
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

AUTOCODER: ENHANCING CODE LARGE LANGUAGE
MODEL WITH AIEV-INSTRUCT

Anonymous authors
Paper under double-blind review

ABSTRACT

We introduce AutoCoder, a code Large Language Model that surpasses GPT-
4 Turbo 2024-04-09 and GPT-4o 2024-08-06 in pass@1 on the Human
Eval benchmark test (90.9% vs. 90.2%). In addition, AutoCoder offers a more
versatile code interpreter compared to GPT-4 Turbo and GPT-4o. Its code in-
terpreter can install external packages instead of limiting to built-in packages.
AutoCoder’s training data is a multi-turn dialogue dataset created by a system
combining agent interaction and external code execution verification, a method we
term AIEV-INSTRUCT (Instruction Tuning with Agent-Interaction and Execution-
Verified). Compared to previous large-scale code dataset generation methods,
AIEV-INSTRUCT reduces dependence on proprietary large models and provides
execution-validated code dataset. The code and the demo video is available in
supplementary materials.

1 INTRODUCTION

Code generation is a critical aspect of modern software development. It significantly enhances devel-
opment efficiency and quality by increasing productivity, reducing errors, standardizing code, acceler-
ating prototyping, and supporting complex systems Li et al. (2024; 2023a); Buscemi (2023).Recently,
Large Language Models (LLMs), such as GPT-4 OpenAI (2024) and Claude 3.5 Sonnet Anthropic
(2024), have achieved significant advancements on code generation. These models have shown high
accuracy in producing code that meets user requirements and have been widely adopted in real-world
software development.

Training large language models requires extensive high-quality data Hoffmann et al. (2022). This is
particularly crucial for code generation tasks that demand high accuracy Chen et al. (2021). OpenAI
once hired people to help annotate the Code Instruct dataset for training their InstructGPT Ouyang et al.
(2022). However, manually annotating large-scale code instruction datasets is both economically
and time-consuming Xu et al. (2022). To address this challenge, previous work has employed
various automated code annotation methods, such as SELF-INSTRUCT Wang et al. (2022), EVOL-
INSTRUCT Luo et al. (2023), and OSS-INSTRUCT Wei et al. (2023). SELF-INSTRUCT enhances
LLMs’ instruction-following capabilities by using strong teacher models to generate synthetic coding
instructions for fine-tuning weaker student models. EVOL-INSTRUCT improves LLMs’ coding
abilities by iteratively increasing the complexity of seed code instructions through various heuristics.
OSS-INSTRUCT generates diverse and realistic coding problems by drawing inspiration from open-
source code snippets. The essence of these methods lies in distilling the knowledge of a powerful
teacher model (such as GPT-4 Turbo) to guide a smaller model. This leads to a problem: While the
small model can achieve significant performance improvements, the final accuracy of the small
model is unlikely to surpass that of the teacher model. Because both the correct and incorrect
knowledge from the teacher model are transferred to the small model. Moreover, although using
closed-source models reduces costs compared to manual annotation, the cost of using closed-source
models remains high. According to our tests, even with the relatively cheaper GPT-4 Turbo model,
generating an average of 6,500 high-quality entries for the code instruction dataset costs $1,000.

This raises two questions:

1. Can we correct the incorrect knowledge generated by the teacher model to provide more
accurate code for the student model?

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

2. Instead of relying on expensive closed-source teacher models, can we enable our student
model to learn autonomously?

To address the first issue, we designed a new large-scale code instruction dataset annotation method
called AIEV-INSTRUCT. It is an interaction system comprising two agents: a questioner and a
programmer. These agents interact to simulate the process of programmers constructing code
according to project requirements and conducting unit tests. In each dialogue round, we extract
the code generated by the programmers and execute it. The execution results are returned to the
questioner to inform the next round of questions. This process continues until the programmers’s
code passes the unit tests, ensuring the accuracy of the generated code dataset.

To address the second issue, we sperate AIEV-INSTRUCT into two stages: the Teaching Stage and
the Self-learning Stage. In the Teaching Stage, we rely on proprietary large models as agents for
code annotation, similar to previous methods. Once our model surpasses the proprietary models in
accuracy on the test set, we transition to the Self-learning Stage. In this stage, we use our own model
as the agent for code annotation. For detailed methodology, refer to Section 3.

Cla
ud

e-
3.
5

So
nn

et

A
ut

oC
od

er

(3
3B

)

G
PT-4

Tur
bo

20
24

-0
4-

09

G
PT-4

o

20
24

-0
8-

06

G
PT-4

(M
ay

20
23

)

D
ee

pS
ee

k-
Cod

er

(V
2-

23
6B

)

G
PT-4

Tur
bo

(N
ov

20
23

)

Cod
eQ

wen
1.
5

-C
ha

t(
7B

)

Cla
ud

e-
3-

op
us

(M
ar

20
24

)

D
ee

pS
ee

k-
Cod

er

-in
st
ru

ct
(3

3B
)

75.0

77.5

80.0

82.5

85.0

87.5

90.0

92.5

95.0

P
a
ss

@
1

(%
)

92.0
90.9

90.2 90.2

88.4

85.4 85.4

83.5
82.9

81.1

Compare with SOTA models by Pass@1 in HumanEval Base Test

Closed Source Models

Open Source Models

Figure 1: Pass@1 (%) comparison of Various
LLMs on the HumanEval Base Test.

Let’s use the following python
code to download the `evalplus/mbppplus`
dataset and check what is the first data entry:

What is the first data entry of the MBPP+ dataset?

from dataset import load_dataset

dataset = load_dataset(‘evalplus/mbppplus’)

Print(dataset[‘test’][0])

Error! It seems that I am unable to run the
code directly here.

pip install dataset

Then, we can launch the code:

Let’s operate the code
 First, install the associated packages:

from dataset import load_dataset
dataset = load_dataset(‘evalplus/mbppplus’)

Print(dataset[‘test’][0])

We successfully ran the code, the
first data entry is …

Figure 2: Comparison of Code Interpreter Func-
tions between AutoCoder and GPT-4o. : Na-
ture language generated by the model; : Code
generated by the model. AutoCoder can recog-
nize external package installation commands,
whereas GPT-4o can only run code that includes
built-in packages. The demo video is in supple-
mentary materials.

Under the support of AIEV-INSTRUCT, we obtained 169K high-quality code instruction data sam-
ples. Using this dataset, we trained the AutoCoder series models, including AutoCoder (33B)
and AutoCoder-S (6.7B). As shown in Figure 1, AutoCoder demonstrates higher accuracy. In
the HumanEval Base Test, we compared our results with several models featured on the EvalPlus
Leaderboard as of September 2024 evalplusleaderboard (2024). The performance of Claude 3.5
Sonnet Anthropic (2024) was obtained from its official website, while the GPT-4o 2024-08-06
results were self-implemented. Remarkably, AutoCoder’s Pass@1 even outperforms some of the
top-ranked models, including GPT-4 Turbo 2024-04-09 and GPT-4o 2024-08-06.

Moreover, as illustrated in Figure 2, AutoCoder boasts a more versatile Code Interpreter function
compared to GPT-4o. The Code Interpreter is an external program execution environment that large
models utilize to execute the code they deem necessary. While GPT-4o and GPT-4 Turbo can identify
the code that needs to be executed, they fail to provide the Code Interpreter with the necessary
instructions to install external packages required by the programs. This limitation significantly
restricts the capabilities of the Code Interpreter. In contrast, AutoCoder can correctly supply the
Code Interpreter with the appropriate external package installation instructions, thereby enabling it to
execute a wide variety of code. As far as we know, as of September 2024, AutoCoder is the only
model that supports automatically installing external packages in the Code Interpreter.

To comprehensively evaluate the capabilities of AutoCoder, we tested it on several datasets: Hu-
manEval Chen et al. (2021), HumanEval+ Liu et al. (2024), MBPP Austin et al. (2021), MBPP+ Liu
et al. (2024), MultiPL-E Cassano et al. (2022), DS-1000 Lai et al. (2023) and LiveCodeBench Jain
et al. (2024) . To analyze the contribution of different components to AutoCoder’s performance, we
compared it to its base model, Deepseek-Coder Guo et al. (2024). The performance and detailed
experimental procedures can be found in Section 5.

Overall, our contributions are summarized as follows:

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

We propose AIEV-INSTRUCT, a novel method for creating high-quality large code datasets. It
simulates programmers writing code and conducting unit tests through agent interactions, ensuring
annotation accuracy with an external code executor. It includes a Teaching Stage and a Self-Learning
Stage, reducing reliance on expensive closed-source models during the annotation process.

We introduce AutoCoder, a code LLM trained using AIEV-INSTRUCT that excels in code-related
tasks. It outperforms top models like GPT-4 Turbo and GPT-4o on the HumanEval benchmark.

We enhances the functionality of the current code interpreters. AutoCoder can provide the code
interpreter with the necessary instructions to install external packages, extending the applicability of
the code interpreter beyond built-in packages.

2 RELATED WORK

Large Language Models for Code. Recently, LLMs have shown remarkable abilities in understand-
ing and generating code Kazemitabaar et al. (2023). Trained on extensive datasets covering various
programming languages and tasks, these models excel in code completion, bug fixing, and code
synthesis Jin et al. (2023). Closed-source models like OpenAI’s GPT-4 OpenAI (2024), Claude.ai’s
Claude AnthropicAIteam (2024), and Google’s Gemini deepmindteam (2024) series have demon-
strated superior performance on code tasks. Meanwhile, open-source models specialized for code,
such as DeepSeek-Coder deepseekteam (2024), CodeQwen Qwen (2024), Magicoder Wei et al.
(2023), OpenCodeInterpreter Zheng et al. (2024), and WizardCoder Luo et al. (2023), are also emerg-
ing. Generally, closed-source models outperform open-source ones due to their larger parameter sizes
and broader knowledge base.

Code LLMs Instruction Tuning. After pre-training large models, we use instruction tuning to
optimize them Gao et al. (2020), enhancing their ability to understand and execute specific instruc-
tions Chang et al. (2024). A major challenge in Instruction Tuning for Code LLMs is the lack of
high-quality instruction datasets for code Rao (2024). Code tasks, such as Text-Code and Code-Code
translation, are difficult and time-consuming to annotate manually. OpenAI used human annotators
to label various tasks and train InstructGPT Ouyang et al. (2022), but they noted that annotating code
tasks is prohibitively expensive for large-scale datasets. Since the advent of GPT-4, an increasing
number of researchers have leveraged GPT-4 for code annotation to create high-quality instruction
tuning datasets. Currently, there are three primary methods: SELF-INSTRUCTWang et al. (2022),
EVOL-INSTRUCTLuo et al. (2023), and OSS-INSTRUCT Wei et al. (2023). SELF-INSTRUCT boosts
LLMs’ instruction-following skills by using strong teacher models to generate synthetic coding
instructions for fine-tuning weaker student models. EVOL-INSTRUCT iteratively enhances LLMs’
coding abilities by increasing the complexity of seed code instructions. OSS-INSTRUCT creates
diverse coding problems inspired by open-source code snippets. These methods distill the expertise
of powerful teacher models like GPT-4 to guide and improve smaller models.

3 AIEV-INSTRUCT

3.1 OVERALL ARCHITECTURE

Figure 3 illustrates the overall architecture of AIEV-INSTRUCT, divided into two stages: the Teaching
Stage and the Self-Learning Stage. In the Teaching Stage, the model learns primarily by distilling
knowledge from a teacher model. In the Self-Learning Stage, it learns autonomously.

In the Teaching Stage, we obtain open-source code snippets and use GPT-4 Turbo as the teacher model
to supplement and correct them. The process consists of four main steps. In I : Initialization, we
initialize the necessary components. GPT-4 Turbo is assigned two roles: questioner and programmer.
It can ensure the generated data is diverse, resulting in a more uniform probability distribution
rather than converging to a specific dialogue template. The dialogue messages are initialized as an
empty list, which will be used throughout the process to store data. Eventually, this list will contain
multiple rounds of dialogue, and the entire conversation will be added as a single data entry to our
final dataset. Additionally, we need to initialize a Docker container as our Code Interpreter. This
container is responsible for installing the required external packages and executing the code that
needs verification throughout the process. In II : Propose the question, we first utilize GPT-4 Turbo

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Prompts
Prompt 1
You will act as a
questioner. A programmer
will help you solve a
coding problem. You
should ask him to write
unit tests to ensure his
answer is correct. If
there are errors in his
code, continue to ask
him questions. I will
help you execute the
code he writes.

Prompt 2
You will act as a
programmer. You need
to solve the coding
tasks as requested
by the questioner.

Please gain inspiration from
the following random code
snippet to create a high-
quality programming problem.
Present your output in two
distinct sections: [Problem
Description] and [Solution].

There are some issues with
your response. Please continue
to modify the code according
to the error description
provided by the questioner:
{questioner_description}
{Stderr}.

Prompt 4
It seems that the programmer's response
did not solve your problem. You need to
describe your error based on {Stderr}and
continue to ask him questions.

Prompt 5

Legends

: Append Order
: Question

: Code

: Fail : Pass

: Compare the
teacher model and
the student model

: Final dataset entry

: Docker container

:Append

: Dialogue message

: Code Interpreter

: Empty List

: Open-Source Code

: Teacher/ Student Model

: Questioner

: Programmer

Prompt 3

.....

Ⅰ : Initialization
Assign roles

Initialize []

Train
Test

Finetune

Evaluate

If the student model have better performance

Prompt 1, 2

Ⅱ : Propose the
Question

Ⅲ : Execution
Feedback

If (+) ③

Stderr
Prompt 4

(+) ④

Prompt 5

(+) ⑤

Prompt 3

(+) ①

(+) ②

Ⅳ : Termination

If

(+) ⑥
Stdout

Initialize

.....

Self-Learning
Stage

.....

Ⅰ : Initialization
Assign roles

Initialize []
Train

Test

Finetune

Evaluate

If the teacher model have better performance

Prompt 1, 2

Ⅱ : Propose the
Question

Ⅲ : Execution
Feedback

If (+) ③

Stderr
Prompt 4

(+) ④

Prompt 5

(+) ⑤

Prompt 3

(+) ①

(+) ②

Ⅳ : Termination

If

(+) ⑥
Stdout

Initialize

.....

Teaching
Stage:

If the student model have better performance

(+)

[]

/
/

/

① - ⑥

Figure 3: The overall architecture of the AIEV-INSTRUCT.

to execute OSS-Instruct Wei et al. (2023), designing a problem description and a specific solution
that includes the code snippet based on the open-source code fragment. The difference here is that we
require GPT-4 Turbo to provide some Unit Tests. These Unit Tests further ensure the accuracy of the
code in our dataset. The dialogue messages initialized in the previous step are sequentially appended
with the problem description (➀), the solution and the unit tests (➁). In III: Execution Feedback:,
we use multiple rounds of execution feedback to check the generated code, thereby improving the
quality of the dataset. First, we input the code snippet generated in the second step into the Code
Interpreter. If an execution error occurs, the dialogue messages append the detailed Stderr output
(➂). Meanwhile, this Stderr information is provided to the questioner, who will generate a natural
language description based on the Stderr. This natural language description is also appended to the
dialogue messages (➃). Next, both the natural language description and the Stderr are provided as
new questions to the programmer, who will continue to modify the code. The dialogue messages will
append the new code it generates (➄) and repeat this process. In IV: Termination, we also use the
Code Interpreter to run the code generated by the programmer. If the program executes successfully,
the Stdout is appended to the dialogue messages (➅). This completes the analysis of one data entry.

After analyzing every 2000 data entries, we split the new data into a test set and a training set in a 1:9
ratio. The training set is used to train the student model (AutoCoder). After training, we use the test
set to evaluate both the teacher model and the student model. Upon completion of the evaluation, we
compare the Pass@1 of the two models. If the teacher model performs better, we continue executing
the Teaching Stage. If the student model performs better, we move to the Self-Learning Stage. The
difference between the Self-Learning Stage and the Teaching Stage is that in the Self-Learning Stage,
we replace the original teacher model with the student model. The student model itself is assigned as
the questioner and programmer , and it completes the entire execution feedback process.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

3.2 DATASET ANALYSIS

Dataset Generation. To prevent data contamination in test sets from resulting in overly high
performance on certain benchmark datasets (such as HumanEval), we used code from two datasets
that had already undergone contamination detection: Magicoder-Evol-Instruct and Magicoder-OSS-
Instruct Wei et al. (2023). We collected a total of 186K original code entries from these two datasets.
After de-duplication, we input these data into our AIEV-Instruct pipeline to generate the dataset. We
set the maximum number of execution feedback iterations in AIEV-Instruct to 7. If the generated
code fails to execute successfully and pass all unit tests after 7 attempts, that data point is discarded.
The gpt-4-turbo-2024-04-09 is used as the teacher model. Sample demonstrations of some
data points are provided in the Appendix D.

Dataset Comparision. We compared our dataset AutoCoder-AIEV-Instruct with several current large
code instruction datasets. The comparison results are shown in Figure 4. The dataset AutoCoder-AIEV-
Instruct contains 169K data samples, totaling 241K rounds of dialogue. Among these, 150K rounds
are contributed by multi-round dialogue data samples. Besides including the main function, it also
encompasses subsequent package installations, code execution errors, or results, as well as various
error analyses. Compared to the original Magicoder-Evol-Instruct and Magicoder-OSS-Instruct, it
adds unit tests, which further enhances the accuracy of code-related tasks. Additionally, compared
to Code-Feedback Zheng et al. (2024), it includes more execution feedback results, reducing the
multi-round dialogues for code block concatenation and enhancing the coherence of the context.

Dataset Decontamination. Similar to the data processing method used by StarCoder Li et al.
(2023b), we also performed decontamination for AutoCoder-AIEV-Instruct. Specifically, we tested
each code snippet from HumanEval, MBPP, DS-1000, and MultiPL-E against every code snippet in
AutoCoder-AIEV-Instruct using Levenshtein distance. If the similarity exceeded 90%, the data entry
was removed. Through this process, we excluded a total of 113 data entries.

Dataset Accuracy Theoretical Analysis. Although our main conclusions are derived from the
experiments, we provide some theoretical analysis in the Appendix B to explain why datasets
generated using the AIEV-INSTRUCT method achieve higher accuracy compared to previous
OSS-INSTRUCT and EVOL-INSTRUCT methods. Specifically, AEvol < AOSS < AAIEV.

4 AUTOCODER

4.1 CODE INTERPRETER

Code Interpreter assists the model in debugging and executing code, which is essential for fully
automating complex coding, scientific computations, and related tasks. Building a code inter-
preter requires the model to accurately identify the code blocks it needs to run. Currently, only
a few models, like GPT-4 Turbo and InternLM-Chat Cai et al. (2024), support code interpreters.

Original

Processed

User Assistant Interpreter

Nature Language
explanation and execution

request response

Nature
Language
question

Nature
Language

explanationBash
Command Python

Code

Execution
Feedback

Nature Language
question and Code
execution request

+ +

Nature Language
question

Code execution
request

Execution
request response

Code Block

Figure 5: AutoCoder-AIEV-Instruct dataset post-processing. :Nature
language; :Code execution request from the User; :Code execu-
tion request response from the Assistant; :Bash command; :Code
block; :Special token; :Execution result.

However, a significant limi-
tation of these interpreters
is that they operate in a
closed environment and can-
not interact with external
systems, preventing them
from executing code that re-
quires external package in-
stallations. AutoCoder ad-
dresses this issue by en-
abling the execution of
bash commands to install
necessary packages. This
capability is achieved by
teaching the model to run
bash commands when ap-
propriate. To facilitate this,
we need to perform some post-processing on the AutoCoder-AIEV-Instruct dataset.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Code-Feedback AutoCoder-AIEV-Instruct
Sample: 169K# Sample: 68K # Turns: 192K # Turns: 241K

Please amend the subsequent Python script so that it includes a 'while' loop rather
than the existing 'for' loop, which iterates through the items of an integer list.
The script currently has a bug where it attempts to print an object that is outside
the bounds of the list. Fix this error and modify the script to use 'while' instead
of 'for' loop. Ensure your script correctly handles empty lists. ```python #
Establish an integer list arr = [1, 2, 3, 4] # Determine the length of the list n =
len(arr) # Traverse the list and output each individual element for i in range(n+1):
print(arr[i]) ```

User: You are asked to create an array
of N random prime numbers between 1
to M, where N is a positive integer
and M is a positive integer greater
than 10.

Data Entry Example: Data Entry Example:

Assistant:```python\nimport
random\nimport math\n\ndef
generate_prime_array(N, M):\n isPrime
= [True] * (M + 1)\n isPrime[0] =
isPrime[1]
User: I have this problem : Minimum Time
to Collect All Apples in a Tree with
varying edge weights\nDescription are as
below: Given an undirected tree
consisting of `n` vertices numbered from
`0` to `n-1`....
Assistant:```python\nfrom collections
import defaultdict\n\ndef minTime(n,
edges, hasApple):\n # Create adjacency
list representation of the tree\n

Dataset Generation Method:

User: Please implement a function
that create a Python script
that reads a requirements
file, extracts the necessary
dependencies

Assistant:```python
import tempfile def
execute_with_requirements
(version_file, requirements_file)....

Execution result: python
output:\nresult.stdout:\nExtracted
version: 1.0.0\nExtracted
requirements:\n- requests==2.25.1....

Assistant:Our program succeeded in all
the tests, here's the
code:\n```python\ndef
execute_with_requirements(version_file:
str, requirements_file: str)....

Dataset Generation Method:

Magicoder-OSS-Instruct
Sample: 75K # Turns: 75K

User: You are tasked with simulating a
robotic arm movement using a
simplified kinematic model. The given
code snippet is a part of a larger
program that controls the movement of
a robotic arm with 6 joints.

Data Entry Example:

Assistant:```python import numpy as np
def simulate_arm_movement(duration,
time_step, initial_joint_angles,
joint_velocities): ``` .

Dataset Generation Method:

Magicoder-Evol-Instruct
Sample: 111K # Turns: 111K

Data Entry Example:
User: Please amend the subsequent
Python script so that it includes a
'while' loop rather than the existing
'for' loop, which iterates through
the items of an integer list.

Assistant:```python # Establish an
integer list arr = [1, 2, 3, 4] #
Determine the length of the list n =
len(arr) # Initialize index at 0 i = 0
Traverse the list and output each
individual element while i < n:....```

Dataset Generation Method:

Code

Question Code Code Question

Question Code Question Code Code Question Code

Figure 4: The comparison between the AutoCoder-AIEV-Instruct and other large code datasets.

As shown in Figure 5, for a simple single execution feedback example, the original data entry contains
three parts: natural language from the User; natural language + bash command + natural language +
code block + natural language from the Assistant; execution result from the code interpreter.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

In the post-processing stage, we mix the natural language of the Code execution request into the
User’s natural language, enabling the model to correctly learn when to execute the code. Then, we
mix the code execution request response into the Assistant’s response, so it can generate coherent
answers. Finally, we add special tokens before and after the bash commands and code blocks in the
Assistant’s original response, allowing the model to learn to correctly identify the bash commands
and code blocks that need to be executed. Sample demonstrations of data points after post-processing
are provided in the Appendix D.

4.2 TRAINING DETAILS

We fine-tuned two base models, Deepseek-Coder 6.7B and 33B, using the AutoCoder-AIEV-Instruct
dataset to obtain our AutoCoder 33B and AutoCoder-S 6.7B. We utilized the AutoTokenizer
package from the transformer library to add four special tokens to these models to enable the
Code Interpreter feature for AutoCoder. For hardware, we used 10 nodes with a total of 40 80GB
A100 GPUs on a Simple Linux Utility for Resource Management (SLURM) cluster. The NVIDIA
Collective Communications Library (NCCL) handled communication between GPUs. In terms of
training parameters, we used the ZeRO-Stage 3 feature from the deepspeed library to partition
model parameters, with a batch size of 8 per GPU, a gradient accumulation step of 4, a learning
rate of 5e-5, and bf16 as the parameter type. The max sequence length was set to 5120 and the total
epochs was set to 2. We adopted a full-parameter tuning approach to train the model.

5 EXPERIMENT

We tested AutoCoder’s capabilities in Python text-to-code generation, multilingual code generation,
as well as code generation for data science questions and challenging coding problems. To ensure a
fair comparison with other models and reduce experimental randomness, we disabled AutoCoder’s
external code interpreter during the tests. Due to the large number of models, for each dataset, We only
selected certain models from the corresponding leaderboard for comparison based on: ① Well-known
closed-source or large-parameter models, and ② Models with a similar number of parameters to
AutoCoder. To facilitate reading, for Tables 1, 2, and 3, we used red, blue, and brown to label the data
points ranked 1st, 2nd, and 3rd in each dataset, respectively. In Table 4, we highlighted the best-
performing models among those with similar parameter sizes in bold. The specific parameters of the
model during inference are presented in the Appendix A. In addition to AutoCoder and AutoCoder-S,
we also fine-tuned Codellama-7B and CodeQwen1.5-7B using AutoCoder-AIEV-INSTRUCT dataset
and evaluated their performance. Their experimental results are provided in the Appendix C.

5.1 PYTHON TEXT TO CODE GENERATION

In Table 1, we evaluated AutoCoder using two of the most commonly used code generation bench-
marks: HumanEval Chen et al. (2021) and MBPP Austin et al. (2021). HumanEval is widely used
to test various state-of-the-art closed-source models, such as GPT-4o OpenAI (2024), Claude 3.5
Sonnet Anthropic (2024), Gemini Ultra 1.0 DeepMind (2024), and Llama3.1 405b AI (2024a). It
contains 164 code generation problems. Compared to HumanEval, MBPP has more test data, with
a total of 378 test cases. Additionally, to prevent errors due to the insufficient number of test cases
for each code problem in the original benchmarks, HumanEval+ and MBPP+ Liu et al. (2024) have
added more test cases to the original datasets.

Experimental results demonstrate that AutoCoder-33B achieved a Pass@1 score of 90.9% on the
HumanEval benchmark, ranking just below Claude 3.5 Sonnet as of September 2024 when com-
pared to other state-of-the-art code LLMs. On HumanEval+, it achieved a Pass@1 score of 78%,
significantly outperforming models with fewer than 70B parameters. In the MBPP and MBPP+ tests,
AutoCoder-33B achieved Pass@1 scores of 82.5% and 70.6%, respectively, leading among models
with 33B parameters or fewer. Additionally, despite having only 6.7B parameters, AutoCoder-S also
delivered impressive results, achieving 78.7% on HumanEval and 72% on HumanEval+. For the
MBPP and MBPP+ benchmarks, it scored 79.4% and 69.8%, respectively. Remarkably, on MBPP+,
its performance even surpassed some models in the 70B parameter range.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 1: Comparison with the current SOTA code large language models on HumanEval(+) and
MBPP(+). The results for GPT-4o, Llama3.1-Instruct, Claude 3.5 Sonnet, DeepSeek-Coder-V2-
Instruct, Qwen2.5-Instruct, and Codestral are sourced from their official websites or technical
reports OpenAI (2024); AI (2024a); Anthropic (2024); Zhu et al. (2024); AI (2024c;b), while the
remaining results are obtained from the EvalPlus leaderboard evalplusleaderboard (2024).

Benchmark (Pass@1 %)Model Size HumanEval HumanEval+ MBPP MBPP+
GPT-4o 2024-08-06 µ 90.2 - - -

GPT-4 Turbo 2024-04-09 µ 90.2 86.6 85.7 73.3
Claude 3.5 Sonnet µ 92.0 - 90.5 -
Llama3.1-Instruct 405B 89.0 - 88.6 -

DeepSeek-Coder-V2-Instruct 236B 90.2 - - 76.2
Qwen2.5-Instruct 72B 86.6 - 88.2 -

OpenCodeInterpreter-CL 70B 76.2 70.7 73.0 61.9
CodeLlama-Instruct 70B 72.0 65.2 75.4 61.7

DeepSeek-Coder-instruct 33B 81.1 75.0 80.4 70.1
WizardCoder-V1.1 33B 79.9 73.2 - -

OpenCodeInterpreter-DS 33B 79.3 73.8 80.2 68.5
speechless-codellama-v2.0 34B 77.4 72.0 73.8 61.4

Codestral 22B 81.1 - 78.2 -
OpenCodeInterpreter-CL 13B 77.4 73.8 70.7 59.2

starchat2-v0.1 15B 73.8 71.3 74.9 64.6
starcoder2-instruct-v0.1 15B 67.7 60.4 78.0 65.1

OpenCodeInterpreter-DS 6.7B 77.4 72.0 76.5 66.4
Artigenz-Coder-DS 6.7B 75.6 72.6 80.7 69.6

DeepSeek-Coder-instruct 6.7B 74.4 71.3 74.9 65.6
AutoCoder 33B 90.9 78.0 82.5 70.6

AutoCoder-S 6.7B 78.7 72.0 79.4 69.8

5.2 MULTILINGUAL CODE GENERATION

In Table 2, we tested AutoCoder’s capabilities in multilingual code generation, we used MultiPL-
E benchmark Cassano et al. (2022) to evaluate its performance in six additional commonly used
languages. Since MultiPL-E’s official library does not support testing closed-source models, we
ensured consistent experimental conditions by comparing only with well-known open-source models.

The experimental results show that AutoCoder performed exceptionally well in Java, C++, and
Rust, achieving 61.4%, 68.9%, and 60.8% Pass@1 respectively. In the other three languages, its
performance was only surpassed by a few models such as Qwen2.5-Instruct-72B and Llama-3.1-
Instruct-70B. This demonstrates AutoCoder’s robust capabilities in multilingual code generation.

5.3 CODE GENERATION FOR DATA SCIENCE

In Table 3, we tested AutoCoder’s ability to generate code to solve data science problems using the
DS-1000 dataset Lai et al. (2023). It contains 1000 questions that require the use of seven commonly
used Python data science libraries. We tested all the models using the completion mode in DS-1000.

The result shows that the AutoCoder’s Pass@1 on Matplotlib-related questions even surpassed
that of GPT-4 Turbo. Overall, AutoCoder achieves a Pass@1 rate of 47.2%, which is higher than
other models with the same parameter count and even surpasses some closed-source models. This
demonstrates AutoCoder’s excellent capability to generate code for data science problems.

5.4 PERFORMANCE ON MORE CHALLENGING CODE PROBLEMS

In Table 4, we tested AutoCoder on more challenging code problems using the LiveCodeBench
dataset Jain et al. (2024) (2024-09). The LiveCodeBench dataset collects new problems over time
from contests across three competition platforms, namely LeetCode, AtCoder, and CodeForces. It is
regularly maintained and updated over time to ensure the dataset remains uncontaminated.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 2: Performance (Pass@1 %) of AutoCoder on the MultiPL-E benchmark.

Programming LanguageModel Size Java JavaScript C++ PHP Swift Rust
Qwen2.5-Instruct 72B 68.3 79.2 67.6 77.3 59.6 55.4
Llama-3.1-Instruct 70B 60.3 73.1 65.2 67.4 52.4 57.9

OpenCodeInterpreter-CL 70B 52.3 62.9 64.2 59.8 48.7 50.4
Wizard-CL 34B 44.9 55.3 47.2 47.2 44.3 46.2

CodeLLAMA-Instruct 34B 41.5 45.9 41.5 37 37.6 39.3
Deepseek-Coder-Instruct 33B 53.8 67.7 63.3 54.7 51.3 54.4
OpenCodeInterpreter-DS 33B 60.1 69.6 67.1 59.6 54.4 60.2

StarCoder-Base 15B 28.5 31.7 30.6 26.8 16.7 24.5
StarCoder 15B 30.2 30.8 31.6 26.1 22.7 21.8

WizardCoder-SC 15B 35.8 41.9 39.0 39.3 33.7 27.1
CodeLLAMA 7B 29.3 31.7 27.0 25.1 25.6 25.5
Magicoder-CL 7B 36.4 45.9 36.5 39.5 33.4 30.6

MagicoderS-CL 7B 42.9 57.5 44.4 47.6 44.1 40.3
AutoCoder-S 6.7B 55.7 65.2 62.7 59.6 41.1 50.6
AutoCoder 33B 61.4 68.9 68.9 63.4 53.8 60.8

Table 3: Performance (Pass@1 %) of AutoCoder on the DS-1000 dataset. plt: Matplotlib, np: NumPy
, Pd: Pandas, Py: PyTorch, Scp: Scipy, Sk: Sklearn , TF: TensorFlow. The result of GPT-4 Turbo
2024-04-09, GPT-3.5 Turbo 0125 and Codex-002 are from the Offical Github of DS-1000 AI
(2023). * DS-Coder-Instruct: Deepseek-Coder-Instruct; OC-DS: OpenCodeInterpreter-DS.

155 220 291 68 106 115 45 1000Model Size plt np Pd Py Scp Sk TF Overall
GPT-4 Turbo µ 72.3 61.8 42.3 50.0 50.0 50.4 53.3 53.9

GPT-3.5 Turbo µ 65.8 32.7 30.2 36.8 39.6 40 42.2 39.4
Codex-002 µ 57 43.1 26.5 41.8 31.8 44.8 39.3 39.2

DS-Coder-Instruct * 33B 61.3 50.0 30.9 35.3 36.8 45.2 40.0 42.8
OC-DS * 33B 39.4 57.7 28.2 47.1 40.6 49.6 42.2 42.1

CodeGen-Mono 16B 31.7 10.9 3.40 7.00 9.00 10.8 15.2 11.7
StarCoder 15B 51.7 29.7 11.4 21.4 20.2 29.5 24.5 26.0

WizardCoder-SC 15B 55.2 33.6 16.7 26.2 24.2 24.9 26.7 29.2
CodeLlama-Python 7B 55.3 34.5 16.4 19.9 22.3 17.6 28.5 28.0
WizardCoder-CL 7B 53.5 34.4 15.2 25.7 21.0 24.5 28.9 28.4

Magicoder-CL 7B 54.6 34.8 19.0 24.7 25.0 22.6 28.9 29.9
MagicoderS-CL 7B 55.9 40.6 28.4 40.4 28.8 35.8 37.6 37.5

InCoder 6.7B 28.3 4.4 3.1 4.40 2.80 2.80 3.80 7.40
AutoCoder-S 6.7B 52.9 38.2 31.6 30.9 31.1 39.1 31.1 37.1
AutoCoder 33B 72.9 52.7 36.1 26.5 45.3 46.1 42.2 47.2

The experimental results show that at the 33B parameter scale, AutoCoder outperforms other models
of the same scale, particularly on Medium difficulty problems, surpassing DeepSeek-Coder-Instruct-
33B by 3.7 percentage points.

5.5 IMPACT OF DIFFERENT COMPONENTS

To further understand the impact of different components in the dataset on the final model performance,
we compared the following: the Base model (DeepSeek-Coder-Base) itself, the model fine-tuned on
a single-turn dialogue dataset, the model fine-tuned on a multi-turn dialogue dataset, and the model
fine-tuned on a multi-turn dialogue dataset that includes code execution feedback with unit tests
(AutoCoder). We conducted experiments using the HumanEval, MBPP, and DS-1000 datasets.

As shown in Figure 6, across all three datasets, AutoCoder demonstrated superior performance
compared to other models, especially on the DS-1000 dataset. AutoCoder-S (6.7B) outperformed the
model trained only on the multi-turn dialogue dataset by 3.4 percentage points, while AutoCoder

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 4: Performance (Pass@1 %) of AutoCoder on the LiveCodeBench dataset.

Model Size W/Wo
CoT

Total
Pass@1

Easy
Pass@1

Medium
Pass@1

Hard
Pass@1

o1-Mini µ ✓ 73.1 94.3 76.6 38.8
o1-Preview µ ✓ 57.3 91.2 54.9 14.7

Claude-3.5-Sonnet µ ✗ 51.3 87.2 45.3 11
GPT-4o 2024-08-06 µ ✗ 46.1 89.5 34.9 3.5

GPT-4 Turbo2024-04-09 µ ✗ 44.2 85 32.6 5.8
DeepSeekCoder-V2 236B ✗ 41.9 79.9 32 4.9
Qwen2-72B-Instruct 72B ✗ 30.1 65.7 16.3 2.2

LLaMA3-70b-Ins 70B ✗ 27.4 59.4 15.6 1.3
Qwen2-Base 72B ✗ 21.2 50.6 8.1 0.7
AutoCoder 33B ✗ 25.4 56.6 12.3 0.9

DeepSeek-Coder-Instruct 33B ✗ 23.4 56.1 8.6 0.9
Command-R+ 35B ✗ 21.3 53.1 6.1 0.5

OpenCodeInterpreter-DS 33B ✗ 20.6 52.2 5.4 0
Phind-34B-V2 34B ✗ 19.9 51.6 4.3 0.1

StarCoder2-15B 15B ✗ 14.6 37.6 3.5 0
CodeLlama-13B-Instruct 13B ✗ 13.4 35 2.4 0.3

CodeLlama-13B-Base 13B ✗ 8.5 23.2 0.9 0

6.7B 33B
40

50

60

70

80

90

100

P
as

s@
1

(%
) ↑25.0

↑27.3
↑29.3

↑25.0↑24.3

↑34.8

HumanEval Pass@1 (%)

6.7B 33B
50

55

60

65

70

75

80

85

90

↑14.3
↑16.3

↑18.8 ↑14.4↑13.6

↑16.5

MBPP Pass@1 (%)

6.7B 33B
30.0

32.5

35.0

37.5

40.0

42.5

45.0

47.5

50.0

↑3.4 ↑3.2

↑6.6

↑2.6 ↑1.9

↑7.0

DS-1000 Pass@1 (%)

Base+EFMT (AutoCoder)

Base+MT

Base+ST

Base

Figure 6: Comparison of AutoCoder with other models sharing the same base model. Base: Base
model; Base + ST: Base model fine-tuned on a single-turn dialogue dataset; Base + MT: Base model
fine-tuned on a multi-turn dialogue dataset; Base + EFMT: Base model fine-tuned on a multi-turn
dialogue dataset that includes code execution feedback with unit tests (AutoCoder).

outperformed it by 5.1 percentage points. This proves that fine-tuning the model on a dataset
generated by AIEV-INSTRUCT can effectively enhance its code capabilities.

6 CONCLUSION

We propose AIEV-INSTRUCT, a novel method for creating high-quality code instruction datasets. It
simulates programmers writing code and conducting unit tests through agent interactions, ensuring
accuracy with execution validation. It includes both a teaching stage and a self-learning stage,
reducing reliance on expensive closed-source models during the annotation process. Using the
dataset generated with AIEV-INSTRUCT, we trained the AutoCoder code LLM. It exhibits excellent
performance and surpass the current top models, GPT-4 Turbo and GPT-4o on the HumanEval
benchmark. Furthermore, AutoCoder extends the functionality of previous code interpreters by
allowing them to automatically install external packages, thus extending the applicability of the
code interpreter. Overall, our work provides the community with excellent open-source code large
language models and offers new insights for generating high-quality large code instruction dataset.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Meta AI. Meta ai llama 3.1, 2024a. URL https://ai.meta.com/blog/
meta-llama-3-1/.

Mistral AI. Codestral: The new ai code assistant by mistral, 2024b. URL https://mistral.
ai/news/codestral/.

Qwen AI. Qwen2.5: A party of foundation models!, 2024c.

XLang AI. Ds-1000 results, 2023. URL https://github.com/xlang-ai/DS-1000/
tree/main/results.

Anthropic. Claude 3.5 sonnet, 2024. URL https://www.anthropic.com/news/
claude-3-5-sonnet.

AnthropicAIteam. Claude.ai onboarding. https://www.anthropic.com/claude, 2024.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. Program synthesis with large language
models. arXiv preprint arXiv:2108.07732, 2021.

Alessio Buscemi. A comparative study of code generation using chatgpt 3.5 across 10 programming
languages. arXiv preprint arXiv:2308.04477, 2023.

Zheng Cai, Maosong Cao, Haojiong Chen, Kai Chen, Keyu Chen, Xin Chen, Xun Chen, Zehui Chen,
Zhi Chen, Pei Chu, et al. Internlm2 technical report. arXiv preprint arXiv:2403.17297, 2024.

Federico Cassano, John Gouwar, Daniel Nguyen, Sydney Nguyen, Luna Phipps-Costin, Donald
Pinckney, Ming-Ho Yee, Yangtian Zi, Carolyn Jane Anderson, Molly Q Feldman, et al. Multipl-e:
A scalable and extensible approach to benchmarking neural code generation. arXiv preprint
arXiv:2208.08227, 2022.

Yupeng Chang, Xu Wang, Jindong Wang, Yuan Wu, Linyi Yang, Kaijie Zhu, Hao Chen, Xiaoyuan
Yi, Cunxiang Wang, Yidong Wang, et al. A survey on evaluation of large language models. ACM
Transactions on Intelligent Systems and Technology, 15(3):1–45, 2024.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

DeepMind. Gemini ultra. https://deepmind.google/technologies/gemini/
ultra/, 2024.

deepmindteam. Google gemini. https://gemini.google.com/, 2024.

deepseekteam. Deepseekcoder. https://deepseekcoder.github.io/, 2024.

ds1000. Ds-1000: A diverse and scalable benchmark for data science tasks. https://github.
com/xlang-ai/DS-1000.

evalplus. Evalplus: A toolkit for code generation and evaluation. https://github.com/
evalplus/evalplus.

evalplusleaderboard. Evalplus leaderboard. https://evalplus.github.io/
leaderboard.html, 2024.

Tianyu Gao, Adam Fisch, and Danqi Chen. Making pre-trained language models better few-shot
learners. arXiv preprint arXiv:2012.15723, 2020.

Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai Dong, Wentao Zhang, Guanting Chen, Xiao
Bi, Y Wu, YK Li, et al. Deepseek-coder: When the large language model meets programming–the
rise of code intelligence. arXiv preprint arXiv:2401.14196, 2024.

11

https://ai.meta.com/blog/meta-llama-3-1/
https://ai.meta.com/blog/meta-llama-3-1/
https://mistral.ai/news/codestral/
https://mistral.ai/news/codestral/
https://github.com/xlang-ai/DS-1000/tree/main/results
https://github.com/xlang-ai/DS-1000/tree/main/results
https://www.anthropic.com/news/claude-3-5-sonnet
https://www.anthropic.com/news/claude-3-5-sonnet
https://www.anthropic.com/claude
https://deepmind.google/technologies/gemini/ultra/
https://deepmind.google/technologies/gemini/ultra/
https://gemini.google.com/
https://deepseekcoder.github.io/
https://github.com/xlang-ai/DS-1000
https://github.com/xlang-ai/DS-1000
https://github.com/evalplus/evalplus
https://github.com/evalplus/evalplus
https://evalplus.github.io/leaderboard.html
https://evalplus.github.io/leaderboard.html

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, et al.
Training compute-optimal large language models. arXiv preprint arXiv:2203.15556, 2022.

Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia Yan, Tianjun Zhang, Sida Wang, Armando
Solar-Lezama, Koushik Sen, and Ion Stoica. Livecodebench: Holistic and contamination free
evaluation of large language models for code. arXiv preprint arXiv:2403.07974, 2024.

Matthew Jin, Syed Shahriar, Michele Tufano, Xin Shi, Shuai Lu, Neel Sundaresan, and Alexey
Svyatkovskiy. Inferfix: End-to-end program repair with llms. In Proceedings of the 31st ACM
Joint European Software Engineering Conference and Symposium on the Foundations of Software
Engineering, pp. 1646–1656, 2023.

Majeed Kazemitabaar, Xinying Hou, Austin Henley, Barbara Jane Ericson, David Weintrop, and
Tovi Grossman. How novices use llm-based code generators to solve cs1 coding tasks in a self-
paced learning environment. In Proceedings of the 23rd Koli Calling International Conference on
Computing Education Research, pp. 1–12, 2023.

Yuhang Lai, Chengxi Li, Yiming Wang, Tianyi Zhang, Ruiqi Zhong, Luke Zettlemoyer, Wen-tau Yih,
Daniel Fried, Sida Wang, and Tao Yu. Ds-1000: A natural and reliable benchmark for data science
code generation. In International Conference on Machine Learning, pp. 18319–18345. PMLR,
2023.

Jia Li, Ge Li, Chongyang Tao, Huangzhao Zhang, Fang Liu, and Zhi Jin. Large language model-aware
in-context learning for code generation. arXiv preprint arXiv:2310.09748, 2023a.

Jia Li, Ge Li, Yunfei Zhao, Yongmin Li, Zhi Jin, Hao Zhu, Huanyu Liu, Kaibo Liu, Lecheng Wang,
Zheng Fang, et al. Deveval: Evaluating code generation in practical software projects. arXiv
preprint arXiv:2401.06401, 2024.

Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas Muennighoff, Denis Kocetkov, Chenghao Mou,
Marc Marone, Christopher Akiki, Jia Li, Jenny Chim, et al. Starcoder: may the source be with
you! arXiv preprint arXiv:2305.06161, 2023b.

Jiawei Liu, Chunqiu Steven Xia, Yuyao Wang, and Lingming Zhang. Is your code generated by
chatgpt really correct? rigorous evaluation of large language models for code generation. Advances
in Neural Information Processing Systems, 36, 2024.

livecodebench. Livecodebench: A benchmark for live coding and dynamic code generation. https:
//github.com/LiveCodeBench/LiveCodeBench.

Ziyang Luo, Can Xu, Pu Zhao, Qingfeng Sun, Xiubo Geng, Wenxiang Hu, Chongyang Tao, Jing
Ma, Qingwei Lin, and Daxin Jiang. Wizardcoder: Empowering code large language models with
evol-instruct. arXiv preprint arXiv:2306.08568, 2023.

multiple. Multipl-e: A benchmark for multilingual programming language models. https://
github.com/nuprl/MultiPL-E.

OpenAI. Chatgpt: Language models for conversational ai. https://openai.com/index/
chatgpt/, 2024.

OpenAI. Hello gpt-4o. https://openai.com/index/hello-gpt-4o/, 2024.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow
instructions with human feedback. Advances in neural information processing systems, 35:27730–
27744, 2022.

Qwen. Codeqwen 1.5: Next generation code model. https://qwenlm.github.io/blog/
codeqwen1.5/, 2024.

Nikitha Rao. Navigating Challenges with LLM-based Code Generation using Software-specific
Insights. PhD thesis, Microsoft Research, 2024.

12

https://github.com/LiveCodeBench/LiveCodeBench
https://github.com/LiveCodeBench/LiveCodeBench
https://github.com/nuprl/MultiPL-E
https://github.com/nuprl/MultiPL-E
https://openai.com/index/chatgpt/
https://openai.com/index/chatgpt/
https://openai.com/index/hello-gpt-4o/
https://qwenlm.github.io/blog/codeqwen1.5/
https://qwenlm.github.io/blog/codeqwen1.5/

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa Liu, Noah A Smith, Daniel Khashabi, and
Hannaneh Hajishirzi. Self-instruct: Aligning language models with self-generated instructions.
arXiv preprint arXiv:2212.10560, 2022.

Yuxiang Wei, Zhe Wang, Jiawei Liu, Yifeng Ding, and Lingming Zhang. Magicoder: Source code is
all you need. arXiv preprint arXiv:2312.02120, 2023.

Frank F Xu, Bogdan Vasilescu, and Graham Neubig. In-ide code generation from natural language:
Promise and challenges. ACM Transactions on Software Engineering and Methodology (TOSEM),
31(2):1–47, 2022.

Tianyu Zheng, Ge Zhang, Tianhao Shen, Xueling Liu, Bill Yuchen Lin, Jie Fu, Wenhu Chen, and
Xiang Yue. Opencodeinterpreter: Integrating code generation with execution and refinement. arXiv
preprint arXiv:2402.14658, 2024.

Qihao Zhu, Daya Guo, Zhihong Shao, Dejian Yang, Peiyi Wang, Runxin Xu, Y Wu, Yukun Li,
Huazuo Gao, Shirong Ma, et al. Deepseek-coder-v2: Breaking the barrier of closed-source models
in code intelligence. arXiv preprint arXiv:2406.11931, 2024.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A EXPERIMENT

Our experiments followed the standard testing procedures from the official repositories of each
dataset, and the specific parameters for model inference are shown in Table 5.

Table 5: The parameters for performing model inference in each experiment. *: Default value from
their official repository. DS: DeepSeek-Coder prompting style.

Experiment Official
Repo Temperature TopP TopK Prompting

Method Prompt

Section 5.1 evalplus 0.0 - - 0-shot DS
Section 5.2 multiple 0.2 0.95 - * *
Section 5.3 ds1000 * * * * *
Section 5.4 livecodebench * * * * DS
Section 5.5 - 0.0 - - 0-shot DS

B DATASET ACCURACY THEORETICAL ANALYSIS

In this analysis, we compare the theoretical maximum accuracies of different datasets (EVOL-
INSTRUCT, OSS-INSTRUCT, and AIEV-INSTRUCT) to understand how various factors, such as
problem generation, code alignment, and iterative validation, affect the overall accuracy of code
generation models. The following assumptions is introduced.
Assumption 1. (Teacher Model Accuracy for Code Generation) The theoretical maximum accu-
racy of the EVOL-INSTRUCT dataset should closely match the teacher model’s accuracy in generating
correct code c for given problems p. Therefore, AEvol ≈ P(c | p).
Assumption 2. (Teacher Model Accuracy for Problem Generation) The theoretical maximum
accuracy of the OSS-INSTRUCT dataset should closely match the teacher model’s accuracy in
analyzing and interpreting open-source code c. Therefore, AOSS ≈ P(p | c).
Assumption 3. (Rarity of Code) The number of valid code solutions c for a problem p is smaller
than the number of possible problem descriptions. Thus, P(c) < P(p).
Assumption 4. (Improved Alignment through Unit Tests) Adding unit tests to the original code
improves the alignment of problem descriptions and code. Therefore, we assume P(p | c) < P(p∗ |
c∗), where p∗ and c∗ represent the new problem description and code after adding unit tests.
Assumption 5. (Iterative Validation Increases Correctness) The probability of correctness im-
proves with each iteration during the iterative validation and correction process. If the probability
of error in each iteration is 1 − P(p∗ | c∗), then the probability of correctness after n iterations is
AAIEV ≈ 1− (1− P(p∗ | c∗))n.
Remark 1. All assumptions above are mild. Assumption 1 is necessary to establish that the theoretical
accuracy of the EVOL-INSTRUCT dataset is fundamentally linked to the teacher model’s capacity to
generate correct code for a given problem. Assumption 2 reflects that the OSS-INSTRUCT dataset’s
accuracy depends on the teacher model’s ability to interpret and understand the open-source code, a
natural requirement for problem generation. Assumption 3 acknowledges the common observation
that there are fewer valid code solutions than possible problem descriptions, making code inherently
rarer. This assumption is essential for applying Bayes’ theorem in the analysis. Assumption 4
states that adding unit tests to the original code enhances the alignment between the code and its
corresponding problem description, which is a well-accepted practice in software engineering to
ensure code correctness. Finally, Assumption 5 posits that iterative validation and correction increase
the probability of achieving a correct solution. This is a common concept in optimization processes,
where each iteration helps refine and improve the overall accuracy.

Based on these assumptions, the following theorem is derived.
Theorem 1. (Relative Accuracy of Datasets) Given the assumptions 1 - 5, the accuracy of
AUTOCODER-AIEV-INSTRUCT is higher than that of MAGICODER-OSS-INSTRUCT, and the
accuracy of MAGICODER-OSS-INSTRUCT is higher than MAGICODER-EVOL-INSTRUCT, that is,

AEvol < AOSS < AAIEV.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Proof. From Assumption 1, we have AEvol ≈ P(c | p). By applying Bayes’ theorem, one can get
P(c | p) = P(p|c)·P(c)

P(p) . Based on the Assumption 3, it follows that AEvol ≈ P(p|c)·P(c)
P(p) < P(p | c).

From Assumption 2, the accuracy of the OSS-INSTRUCT dataset is given by AOSS ≈ P(p | c).
Next, by Assumption 4, adding unit tests improves the alignment, so P(p | c) < P(p∗ | c∗).
By Assumption 5, the probability of correctness after n iterations in the iterative validation process
is AAIEV ≈ 1 − (1 − P(p∗ | c∗))n. Since P(p∗ | c∗) > P(p | c) and n > 1, one can get
1− (1− P(p∗ | c∗))n > 1− (1− P(p | c))n.
Thus, AAIEV > AOSS. Combining these results, one can get

AEvol ≈
P(p | c) · P(c)

P(p)
< P(p | c) ≈ AOSS < 1− (1− P(p | c))n < AAIEV,

that is, AEvol < AOSS < AAIEV. This completes the proof.

C PERFORMANCE OF ADDITIONAL MODELS

We fine-tuned Codellama-7B and CodeQwen1.5-7B using AutoCoder-AIEV-INSTRUCT dataset and
evaluated their performance. The results are shown in Table 6. The inference parameters of the models
are consistent with those in Section 5.1. The results show a significant performance improvement
for the older CodeLlama-7B model when fine-tuned with the AutoCoder-AIEV-INSTRUCT dataset.
Similarly, for the more recent CodeQwen-1.5-7B model, the AutoCoder-AIEV-INSTRUCT dataset
also led to further performance enhancement.

Table 6: Comparison of the performance between AutoCoder-CL-7B and AutoCoder-QW-7B with
their respective base models. CL: CodeLlama; QW: Qwen.

Model HumanEval HumanEval+ MBPP MBPP+
CodeLlama-7B 37.8 34.1 57.6 45.4

AutoCoder-CL-7B 72.7 69.3 69.8 60.4
CodeQwen1.5-7B 83.5 78.7 79.4 69

AutoCoder-QW-7B 86.4 80.2 80.4 69.7

D MORE DATA SAMPLES

Below we provide several examples to explain what the data look like. In these examples, we use
bold to indicate the special token. We use bold and italic for explanatory text that is NOT part of the
dataset. Due to the length of the data entry, parts that are not significant for explaining post-processing
are indicated with (...Too long, truncated...).

==

###Example 1 Start###

User: (User provides the task description.)

You are tasked with creating a custom migration in a Django project. Your task is to implement a
migration that adds a new field to an existing model in the database...

(...Too long, truncated...)

...You should create a new migration file named add_stock_quantity_field.py and implement the
necessary operations to add the stock_quantity field to the Product model. Could you help me to run
your code?

Assistant: (Generate Code and add special tokens to the Assistant’s answer.)

Sure! \nThe primary step is to install the related packages.

<API_RUN_START> pip install Django <API_RUN_STOP>

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Subsequently, we are able to run the code:

<API_RUN_START> # Mock script to simulate adding a field to a Django model \n \nimport sys \n
\n# Simulate Django’s models and migrations modules\nclass models:\n class IntegerField:\n def
init(self, default=0):\n self.default = default...

(...Too long, truncated...)

...def main():\n migration = AddStockQuantityField()\n apply_migration(migration)\n # Verify
if ’stock_quantity’ is now an attribute of Product\n if hasattr(Product, ’stock_quantity’):\n
print("Verification: ’stock_quantity’ field successfully added to the Product model.")\n else:\n
print("Verification failed: ’stock_quantity’ field was not added to the Product model.")\n if __name__
== "main":\n main()\n <API_RUN_STOP>

Code Interpreter: (Run the code in docker and get the results)

python output:\npip_result.stdout: \nCollecting Django\n Downloading Django-5.0.4-py3-none-
any.whl.metadata (4.1 kB)0:00:00...

(...Too long, truncated...)

...result.stdout:\nField ’stock_quantity’ added to Product with default=0\nVerification:
’stock_quantity’ field successfully added to the Product model.\n\nresult.stderr:\nNone

Assistant: (If the result is correct, the assistant will provide a short summary; otherwise, it will
keep modifying the code and executing it again.)

We’ve successfully run the code, ’stock_quantity’ field has been successfully added to the Product
model. here’s the code:\n #Assuming this is a Django migration file within a Django project\n\nfrom
django.db import migrations, models\n\nclass...

(...Too long, truncated...)

...model_name=’product’,\n name=’stock_quantity’,\n field=models.IntegerField(default=0),\n),\n
]\n

###Example 1 End###

==

###Example 2 Start###

User: (User provides the task description.)

Determine the median value of the elements in the provided list in Python.\nlst = [1, 7, 19, 11, 17, 29,
98] Ensure the code’s session management is secure and robust.

Assistant: (Generate Code and add special tokens to the Assistant’s answer.)

Let’s write and run the code to determine if it functions correctly.\n<API_RUN_START>

“‘python\nimport statistics\n\ndef calculate_median(lst):\n """Calculate the median using the statistics
module."""\n return statistics.median(lst)\n\ndef calculate_median_manually(lst):\n """Calculate the
median manually for educational purposes."""\n lst.sort()\n n = len(lst)\n mid = n // 2\n if n % 2 ==
0:\n return (lst[mid - 1] + lst[mid]) / 2\n else:\n return lst[mid]\n\ndef main():\n # List of numbers\n lst
= [1, 7, 19, 11, 17, 29, 98]\n \n # Calculate median using statistics module\n median_with_module =
calculate_median(lst)\n print(M̈edian calculated with statistics module:̈, median_with_module)\n \n #
Calculate median manually\n median_manual = calculate_median_manually(lst)\n print(M̈edian cal-
culated manually:̈, median_manual)\n\nif __name__ == _̈_main__:̈\n main()\n“‘<API_RUN_STOP>

Code Interpreter: (Run the code in docker and get the results)

\npython output:\nresult.stdout:\nMedian calculated with statistics module: 17\nMedian calculated
manually: 17\n\nresult.stderr:\nNone

Assistant: (The result is correct, the assistant will provide a short summary.)

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

\nOur code stood up to all tests and passed, here’s the code:\n“‘python\nimport statistics\n\ndef
calculate_median(lst):\n """Calculate the median using the statistics module."""\n return statis-
tics.median(lst)\n\ndef calculate_median_manually(lst):\n """Calculate the median manually for
educational purposes."""\n lst.sort()\n n = len(lst)\n mid = n // 2\n if n % 2 == 0:\n return (lst[mid -
1] + lst[mid]) / 2\n else:\n return lst[mid]\n“‘

###Example 2 End###

==

###Example 3 Start###

User: (User provides the task description.)

please help me clean up this python code, it’s an output from an ocr scan.\ndef 0ict
opera+iomz(dict1,_dct2‘_0pera+ions):\ndefined_operations...

(...Too long, truncated...)

...return_’Error: value_dltference operation_re9uires ioentical oic7ion&ry keys’\nv&lve_0iff_dict
-_key: abz(dlc+1[key - dict2[k3v]) fOr_xev im dic+1.keys() & dict2.xey$()}\nfor x3y ir zortCd{ualue
ditf_0ic7.keys()):\nprint(tẍ3y: [va1ue_diff_di<t[xev}})̈\n\nelif op == k̈3v_lCngth:̈\nlength_dictl
= [xCy: ien[xey) for_k3y in dict1}\nfor_k3y in sort3d(leng+n_dic71.xevs()):\nprint(fk̈ey: lenqtn
d1ct1(key]") Verify that the code’s interfaces are user-friendly and accessible.

Assistant: (Generate Code and add special tokens to the Assistant’s answer.)

Let’s generate the correct code and test it.\n<API_RUN_START>“‘python\ndef dict_operations(dict1,
dict2, operations):\n defined_operations = [m̈ergë, c̈ommon_keys̈, ünique_keys̈, s̈ort_by_valuë,
v̈alue_differencë, k̈ey_length]̈\n\n if not dict1 and not dict2:\n return Ërror: Both dictionaries are
empty\̈n \n if not operations:\n return dict1, dict2\n \n for op in operations:...

(...Too long, truncated...)

...return results\n\n # Test cases\ndict1 = ’apple’: 2, ’banana’: 4, ’cherry’: 8\ndict2 = ’ba-
nana’: 3, ’date’: 5, ’cherry’: 8\n\noperations = [m̈ergë, c̈ommon_keys̈, ünique_keys̈, s̈ort_by_valuë,
v̈alue_differencë, k̈ey_length]̈\nresult = dict_operations(dict1, dict2, operations)\n\nfor res in re-
sult:\n print(res)\n“‘<API_RUN_STOP»

Code Interpreter: (Run the code in docker and get the results)

\npython output:\nresult.stdout:\nE\nr\nr\no\nr\n:\n \nt\ni\no\nn\n \nr\ne\nq\nu\ni\nr\ne\ns\n
\ni\nd\ne\nn\nt\ni\nc\na\nl\n \nd\ni\nc\nt\ni\no\nn\na\nr\ny\n \nk\ne\ny\ns\n\nresult.stderr:\nNone

Assistant: (The result is incorrect, the assistant will keep modifying the code.)

I’ll modify the code to handle the situation where the ‘value_difference‘ operation fails due
to non-identical keys between the two dictionaries. Here’s the revised code with appropriate
checks and handling:\n\n<API_RUN_START>“‘python\ndef dict_operations(dict1, dict2, opera-
tions):\n defined_operations = [m̈ergë, c̈ommon_keys̈, ünique_keys̈, s̈ort_by_valuë, v̈alue_differencë,
k̈ey_length]̈\n\n if not dict1 and not dict2:\n return [Ërror: Both dictionaries are empty]̈\n \n if not
operations:\n return [dict1, dict2]\n \n for op in operations:\n if op not in defined_operations:\n
return [Ërror: Undefined operation]̈\n\n results = []\n for op in operations:...

(...Too long, truncated...)

...Test cases\ndict1 = ’apple’: 2, ’banana’: 4, ’cherry’: 8\ndict2 = ’banana’: 3,
’date’: 5, ’cherry’: 8\n\noperations = [m̈ergë, c̈ommon_keys̈, ünique_keys̈, s̈ort_by_valuë,
v̈alue_differencë, k̈ey_length]̈\nresult = dict_operations(dict1, dict2, operations)\n\nfor res in re-
sult:\n print(res)\n“‘<API_RUN_STOP>

Code Interpreter: (Run the code again in docker and get the results)

python output:\nresult.stdout:\n’apple’: 2, ’banana’: 3, ’cherry’: 8, ’date’: 5\n[’banana’,
’cherry’]\n[’apple’, ’date’]\n’apple’: 2, ’banana’: 4, ’cherry’: 8\nError: value_difference operation
requires identical dictionary keys\n’apple’: 5, ’banana’: 6, ’cherry’: 6\n\nresult.stderr:\nNone

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Assistant: (The result is correct, the assistant will provide a short summary.)

Our system has successfully passed all tests, here is the code:\n“‘python\ndef dict_operations(dict1,
dict2, operations):\n defined_operations = [m̈ergë, c̈ommon_keys̈, ünique_keys̈, s̈ort_by_valuë,
v̈alue_differencë, k̈ey_length]̈\n\n if not dict1 and not dict2:\n return [Ërror: Both dictionaries are
empty]̈\n \n if not operations:...

(...Too long, truncated...)

value_diff_dict = key: abs(dict1[key] - dict2[key]) for key in dict1.keys() & dict2.keys()\n re-
sults.append(value_diff_dict)\n\n elif op == k̈ey_length:̈\n length_dict1 = key: len(key) for key
in dict1\n results.append(length_dict1)\n \n return results\n“‘

###Example 3 End###

18

	Introduction
	Related Work
	AIEV-Instruct
	Overall Architecture
	Dataset Analysis

	AutoCoder
	Code Interpreter
	Training Details

	Experiment
	Python Text to Code Generation
	Multilingual Code Generation
	Code Generation for Data Science
	Performance on More Challenging Code Problems
	Impact of Different Components

	Conclusion
	Experiment
	Dataset Accuracy Theoretical Analysis
	Performance of Additional Models
	More Data Samples

