context reasoning. At inference, this enables adaptation to new domains through few-shot prompts alone, with all pretrained parameters Φ remaining frozen.

2.2 MODALITY-FREE ALIGNMENT

The pretraining graphs in \mathcal{G} often differ in both input modalities and label systems. Features range from dense vectors to categorical attributes or domain-specific identifiers. Likewise, label spaces are graph-local and vary in cardinality, with no global alignment across domains. These heterogeneities make direct in-context transfer across graphs challenging.

Recent GFMs (Wang et al., 2024b; He et al., 2025a; Liu et al., 2024a) attempt to unify graphs from heterogeneous domains with Text-Attributed Graphs (TAGs), which convert all features and labels to natural language, then map them with language models into shared semantic spaces. However, this approach has fundamental limitations. Real-world graph data is typically already vectorized through domain-specific methods, such as word2vec (Mikolov et al., 2013) for documents, molecular fingerprints (Rogers & Hahn, 2010) for compounds, and user behavior embeddings (Pan & Ding, 2019). Converting these optimized representations to text and back introduces information loss and

162 computational overhead. Furthermore, privacy constraints often restrict access to raw data, and data
 163 providers usually release only pre-encoded datasets, making modality-aware conversions infeasible
 164 in sensitive domains. Instead, we adopt a *modality-free alignment* perspective, which aligns graphs
 165 directly in their existing representations without modality-aware conversion.

166 **Definition 1. (Modality-free Alignment)** Let $\{(G_i, L_i)\}_{i=1}^M$ be graphs from M domains, whose
 167 item features are already pre-encoded by (unknown) domain-specific pipelines, $\mathbf{X}_i \in \mathbb{R}^{d_o}$, and
 168 whose labels have been indexed by $L_i = \{0, \dots, C_i - 1\}$. A modality-free alignment is a domain-
 169 conditioned transformation system $\mathcal{T} = \left\{(\mathcal{K}_i^{feat}, \mathcal{K}_i^{label})\right\}_{i=1}^M$ with:

$$172 \quad \mathcal{K}_i^{feat} : \mathbb{R}^{d_o} \rightarrow \mathbb{R}^d \quad (\text{feature alignment}) \quad \text{and} \quad \mathcal{K}_i^{label} : L_i \rightarrow \mathbb{R}^d \quad (\text{label alignment}) \quad (3)$$

173 that maps domain-specific features and label IDs directly into a unified d -dimensional feature space
 174 and label space, respectively, without reconstructing or converting to any intermediate modality. The
 175 transformations should be conditioned on the domain descriptors $e_i \in \mathbb{R}^{d_e}$ that capture domain
 176 characteristics of G_i , such that for any two domain i, j ,

$$177 \quad \|\mathcal{K}_i^{feat} - \mathcal{K}_j^{feat}\| \propto \|e_i - e_j\| \quad \text{and} \quad \|\mathcal{K}_i^{label} - \mathcal{K}_j^{label}\| \propto \|e_i - e_j\|. \quad (4)$$

179 This ensures that similar domains with close descriptors $e_i \approx e_j$ produce similar transformations,
 180 causing their aligned features and labels to occupy neighboring subspaces in the unified space.

182 Fig. 1-left illustrates the idea intuitively. Modality-free alignment maps every graph into a unified
 183 semantic space according to domain relationships: graphs from related domains (e.g., two citation
 184 networks G_1 and G_2) have similar domain descriptors and thus map to neighboring subspaces,
 185 whereas unrelated domains (social network G_3) sit far away. The domain-conditioned transformations
 186 \mathcal{K}_i^{feat} and \mathcal{K}_i^{label} project each graph’s pre-encoded features and indexed labels into unified feature
 187 and label spaces, preserving intra-domain semantics while enabling cross-domain transfer. This
 188 is essential because numerically similar feature vectors from different domains can carry entirely
 189 different meanings (each domain’s encoder defines its own coordinate system), and indexed label IDs
 190 $[0, 1, 2, \dots]$ are reused with domain-specific semantics. Modality-free alignment reconciles these
 191 differences by calibrating features and labels via the domain descriptor, unifying them in shared
 192 spaces without requiring any knowledge of the original data modality like TAGs.

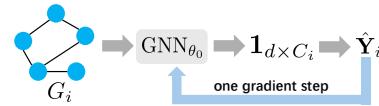
193 3 MF-GIA: MODALITY-FREE GRAPH IN-CONTEXT ALIGNMENT

195 In this section, we present MF-GIA for enabling in-context learning across heterogeneous graph
 196 domains without modality-specific priors. MF-GIA addresses the fundamental challenge of aligning
 197 graphs with incompatible feature spaces and label systems through three key components: (1) domain
 198 embedder encodes domain characteristics, (2) domain-conditioned alignment maps pre-encoded
 199 features and indexed labels to unified spaces, and (3) episodic pretraining realizes few-shot adaptation
 200 during pretraining. We then describe in-context inference on graphs from unseen domains.

201

202 3.1 DOMAIN EMBEDDER

204 Reliable domain embeddings are the pivot of MF-GIA: they
 205 summarize graphs’ domain characteristics, parameterize the
 206 domain-conditioned aligners $(\mathcal{K}_i^{feat}, \mathcal{K}_i^{label})$, and ensure that
 207 graphs with related domains are mapped to neighboring sub-
 208 spaces while preserving intra-/cross- domain semantics. Prior work represents graph domains using
 209 learnable tokens, but depends on external signals, such as domain labels (Yu et al., 2025) or modality
 210 metadata (He et al., 2025a), which are often unavailable in practice. We instead induce the domain
 211 embeddings $\{e_i\}_{i=1}^M$ directly from each graph’s intrinsic properties by capturing the interactions
 212 between the graph and a shared encoder, without external signals. Starting from a single shared
 213 weight initialization $\theta_0 \in \mathbb{R}^{d_o \times d}$ for a one-layer GNN encoder followed by a fixed all-ones projection
 214 matrix $\mathbf{1}_{d \times C_i}$ from embedding to label space as shown in Fig. 2, we take a single gradient step on each
 215 pretraining graph $G_i \in \mathcal{G}$ as $\theta_i = \theta_0 - \eta \nabla_{\theta} \mathcal{L}_i(\theta_0)$, where η is a small learning rate uniformly set to
 0.01 and \mathcal{L}_i is the task loss w.r.t. the available labels on G_i . The resulting single-step displacement
 $\Delta\theta_i = \theta_i - \theta_0$ serves as a *gradient fingerprint* that captures **how the graph’s features, labels, and**



216 Figure 2: Domain embedder.
 217

216 **structure jointly influence the shared encoder.** Intuitively, graphs with similar gradient patterns are
 217 likely to come from related domains, making $\Delta\theta_i$ a natural descriptor of domain-level information.
 218 To obtain compact domain embeddings, we project these fingerprints through a learnable domain
 219 embedder $f_{\phi_{de}} : \mathbb{R}^{d_o \times d} \rightarrow \mathbb{R}^{d_e}$:

$$220 \quad e_i = f_{\phi_{de}}(\Delta\theta_i) = \text{MLP}(\text{Flatten}(\text{Conv2D}(\Delta\theta_i))) \in \mathbb{R}^{d_e}, \quad (5)$$

222 where the fingerprint $\Delta\theta_i \in \mathbb{R}^{d_o \times d}$ is treated as a single-channel image to be embedded. The
 223 embedder $f_{\phi_{de}}$ is trained to preserve domain relationships by minimizing:

$$224 \quad \mathcal{L}_{de} = \sum_{G_i, G_j \in \mathcal{G}} (\|\Delta\theta_i - \Delta\theta_j\|_F - \|e_i - e_j\|_2)^2, \quad (6)$$

226 so that pairwise relationships among graphs are retained in the embedding space. This approach
 227 naturally captures domain characteristics without domain labels or modality priors, as the gradient
 228 pattern inherently reflects the unique way each domain’s data distribution interacts with the shared
 229 model initialization.

230 The domain embedding induced by the gradient fingerprint is central to MF-GIA, and the subsequent
 231 alignment operations are established on it. To justify its effectiveness, we provide a theoretical analysis
 232 showing that this embedding faithfully preserves domain characteristics (Proof in Appendix B.1).

233 **Definition 2. (Graph Domain)** A graph domain \mathcal{D}_i is characterized by a joint distribution $P_i(G, \mathbf{Y})$
 234 over graphs $G = (V, E, \mathbf{X})$ and labels \mathbf{Y} , where the feature distribution $P_i(\mathbf{X})$, label distribution
 235 $P_i(\mathbf{Y})$, and structure distribution $P_i(E|V)$ jointly define the domain characteristics.

236 Then we define the domain distance used in Eq. (8) to measure the inherent similarity between
 237 domains.

239 **Definition 3. (Domain Distance)** The distance between two domains \mathcal{D}_i and \mathcal{D}_j is measured by the
 240 Wasserstein distance:

$$241 \quad \mathcal{W}_2(\mathcal{D}_i, \mathcal{D}_j) = \inf_{\kappa \in \Gamma(P_i, P_j)} (\mathbb{E}_{(G_i, G_j) \sim \kappa} [d_{\mathcal{G}}^2(G_i, G_j)])^{1/2}, \quad (7)$$

243 where $\Gamma(P_i, P_j)$ denotes all joint distributions with marginals P_i and P_j , $d_{\mathcal{G}}(G_i, G_j)$ is a graph
 244 distance metric that captures both feature and structural differences between graphs.

245 **Definition 4 (Graph Distance).** For two graphs $G_i = (V_i, E_i, X_i)$ and $G_j = (V_j, E_j, X_j)$
 246 with normalized adjacency matrices A_i and A_j , we define the graph distance as $d_{\mathcal{G}}(G_i, G_j) =$
 247 $\|X_i - X_j\|_F + \|A_i - A_j\|_F$, where we assume $|V_i| = |V_j|$ (padding with isolated nodes if necessary
 248 for comparison).

249 **Theorem 3.1.** Let G_i and G_j be graphs sampled from domains \mathcal{D}_i and \mathcal{D}_j respectively, with
 250 corresponding gradient fingerprints $\Delta\theta_i, \Delta\theta_j \in \mathbb{R}^{d_o \times d}$ computed using task loss \mathcal{L}_i and \mathcal{L}_j (e.g.,
 251 cross-entropy). The domain embedder $f_{\phi_{de}}$ produces domain embeddings e_i and e_j . Assuming every
 252 task loss \mathcal{L} is $\mathcal{L}_{\text{task}}$ -smooth with respect to model parameters, and $f_{\phi_{de}}$ has Lipschitz constant \mathcal{L}_{de} ,
 253 the domain embeddings preserve domain relationships:

$$254 \quad \|e_i - e_j\|_2 \leq \tilde{C} \cdot \mathcal{W}_2(\mathcal{D}_i, \mathcal{D}_j) \quad (8)$$

255 where $\mathcal{W}_2(\cdot, \cdot)$ measures inherent distance between two domains, and \tilde{C} is a constant.

256 This upper bound ensures that if two domains are inherently similar, their embeddings learned by
 257 $f_{\phi_{de}}$ will be close in the embedding space, while dissimilar domains produce distant embeddings.

259 **In-context Domain Embedding.** For a downstream graph G_{new} from an unseen domain, we
 260 compute its domain embedding using the same fingerprinting process. Given a few labeled items
 261 $\mathcal{S} = \{(w_i, y_i)\}_{i=1}^{k \cdot C_{\text{new}}}$ as a C_{new} -way k -shot prompt from G_{new} , we perform a single gradient step
 262 from the same initialization θ_0 , which is a component of the pretraining model $\mathcal{M}(\theta_0 \in \Phi)$, as
 263 $\theta_{\text{new}} = \theta_0 - \eta \nabla_{\theta} \mathcal{L}_{\text{new}}(\theta_0, \mathcal{S})$, where \mathcal{L}_{new} is computed using only the prompt \mathcal{S} . The in-context
 264 domain embedding of G_{new} is then computed by passing the gradient fingerprint through the pretrained
 265 domain embedder:

$$266 \quad e_{\text{new}} = f_{\phi_{de}}(\theta_{\text{new}} - \theta_0). \quad (9)$$

267 This process automatically captures G_{new} ’s characteristics and positions it within the learned domain
 268 space. Since the domain embedder $f_{\phi_{de}}$ has been trained to preserve domain relationships during
 269 pretraining, it naturally maps the new graph’s fingerprint to an appropriate location based on the
 knowledge learned from existing domains.

270 3.2 DOMAIN-CONDITIONED ALIGNMENT
271

272 With the domain embedding e_i for $G_i \in \mathcal{G}$, MF-GIA instantiates two lightweight transformations
273 ($\mathcal{K}_i^{\text{feat}}, \mathcal{K}_i^{\text{label}}$) as aligners that respectively align G_i 's item features and graph-local label IDs into
274 unified semantic spaces. Because the transformations are conditioned on e_i , related domains with
275 nearby e_i induce similar transformations and occupy neighboring subspaces after alignment, while
276 dissimilar domains remain separated.

277 3.2.1 FEATURE ALIGNMENT
278

279 For each pretraining graph G_i , we learn a domain-conditioned feature transformation $\mathcal{K}_i^{\text{feat}}$ mapping
280 pre-encoded item features to a unified feature space. Given an item $w \in G_i$ with its feature $x_w \in \mathbb{R}^{d_o}$,
281 we first obtain its base representation via a shared GNN encoder f_θ , whose first-layer weight matrix
282 is initialized from the stored θ_0 :

$$283 h_{i,w} = f_\theta(w, G_i) \in \mathbb{R}^d. \quad (10)$$

284 Then we apply Feature-wise Linear Modulation (FiLM) (Perez et al., 2018) to generate domain-
285 conditioned transformations from the domain embedding:

$$286 (\gamma_i^{\text{feat}}, \beta_i^{\text{feat}}) = f_{\phi^{\text{feat}}}(e_i), \quad \gamma_i^{\text{feat}}, \beta_i^{\text{feat}} \in \mathbb{R}^d, \\ 287 z_{i,w} = \mathcal{K}_i^{\text{feat}}(h_{i,w}) = \gamma_i^{\text{feat}} \odot h_{i,w} + \beta_i^{\text{feat}}, \quad (11)$$

288 where $f_{\phi^{\text{feat}}} : \mathbb{R}^{d_e} \rightarrow \mathbb{R}^{2d}$ is a two-layer MLP that outputs scale γ_i^{feat} (with SoftPlus head for
289 positivity) and shift β_i^{feat} parameters, \odot denotes element-wise product, and $z_{i,w}$ is the aligned feature
290 for w in G_i . The FiLM-based transformation $\mathcal{K}_i^{\text{feat}}$ is affine, so it calibrates scales and offset across
291 domains to map features to a domain-specific subspace determined by e_i , while preserving the intra-
292 domain geometry already present in $h_{i,w}$. Formally, the alignment satisfies (Proof in Appendix B.2):

293 **Property 1.** If $f_{\phi^{\text{feat}}}$ is \mathcal{L} -Lipschitz continuous, then $\|\gamma_i^{\text{feat}} - \gamma_j^{\text{feat}}\|_2 + \|\beta_i^{\text{feat}} - \beta_j^{\text{feat}}\|_2 \leq \mathcal{L} \|e_i - e_j\|_2$
294 for two graph G_i and G_j , so nearby domains yield similar feature transforms and thus neighboring
295 subspaces in the unified feature space.

296 The domain-conditioned transformations $\{\mathcal{K}_i^{\text{feat}}\}_{i=1}^M$ parameterized by shared ϕ^{feat} , are learned jointly
297 over all pre-training graphs \mathcal{G} using their domain embeddings $\{e_i\}_{i=1}^M$ to form a unified and general
298 feature space. Together with the GNN encoder f_θ , they constitute part of the pretrained model \mathcal{M}
299 (i.e., $\theta, \phi^{\text{feat}} \in \Phi$).

300 **In-context Feature Alignment.** At test time, for a downstream graph G_{new} with domain embedding
301 e_{new} computed via the pretrained domain embedder, we generate its alignment parameters
302 $(\gamma_{\text{new}}^{\text{feat}}, \beta_{\text{new}}^{\text{feat}}) = f_{\phi^{\text{feat}}}(e_{\text{new}})$. For any item $w \in G_{\text{new}}$, its aligned feature is computed as:

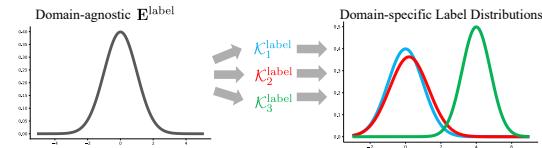
$$303 z_{\text{new},w} = \gamma_{\text{new}}^{\text{feat}} \odot f_\theta(w, G_{\text{new}}) + \beta_{\text{new}}^{\text{feat}}. \quad (12)$$

304 3.2.2 LABEL ALIGNMENT
305

306 Different graphs have their own label systems,
307 leading to label IDs across domains having in-
308 consistent semantics, such as label ID 0 repre-
309 senting different concepts across graphs. To
310 reconcile graph-local label systems, we main-
311 tain a shared label base $\mathbf{E}^{\text{label}} \in \mathbb{R}^{L_{\text{max}} \times d}$ with
312 $L_{\text{max}} = \max_i C_i$, where each row $\mathbf{E}_l^{\text{label}}$ serves as a domain-agnostic label prototype for ID l , initial-
313 ized as $\mathbf{E}_l^{\text{label}} \sim \mathcal{N}(0, \mathbf{I}_d)$. Given domain embedding e_i of G_i , we instantiate a domain-conditioned
314 label transformation with FiLM, architecturally identical to the feature-side transformation, that maps
315 e_i to scale and shift parameters for label alignment:

$$316 (\gamma_i^{\text{label}}, \beta_i^{\text{label}}) = f_{\phi^{\text{label}}}(e_i), \quad \gamma_i^{\text{label}}, \beta_i^{\text{label}} \in \mathbb{R}^d, \\ 317 u_{i,l} = \mathcal{K}_i^{\text{label}}(\mathbf{E}_l) = \gamma_i^{\text{label}} \odot \mathbf{E}_l^{\text{label}} + \beta_i^{\text{label}}, \quad l \in L_i = \{0, \dots, C_i - 1\}, \quad (13)$$

318 where $f_{\phi^{\text{label}}} : \mathbb{R}^d \rightarrow \mathbb{R}^{2d}$ is a two-layer MLP with a SoftPlus for γ_i^{label} . $u_{i,l}$ is the aligned label
319 embeddings conditioned on e_i for label l . As illustrated in Fig. 3, this mechanism transforms a single



320 Figure 3: Domain-conditioned label alignment.

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542</

324 domain-agnostic distribution into domain-specific label distributions. The shared base $\mathbf{E}^{\text{label}}$ provides
 325 a common reference, while FiLM parameters shift and scale these prototypes based on domain
 326 characteristics, ensuring semantically distinct labels occupy different subspaces in a unified label
 327 space even when sharing the same ID. $f_{\phi_{\text{label}}}$ is a component of the pretrained model \mathcal{M} ($\phi_{\text{label}} \in \Phi$).
 328

329 **In-context Label Alignment.** For a new graph G_{new} with C_{new} classes, we compute label align-
 330 ments using the pretrained transformation $(\gamma_{\text{new}}^{\text{label}}, \beta_{\text{new}}^{\text{label}}) = f_{\phi_{\text{label}}}(e_{\text{new}})$. The aligned label embeddings
 331 for G_{new} are:

$$\mathbf{u}_{\text{new},l} = \gamma_{\text{new}}^{\text{label}} \odot \mathbf{E}_l^{\text{label}} + \beta_{\text{new}}^{\text{label}}, \quad l \in \{0, \dots, C_{\text{new}} - 1\} \quad (14)$$

333 which yields domain-aware label prototypes that are compatible with the unified feature space and
 334 ready for few-shot matching.
 335

336 3.3 EPISODIC PRETRAINING

338 MF-GIA is pretrained with an episodic, prompt-based objective that teaches the model to match
 339 aligned item features to aligned label prototypes, mimicking the few-shot scenarios encountered
 340 during inference.

341 For each pretraining graph $G_i \in \mathcal{G}$, we construct m -way k -shot episodes to simulate in-context
 342 learning scenarios. Specifically, in each episode, we select m classes and sample k labeled items
 343 per class to form a support set $\mathcal{S} = \bigcup_{c=1}^m \left\{ \left(w_j^{(c)}, l^{(c)} \right) \right\}_{j=1}^k$, where $w_j^{(c)}$ is the j -th item of the
 344 c -th selected class and $l^{(c)} = y_j$ is its label ID. We also sample T items per class for the query
 345 set $\mathcal{Q} = \bigcup_{c=1}^m \{ q_t^{(c)}, l^{(c)} \}_{t=1}^T$. Using the domain embedding e_i , we compute aligned item features
 346 with Eq. (11) and aligned label prototypes with Eq. (13), yielding $z_{i,w_j^{(c)}} = \mathcal{K}_i^{\text{feat}}(h_{i,w_j^{(c)}})$, $z_{i,q_t^{(c)}} =$
 347 $\mathcal{K}_i^{\text{feat}}(h_{i,q_t^{(c)}})$, and $u_{i,l^{(c)}} = \mathcal{K}_i^{\text{label}}(\mathbf{E}_{l^{(c)}}^{\text{label}})$. The prompt-query pairs become:

$$\text{Prompt } \mathcal{S} : \left\{ \left(z_{i,w_j^{(c)}}, u_{i,l^{(c)}} \right) \right\}_{c \in [m], j \in [k]}, \quad \text{Query } \mathcal{Q} : \left\{ z_{i,q_t^{(c)}} \right\}_{c \in [m], t \in [T]}. \quad (15)$$

353 Recalling the episodic meta learning objective in Eq. (2), which requires matching queries to classes
 354 using only the prompt, we propose a **Dual Prompt-Aware Attention** (DPAA) mechanism. It allows
 355 queries to attend to prompt examples but prevents prompts from interacting with each other, strictly
 356 following the principle of in-context learning. Specifically, let $\mathbf{Z}^{\text{pmt}} = [z_{i,w_1^{(1)}}, \dots, z_{i,w_k^{(m)}}] \in$
 357 $\mathbb{R}^{mk \times d}$ be the matrix of row-stacked support features and $\mathbf{U}^{\text{pmt}} = [u_{i,l^{(1)}}, \dots, u_{i,l^{(m)}}] \in \mathbb{R}^{m \times d}$ be
 358 the label prototype matrix. DPAA consists of two single-query attention layers, one feature-side and
 359 one label-side, both sharing the same projection matrices $\mathbf{W}_K, \mathbf{W}_V \in \mathbb{R}^{d \times d}$. For an aligned query
 360 feature $z_{i,q} \in \mathcal{Q}$ from G_i , the feature-side attention computes:

$$\begin{aligned} \mathbf{K}^{\text{feat}} &= \mathbf{Z}^{\text{pmt}} \mathbf{W}_K, \quad \mathbf{V}^{\text{feat}} = \mathbf{Z}^{\text{pmt}} \mathbf{W}_V, \quad \mathbf{Q}^{\text{feat}} = z_{i,q} \mathbf{W}_Q, \\ z_{i,q}^{\text{out}} &= \text{softmax} \left(\frac{\mathbf{Q}^{\text{feat}} (\mathbf{K}^{\text{feat}})^{\top}}{\sqrt{d}} \right) \mathbf{V}^{\text{feat}}, \end{aligned} \quad (16)$$

366 where the attended representation $z_{i,q}^{\text{out}}$ aggregates features from prompt examples relevant to the
 367 query. In other words, Eq. (16) aims to use the support features \mathbf{Z}^{pmt} to prompt the query feature $z_{i,q}$,
 368 producing the prompt-conditioned feature $z_{i,q}^{\text{out}}$ for the query. $z_{i,q}^{\text{out}}$ is then projected to label space via
 369 a learnable function $f_{\Omega} : \mathbb{R}^d \rightarrow \mathbb{R}^d$, which is also prompted by the support set. Thus, the label-side
 370 attention lets the query interact with label prototypes:

$$\begin{aligned} \mathbf{K}^{\text{label}} &= \mathbf{U}^{\text{pmt}} \mathbf{W}_K, \quad \mathbf{V}^{\text{label}} = \mathbf{U}^{\text{pmt}} \mathbf{W}_V, \quad \mathbf{Q}^{\text{label}} = f_{\Omega}(z_{i,q}^{\text{out}}), \\ u_{i,q}^{\text{out}} &= \text{softmax} \left(\frac{\mathbf{Q}^{\text{label}} (\mathbf{K}^{\text{label}})^{\top}}{\sqrt{d}} \right) \mathbf{V}^{\text{label}}, \end{aligned} \quad (17)$$

376 Analogous to LLMs, where prompt examples guide task completion, here $(\mathbf{Z}^{\text{pmt}}, \mathbf{U}^{\text{pmt}})$ serves as
 377 the few-shot demonstrations, $z_{i,q}$ as the query to be answered, and $z_{i,q}^{\text{out}}$ as the prompt-conditioned
 378 intermediate, and $u_{i,q}^{\text{out}}$ as the answer produced from the prompt for the task objective $z_{i,q}$. Thus,

378 Table 2: Few-shot node classification accuracy (%) with standard deviation over 10 runs. Best and
379 second-best results are shown in **bold** and underlined. “–” denotes datasets where only encoded
380 features and indexed labels are available, making modality-dependent models inapplicable.

Method	Cora-7 way Citation			ogbn-Products-47 way E-commerce			Computers-10 way E-commerce			Physics-5 way Co-authorship			BlogCatalog-6 way Social Media		
	1-shot	3-shot	5-shot	1-shot	3-shot	5-shot	1-shot	3-shot	5-shot	1-shot	3-shot	5-shot	1-shot	3-shot	5-shot
GCN	43.07 _{±.37}	42.38 _{±.42}	42.55 _{±.39}	8.27 _{±1.40}	7.85 _{±1.62}	8.77 _{±1.17}	36.42 _{±6.28}	39.33 _{±6.87}	41.09 _{±6.31}	65.43 _{±3.12}	73.28 _{±4.44}	77.15 _{±3.36}	43.22 _{±3.95}	49.08 _{±3.02}	52.16 _{±2.38}
GAT	46.12 _{±1.10}	47.31 _{±2.58}	47.71 _{±8.66}	7.14 _{±1.55}	7.90 _{±1.74}	8.39 _{±1.36}	37.15 _{±6.43}	40.27 _{±6.92}	42.03 _{±6.61}	66.80 _{±5.08}	75.22 _{±4.31}	78.41 _{±3.88}	46.37 _{±3.89}	52.47 _{±3.10}	56.42 _{±2.76}
GraphSAGE	40.50 _{±6.11}	42.07 _{±6.12}	42.40 _{±6.12}	7.36 _{±1.68}	8.59 _{±1.74}	9.42 _{±1.70}	35.89 _{±6.34}	38.76 _{±6.79}	40.58 _{±6.41}	67.12 _{±5.21}	71.95 _{±4.57}	77.36 _{±4.03}	40.56 _{±4.02}	53.12 _{±3.21}	58.03 _{±2.93}
GraphMAE	42.41 _{±6.68}	43.36 _{±9.94}	44.22 _{±6.49}	8.58 _{±1.63}	9.87 _{±1.69}	9.94 _{±1.71}	40.86 _{±6.31}	42.72 _{±6.48}	43.35 _{±6.51}	68.23 _{±4.89}	77.04 _{±3.92}	80.35 _{±3.51}	43.25 _{±3.71}	57.93 _{±2.36}	62.14 _{±2.64}
DGI	41.28 _{±6.75}	42.18 _{±7.75}	43.27 _{±6.33}	9.04 _{±1.49}	10.08 _{±1.52}	10.87 _{±1.59}	39.91 _{±6.22}	41.77 _{±6.62}	45.54 _{±6.39}	66.12 _{±5.01}	74.83 _{±4.20}	78.09 _{±3.70}	42.11 _{±3.79}	56.08 _{±2.22}	60.91 _{±2.71}
GraphCL	40.22 _{±6.67}	44.68 _{±8.88}	45.56 _{±6.43}	11.93 _{±1.65}	11.26 _{±1.71}	13.14 _{±1.77}	38.74 _{±6.39}	41.55 _{±6.91}	43.19 _{±6.58}	74.35 _{±4.95}	82.12 _{±4.05}	85.40 _{±3.62}	44.87 _{±3.66}	57.20 _{±2.90}	63.55 _{±2.69}
GCOPE	42.63 _{±6.33}	43.89 _{±6.77}	44.74 _{±6.86}	11.18 _{±1.60}	11.73 _{±1.68}	12.54 _{±1.72}	43.02 _{±6.36}	43.84 _{±6.87}	47.46 _{±6.55}	76.18 _{±4.81}	84.65 _{±3.88}	85.07 _{±3.42}	45.02 _{±3.58}	58.76 _{±2.21}	63.05 _{±2.61}
GPF	41.12 _{±6.45}	40.26 _{±6.84}	43.16 _{±6.41}	11.12 _{±1.57}	12.65 _{±1.63}	13.43 _{±1.70}	37.02 _{±6.28}	39.84 _{±6.79}	41.62 _{±6.48}	69.28 _{±4.95}	76.91 _{±4.22}	83.85 _{±3.73}	43.08 _{±3.63}	58.01 _{±2.83}	63.47 _{±2.62}
All in One	42.66 _{±6.38}	43.92 _{±8.81}	44.78 _{±6.37}	8.15 _{±1.54}	8.77 _{±1.61}	8.83 _{±1.68}	35.64 _{±6.36}	40.48 _{±6.82}	44.07 _{±6.50}	73.43 _{±5.10}	81.36 _{±4.37}	85.20 _{±3.85}	42.54 _{±3.75}	56.72 _{±2.96}	61.31 _{±2.70}
GFT	41.40 _{±8.08}	43.31 _{±1.11}	43.55 _{±7.43}	11.12 _{±1.57}	14.65 _{±1.63}	15.43 _{±1.70}	–	–	–	–	–	–	–	–	–
AutoGFM	46.29 _{±7.24}	47.33 _{±7.80}	47.76 _{±8.08}	–	–	–	–	–	–	–	–	–	–	–	–
Prodigy	43.27 _{±6.52}	42.23 _{±7.65}	44.29 _{±5.50}	9.53 _{±1.69}	10.89 _{±2.20}	11.46 _{±1.74}	40.29 _{±6.87}	41.03 _{±7.52}	45.82 _{±6.61}	67.26 _{±7.33}	71.98 _{±5.25}	79.47 _{±4.62}	39.85 _{±3.97}	46.56 _{±2.62}	53.44 _{±2.78}
OPA	30.38 _{±2.39}	36.03 _{±2.11}	32.10 _{±1.79}	7.42 _{±1.44}	7.98 _{±1.51}	8.66 _{±1.60}	–	–	–	–	–	–	–	–	–
GraphAlign	44.37 _{±8.64}	48.96 _{±8.25}	52.64 _{±7.52}	12.42 _{±1.65}	13.07 _{±1.69}	<u>15.92</u> _{±1.75}	–	–	–	–	–	–	–	–	–
MF-GIA	47.64 _{±8.77}	57.38 _{±9.02}	63.98 _{±7.13}	16.86 _{±2.85}	19.16 _{±2.19}	22.61 _{±1.71}	41.49 _{±7.49}	46.21 _{±14.16}	53.71 _{±3.28}	79.12 _{±11.54}	86.48 _{±6.96}	88.92 _{±9.84}	49.46 _{±4.02}	62.69 _{±2.53}	67.31 _{±2.60}

391 the pretraining objective is to build the matching between $u_{i,q}^{\text{out}}$ and the ground-truth label. The final
392 prediction is obtained by scoring the query’s prompted representation against all label prototypes:

$$s_{i,q} = u_{i,q}^{\text{out}} (\mathbf{U}^{\text{pmt}})^{\top} \in \mathbb{R}^m, \quad (18)$$

393 where $s_{i,q}$ contains the per-class scores for the query item q . For each episode from G_i , we minimize
394 the cross-entropy loss over all queries in \mathcal{Q} :

$$\mathcal{L}_{\text{episode}}(G_i) = -\frac{1}{mT} \sum_{c=1}^m \sum_{t=1}^T \log \frac{\exp(s_{i,q_t^{(c)}}[c]/\tau)}{\sum_{j=1}^m \exp(s_{i,q_t^{(c)}}[j]/\tau)}, \quad (19)$$

395 where $\tau > 0$ is a temperature that controls the sharpness of the softmax, $s_{i,q_t^{(c)}}[c]$ denotes the score
396 of the ground-truth class for the query $q_t^{(c)}$. The complete pretraining loss aggregates episodes across
397 all pretraining graphs:

$$\mathcal{L}_{\text{pretrain}} = \mathbb{E}_{G_i \sim \mathcal{G}} \mathbb{E}_{\text{episode} \sim G_i} [\mathcal{L}_{\text{episode}}(G_i)]. \quad (20)$$

400 Note that the domain embedder $f_{\phi_{\text{de}}}$ is optimized with \mathcal{L}_{de} prior to episodic pretraining and then kept
401 fixed. Overall, the pretraining model \mathcal{M}_{Φ} comprises the frozen encoder initialization f_{θ_0} , the domain
402 embedder $f_{\phi_{\text{de}}}$, the domain-conditioned transformation $f_{\phi_{\text{feat}}}$ and $f_{\phi_{\text{label}}}$, the DPAA projection matrices
403 and the projection head f_{Ω} . This episodic regime trains the model to leverage prompt examples for
404 prediction, establishing the feature-label matching capability essential for ICL on unseen domains.

3.4 IN-CONTEXT PREDICTION ON UNSEEN DOMAINS

411 At test time, MF-GIA freezes all pretrained parameters. Given an unseen graph G_{new} together with a
412 C_{new} -way k -shot support set $\mathcal{S} = \{(w_i, y_i)\}_{i=1}^{k \cdot C_{\text{new}}}$ as prompts, we compute the in-context domain
413 embedding e_{new} using the gradient fingerprint and the pretrained domain embedder described in
414 Section 3.1. With the pretrained domain-conditioned transformations, any item $w \in G_{\text{new}}$ is mapped
415 to its aligned feature $z_{\text{new},w}$ via Eq. (12). For label IDs $l \in L_{\text{new}} = \{0, \dots, C_{\text{new}} - 1\}$, the aligned
416 label prototypes are $\{u_{\text{new},l}\}_{l \in L_{\text{new}}}$ obtained by Eq. (14). We then form the prompt matrices $\mathbf{Z}_{\text{new}}^{\text{pmt}} =$
417 $\left[z_{\text{new},w_1^{(1)}}, \dots, z_{\text{new},w_k^{(C_{\text{new}})}} \right] \in \mathbb{R}^{(k \cdot C_{\text{new}}) \times d}$ and $\mathbf{U}_{\text{new}}^{\text{pmt}} = [u_{\text{new},l^{(1)}}, \dots, u_{\text{new},l^{(C_{\text{new}})}}] \in \mathbb{R}^{C_{\text{new}} \times d}$. To
418 make a prediction on a query item q , we apply the pretrained DPAA on it. Specifically, the feature-
419 side attention produces the prompt-conditioned feature $z_{\text{new},q}^{\text{out}}$ by Eq. (16), which is then fed to the
420 label-side attention Eq. (17) to yield $u_{\text{new},q}^{\text{out}}$. The final scores and prediction are:

$$s_{\text{new},q} = u_{\text{new},q}^{\text{out}} (\mathbf{U}_{\text{new}}^{\text{pmt}})^{\top} \in \mathbb{R}^{C_{\text{new}}}, \quad \hat{y}_q = \arg \max_{j \in [C_{\text{new}}]} s_{\text{new},q}[j]. \quad (21)$$

421 This inference procedure is **parameter-update-free** w.r.t. the pretrained model \mathcal{M} , and the same
422 pipeline applies to node or edge items by letting w range over V_{new} or E_{new} . The detailed algorithms
423 and complexity analysis of MF-GIA are provided in Appendix C.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

431 We employ cross-domain graph datasets to evaluate MF-GIA, which is pretrained exclusively on
432 node classification tasks using four datasets: WikiCS (web link), PubMed and ogbn-Arxiv (citation),

Table 3: Few-shot edge classification accuracy (%) with standard deviation over 20 episodes.

Method	FB15K237-5 way Encyclopedic KG			FB15K237-10 way Encyclopedic KG			FB15K237-40 way Encyclopedic KG			WN18RR-5 way Lexical KG			WN18RR-10 way Lexical KG		
	1-shot	3-shot	5-shot	1-shot	3-shot	5-shot	1-shot	3-shot	5-shot	1-shot	3-shot	5-shot	1-shot	3-shot	5-shot
GCN	82.45 \pm 1.20	84.30 \pm 1.05	85.12 \pm 0.98	70.28 \pm 3.50	74.61 \pm 2.85	78.94 \pm 2.43	55.72 \pm 0.95	58.11 \pm 0.73	60.05 \pm 1.70	32.14 \pm 2.90	38.62 \pm 2.23	42.57 \pm 2.01	24.05 \pm 1.60	28.93 \pm 1.42	31.20 \pm 1.35
GraphSAGE	83.11 \pm 1.14	85.05 \pm 1.01	86.02 \pm 0.98	71.36 \pm 3.28	75.43 \pm 2.71	79.45 \pm 2.36	56.40 \pm 0.90	58.86 \pm 0.74	60.72 \pm 0.68	33.05 \pm 2.80	39.41 \pm 2.23	43.28 \pm 1.96	24.83 \pm 1.55	29.62 \pm 1.39	31.88 \pm 1.31
DGI	84.22 \pm 1.08	85.67 \pm 0.96	86.30 \pm 0.83	72.48 \pm 3.10	76.58 \pm 2.59	80.12 \pm 2.21	56.95 \pm 0.88	59.44 \pm 0.72	61.31 \pm 0.65	34.57 \pm 2.75	40.28 \pm 2.20	44.05 \pm 1.92	25.67 \pm 1.50	30.18 \pm 1.24	32.41 \pm 1.28
GraphMAE	84.90 \pm 1.02	86.12 \pm 0.90	88.05 \pm 0.82	73.35 \pm 2.98	79.02 \pm 2.47	83.66 \pm 2.14	57.43 \pm 0.85	59.96 \pm 0.70	61.82 \pm 0.65	35.42 \pm 2.70	41.16 \pm 2.13	44.83 \pm 1.86	26.31 \pm 1.47	30.71 \pm 1.32	32.95 \pm 1.25
GCOPE	80.12 \pm 1.08	81.56 \pm 0.96	82.41 \pm 0.90	68.03 \pm 2.85	71.22 \pm 2.43	74.18 \pm 2.05	51.08 \pm 0.97	53.12 \pm 0.85	56.74 \pm 0.79	30.47 \pm 3.10	36.05 \pm 2.62	40.21 \pm 2.34	22.18 \pm 1.72	26.73 \pm 1.15	29.31 \pm 1.42
Prodigy	87.59 \pm 0.84	88.02 \pm 0.48	88.05 \pm 0.68	66.10 \pm 3.89	79.61 \pm 2.28	84.30 \pm 2.80	54.30 \pm 0.69	59.58 \pm 0.22	62.03 \pm 0.89	46.57 \pm 6.63	47.28 \pm 4.60	53.94 \pm 4.48	27.01 \pm 2.58	28.46 \pm 3.77	33.54 \pm 4.29
GFT	87.67 \pm 0.89	86.00 \pm 1.84	86.27 \pm 1.10	79.17 \pm 1.76	79.13 \pm 1.57	78.83 \pm 1.80	60.79 \pm 4.41	61.48 \pm 1.13	61.12 \pm 1.64	48.13 \pm 4.37	48.53 \pm 3.34	48.80 \pm 3.61	35.33 \pm 4.20	35.50 \pm 5.02	35.50 \pm 4.49
AutoGFM	—	—	—	—	—	—	—	—	—	—	—	—	49.10 \pm 3.31	49.93 \pm 3.60	39.34 \pm 4.80
GraphAlign	83.02 \pm 1.24	83.15 \pm 1.07	84.92 \pm 0.98	73.25 \pm 3.05	76.14 \pm 2.58	77.02 \pm 2.20	53.10 \pm 0.32	54.26 \pm 0.90	59.35 \pm 0.70	45.08 \pm 0.55	47.47 \pm 4.38	60.19 \pm 0.11	27.80 \pm 3.05	30.65 \pm 2.22	32.10 \pm 2.60
MF-GIA	98.77\pm1.01	99.42\pm0.38	99.64\pm0.20	87.57\pm4.03	91.24\pm1.27	91.38\pm1.01	57.17\pm3.79	61.18\pm3.66	62.03\pm3.79	55.64\pm10.38	64.54\pm6.42	68.05\pm4.39	28.87\pm3.89	33.12\pm4.67	35.12\pm3.80

Table 4: Effect of core components.

Method	Cora		Computers		Pyhsics	
	1-shot	5-shot	1-shot	5-shot	1-shot	5-shot
GraphSAGE+FT	40.50	42.40	35.89	40.58	67.12	77.36
+ Feat. Align.	42.78	45.26	37.86	45.97	75.83	85.29
++ Label Align.	43.96	49.16	37.93	47.00	76.54	87.66
+++ DPAA & $\mathcal{L}_{\text{episode}}$	47.64	63.98	41.49	53.71	79.12	88.92

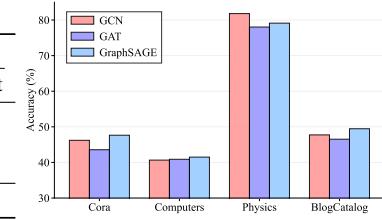


Figure 4: Backbone selections.

and Amazon-ratings (e-commerce rating). These datasets are pre-encoded with heterogeneous feature spaces and label systems, enabling us to learn domain alignment without modality priors. For downstream evaluation, we test on both node-level and edge-level classification tasks across seen and unseen domains. For node classification, we evaluate on Cora (citation), and unseen domains including ogbn-Products and Computers (e-commerce product), Physics (co-authorship), and BlogCatalog (social media). For link classification, we assess performance on two knowledge graphs (KGs) from different domains to predict the relation types: FB15K237 (encyclopedic) and WN18RR (lexical), which represent entirely new tasks not encountered in pretraining. To unify the task formulation, we transform the edge-level task into the node-level task by converting edges to nodes in a line graph, as detailed in Appendix D. This task allows us to evaluate our model’s generalization capability on an entirely new task and domains not seen during pretraining. More information about baseline configurations, datasets, and implementation details is provided in Appendix E.

4.2 IN-CONTEXT LEARNING RESULTS

Table 2 demonstrate that MF-GIA achieves state-of-the-art node classification results across diverse graph domains. Remarkably, MF-GIA reaches 63.98% on Cora with 5-shot prompting, which is an 11.34% absolute improvement over the second-best baseline. Across all 15 configurations, MF-GIA consistently outperforms existing methods with an average margin of 4.2%, despite using pure prompt-based inference without any parameter updates. In contrast, methods like GFT and AutoGFM require extensive fine-tuning on target domains yet still achieve inferior results. This superiority reveals a fundamental insight: when equipped with proper cross-domain alignment, ICL beats fine-tuning. The critical role of alignment is also evident when comparing MF-GIA with Prodigy, which is a true ICL model without domain alignment. MF-GIA consistently outperforms Prodigy on unseen domains, demonstrating that domain embeddings capture domain characteristics for successful cross-domain transfer. Recent modality-dependent GFMs fail on graphs without raw text data (marked “—”), while MF-GIA operates universally on any pre-encoded graphs. Moreover, as shown in Table 3, MF-GIA excels at edge-level tasks, an entirely new task formulation never encountered during pretraining. It demonstrates that MF-GIA captures generalizable patterns for in-context reasoning rather than memorizing dataset/task-specific features. On WN18RR dataset with a 10-way setting, our MF-GIA does not surpass the state-of-the-art baselines GFT and AutoGFM, achieving third-best performance across all shot settings. It is because MF-GIA is pretrained exclusively on node classification tasks, while WN18RR is a dataset for edge-level tasks, which is an entirely different task formulation never encountered during pretraining. We deliberately evaluate on this dataset to assess our model’s generalization capacity to unseen tasks, as we believe a genuine graph foundation model should generalize not only to unseen domains but also to unseen task types. While GFT and AutoGFM achieve superior performance on WN18RR-10way, they are pretrained on both node-level and edge-level tasks. Therefore, edge classification is not an unseen task for these baselines, so their performance advantage does not necessarily demonstrate stronger cross-task generalization.

486
487

4.3 MODEL ANALYSIS

488
489
490
491
492
493
494
495

Effect of Core Components. We analyze the contribution of each component in MF-GIA, starting from its GraphSAGE backbone. GraphSAGE+FT is pretrained on the same datasets and fine-tuned on support sets of test graphs. Adding a domain embedder with FiLM-based feature alignment (+Feat. Align.) improves cross-domain adaptability. Extending alignment to the label space (++Label Align.) further boosts performance by unifying class indices across graphs. Finally, incorporating DPAA with an episodic objective yields the full MF-GIA, which achieves the largest gains across datasets and shots. Table 4 shows a clear step-wise improvement, underscoring that both domain-conditioned alignment and prompt-aware reasoning are crucial for effective graph ICL.

496
497
498
499
500
501
502
503
504
505
506

Effect of Episodic Inference. ICL can be achieved through two paradigms: episodic meta-learning, which unifies pretraining and inference by training the model to perform inference episodes (MF-GIA and Prodigy), and supervised pretraining with test-time prototype construction, where class prototypes are built from support sets and queries are classified by proximity (GraphAlign). As shown in Table 5, episodic inference (MF-GIA) consistently outperforms the supervised variant (MF-GIA_{sup}).

Effect of Backbone GNNs. In MF-GIA, we adopt GraphSAGE as the default backbone. Fig. 4 shows MF-GIA exhibits minor accuracy fluctuations across different GNN backbones under 1-shot settings, demonstrating that MF-GIA is robust to backbone selections. More analytical results are provided in Appendix F.

507
508

5 CONCLUSION

509
510
511
512
513
514
515
516

We introduced MF-GIA, a pretraining framework for graph neural networks that enables in-context learning across heterogeneous domains without relying on modality assumptions. By capturing domain characteristics via gradient fingerprints and aligning pre-encoded features and graph-local labels through domain-conditioned transformations, MF-GIA supports [parameter-update-free](#) adaptation from few-shot prompts. This design overcomes key limitations of existing GFMs by removing the need for post-training fine-tuning and modality-specific conversions. Experiments demonstrate strong performance on both seen and unseen domains, with seamless transfer to new tasks.

517
518
519
520
521
522
523
524

Future Directions. Beyond our current design, MF-GIA opens up several promising avenues for future work. One direction is to couple our gradient fingerprints with large language models (LLMs) to generate semantic domain descriptions, enabling human-interpretable summaries of latent domain characteristics and more transparent cross-domain reasoning. Another is to leverage these fingerprints to automatically discover latent domain structure from large unlabeled graph collections, moving from manually curated domains to data-driven domain decomposition. We believe these extensions will further enhance the interpretability, automation, and scalability of modality-free graph foundation models.

525
526

REFERENCES

527
528
529

Antoine Bordes, Nicolas Usunier, Alberto Garcia-Duran, Jason Weston, and Oksana Yakhnenko. Translating embeddings for modeling multi-relational data. *Advances in neural information processing systems*, 26, 2013.

530
531
532
533

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are few-shot learners. *Advances in neural information processing systems*, 33:1877–1901, 2020.

534
535
536
537

Haibo Chen, Xin Wang, Zeyang Zhang, Haoyang Li, Ling Feng, and Wenwu Zhu. AutoGFM: Automated graph foundation model with adaptive architecture customization. In *Forty-second International Conference on Machine Learning*, 2025. URL <https://openreview.net/forum?id=fCPB0qRJT2>.

538
539

Zhikai Chen, Haitao Mao, Hang Li, Wei Jin, Hongzhi Wen, Xiaochi Wei, Shuaiqiang Wang, Dawei Yin, Wenqi Fan, Hui Liu, et al. Exploring the potential of large language models (llms) in learning on graphs. *ACM SIGKDD Explorations Newsletter*, 25(2):42–61, 2024a.

Table 5: Effect of ICL scheme.

	Computers	Physics
MF-GIA _{sup}	38.73	75.26
MF-GIA	41.49	79.12

540 Zhikai Chen, Haitao Mao, Jingzhe Liu, Yu Song, Bingheng Li, Wei Jin, Bahare Fatemi, Anton
 541 Tsitsulin, Bryan Perozzi, Hui Liu, et al. Text-space graph foundation models: Comprehensive
 542 benchmarks and new insights. *Advances in Neural Information Processing Systems*, 37:7464–7492,
 543 2024b.

544 Yuanning Cui, Zequn Sun, and Wei Hu. A prompt-based knowledge graph foundation model for
 545 universal in-context reasoning. *Advances in Neural Information Processing Systems*, 37:7095–7124,
 546 2024.

548 Tim Dettmers, Pasquale Minervini, Pontus Stenetorp, and Sebastian Riedel. Convolutional 2d
 549 knowledge graph embeddings. In *Proceedings of the AAAI conference on artificial intelligence*,
 550 volume 32, 2018.

551 Taoran Fang, Yunchao Zhang, Yang Yang, Chunping Wang, and Lei Chen. Universal prompt tuning
 552 for graph neural networks. *Advances in Neural Information Processing Systems*, 36:52464–52489,
 553 2023.

555 Yi Fang, Dongzhe Fan, Sirui Ding, Ninghao Liu, and Qiaoyu Tan. Uniglm: Training one unified
 556 language model for text-attributed graphs embedding. In *Proceedings of the Eighteenth ACM
 557 International Conference on Web Search and Data Mining*, pp. 973–981, 2025.

558 Tao Feng, Yixin Wu, Guanyu Lin, and Jiaxuan You. Graph world model. In *Forty-second Interna-
 559 tional Conference on Machine Learning*, 2025. URL <https://openreview.net/forum?id=xjTrT1Bbrc>.

562 Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation of
 563 deep networks. In *International conference on machine learning*, pp. 1126–1135. PMLR, 2017.

564 Mikhail Galkin, Xinyu Yuan, Hesham Mostafa, Jian Tang, and Zhaocheng Zhu. Towards foundation
 565 models for knowledge graph reasoning. In *The Twelfth International Conference on Learning
 566 Representations*, 2024. URL <https://openreview.net/forum?id=jVEoydFO19>.

568 Shivam Garg, Dimitris Tsipras, Percy S Liang, and Gregory Valiant. What can transformers learn
 569 in-context? a case study of simple function classes. *Advances in neural information processing
 570 systems*, 35:30583–30598, 2022.

572 Qi Guo, Leiyu Wang, Yidong Wang, Wei Ye, and Shikun Zhang. What makes a good order of
 573 examples in in-context learning. In *Findings of the Association for Computational Linguistics:
 574 ACL 2024*, pp. 14892–14904, 2024.

575 Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs.
 576 *Advances in neural information processing systems*, 30, 2017.

578 Yufei He, Yuan Sui, Xiaoxin He, and Bryan Hooi. Unigraph: Learning a unified cross-domain
 579 foundation model for text-attributed graphs. In *Proceedings of the 31st ACM SIGKDD Conference
 580 on Knowledge Discovery and Data Mining V. 1*, pp. 448–459, 2025a.

581 Yufei He, Yuan Sui, Xiaoxin He, Yue Liu, Yifei Sun, and Bryan Hooi. Unigraph2: Learning a unified
 582 embedding space to bind multimodal graphs. In *Proceedings of the ACM on Web Conference 2025*,
 583 pp. 1759–1770, 2025b.

585 Zhenyu Hou, Xiao Liu, Yukuo Cen, Yuxiao Dong, Hongxia Yang, Chunjie Wang, and Jie Tang.
 586 Graphmae: Self-supervised masked graph autoencoders. In *Proceedings of the 28th ACM SIGKDD
 587 conference on knowledge discovery and data mining*, pp. 594–604, 2022.

588 Zhenyu Hou, Haozhan Li, Yukuo Cen, Jie Tang, and Yuxiao Dong. Graphalign: Pretraining one
 589 graph neural network on multiple graphs via feature alignment. *arXiv preprint arXiv:2406.02953*,
 590 2024.

592 Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta,
 593 and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs. *Advances in
 594 neural information processing systems*, 33:22118–22133, 2020.

594 Weihua Hu, Matthias Fey, Hongyu Ren, Maho Nakata, Yuxiao Dong, and Jure Leskovec. OGB-
 595 LSC: A large-scale challenge for machine learning on graphs. In *Thirty-fifth Conference on*
 596 *Neural Information Processing Systems Datasets and Benchmarks Track (Round 2)*, 2021. URL
 597 <https://openreview.net/forum?id=qkcLxoC52kL>.

598 Qian Huang, Hongyu Ren, Peng Chen, Gregor Kržmanc, Daniel Zeng, Percy S Liang, and Jure
 599 Leskovec. Prodigy: Enabling in-context learning over graphs. *Advances in Neural Information*
 600 *Processing Systems*, 36:16302–16317, 2023.

602 Xingyue Huang, Pablo Barcelo, Michael M. Bronstein, Ismail Ilkan Ceylan, Mikhail Galkin,
 603 Juan L Reutter, and Miguel Romero Orth. How expressive are knowledge graph founda-
 604 tion models? In *Forty-second International Conference on Machine Learning*, 2025. URL
 605 <https://openreview.net/forum?id=mXEdUcLtaK>.

606 Pengfei Jiao, Jialong Ni, Di Jin, Xuan Guo, Huan Liu, Hongjiang Chen, and Yanxian Bi. Hgmp:
 607 Heterogeneous graph multi-task prompt learning. *arXiv preprint arXiv:2507.07405*, 2025.

609 Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
 610 In *International Conference on Learning Representations*, 2017. URL <https://openreview.net/forum?id=SJU4ayYgl>.

612 Lecheng Kong, Jiarui Feng, Hao Liu, Chengsong Huang, Jiaxin Huang, Yixin Chen, and Muhan
 613 Zhang. GOFA: A generative one-for-all model for joint graph language modeling. In *The Thirteenth*
 614 *International Conference on Learning Representations*, 2025.

616 Jure Leskovec and Rok Sosič. Snap: A general-purpose network analysis and graph-mining library.
 617 *ACM Transactions on Intelligent Systems and Technology (TIST)*, 8(1):1–20, 2016.

618 Brian Lester, Rami Al-Rfou, and Noah Constant. The power of scale for parameter-efficient prompt
 619 tuning. In *Proceedings of the 2021 Conference on Empirical Methods in Natural Language*
 620 *Processing*. Association for Computational Linguistics, 2021.

622 Da Li, Jianshu Zhang, Yongxin Yang, Cong Liu, Yi-Zhe Song, and Timothy M Hospedales. Episodic
 623 training for domain generalization. In *Proceedings of the IEEE/CVF international conference on*
 624 *computer vision*, pp. 1446–1455, 2019.

625 Hao Liu, Jiarui Feng, Lecheng Kong, Ningyue Liang, Dacheng Tao, Yixin Chen, and Muhan
 626 Zhang. One for all: Towards training one graph model for all classification tasks. In *The Twelfth*
 627 *International Conference on Learning Representations*, 2024a.

629 Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike
 630 Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining
 631 approach. *arXiv preprint arXiv:1907.11692*, 2019.

632 Yixin Liu, Shiyuan Li, Yu Zheng, Qingfeng Chen, Chengqi Zhang, and Shirui Pan. Arc: A generalist
 633 graph anomaly detector with in-context learning. *Advances in Neural Information Processing*
 634 *Systems*, 37:50772–50804, 2024b.

635 Zemin Liu, Xingtong Yu, Yuan Fang, and Xinming Zhang. Graphprompt: Unifying pre-training and
 636 downstream tasks for graph neural networks. In *Proceedings of the ACM web conference 2023*, pp.
 637 417–428, 2023.

639 Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. *arXiv preprint*
 640 *arXiv:1711.05101*, 2017.

641 Kevin Lu, Aditya Grover, Pieter Abbeel, and Igor Mordatch. Frozen pretrained transformers as
 642 universal computation engines. In *Proceedings of the AAAI conference on artificial intelligence*,
 643 volume 36, pp. 7628–7636, 2022.

645 Man Luo, Xin Xu, Yue Liu, Panupong Pasupat, and Mehran Kazemi. In-context learning with
 646 retrieved demonstrations for language models: A survey. *Transactions on Machine Learn-
 647 ing Research*, 2024. ISSN 2835-8856. URL <https://openreview.net/forum?id=NQPo8ZhQPa>. Survey Certification.

648 Péter Mernyei and Cătălina Cangea. Wiki-cs: A wikipedia-based benchmark for graph neural
 649 networks. *arXiv preprint arXiv:2007.02901*, 2020.

650

651 Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of word representa-
 652 tions in vector space. *arXiv preprint arXiv:1301.3781*, 2013.

653

654 Sewon Min, Mike Lewis, Luke Zettlemoyer, and Hannaneh Hajishirzi. MetaICL: Learning to learn
 655 in context. In *NAACL-HLT*, 2022.

656

657 Shimei Pan and Tao Ding. Social media-based user embedding: A literature review. *arXiv preprint
 658 arXiv:1907.00725*, 2019.

659

660 Ethan Perez, Florian Strub, Harm De Vries, Vincent Dumoulin, and Aaron Courville. Film: Visual
 661 reasoning with a general conditioning layer. In *Proceedings of the AAAI conference on artificial
 662 intelligence*, volume 32, 2018.

663

664 Oleg Platonov, Denis Kuznedelev, Michael Diskin, Artem Babenko, and Liudmila Prokhorenkova.
 665 A critical look at the evaluation of GNNs under heterophily: Are we really making progress?
 666 In *The Eleventh International Conference on Learning Representations*, 2023. URL <https://openreview.net/forum?id=tJbbQfw-5wv>.

667

668 Chengwei Qin, Aston Zhang, Chen Chen, Anirudh Dagar, and Wenming Ye. In-context learning with
 669 iterative demonstration selection. In *Findings of the Association for Computational Linguistics:
 670 EMNLP 2024*, pp. 7441–7455, 2024.

671

672 Jiezhong Qiu, Qibin Chen, Yuxiao Dong, Jing Zhang, Hongxia Yang, Ming Ding, Kuansan Wang,
 673 and Jie Tang. Gcc: Graph contrastive coding for graph neural network pre-training. In *Proceedings
 674 of the 26th ACM SIGKDD international conference on knowledge discovery & data mining*, pp.
 675 1150–1160, 2020.

676

677 Nils Reimers and Iryna Gurevych. Sentence-bert: Sentence embeddings using siamese bert-networks.
 678 In *Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing
 679 and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)*,
 680 pp. 3982. Association for Computational Linguistics, 2019.

681

682 Ruifeng Ren and Yong Liu. Towards understanding how transformers learn in-context through a
 683 representation learning lens. *Advances in Neural Information Processing Systems*, 37:892–933,
 684 2024.

685

686 David Rogers and Mathew Hahn. Extended-connectivity fingerprints. *Journal of chemical information
 687 and modeling*, 50(5):742–754, 2010.

688

689 Ohad Rubin, Jonathan Herzig, and Jonathan Berant. Learning to retrieve prompts for in-context
 690 learning. In *Proceedings of the 2022 Conference of the North American Chapter of the Association
 691 for Computational Linguistics: Human Language Technologies*, pp. 2655–2671, 2022.

692

693 Oleksandr Shchur, Maximilian Mumme, Aleksandar Bojchevski, and Stephan Günnemann. Pitfalls
 694 of graph neural network evaluation. *arXiv preprint arXiv:1811.05868*, 2018.

695

696 Jake Snell, Kevin Swersky, and Richard Zemel. Prototypical networks for few-shot learning. *Advances
 697 in neural information processing systems*, 30, 2017.

698

699 Xiangguo Sun, Hong Cheng, Jia Li, Bo Liu, and Jihong Guan. All in one: Multi-task prompting
 700 for graph neural networks. In *Proceedings of the 29th ACM SIGKDD Conference on Knowledge
 701 Discovery and Data Mining*, pp. 2120–2131, 2023.

702

703 Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
 704 Bashlykov, Soumya Batra, Prajwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation
 705 and fine-tuned chat models. *arXiv preprint arXiv:2307.09288*, 2023.

706

707 Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
 708 Bengio. Graph Attention Networks. *International Conference on Learning Representations*, 2018.
 709 URL <https://openreview.net/forum?id=rJXMpikCZ>.

702 Petar Veličković, William Fedus, William L. Hamilton, Pietro Liò, Yoshua Bengio, and R Devon
 703 Hjelm. Deep Graph Infomax. In *International Conference on Learning Representations*, 2019.
 704 URL <https://openreview.net/forum?id=rklz9iAckQ>.

705 Oriol Vinyals, Charles Blundell, Timothy Lillicrap, Daan Wierstra, et al. Matching networks for one
 706 shot learning. *Advances in neural information processing systems*, 29, 2016.

708 Johannes Von Oswald, Eyyvind Niklasson, Ettore Randazzo, João Sacramento, Alexander Mordvintsev,
 709 Andrey Zhmoginov, and Max Vladymyrov. Transformers learn in-context by gradient descent. In
 710 *International Conference on Machine Learning*, pp. 35151–35174. PMLR, 2023.

711 Kai Wang, Siqiang Luo, Caihua Shan, and Yifei Shen. Towards graph foundation models: Training
 712 on knowledge graphs enables transferability to general graphs. *arXiv preprint arXiv:2410.12609*,
 713 2024a.

715 Zehong Wang, Zheyuan Zhang, Nitesh V Chawla, Chuxu Zhang, and Yanfang Ye. Gft: Graph
 716 foundation model with transferable tree vocabulary. In *The Thirty-eighth Annual Conference on*
 717 *Neural Information Processing Systems*, 2024b.

718 Renchi Yang, Jieming Shi, Xiaokui Xiao, Yin Yang, Sourav S Bhowmick, and Juncheng Liu. Pane:
 719 scalable and effective attributed network embedding. *The VLDB journal*, 32(6):1237–1262, 2023.

720 Zhilin Yang, William Cohen, and Ruslan Salakhudinov. Revisiting semi-supervised learning with
 721 graph embeddings. In *International conference on machine learning*, pp. 40–48. PMLR, 2016.

722 Yuning You, Tianlong Chen, Yongduo Sui, Ting Chen, Zhangyang Wang, and Yang Shen. Graph
 723 contrastive learning with augmentations. *Advances in neural information processing systems*, 33:
 724 5812–5823, 2020.

725 Xingtong Yu, Zechuan Gong, Chang Zhou, Yuan Fang, and Hui Zhang. Samgpt: Text-free graph
 726 foundation model for multi-domain pre-training and cross-domain adaptation. In *Proceedings of*
 727 *the ACM on Web Conference 2025*, pp. 1142–1153, 2025.

728 Haonan Yuan, Qingyun Sun, Junhua Shi, Xingcheng Fu, Bryan Hooi, Jianxin Li, and Philip S.
 729 Yu. How much can transfer? BRIDGE: Bounded multi-domain graph foundation model with
 730 generalization guarantees. In *Forty-second International Conference on Machine Learning*, 2025.
 731 URL <https://openreview.net/forum?id=bjDKZ3Roax>.

732 Ruiqi Zhang, Spencer Frei, and Peter L Bartlett. Trained transformers learn linear models in-context.
 733 *Journal of Machine Learning Research*, 25(49):1–55, 2024.

734 Yiming Zhang, Shi Feng, and Chenhao Tan. Active example selection for in-context learning. In
 735 *Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing*, pp.
 736 9134–9148, 2022.

737 Zhuosheng Zhang, Aston Zhang, Mu Li, and Alex Smola. Automatic chain of thought prompting in
 738 large language models. In *The Eleventh International Conference on Learning Representations*,
 739 2023. URL <https://openreview.net/forum?id=5NTt8GFjUHkr>.

740 Haihong Zhao, Aochuan Chen, Xiangguo Sun, Hong Cheng, and Jia Li. All in one and one for all: A
 741 simple yet effective method towards cross-domain graph pretraining. In *Proceedings of the 30th*
 742 *ACM SIGKDD Conference on Knowledge Discovery and Data Mining*, pp. 4443–4454, 2024.

743 Zihao Zhao, Eric Wallace, Shi Feng, Dan Klein, and Sameer Singh. Calibrate before use: Improving
 744 few-shot performance of language models. In *International conference on machine learning*, pp.
 745 12697–12706. PMLR, 2021.

746 Yun Zhu, Haizhou Shi, Xiaotang Wang, Yongchao Liu, Yaoke Wang, Boci Peng, Chuntao Hong, and
 747 Siliang Tang. Graphclip: Enhancing transferability in graph foundation models for text-attributed
 748 graphs. In *Proceedings of the ACM on Web Conference 2025*, pp. 2183–2197, 2025.

749

756 A RELATED WORK
757

759 **In-context Learning.** The modern paradigm of in-context learning (ICL) emerged with GPT-
760 3 (Brown et al., 2020), which demonstrated that large autoregressive transformers can adapt to new
761 tasks using only a few labeled demonstrations, without any parameter updates. This breakthrough
762 sparked extensive research along multiple dimensions. From a theoretical perspective, subsequent
763 work has clarified the fundamental mechanisms underlying ICL. Several studies establish connections
764 between ICL and classical meta learning frameworks, drawing parallels to metric-based few-shot
765 methods, including Matching Networks (Vinyals et al., 2016), Prototypical Networks (Snell et al.,
766 2017), and Model-Agnostic Meta Learning (Finn et al., 2017). More recent theoretical analyses reveal
767 that transformers can implement gradient descent algorithms within their forward pass (Von Oswald
768 et al., 2023; Ren & Liu, 2024; Zhang et al., 2024), effectively learning to optimize in-context.
769 Complementary work by (Garg et al., 2022) demonstrates that transformers can learn entire function
770 classes from context, providing an alternative computational perspective on ICL capabilities. On the
771 methodological front, researchers have developed techniques to enhance ICL performance through
772 improved prompt engineering. Min et al. (2022) introduce MetaICL, which explicitly trains models
773 to perform in-context learning. Practical advances focus on demonstration selection and ordering:
774 retrieval-based methods identify optimal examples (Rubin et al., 2022; Luo et al., 2024), while active
775 selection strategies iteratively refine the demonstration set (Zhang et al., 2022; Qin et al., 2024). The
776 sensitivity of ICL to prompt construction has motivated calibration techniques (Zhao et al., 2021)
777 and continuous prompt optimization (Lester et al., 2021), with recent work revealing substantial
778 impacts from demonstration ordering (Guo et al., 2024). However, extending ICL to graph-structured
779 data presents unique challenges due to the heterogeneous nature of graph domains and the complex
780 interplay between topology, features, and labels.

781 **Graph Foundation Models.** Graph Foundation Models (GFMs) have evolved from early self-
782 supervised methods like GraphCL (You et al., 2020) and GraphMAE (Hou et al., 2022) toward
783 comprehensive cross-domain and cross-task generalization. This evolution follows three primary
784 research directions. First, **cross-domain unification** is achieved by using text-attributed graphs
785 (TAGs) as a universal modality. Specifically, OFA (Liu et al., 2024a), GOFA (Kong et al., 2025), and
786 UniGraph (He et al., 2025a) convert graphs to textual representations, then adopt LLMs and GNNs to
787 learn semantic and structural information, respectively. UniGLM (Fang et al., 2025) trains unified
788 language models over multiple TAGs, GraphCLIP (Zhu et al., 2025) aligns graph summaries with
789 language via contrastive learning, and (Wang et al., 2024b) introduces transferable tree vocabularies.
790 AutoGFM (Chen et al., 2025) studies the automatically adapting architectures to different TAGs.
791 In contrast, text-free methods avoid modality conversion. For example, SAMGPT (Yu et al., 2025)
792 employs learnable domain tokens for domain alignment, and GCOPE (Zhao et al., 2024) connects
793 disparate graphs with virtual nodes to enable cross-domain pretraining. Second, for **prompt-based**
794 **adaptation**, GraphPrompt (Liu et al., 2023) and All in One (Sun et al., 2023) unify pretraining
795 and downstream tasks via learnable prompts; Prodigy (Huang et al., 2023) enables graph ICL with
796 prompt graphs and shows few-zero transfer to unseen graphs; ARC (Liu et al., 2024b) achieves
797 generalist anomaly detection via contextual cues. Knowledge graph models (Wang et al., 2024a) have
798 particularly benefited from this paradigm. For example, ULTRA (Galkin et al., 2024) learns universal
799 relational representations, KG-ICL (Cui et al., 2024) frames reasoning as prompting, and theoretical
800 analysis (Huang et al., 2025) links expressivity to learned relation motifs. Third, for **multimodal**
801 **extensions**, emerging work extends GFMs beyond single modalities. UniGraph2 (He et al., 2025b)
802 unifies text and visual features with graph structure, while Graph World Model (Feng et al., 2025)
803 integrates graph-structured states for planning and control. These advances establish a trajectory
804 toward GFMs that function as universal encoders and reasoners across domains, tasks, and modalities.

805 **Our MF-GIA framework is particularly suited to privacy-constrained settings where schemas and**
806 **modalities differ across organizations but raw features cannot be shared, such as cross-organization**
807 **fraud detection over transaction graphs from different banks and multi-hospital patient networks**
808 **with heterogeneous EHR systems. In such scenarios, each party can locally encode its graph, while**
809 **MF-GIA uses gradient fingerprints and lightweight domain aligners to align these heterogeneous**
810 **domains without any modality assumptions, such as TAGs. This complements recent trends in GFMs**
811 **toward realistic cross-domain deployment, including text-based cross-domain models (Chen et al.,**
812 **2024b) and graph prompt optimization frameworks like HGMP (Jiao et al., 2025), all of which**

810 highlight the growing need for privacy-preserving, modality-agnostic foundation models in practical
 811 applications.
 812

813 B PROOFS

814 B.1 PROOF OF THEOREM 3.1

817 The theorem shows that the domain embedder $f_{\phi_{de}}$ acts as a distance-preserving map from the domain
 818 space to the embedding space. To prove it, we first give a formal definition of the graph domain.
 819 Before proving this theorem, we establish a technical lemma that characterizes the properties of
 820 gradient fingerprints.

821 **Lemma B.1.** *For a graph $G = (V, E, \mathbf{X}, \mathbf{Y})$ and the one-layer GNN encoder initialization $\theta_0 \in \mathbb{R}^{d_o \times d}$, the gradient of the task loss at θ_0 can be decomposed as:*

$$824 \quad \nabla_{\theta} \mathcal{L}(\theta_0, G) = \frac{1}{|V|} \mathbf{X}^T \mathbf{A} \cdot \text{diag}(\mathbf{g}) \cdot \mathbf{1}_d, \quad (22)$$

826 where \mathbf{A} is the normalized adjacency matrix, $\mathbf{g} = [g_1, \dots, g_{|V|}]^T \in \mathbb{R}^{|V|}$ is a vector of per-node
 827 loss gradients with $g_v = \nabla_{h_v} \ell(h_v, y_v)$, ℓ is the node-level loss function, and $\mathbf{1}_d$ is the all-ones vector.
 828

829 *Proof.* Consider the forward pass of a one-layer GNN with weight matrix $\theta \in \mathbb{R}^{d_o \times d}$:

$$830 \quad \mathbf{H} = \sigma(\mathbf{A} \mathbf{X} \theta), \quad (23)$$

832 where σ is the nonlinear activation function (e.g., ReLU). The task loss over the graph is:

$$834 \quad \mathcal{L}(\theta, G) = \frac{1}{|V|} \sum_{v \in V} \ell(h_v, y_v), \quad (24)$$

836 where h_v is the representation of v , which is the v -th row of \mathbf{H} , and ℓ is the node-level loss function
 837 (e.g., cross-entropy). Computing the gradient with respect to θ via the chain rule:
 838

$$839 \quad \nabla_{\theta} \mathcal{L}(\theta, G) = \frac{1}{|V|} \sum_{v \in V} \nabla_{\theta} h_v^T \cdot \nabla_{h_v} \ell(h_v, y_v). \quad (25)$$

841 For the gradient of h_v w.r.t. θ , it can be represented as:

$$843 \quad \nabla_{\theta} h_v = \left(\sum_{u \in \mathcal{N}(v)} A_{vu} x_u \right)^T \otimes \sigma'((\mathbf{A} \mathbf{X} \theta)_v). \quad (26)$$

847 At initialization θ_0 , assuming ReLU activation with appropriate initialization ensuring positive
 848 pre-activations, we have $\sigma'((\mathbf{A} \mathbf{X} \theta_0)_v) \approx \mathbf{1}_d$. Therefore, the gradient can be represented as:

$$849 \quad \nabla_{\theta} \mathcal{L}(\theta_0, G) = \frac{1}{|V|} \sum_{v \in V} \left(\sum_{u \in \mathcal{N}(v)} A_{vu} x_u \right)^T \cdot g_v, \quad (27)$$

853 where $g_v = \nabla_{h_v} \ell(h_v, y_v)$ is the gradient of the loss with respect to node v 's representation. This
 854 can be rewritten in matrix form as:

$$855 \quad \nabla_{\theta} \mathcal{L}(\theta_0, G) = \frac{1}{|V|} \mathbf{X}^T \mathbf{A}^T \cdot \text{diag}(\mathbf{g}) \cdot \mathbf{1}_d. \quad (28)$$

858 For undirected graphs with symmetric normalized adjacency matrices, $\mathbf{A}^T = \mathbf{A}$, yielding:

$$859 \quad \nabla_{\theta} \mathcal{L}(\theta_0, G) = \frac{1}{|V|} \mathbf{X}^T \mathbf{A} \cdot \text{diag}(\mathbf{g}) \cdot \mathbf{1}_d, \quad (29)$$

862 which completes the proof. \square

863 Building on the above definitions and lemmas, we now present the proof of Theorem 3.1.

864 *Proof.* Since the gradient fingerprint for G_i sampled from domain \mathcal{D}_i , gradient fingerprint is defined
 865 as:

$$866 \quad \Delta\theta_i = \theta_0 - \eta \nabla_{\theta} \mathcal{L}_i(\theta_0, G_i). \quad (30)$$

867 For two graphs G_i and G_j from two domains, we have:

$$868 \quad \Delta\theta_i - \Delta\theta_j = -\eta (\nabla_{\theta} \mathcal{L}_i(\theta_0, G_i) - \nabla_{\theta} \mathcal{L}_j(\theta_0, G_j)). \quad (31)$$

870 Then the Frobenius norm can be represented as:

$$871 \quad \|\Delta\theta_i - \Delta\theta_j\|_F = \eta \|\nabla_{\theta} \mathcal{L}_i(\theta_0, G_i) - \nabla_{\theta} \mathcal{L}_j(\theta_0, G_j)\|_F. \quad (32)$$

872 Based on the Theorem B.1, and assuming $|V_i| = |V_j| = n$ (we can pad with isolated nodes if
 873 necessary) for simplicity, the gradient difference becomes:

$$875 \quad \nabla_{\theta} \mathcal{L}_i(\theta_0, G_i) - \nabla_{\theta} \mathcal{L}_j(\theta_0, G_j) = \frac{1}{n} [\mathbf{X}_i^T \mathbf{A}_i \cdot \text{diag}(\mathbf{g}_i) - \mathbf{X}_j^T \mathbf{A}_j \cdot \text{diag}(\mathbf{g}_j)] \cdot \mathbf{1}_d, \quad (33)$$

877 where $\mathbf{g}_i = [g_{i,1}, g_{i,2}, \dots, g_{i,n}]^T \in \mathbb{R}^n$ is the vector of per-node loss gradient with $g_{i,v} =$
 878 $\nabla_{h_{i,v}} \ell(h_{i,v}, y_{i,v})$ for node v in G_i . Let $\mathbf{M}_i = \mathbf{X}_i^T \mathbf{A}_i \cdot \text{diag}(\mathbf{g}_i) \in \mathbb{R}^{d_o \times n}$ and $\mathbf{M}_j =$
 879 $\mathbf{X}_j^T \mathbf{A}_j \cdot \text{diag}(\mathbf{g}_j) \in \mathbb{R}^{d_o \times n}$, taking into Eq. (33) and computing the Frobenius norm, we have:

$$880 \quad \|\nabla_{\theta} \mathcal{L}_i(\theta_0, G_i) - \nabla_{\theta} \mathcal{L}_j(\theta_0, G_j)\|_F = \frac{1}{n} \|(\mathbf{M}_i - \mathbf{M}_j) \cdot \mathbf{1}_d\|_2. \quad (34)$$

882 Since $\|\mathbf{1}_d\|_2 = \sqrt{d}$, with the property of operator norm, the following inequality holds:

$$884 \quad \|(\mathbf{M}_i - \mathbf{M}_j) \cdot \mathbf{1}_d\|_2 \leq \|\mathbf{M}_i - \mathbf{M}_j\|_{\text{op}} \cdot \|\mathbf{1}_d\|_2 = \|\mathbf{M}_i - \mathbf{M}_j\|_{\text{op}} \cdot \sqrt{d}, \quad (35)$$

885 where $\|\cdot\|_{\text{op}}$ denotes the operator norm. To bound $\|\mathbf{M}_i - \mathbf{M}_j\|_{\text{op}}$, we decompose it by adding and
 886 subtracting intermediate terms as:

$$888 \quad \begin{aligned} \mathbf{M}_i - \mathbf{M}_j &= \mathbf{X}_i^T \mathbf{A}_i \cdot \text{diag}(\mathbf{g}_i) - \mathbf{X}_j^T \mathbf{A}_j \cdot \text{diag}(\mathbf{g}_j) \\ &= (\mathbf{X}_i - \mathbf{X}_j)^T \mathbf{A}_i \cdot \text{diag}(\mathbf{g}_i) + \mathbf{X}_j^T (\mathbf{A}_i - \mathbf{A}_j) \cdot \text{diag}(\mathbf{g}_i) \\ &\quad + \mathbf{X}_j^T \mathbf{A}_j \cdot (\text{diag}(\mathbf{g}_i) - \text{diag}(\mathbf{g}_j)). \end{aligned} \quad (36)$$

892 Taking the operator norm and using the triangle inequality on Eq. (36), we can bound the
 893 $\|\mathbf{M}_i - \mathbf{M}_j\|_{\text{op}}$ with:

$$895 \quad \begin{aligned} \|\mathbf{M}_i - \mathbf{M}_j\|_{\text{op}} &\leq \left\| (\mathbf{X}_i - \mathbf{X}_j)^T \right\|_{\text{op}} \|\mathbf{A}_i\|_{\text{op}} \|\text{diag}(\mathbf{g}_i)\|_{\text{op}} \\ &\quad + \|\mathbf{X}_j^T\|_{\text{op}} \|(\mathbf{A}_i - \mathbf{A}_j)\|_{\text{op}} \|\text{diag}(\mathbf{g}_i)\|_{\text{op}} \\ &\quad + \|\mathbf{X}_j^T\|_{\text{op}} \|\mathbf{A}_j\|_{\text{op}} \|\text{diag}(\mathbf{g}_i) - \text{diag}(\mathbf{g}_j)\|_{\text{op}}. \end{aligned} \quad (37)$$

900 For a diagonal matrix, the operator norm is the maximum absolute value of its diagonal entries.
 901 Therefore, for the diagonal matrix of the per-node gradient vector $\text{diag}(\mathbf{g}_i)$ of graph G_i , its operator
 902 norm can be computed by $\|\text{diag}(\mathbf{g}_i)\|_{\text{op}} = \max_{v \in V_i} |g_{i,v}|$. Based on the assumption in Theorem 3.1
 903 that the task loss \mathcal{L} is $\mathcal{L}_{\text{task}}$ -smooth with respect to model parameters, it means that its gradient
 904 is $\mathcal{L}_{\text{task}}$ -Lipschitz continuous. Let the task loss \mathcal{L} be a cross-entropy loss with C_i classes, the
 905 node-level loss on node v in G_i is $\ell(h_{i,v}, y_v) = -\log \left(\frac{\exp(h_{i,v}^{(y_v)})}{\sum_{c=1}^{C_i} \exp(h_{i,v}^{(c)})} \right)$. The gradient on v is
 906 $g_{i,v} = \nabla_{h_{i,v}} \ell(h_{i,v}, y_v) = p_v - r_{y_v}$, where $p_v = \text{softmax}(h_{i,v}) \in [0, 1]^{C_i}$ and r_{y_v} is the one-hot
 907 encoding of the ground-truth label of v . Therefore, the following inequality holds:

$$909 \quad \|g_{i,v}\|_2 = \|p_v - r_{y_v}\|_2 \leq \|p_v\|_2 + \|r_{y_v}\|_2 \leq \sqrt{C_i} + 1. \quad (38)$$

910 Since we are considering $g_{i,v}$ as a scalar after projection, we have:

$$912 \quad |g_{i,v}| \leq \sqrt{C_i} + 1 =: \hat{C}_i \quad (39)$$

913 Thus, we have $\|\text{diag}(\mathbf{g}_i)\|_{\text{op}} \leq \hat{C}_i$. Based on the nature of the operator norm, we have
 914 $\|(\mathbf{X}_i - \mathbf{X}_j)^T\|_{\text{op}} = \|\mathbf{X}_i - \mathbf{X}_j\|_{\text{op}} \leq \|\mathbf{X}_i - \mathbf{X}_j\|_F$, $\|\mathbf{X}_j^T\|_{\text{op}} = \|\mathbf{X}_j\|_{\text{op}} \leq B$ (bounded by fea-
 915 ture norms), and $\|\mathbf{A}_i\|_{\text{op}}, \|\mathbf{A}_j\|_{\text{op}} \leq 1$ where \mathbf{A} is the normalized adjacency matrix, we get:
 916

$$917 \quad \|\mathbf{M}_i - \mathbf{M}_j\|_{\text{op}} \leq \hat{C}_i \|\mathbf{X}_i - \mathbf{X}_j\|_F + B \hat{C}_i \|\mathbf{A}_i - \mathbf{A}_j\|_F + B \|\text{diag}(\mathbf{g}_i) - \text{diag}(\mathbf{g}_j)\|_{\text{op}}. \quad (40)$$

918 For the last term of Eq. (40), since the task loss \mathcal{L} is $\mathcal{L}_{\text{task}}$ -smooth, the node-level loss ℓ inherits
 919 smoothness with Lipschitz gradient constant \mathcal{L}_ℓ . Given node v with the same index in G_i and G_j ,
 920 the gradient difference between \mathbf{g}_i and \mathbf{g}_j is $\|\text{diag}(\mathbf{g}_i) - \text{diag}(\mathbf{g}_j)\|_{\text{op}} = \max_v |g_{i,v} - g_{j,v}|$. Since
 921 $g_{i,v} = \nabla_{h_{i,v}} \ell(h_{i,v}, y_{i,v})$ and the gradient is Lipschitz, we have:

$$922 \quad 923 \quad \|g_{i,v} - g_{j,v}\| \leq \mathcal{L}_\ell \|h_{i,v} - h_{j,v}\|. \quad (41)$$

924 In the one-layer message passing defined in Eq. (23), the activation function $\sigma(\cdot)$ is typically ReLU,
 925 which is 1-Lipschitz. Thus, we have:

$$926 \quad 927 \quad \|h_{i,v} - h_{j,v}\| \leq \|[(\mathbf{A}_i \mathbf{X}_i - \mathbf{A}_j \mathbf{X}_j) \theta_0]_v\| \leq \|(\mathbf{A}_i \mathbf{X}_i - \mathbf{A}_j \mathbf{X}_j)_v\| \cdot \|\theta_0\|, \quad (42)$$

928 where the node v in $\mathbf{A}_i \mathbf{X}_i - \mathbf{A}_j \mathbf{X}_j$ can be rewritten as $(\mathbf{A}_i \mathbf{X}_i)_v - (\mathbf{A}_j \mathbf{X}_j)_v = \sum_u A_{i,vu} x_{i,u}^T -$
 929 $\sum_u A_{j,vu} x_{j,u}^T$, which can be further bounded by:

$$931 \quad 932 \quad \|(\mathbf{A}_i \mathbf{X}_i - \mathbf{A}_j \mathbf{X}_j)_v\| \leq \|(\mathbf{A}_i - \mathbf{A}_j)_v \mathbf{X}_i\| + \|(\mathbf{A}_j)_v (\mathbf{X}_i - \mathbf{X}_j)\| \\ 933 \quad \leq \|(\mathbf{A}_i - \mathbf{A}_j)_v\| \|\mathbf{X}_i\|_{\text{op}} + \|(\mathbf{A}_j)_v\| \|\mathbf{X}_i - \mathbf{X}_j\|_{\text{op}}. \quad (43)$$

934 Since \mathbf{A} is normalized where $\|(\mathbf{A}_j)_v\|_1 = 1$ and thus $\|(\mathbf{A}_j)_v\|_2 \leq 1$. Taking Eq. (43) into Eq. (42),
 935 we can bound the difference between $h_{i,v}$ and $h_{j,v}$ as:

$$936 \quad 937 \quad \|h_{i,v} - h_{j,v}\| \leq \|\theta_0\| \cdot \left(\|(\mathbf{A}_i - \mathbf{A}_j)_v\| B + \|\mathbf{X}_i - \mathbf{X}_j\|_{\text{op}} \right). \quad (44)$$

938 To get a uniform bound over all nodes, we have:

$$940 \quad 941 \quad \max_v \|h_{i,v} - h_{j,v}\| \leq \|\theta_0\| \cdot (\|\mathbf{A}_i - \mathbf{A}_j\|_F B + \|\mathbf{X}_i - \mathbf{X}_j\|_F), \quad (45)$$

942 which gives us:

$$943 \quad 944 \quad \|\text{diag}(\mathbf{g}_i) - \text{diag}(\mathbf{g}_j)\|_{\text{op}} \leq \mathcal{L}_\ell \|\theta_0\| \cdot (B \|\mathbf{A}_i - \mathbf{A}_j\|_F + \|\mathbf{X}_i - \mathbf{X}_j\|_F). \quad (46)$$

945 Since \mathcal{L}_ℓ , θ_0 , and B are fixed, we can use $\mathcal{L}' = \mathcal{L}_\ell \|\theta_0\| \max(B, 1)$ to combine them. There,
 946 Eq. (46) can be rewritten as:

$$947 \quad 948 \quad \|\text{diag}(\mathbf{g}_i) - \text{diag}(\mathbf{g}_j)\|_{\text{op}} \leq \mathcal{L}' (\|\mathbf{X}_i - \mathbf{X}_j\|_F + \|\mathbf{A}_i - \mathbf{A}_j\|_F). \quad (47)$$

949 To measure the inherently distance between two graphs, we define the graph distance as $d_{\mathcal{G}}(G_i, G_j) =$
 950 $\|\mathbf{X}_i - \mathbf{X}_j\|_F + \|\mathbf{A}_i - \mathbf{A}_j\|_F$. Then, taking the graph distance and Eq. (47) into Eq. (40), we have:

$$951 \quad 952 \quad \|\mathbf{M}_i - \mathbf{M}_j\|_{\text{op}} \leq \tilde{C} \cdot d_{\mathcal{G}}(G_i, G_j), \quad (48)$$

953 where $\tilde{C} = \hat{C}_i + B\hat{C}_i + B\mathcal{L}'$. Recall Eq. (32), Eq. (34), and Eq. (35), we can integrate the used
 954 constants, such as \sqrt{d} and $\frac{1}{n}$, into \tilde{C} . Then the difference between the gradient fingerprints of two
 955 domains is bounded as:

$$956 \quad 957 \quad \|\Delta\theta_i - \Delta\theta_j\|_F \leq \eta \tilde{C} \cdot d_{\mathcal{G}}(G_i, G_j). \quad (49)$$

958 For the graph distance $d_{\mathcal{G}}$, we have:

$$959 \quad 960 \quad d_{\mathcal{G}}(G_i, G_j) = \|\mathbf{X}_i - \mathbf{X}_j\|_F + \|\mathbf{A}_i - \mathbf{A}_j\|_F \leq \sqrt{2} \sqrt{\|\mathbf{X}_i - \mathbf{X}_j\|_F^2 + \|\mathbf{A}_i - \mathbf{A}_j\|_F^2}. \quad (50)$$

961 The Wasserstein distance can be rewritten as:

$$963 \quad 964 \quad \mathcal{W}_2(\mathcal{D}_i, \mathcal{D}_j) = \inf_{\gamma \in \Gamma(P_i, P_j)} \sqrt{\mathbb{E}_{(G_i, G_j) \sim \kappa} [d_{\mathcal{G}}^2(G_i, G_j)]} \quad (51)$$

965 For the optimal coupling κ^* that achieves the Wasserstein distance, by Jensen's inequality for the
 966 concave square root function, we have:

$$968 \quad 969 \quad \mathbb{E}_{(G_i, G_j) \sim \kappa^*} [d_{\mathcal{G}}(G_i, G_j)] \leq \sqrt{\mathbb{E}_{(G_i, G_j) \sim \kappa^*} [d_{\mathcal{G}}^2(G_i, G_j)]} = \mathcal{W}_2(\mathcal{D}_i, \mathcal{D}_j). \quad (52)$$

970 Combining Eq. (52) and Eq. (49), the bound of $\|\Delta\theta_i - \Delta\theta_j\|_F$ can be expressed as:

$$971 \quad 972 \quad \|\Delta\theta_i - \Delta\theta_j\|_F \leq \eta \tilde{C} \cdot \mathbb{E}[d_{\mathcal{G}}(G_i, G_j)] \leq \eta \tilde{C} \cdot \mathcal{W}_2(\mathcal{D}_i, \mathcal{D}_j). \quad (53)$$

Eq. (53) shows that **the similarity between gradient fingerprints can effectively reflect the domain similarity**. Recall the domain embedder defined in Eq. (5), we can conduct the Lipschitz analysis on it. First, the Conv2D with kernel weights \mathbf{W}_{conv} satisfy $\|\text{Conv2D}(x) - \text{Conv2D}(y)\| \leq \|\mathbf{W}_{\text{conv}}\|_{\text{op}} \cdot \|x - y\|$, the Flatten operation preserves norms $\|\text{Flatten}(\mathbf{A})\|_2 = \|\mathbf{A}\|_F$, and the MLP with R -layer weight matrices $\mathbf{W}_1, \dots, \mathbf{W}_R$ satisfy $\|\text{MLP}(x) - \text{MLP}(y)\| \leq \prod_{r=1}^R \|\mathbf{W}_r\|_{\text{op}} \cdot \|x - y\|$. Thus, the overall Lipschitz constant of the domain embedder $f_{\phi_{\text{de}}}$ is:

$$\mathcal{L}_{\text{de}} = \|\mathbf{W}_{\text{conv}}\|_{\text{op}} \cdot \prod_{r=1}^R \|\mathbf{W}_r\|_{\text{op}}. \quad (54)$$

Thus, the following Lipschitz inequality holds:

$$\|e_i - e_j\|_2 = \|f_{\text{de}}(\Delta\theta_i) - f_{\text{de}}(\Delta\theta_j)\|_2 \leq \mathcal{L}_{\text{de}} \|\Delta\theta_i - \Delta\theta_j\|_F. \quad (55)$$

We can substitute Eq. (53) into Eq. (55) and merge all constants into \tilde{C} , we can get:

$$\|e_i - e_j\|_2 \leq \tilde{C} \cdot \mathcal{W}_2(\mathcal{D}_i, \mathcal{D}_j) \quad (56)$$

This shows that the domain embedding function preserves domain relationships: similar domains with small \mathcal{W}_2 map to nearby embeddings with small $\|e_i - e_j\|_2$.

□

B.2 PROOF OF PROPERTY 1

Proof. By definition, $f_{\phi_{\text{feat}}}$ being \mathcal{L} -Lipschitz means that for all $e, e' \in \mathbb{R}^{d_e}$,

$$\|f_{\phi_{\text{feat}}}(e) - f_{\phi_{\text{feat}}}(e')\|_{2,1} \leq \mathcal{L} \|e - e'\|_2. \quad (57)$$

Applying this with $e = e_i$ and $e' = e_j$ for domain embeddings of G_i and G_j , we have:

$$f_{\phi_{\text{feat}}}(e_i) - f_{\phi_{\text{feat}}}(e_j) = (\gamma^{\text{feat}}(e_i) - \gamma^{\text{feat}}(e_j), \beta^{\text{feat}}(e_i) - \beta^{\text{feat}}(e_j)) = (\Delta\gamma, \Delta\beta). \quad (58)$$

Then using the definition of $\|\cdot\|_{2,1}$ gives:

$$\|\Delta\gamma\|_2 + \|\Delta\beta\|_2 = \|f_{\phi_{\text{feat}}}(e_i) - f_{\phi_{\text{feat}}}(e_j)\|_{2,1} \leq \mathcal{L} \|e_i - e_j\|_2, \quad (59)$$

which is exactly the claimed inequality in Property 1. For the graph G_i , the domain-conditioned transformation for its domain i on an item w is $\mathcal{K}_i^{\text{feat}} : \mathbb{R}^d \rightarrow \mathbb{R}^d$:

$$\mathcal{K}_i^{\text{feat}} = \gamma_i^{\text{feat}} \odot h + \beta_i^{\text{feat}}. \quad (60)$$

Then for any $h \in \mathbb{R}^d$, the following inequality holds:

$$\begin{aligned} \|\mathcal{K}_i^{\text{feat}}(h) - \mathcal{K}_j^{\text{feat}}(h)\|_2 &= \|(\gamma_i^{\text{feat}} - \gamma_j^{\text{feat}}) \odot h + (\beta_i^{\text{feat}} - \beta_j^{\text{feat}})\|_2 \\ &\leq \|(\gamma_i^{\text{feat}} - \gamma_j^{\text{feat}}) \odot h\|_2 + \|\beta_i^{\text{feat}} - \beta_j^{\text{feat}}\|_2 \\ &\leq \|h\|_\infty \|\gamma_i^{\text{feat}} - \gamma_j^{\text{feat}}\|_2 + \|\beta_i^{\text{feat}} - \beta_j^{\text{feat}}\|_2 \\ &\leq \|h\|_2 \|\gamma_i^{\text{feat}} - \gamma_j^{\text{feat}}\|_2 + \|\beta_i^{\text{feat}} - \beta_j^{\text{feat}}\|_2, \end{aligned} \quad (61)$$

Combining Eq. (59) and Eq. (61) yields:

$$\|\mathcal{K}_i^{\text{feat}}(h) - \mathcal{K}_j^{\text{feat}}(h)\|_2 \leq \max\{\|h\|_2, 1\} \mathcal{L} \|e_i - e_j\|_2. \quad (62)$$

Thus, as domains move closer in the embedding space, their induced feature transforms move closer uniformly on any set of bounded $\|h\|_2$, so the collections $\{\mathcal{K}_i^{\text{feat}}(h_{i,w})\}_w$ and $\{\mathcal{K}_j^{\text{feat}}(h_{j,w})\}_w$ occupy neighboring subspaces in the unified feature space.

□

C ALGORITHMS AND COMPLEXITY ANALYSIS

C.1 ALGORITHMS

Algorithm 1 presents the episodic pretraining procedure for MF-GIA. Algorithm 2 details [parameter-update-free](#) in-context inference on unseen graphs. At a high level, pretraining teaches the model to (1) extract a gradient-fingerprint domain embedding from a small support set, (2) map that embedding to domain-conditioned feature and label transforms that place heterogeneous graphs in a shared space, and (3) perform prompt-aware matching between queries and aligned supports. At test time, we reuse the same pipeline with frozen parameters, computing the domain embedding and transforms on-the-fly from a few labeled examples only.

1026
1027 **Algorithm 1: MF-GIA Pretraining**
1028 **Input** : Pretraining graphs $\mathcal{G} = \{G_i = (V_i, E_i, \mathbf{X}_i, \mathbf{Y}_i)\}_{i=1}^M$; unified item dim d_o ; embedding
1029 dim d ; GNN encoder f_θ with stored initialization θ_0 (kept frozen); base label table
1030 $\mathbf{E}^{\text{label}} \in \mathbb{R}^{L_{\text{max}} \times d}$; Domain embedder $f_{\phi_{\text{de}}}$; FiLM aligners $f_{\phi_{\text{feat}}}, f_{\phi_{\text{label}}}$; DPAA params
1031 W_K, W_V, W_Q and head f_Ω ; Episode spec (m -way, k -shot, T queries), temperature τ ,
1032 learning rate η .
1033 **Output** : Pretrained model $\mathcal{M}_\Phi = \{\theta_0, f_{\phi_{\text{de}}}, f_{\phi_{\text{feat}}}, f_{\phi_{\text{label}}}, W_K, W_V, W_Q, f_\Omega\}$.
1034 1 **(Optional) feature unification.** For each \mathbf{X}_i , map to \mathbb{R}^{d_o} via SVD. // unify dims
1035 2 **Stage A: Train domain embedder** $f_{\phi_{\text{de}}}$. // gradient fingerprints
1036 3 **for** $i = 1, \dots, M$ **do**
1037 4 Compute one gradient step on G_i from θ_0 : $\theta_i \leftarrow \theta_0 - \eta \nabla_{\theta} \mathcal{L}_i(\theta_0)$.
1038 5 Store fingerprint $\Delta\theta_i \leftarrow \theta_i - \theta_0$.
1039 6 **end**
1040 7 **repeat**
1041 8 $e_i \leftarrow f_{\phi_{\text{de}}}(\Delta\theta_i)$ for all i .
1042 9 $\mathcal{L}_{\text{de}} \leftarrow \sum_{i,j} (\|\Delta\theta_i - \Delta\theta_j\|_F - \|e_i - e_j\|_2)^2$.
1043 10 Update $f_{\phi_{\text{de}}}$ by descending $\nabla \mathcal{L}_{\text{de}}$.
1044 11 **until** converged
1045 12 Freeze $f_{\phi_{\text{de}}}$ (and keep f_θ at θ_0).
1046 13 **Stage B: Episodic pretraining with DPAA (encoder init frozen).**
1047 14 **for** episodes **do**
1048 15 Sample a graph G_i and an m -way k -shot support set \mathcal{S} plus T queries per class as the query
1049 set \mathcal{Q} .
1050 16 $e_i \leftarrow f_{\phi_{\text{de}}}(\Delta\theta_i)$; $(\gamma_i^{\text{feat}}, \beta_i^{\text{feat}}) \leftarrow f_{\phi_{\text{feat}}}(e_i)$; $(\gamma_i^{\text{label}}, \beta_i^{\text{label}}) \leftarrow f_{\phi_{\text{label}}}(e_i)$.
1051 // Aligned features / labels
1052 17 For any item w , $h_{i,w} \leftarrow f_{\theta_0}(w, G_i)$, $z_{i,w} \leftarrow \gamma_i^{\text{feat}} \odot h_{i,w} + \beta_i^{\text{feat}}$.
1053 18 For each class l used in the episode, $u_{i,l} \leftarrow \gamma_i^{\text{label}} \odot E_l^{\text{label}} + \beta_i^{\text{label}}$.
1054 19 Form $\mathbf{Z}^{\text{pmt}} \in \mathbb{R}^{(mk) \times d}$ from support $\{z_{i,w}\}$ and $\mathbf{U}^{\text{pmt}} \in \mathbb{R}^{m \times d}$ from $\{u_{i,l}\}$.
1055 // Dual Prompt-Aware Attention (single-query attention)
1056 20 **for** each query item q with class c **do**
1057 21 $\mathbf{K}^{\text{feat}} \leftarrow \mathbf{Z}^{\text{pmt}} \mathbf{W}_K$, $\mathbf{V}^{\text{feat}} \leftarrow \mathbf{Z}^{\text{pmt}} \mathbf{W}_V$, $\mathbf{Q}^{\text{feat}} \leftarrow z_{i,q} \mathbf{W}_Q$.
1058 22 $z_{i,q}^{\text{out}} \leftarrow \text{softmax}\left(\frac{\mathbf{Q}^{\text{feat}} \mathbf{K}^{\text{feat}}}{\sqrt{d}}\right) \mathbf{V}^{\text{feat}}$.
1059 23 $\mathbf{K}^{\text{label}} \leftarrow \mathbf{U}^{\text{pmt}} \mathbf{W}_K$, $\mathbf{V}^{\text{label}} \leftarrow \mathbf{U}^{\text{pmt}} \mathbf{W}_V$, $\mathbf{Q}^{\text{label}} \leftarrow f_\Omega(z_{i,q}^{\text{out}})$.
1060 24 $u_{i,q}^{\text{out}} \leftarrow \text{softmax}\left(\frac{\mathbf{Q}^{\text{label}} \mathbf{K}^{\text{label}}}{\sqrt{d}}\right) \mathbf{V}^{\text{label}}$.
1061 25 $s_{i,q} \leftarrow u_{i,q}^{\text{out}} (\mathbf{U}^{\text{pmt}})^{\top} \in \mathbb{R}^m$; $\mathcal{L}_{\text{episode}} \leftarrow -\log \frac{\exp(s_{i,q}[c]/\tau)}{\sum_{j=1}^m \exp(s_{i,q}[j]/\tau)}$.
1062 26 **end**
1063 27 Update $\{f_{\phi_{\text{feat}}}, f_{\phi_{\text{label}}}, E^{\text{label}}, \mathbf{W}_K, \mathbf{W}_V, \mathbf{W}_Q, f_\Omega\}$ to minimize the mean query loss $\mathcal{L}_{\text{pretrain}}$
1064 of the episode.
1065 28 **end**
1066
1067
1068
1069
1070 **C.2 COMPLEXITY ANALYSIS**
1071
1072 Let $G_i = (V_i, E_i, \mathbf{X}_i, \mathbf{Y}_i)$ be a pretraining graph with $|V_i|$ nodes and $|E_i|$ edges, GNN encoder
1073 width d , input width d_o , and domain embedding width d_e . Offline, the domain embedder computes a single gradient fingerprint per graph by one forward-backward through the shared J -layer
1074 GNN f_θ from θ_0 , which costs $O(J(|E_i| + |V_i|), d)$ per G_i . Each fingerprint $\Delta\theta_i \in \mathbb{R}^{d_o \times d}$
1075 is then embedded via $f_{\phi_{\text{de}}}$, giving $O(d_e d_o d)$ time. After caching $\Delta\theta_i$, training $f_{\phi_{\text{de}}}$ with the
1076 pairwise metric-preserving loss adds $O(M^2 d_e)$ per epoch for M pretraining graphs. In each
1077 episode on G_i with m -way k -shot support and T queries per way, generating FiLM parameters
1078 for domain-conditioned transformations $(\gamma_i^{\text{feat}}, \beta_i^{\text{feat}}) = f_{\phi_{\text{feat}}}(e_i)$ and $(\gamma_i^{\text{label}}, \beta_i^{\text{label}}) = f_{\phi_{\text{label}}}(e_i)$
1079 costs $O(d_e d)$, and applying $\mathcal{K}_i^{\text{feat}}$ to $(mk + mT)$ item embeddings and $\mathcal{K}_i^{\text{label}}$ to m label rows of

Algorithm 2: MF-GIA Test-time In-Context Inference (Parameter-Update-Free w.r.t. \mathcal{M}_Φ)

Input : Frozen pretrained Φ from Algorithm 1; unseen graph $G_{\text{new}} = (V_{\text{new}}, E_{\text{new}}, \mathbf{X}_{\text{new}})$ with C_{new} classes; C_{new} -way k -shot support set $\mathcal{S} = \{(w_j, y_j)\}_{j=1}^{kC_{\text{new}}}$; queries $\mathcal{Q} \subseteq G_{\text{new}} \setminus \mathcal{S}$.

Output : Predictions $\{\hat{y}_q\}_{q \in \mathcal{Q}}$.

// In-context domain embedding (from support only)

1 Compute a one-step fingerprint from θ_0 on \mathcal{S} : $\theta_{\text{new}} \leftarrow \theta_0 - \eta \nabla_{\theta} \mathcal{L}_{\text{new}}(\theta_0; \mathcal{S})$;
 $e_{\text{new}} \leftarrow f_{\phi_{\text{de}}}(\theta_{\text{new}} - \theta_0)$.

// Domain-conditioned alignment for G_{new}

2 $(\gamma_{\text{new}}^{\text{feat}}, \beta_{\text{new}}^{\text{feat}}) \leftarrow f_{\phi_{\text{feat}}}(e_{\text{new}})$; $(\gamma_{\text{new}}^{\text{label}}, \beta_{\text{new}}^{\text{label}}) \leftarrow f_{\phi_{\text{label}}}(e_{\text{new}})$.

3 For any item w : $h_{\text{new},w} \leftarrow f_{\theta_0}(w, G_{\text{new}})$, $z_{\text{new},w} \leftarrow \gamma_{\text{new}}^{\text{feat}} \odot h_{\text{new},w} + \beta_{\text{new}}^{\text{feat}}$.

4 For $l = 0, \dots, C_{\text{new}} - 1$: $u_{\text{new},l} \leftarrow \gamma_{\text{new}}^{\text{label}} \odot \mathbf{E}_l^{\text{label}} + \beta_{\text{new}}^{\text{label}}$.

5 Form $\mathbf{Z}_{\text{new}}^{\text{pmt}} \in \mathbb{R}^{(kC_{\text{new}}) \times d}$ from $\{z_{\text{new},w}\}_{(w,y) \in \mathcal{S}}$ and $\mathbf{U}_{\text{new}}^{\text{pmt}} \in \mathbb{R}^{C_{\text{new}} \times d}$ from $\{u_{\text{new},l}\}$.

// Dual Prompt-Aware Attention inference (no parameter update)

6 **for** each query $q \in \mathcal{Q}$ **do**

7 $\mathbf{K}^{\text{feat}} \leftarrow \mathbf{Z}_{\text{new}}^{\text{pmt}} \mathbf{W}_K$, $\mathbf{V}^{\text{feat}} \leftarrow \mathbf{Z}_{\text{new}}^{\text{pmt}} \mathbf{W}_V$, $\mathbf{Q}^{\text{feat}} \leftarrow z_{\text{new},q} \mathbf{W}_Q$.

8 $z_{\text{new},q}^{\text{out}} \leftarrow \text{softmax}\left(\frac{\mathbf{Q}^{\text{feat}} \mathbf{K}^{\text{feat}} \top}{\sqrt{d}}\right) \mathbf{V}^{\text{feat}}$.

9 $\mathbf{K}^{\text{label}} \leftarrow \mathbf{U}_{\text{new}}^{\text{pmt}} \mathbf{W}_K$, $\mathbf{V}^{\text{label}} \leftarrow \mathbf{U}_{\text{new}}^{\text{pmt}} \mathbf{W}_V$, $\mathbf{Q}^{\text{label}} \leftarrow f_{\Omega}(z_{\text{new},q}^{\text{out}})$.

10 $u_{\text{new},q}^{\text{out}} \leftarrow \text{softmax}\left(\frac{\mathbf{Q}^{\text{label}} \mathbf{K}^{\text{label}} \top}{\sqrt{d}}\right) \mathbf{V}^{\text{label}}$.

11 $s_q \leftarrow u_{\text{new},q}^{\text{out}} (\mathbf{U}_{\text{new}}^{\text{pmt}})^\top$; $\hat{y}_q \leftarrow \arg \max_j s_q[j]$.

12 **end**

the shared base $\mathbf{E}^{\text{label}} \in \mathbb{R}^{L_{\max} \times d}$ costs $O((mk + mT)d + md)$. The time complexity of DPAA is $O((mk + m)d^2 + mT(d^2 + mkd + md))$, which is typically secondary to the encoder when m and k are few-shot. Typically, we have $M, J, T, k, m \ll |V_i|, |E_i|, d, d_o, d_e$, therefore the overall time complexity can be represented as $O\left(\sum_{i=1}^M (|E_i| + |V_i|)d + d_e d_o d\right)$, which is linear in graph size.

Moreover, we report inference overhead in terms of FLOPs, memory and latency. For a C_{new} -way k -shot experimental setting with hidden dimension d and average degree D for query nodes, the per-query computational cost is $2Dd + (kC_{\text{new}} + C_{\text{new}} + 1)d^2$ FLOPs, requiring $(kC_{\text{new}} + 1)d$ memory and achieving 1.3-4.5 ms latency per query. The one-time domain characterization overhead (computing the gradient fingerprint and domain embedding) ranges from 108-427 ms depending on the support set size, which is amortized across all queries.

D TASK UNIFICATION

With a bit of notation abuse, in knowledge graphs FB15K237 and WN18RR, link classification aims to predict the relation type r for a given triple (h, r, t) , where h and t are head and tail entities, respectively. To leverage our node classification framework for this task, we transform the link classification problem into node classification through line graph construction. Given a knowledge graph $G = (V, E, R, \mathbf{X})$ with entities V , edges E , relation types R , and node feature matrix \mathbf{X} , we construct a line graph $\text{LG}(G) = (V_{\text{LG}}, E_{\text{LG}}, \mathbf{X}_{\text{LG}})$, where each edge $\varepsilon = (h, r, t) \in E$ becomes a node $v_\varepsilon \in V_{\text{LG}}$. Two nodes $v_{\varepsilon_i}, v_{\varepsilon_i} \in V_{\text{LG}}$ and are connected if the corresponding edges $\varepsilon_i, \varepsilon_j$ share a common entity (head or tail). Formally, the edge set E_{LG} is defined as:

$$E_{\text{LG}} = \left\{ (v_{\varepsilon_i}, v_{\varepsilon_j}) : \varepsilon_i = (h_i, r_i, t_i), \varepsilon_j = (h_j, r_j, t_j), \{h_i, t_i\} \cap \{h_j, t_j\} \neq \emptyset \right\} \quad (63)$$

1131 For each node $v_\varepsilon \in V_{LG}$ in the line graph corresponding to edge $\varepsilon = (h, r, t)$, we construct features
 1132 by aggregating the embeddings of the connected entities and relation as $x_{v_\varepsilon} = [x_h \| x_t]$, where $[\cdot \| \cdot]$
 1133 denotes concatenation. The concatenated features are then projected to the unified dimension using
 PCA to maintain consistency with the node classification framework. After transformation, link

Table 6: Dataset statistics.

Usage	Dataset	Domain	Task	#Nodes	#Edges	# Classes
Pretrain	WikiCS	Web link	Node	11,701	216,123	10
	PubMed	Citation	Node	19,717	44,338	3
	ogbn-Arxiv	Citation	Node	169,343	1,166,243	40
	Amazon-ratings	E-commerce (Ratings)	Node	24,492	93,050	5
Evaluation	Cora	Citation	Node	11,701	216,123	10
	ogbn-Products	E-commerce (Product Category)	Node	2,449,029	61,859,140	47
	Computers	E-commerce (Product Category)	Node	13,752	491,722	10
	Physics	Co-authorship	Node	34,493	495,924	5
	BlogCatalog	Social Media	Node	5,196	343,486	6
	FB15K237	Encyclopedic KG	Link	14,541	310,116	237
	WN18RR	Lexical KG	Link	40,943	93,003	11

classification becomes a node classification problem on the line graph, where each node (representing an edge in the original graph) needs to be classified into one of R relation types.

E EXPERIMENTAL DETAILS

E.1 DATASETS

We pretrain MF-GIA on four source graphs: WikiCS (Mernyei & Cangea, 2020), PubMed (Yang et al., 2016), ogbn-Arxiv (Hu et al., 2020), and Amazon-ratings (Leskovec & Sosić, 2016; Platonov et al., 2023). The pretrained model is evaluated on five held-out graphs on node-level tasks: Cora (Yang et al., 2016), ogbn-Products (Hu et al., 2020), Computers (Shchur et al., 2018), Physics (Shchur et al., 2018), and BlogCatalog (Yang et al., 2023), spanning citation, e-commerce, co-authorship, and social media domains. The pretrained model is also evaluated on edge-level tasks on FB15K237 (Bordes et al., 2013) and WN18RR (Dettmers et al., 2018), which are knowledge graphs from encyclopedic and lexical domains to predict relation types. Dataset statistics are summarized in Table 6. Note that although Amazon-ratings, ogbn-Products, and Computers are E-commerce networks, they form distinct domains: Amazon-ratings is labeled by average user rating per item, whereas ogbn-Products and Computers use product-category labels. We therefore treat them as separate domains.

E.2 BASELINE CONFIGURATIONS

We compare MF-GIA against two categories of baselines: (1) Traditional GNNs: GCN (Kipf & Welling, 2017), GAT (Veličković et al., 2018), and GraphSAGE (Hamilton et al., 2017); (2) Self-supervised GNNs: GraphMAE (Hou et al., 2022), DGI (Veličković et al., 2019), and GraphCL (You et al., 2020); (3) GFM with post-training: GCOPE (Zhao et al., 2024), GFT (Wang et al., 2024b), AutoGFM (Chen et al., 2025), GPF (Fang et al., 2023), and All in One (Sun et al., 2023); (4) GFM with ICL: Prodigy (Huang et al., 2023), OFA (Liu et al., 2024a), and GraphAlign (Hou et al., 2024).

For traditional GNNs and Self-Supervised Methods, we pretrain on the same four datasets as our MF-GIA. Since these models lack in-context learning capabilities, we fine-tune them on the support set and evaluate on the query set for each episode. For GFMs with post-training (no ICL), we consider two pretraining regimes and report the stronger results: (1) pretraining on the same four graphs as MF-GIA, and (2) pretraining on the datasets used by the methods’ official implementations. For Prodigy, we compare two variants: one pretrained on our datasets and another on MAG240M (Hu et al., 2021) as in the original work, reporting the better result. For modality-dependent models (OFA, GraphAlign), which require text-attributed graphs (TAGs) and cannot operate on pre-encoded features, we use their original TAG datasets and implementations. To ensure fairness, all baselines follow the same episode protocol (identical m -way, k -shot support/query splits), use comparable backbones when applicable, and tune hyperparameters on validation episodes within the authors’ recommended ranges.

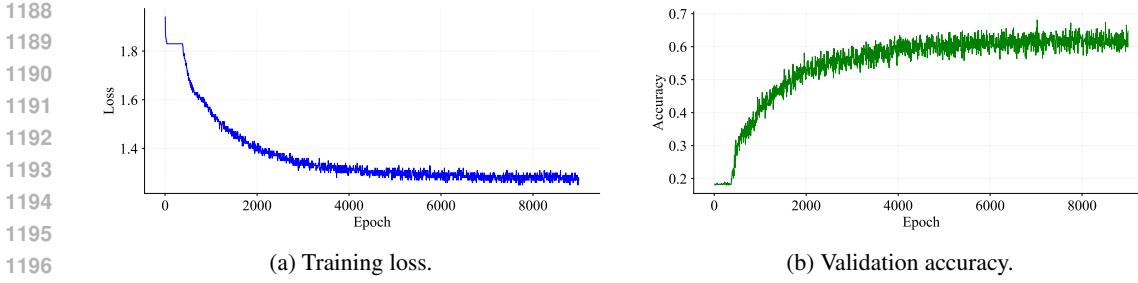


Figure 5: Pretraining curves of MF-GIA.

Table 7: Effect of pretraining dataset composition on few-shot node classification accuracy (%). We systematically vary domain coverage from single to full four-domain pretraining. Results are 5-shot accuracy averaged over 20 episodes. Best results are **bold**.

Configuration	Pretraining Datasets	Domain Coverage	In-Domain		Out-of-Domain			Avg OOD	Overall
			Cora	Products	Physics	BlogCatalog			
Single	PubMed	Citation	42.76	12.43	68.15	41.28	40.62	40.91	
	Arxiv	Citation	48.31	13.86	76.42	43.67	44.65	45.57	
	WikiCS	Web	39.23	14.72	65.83	45.91	42.15	41.67	
	Amazon	E-commerce	35.47	17.28	61.26	38.74	39.09	38.19	
Two	PubMed + Arxiv	Citation	52.14	14.92	79.87	47.35	47.38	48.57	
	WikiCS + Amazon	Web + E-commerce	41.68	18.35	67.42	48.26	44.68	43.93	
	PubMed + WikiCS	Citation + Web	47.92	15.76	73.21	49.84	46.27	46.68	
	Arxiv + Amazon	Citation + E-commerce	50.36	19.14	78.53	46.72	48.13	48.69	
Three	PubMed + Arxiv + WikiCS	w/o E-commerce	56.47	16.82	83.74	54.38	51.65	52.85	
	PubMed + Arxiv + Amazon	w/o Web	57.82	20.67	85.91	52.16	52.91	54.14	
	PubMed + WikiCS + Amazon	w/o Citation (Arxiv)	51.36	19.43	77.62	57.83	51.63	51.56	
	Arxiv + WikiCS + Amazon	w/o Citation (PubMed)	59.24	21.38	86.73	60.47	56.19	56.96	
Full	All Four Datasets	Complete	63.98	22.61	88.92	67.31	59.61	60.73	

E.3 IMPLEMENTATION

We evaluate MF-GIA under the few-shot learning paradigm without any fine-tuning. For each test graph, we randomly sample k -shot support sets, where $k = \{1, 3, 5\}$, and evaluate on the remaining nodes. For node classification tasks, we measure classification accuracy and report the mean performance across 10 independent trials, each with randomly sampled support/query splits to ensure robustness of our results. For edge classification tasks, we focus on relation type prediction and conduct evaluation over 20 episodes to account for variance in the few-shot sampling process.

For the dimension alignment, we use SVD to unify all graphs’ feature dimensions to $d_o = 64$. The domain embedder uses a 2-layer CNN followed by a 1-layer MLP to project gradient fingerprints into 64-dimensional domain embeddings. For feature alignment, we also employ a 1-layer GNN encoder with a hidden dimension 64, followed by FiLM-based transformations. The label alignment uses a shared label base of dimension $L_{\max} \times 64$. The DPAA mechanism consists of 1 attention layer with 1 head each. During pretraining, we use episodic meta learning with 10-way 5-shot tasks sampled from the pretraining graphs. We train for 10000 episodes using AdamW (Loshchilov & Hutter, 2017) with learning rate 0.005 and weight decay 0.0005. For gradient fingerprint computation, we use a fixed learning rate $\eta = 0.01$ for single-step updates. Fig. 5 illustrates the pretraining dynamics of MF-GIA. The training loss exhibits stable convergence, while validation accuracy shows consistent improvement before plateauing at approximately 6000 epochs, indicating effective model convergence.

F MORE EXPERIMENTS

F.1 EFFECT OF DOMAIN DIVERSITY IN PRETRAINING

Table 7 demonstrates that domain diversity is critical for MF-GIA to construct an effective domain embedding space that enables robust alignment of downstream graphs. Single-dataset pretraining yields limited performance, where Arxiv shows the strongest individual results due to its diverse academic content, providing richer domain signals. When combining two datasets, cross-domain

pairs (e.g., Arxiv + Amazon: 48.69%) perform comparably to same-domain pairs (PubMed + Arxiv: 48.57%) despite Amazon’s weaker individual performance, indicating that structural diversity helps the domain embedder learn more generalizable alignment patterns beyond surface-level similarities. This effect amplifies with three datasets, where the configuration without PubMed (Arxiv + WikiCS + Amazon) achieves 56.96%, notably outperforming the configuration without Arxiv (51.56%), despite Arxiv’s superior standalone performance. This counterintuitive result reveals that once sufficient domain signals are captured, maintaining diverse structural patterns (Web link, E-commerce) becomes more valuable than redundant citation networks for constructing a comprehensive domain space. The full four-dataset model achieves optimal performance (60.73%), with remarkable generalization to entirely unseen domains like BlogCatalog (67.31%), validating that comprehensive domain coverage during pretraining enables the domain embedder to map novel graphs into appropriate subspaces of the learned domain space. These results confirm that MF-GIA’s domain-conditioned transformations require diverse pretraining to establish a rich domain embedding space where graphs from any domain, seen or unseen, can be effectively mapped and aligned based on their intrinsic characteristics.

F.2 EFFECT OF GRAPH PRE-ENCODER

While the raw text data of the Cora dataset has been made available by Chen et al. (2024a), popular end-to-end GNN models typically utilize the pre-encoded version from Yang et al. (2016), which employs bag-of-words (BoW) encoding for node features. Modality-dependent GFMs such as GFT, AutoGFM, and OFA require access to raw text data and rely on specific language models, such as Sentence Transformer (ST)¹ (Reimers & Gurevych, 2019), LLaMa2-7B² (Touvron et al., 2023), or RoBERTa³ (Liu et al., 2019), to align the semantic space between the Cora dataset and their pretraining graphs. In contrast, MF-GIA demonstrates modality freedom, i.e., it operates directly on graphs with arbitrary pre-encoded features without requiring knowledge of the encoding method. Whether a graph has been encoded using bag-of-words, advanced language models, or even unknown proprietary encoders, MF-GIA can seamlessly adapt to these features. The results in Table 2 employ the public bag-of-words features for MF-GIA. To validate our modality-free claim, in Table 8, we conduct additional experiments applying our pretrained model (without re-pretraining) to the graph pre-encoded through different pipelines. The results show that MF-GIA maintains its effectiveness regardless of the underlying feature encoding, confirming its ability to generalize across diverse pre-processing methods and enabling practical deployment in scenarios where encoding details are unknown or heterogeneous.

F.3 DIMENSION UNIFICATION

For GFM, feature dimensions are unified before feeding data into the model because GFM require inputs in a consistent format. We adopt SVD-based unification to achieve a fair comparison with baselines which isolates the contribution of our core innovation from preprocessing effects. Dedicated methods such as Domain-Invariant Aligner (DIA) (Yuan et al., 2025) provide more expressive and learnable pre-unifiers, which can be seamlessly integrated into our MF-GIA framework. Table 9 shows that our framework remains effective and compatible with advanced dimension unification techniques.

F.4 MORE PRETRAINING TASKS

In this work, we pretrain our model on a small number of datasets to showcase its ability to adapt to diverse unseen domains and task types. The four datasets we use are among the widely

Table 8: Performance of MF-GIA on Cora with different feature encodings.

Pre-encoder	1-shot	3-shot	5-shot
BoW	47.64	57.38	63.98
ST	48.37	62.79	68.54
RoBERTa	48.24	61.53	69.85
LLaMa2-7B	47.93	58.64	65.33

1¹<https://huggingface.co/sentence-transformers/multi-qa-distilbert-cos-v1>
 2²<https://huggingface.co/meta-llama/Llama-2-7b>
 3³<https://huggingface.co/FacebookAI/roberta-base>

Table 10: Performance of MF-GIA with additional pretraining tasks (5-shot).

	ogbn-Products	Computers	FB15K237
MF-GIA	22.61	53.71	91.38
MF-GIA (w. link)	24.59	56.60	92.36

1296 **Table 9: Performance on MF-GIA with expressive dimension unification component.**
1297

Method	Computers		Physics		BlogCatalog	
	1-shot	5-shot	1-shot	5-shot	1-shot	5-shot
MF-GIA	41.49	53.71	79.12	88.92	49.46	67.31
MF-GIA (w. DIA)	41.96	54.60	80.15	89.74	48.37	66.53

1304 adopted, publicly available, and easily accessible graph benchmarks. This design ensures that
 1305 anyone can reproduce or extend our pretraining process without the need for extensive dataset curation,
 1306 as common benchmarks already provide sufficient diversity to pretrain our model effectively.
 1307 Here, we expand pretraining beyond node classification by adding link existence prediction and
 1308 re-pretrain the model, denoted as MF-GIA (w. link), and report the inference results under the 5-shot
 1309 setting in Table 10. It shows that a broader pretraining corpus yields consistent improvements on
 1310 unseen domains.
 1311

1312 F.5 STABILITY OF GRADIENT FINGERPRINTS

1313 The stability of the gradient fingerprints is dependent on the size of the support set. From
 1314 Theorem B.1, the gradient decomposes as

$$\nabla_{\theta} \mathcal{L}(\theta_0, G) = \frac{1}{|V|} \mathbf{X}^\top \mathbf{A} \cdot \text{diag}(\mathbf{g}) \cdot \mathbf{1}_d$$
, which
 1315 reveals that the fingerprint aggregates information from domain-specific components including feature distribution \mathbf{X} , graph structure \mathbf{A} and
 1316 label distribution \mathbf{g} . As the support set size increases, the law of large numbers ensures that these
 1317 aggregated statistics converge to their population expectations, making the gradient fingerprints
 1318 increasingly stable. Here, we examine the fingerprint stability under a 5-shot setting. Take Physics
 1319 and BlogCatalog datasets as examples, we randomly sample 20 different 5-shot support sets from
 1320 all classes, and compute fingerprints $\Delta\theta$ for each support set and feed it into the domain embedder
 1321 to get the domain embedding. Then we can measure the stability by computing the pairwise cosine
 1322 similarity between all domain embedding pairs from the same graph. The results are shown in
 1323 Table 11, where the high average cosine similarity and low standard deviation demonstrate that
 1324 different support sets from the same domain produce highly consistent domain embeddings.
 1325

1326 F.6 SENSITIVITY ANALYSIS

1327 **Sensitivity of the Temperature τ .** The temperature parameter τ in Eq. (19) controls the sharpness
 1328 of the softmax distribution over class predictions. We conduct systematic experiments varying $\tau \in$
 1329 $\{0.05, 0.2, 0.5, 1\}$ across multiple datasets in Table 12. We can find that the default $\tau = 0.2$ provides
 1330 optimal balance, but the model is not highly sensitive to this hyperparameter within a reasonable
 1331 range $[0.2, 1]$. However, as a foundation model, all trainable parameters and hyperparameters must
 1332 remain fixed across all datasets and tasks. Thus, we set $\tau = 0.2$ uniformly for all experiments both
 1333 during pretraining and in-context inference without any task- and dataset-specific tuning.
 1334

1335 **Table 12: Effect of τ on different datasets (5-shot).**

τ	ogbn-Products	Computers	FB15K237
0.05	21.45	52.10	91.82
0.2 (Default)	22.61	53.71	91.38
0.5	22.60	53.93	90.45
1	22.15	53.29	90.27

1348 **Sensitivity of DPAA Configurations** For the DPAA depth and number of heads, we directly adopt
 1349 a single-layer and single-head design for complexity and generalization considerations. Adding more
 1350 layers and heads would increase computational and memory costs and could introduce a higher risk

1350 **Table 13: Sensitivity of DPAA configurations**
1351

	Computers	Physics	BlogCatalogs
1-layer, 1-head (Shared)	53.71	88.92	67.31
1-layer, 1-head (Separated)	51.25	88.10	67.05
1-layer, 4-head	52.47	86.58	66.15
2-layer, 1-head	54.05	88.53	67.46
2-layer, 4-head	53.39	87.52	66.83

1352
1353
1354
1355
1356
1357
1358
1359
1360 of overfitting, whereas our goal is to keep the learning process efficient, lightweight, yet expressive.
1361 The results Table 2 and Table 3 already show that this simplest DPAA configuration outperforms
1362 baselines, which highlights the architectural strength of our approach rather than relying on heavy
1363 over-parameterization. Table 13 shows that the 1-layer 1-head and 2-layer 1-head settings achieve the
1364 best performance, with 1-layer 1-head offering the best trade-off between efficiency and effectiveness.
1365 Therefore, we adopt the 1-layer 1-head configuration as the unified default setting for all datasets
1366 in our experiments. Moreover, we conduct an ablation study comparing shared and separate weight
1367 matrices W_K and W_V in this table. The shared setting outperforms the separate setting, possibly
1368 because the latter introduces more parameters and is more prone to over-fitting, and shared parameters
1369 can effectively improve efficiency.
1370

1371 **Sensitivity of Initialization Seeds, Learning Rates, and Gradient Steps.** In Table 14, we investi-
1372 gate the robustness of our model to the initialization seeds, where we conduct the experiments under
1373 10 random seeds. The low standard deviations across seeds demonstrate that gradient fingerprints are
1374 highly stable to initialization variations of θ_0 . In Table 15, we show the robustness to the learning rate
1375 η . We observe that the default value of η achieves near-optimal performance, while the framework
1376 demonstrates robustness as neighboring values produce comparable results. Besides, η naturally
1377 acts as a fixed scaling factor that uniformly scales the fingerprints across all datasets, thus having
1378 minimal impact on the overall results due to the metric-preserving property of the domain embedder.
1379 Regarding the number of gradient steps, we emphasize that a single-step gradient update is sufficient
1380 to capture how the domain influences the shared initialization θ_0 . Since our goal is domain characteri-
1381 zation rather than optimization of θ_0 , additional gradient steps provide no benefit while increasing
1382 computational overhead. To empirically validate this design choice, we compare single-step and
1383 multi-step gradient fingerprints in Table 16, where stability is equal to the average cosine similarity
1384 between fingerprints computed from the same graph with different initialization seeds. The results
1385 show that multi-step gradients consistently underperform single-step gradients, with performance
1386 degrading as step count increases. Moreover, the fingerprint stability metric reveals that multi-step
1387 gradients become increasingly sensitive to initialization. It demonstrates that our single-step design is
1388 optimal.
1389

1390 **Table 14: Performance over 10 random seeds (5-shot).**
1391

	Cora	Computers	Physics-5 shot	BlogCatalog
10 random seeds	64.02 ± 0.21	53.61 ± 0.29	88.86 ± 0.19	67.28 ± 0.24

1392

G THE USE OF LARGE LANGUAGE MODELS (LLMs)

1393

1394 In this paper, LLMs have been used solely for polishing the writing and identifying typographical
1395 errors. No LLMs were used for generating research content, analysis, or conclusions.
1396

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

Table 15: Effect of η .

1429

η	Computers	Physics
0.001	52.85	88.52
0.05	52.92	88.46
0.01	53.71	88.92
0.05	53.45	89.27

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

Table 16: Effect of gradient steps.

#Steps	Computers	Physics	Stability
1	53.71	88.92	0.92
2	52.18	87.34	0.78
3	52.20	86.89	0.71