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Abstract

Natural language processing models learn word001
representations based on the distributional hy-002
pothesis, which asserts that word context (e.g.,003
co-occurrence) correlates with semantic mean-004
ing. We propose that n-grams composed of ran-005
dom character sequences, or garble, provide a006
novel context for studying word meaning both007
within and beyond extant language. In particu-008
lar, randomly-generated character n-grams lack009
semantic meaning but contain primitive infor-010
mation based on the distribution of characters011
they contain. By studying the embeddings of012
a large corpus of garble, extant language, and013
pseudowords using CharacterBERT, we iden-014
tify an axis in the model’s high-dimensional015
embedding space that separates these classes of016
n-grams. Furthermore, we show that this axis017
relates to structure within extant language, in-018
cluding word part of speech, morphology, and019
concreteness. Thus, in contrast to studies that020
are mainly limited to extant language, our work021
reveals that semantic meaning and primitive022
information are intrinsically linked.023

1 Introduction024

What primitive information do character sequences025

contain? Modern natural language processing026

is driven by the distributional hypothesis (Firth,027

1957), which asserts that the context of a linguistic028

expression defines its meaning (Emerson, 2020).029

Because existing words—which represent an ex-030

tremely small fraction of the space of possible char-031

acter sequences—appear in context together, the032

distributional paradigm at this level is limited in033

its ability to study the meaning of and informa-034

tion encoded by arbitrary character level n-grams035

(wordforms). Furthermore, state-of-the-art compu-036

tational language models operating within the dis-037

tributional paradigm, such as BERT (Devlin et al.,038

2019), are mainly trained on extant words. We039

propose that character n-grams (i.e., sequences of040

alphabetic characters) outside the space of extant041

language provide new insights into the meaning042

of words, beyond that captured by word and sub-043

word-based distributional semantics alone. We ex- 044

plore this by studying the embeddings of randomly- 045

generated character n-grams (referred to as garble), 046

which contain primitive communicative informa- 047

tion but are devoid of semantic meaning, using the 048

CharacterBERT model (El Boukkouri et al., 2020). 049

Such randomly-generated character n-grams are 050

textual analogues of paralinguistic vocalizations. 051

Our analyses contribute to the growing under- 052

standing of BERTology (Rogers et al., 2020) by 053

identifying a dimension, which we refer to as the 054

information axis, that separates extant and garble 055

n-grams. This finding is supported by a Markov 056

model that produces a probabilistic information 057

measure for character n-grams based on their statis- 058

tical properties. Strikingly, this information dimen- 059

sion correlates with properties of extant language; 060

for example, parts of speech separate along the in- 061

formation axis, and word concreteness varies along 062

a roughly orthogonal dimension in our projection 063

of CharacterBERT embedding space. Although the 064

information axis we identify separates extant and 065

randomly-generated n-grams very effectively, we 066

demonstrate that these classes of n-grams mix into 067

each other in detail, and that pseudowords—i.e., 068

phonologically coherent character n-grams with- 069

out lexical meaning—lie between the two in our 070

CharacterBERT embeddings. 071

This paper is organized as follows. We first dis- 072

cuss concepts from computational linguistics, in- 073

formation theory, and linguistics relevant to our 074

study. We then analyse CharacterBERT representa- 075

tions of extant and randomly-generated character 076

sequences and how the relation between the two 077

informs the structure of extant language, including 078

morphology, part-of-speech, and word concrete- 079

ness. Finally, we ground our information axis in a 080

predictive Markov language model. 081

2 Modeling n-grams Beyond Extant 082

Language 083

Models in computational linguistics often repre- 084

sent words in a high-dimensional embedding space 085
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based on their co-occurrence patterns according086

to the distributional hypothesis (Landauer and087

Dumais, 1997; Mikolov et al., 2013). Embed-088

dings that capture the semantic content of extant089

words are used for many natural language applica-090

tions, including document or sentence classifica-091

tion (Kowsari et al., 2019), information retrieval092

and search (Mitra et al., 2018), language modelling093

and translation (Devlin et al., 2019), language gen-094

eration (Brown et al., 2020), and more (Jurafsky095

and Martin, 2021). In these cases, vector opera-096

tions performed on word embeddings are used for097

higher-level tasks such as search or classification.098

Word embeddings have largely concerned them-099

selves with extant language—that is, commonly100

used words which carry consistent meaning—and101

thus cannot represent character n-grams outside of102

this space. The few models that encompass charac-103

ter n-grams, which naturally include n-grams be-104

yond extant words, often use RNNs (Mikolov et al.,105

2010) or encoder-decoder architectures (Sutskever106

et al., 2014) to represent character-level sequences.107

In parallel, the ubiquitous use of Transformer mod-108

els has led to studies of their inner representa-109

tions, weights, and attention mechanism (Rogers110

et al., 2020; Clark et al., 2019). While most Trans-111

former models are trained using extant words and112

sub-words, largely focusing on their semantics113

and syntax; however, some recent models oper-114

ate at the character level, such as CharacterBERT115

(El Boukkouri et al., 2020) and CharBERT (Ma116

et al., 2020). Strikingly, character-level models117

excel at character-level tasks (e.g., spelling correc-118

tion; Xie et al. 2016; Chollampatt and Ng 2018)119

and perform comparably to word-level models at120

language-modelling tasks (Kim et al., 2016).121

Character-level models are therefore an ideal122

tool for studying the information and meaning en-123

coded in n-grams beyond the realm of extant lan-124

guage. Throughout this study, we use the Character-125

BERT model to achieve this goal. CharacterBERT126

is uniquely suited for our study as it uses a Char-127

acterCNN module (Peters et al., 2018) to produce128

single embeddings for any input token, built as a129

variant to BERT which relies on sub-word tokeniza-130

tion (El Boukkouri et al., 2020).131

3 Primitive Information and Meaning132

Beyond Extant Language133

Before presenting our results, we discuss general134

characteristics of the space beyond extant words;135

we reiterate that this space is missed by word and 136

sub-word-based models. Due to CharacterBERT’s 137

use of English characters, we restrict our analysis 138

to English character n-grams, and we study the 139

properties of CharacterBERT embeddings includ- 140

ing n-grams outside of extant language that con- 141

tains lexicalized semantic meaning. By studying 142

meaning encoded in n-grams that do not appear in 143

consistent (or any) context in the model’s training 144

data, our framework goes beyond the traditional 145

distributional hypothesis paradigm. In this way, we 146

seek to understand core properties of information 147

encoded in n-grams beyond their lexicalized se- 148

mantics by simultaneously studying n-grams that 149

contain different types of information.1 150

We use randomly-generated characters to cre- 151

ate n-grams that contain primitive information but 152

no semantic meaning. We adapt Marr’s notion of 153

primitive visual information for primitive textual 154

information (Marr and Hildreth, 1980), and make 155

the analogue between vision and language because 156

information is substrate independent (Deutsch and 157

Marletto, 2015). In our case, primitive textual infor- 158

mation is lower-level communicative information 159

which subsumes semantic meaning. Being textual, 160

our randomly-generated n-grams are not bound 161

by the constraints of human speech, and may be 162

phonologically impossible. 163

In the following subsections, we provide three 164

examples of language—distorted speech, par- 165

alanguage, pseudowords—which motivate our 166

study of character-level embeddings for randomly- 167

generated character n-grams. We then describe 168

the complementary information encoded by word 169

morphology. 170

3.1 Distorted Speech 171

In popular use “garble” refers to a language mes- 172

sage that has been distorted (garbled), such as 173

speech where semantic meaning is corrupted by 174

phonological distortions. For example, the phrase 175

“reading lamp” may become “eeling am” when gar- 176

bled. Garbled speech contains lesser, or zero, se- 177

mantic meaning compared to ungarbled speech, but 178

the signal of speech media is nonetheless present as 179

information, which according to Shannon (1951) 180

may contain no meaning at all. Garbled speech 181

satisfies the classical five-part definition of com- 182

1In analogy, the theory of ensemble perception in devel-
opmental psychology offers a framework to understand the
human ability to understand the ’gist’ of multiple objects at
once (Sweeny et al., 2015).
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munication provided by (Shannon, 2001); an infor-183

mation source (speaker) can transmit (verbalize)184

an informationally primitive message through the185

channel of speech media through the receiver (ears)186

to the destination (listener).187

3.2 Paralanguage188

Paralinguistic vocalizations are specifically identi-189

fiable sounds beyond the general characteristics of190

speech (Noth, 1990) and present another example191

of communication beyond lexicalized semantics.192

Paralinguistic vocalizations include characterizers,193

like moaning; and segregates, like “uh-huh” for af-194

firmation. The border between such paralinguistic195

vocalizations and lexicalized interjections with de-196

fined semantic meanings is “fuzzy” (Noth, 1990).197

3.3 Pseudowords198

Pseudowords are phonologically possible charac-199

ter n-grams without lexical meaning. Wordlike-200

ness judgments reveal that human distinction be-201

tween pseudowords and phonologically impossible202

nonwords is gradational (Needle et al., 2020). As203

a unique informational class, pseudowords have204

been used in language neuronal activation studies205

(Price et al., 1996), infant lexical-semantic pro-206

cessing (Friedrich and Friederici, 2005), in poetry207

through nonsense (Ede, 1975), and in literary anal-208

yses (Lecercle, 2012). Pseudowords can also elicit209

consistent cognitive responses (Davis et al., 2019).210

To consider pseudowords generatively, it is help-211

ful to note that an alphabetic writing system cov-212

ers not only ever word but every possible word213

in its language (Deutsch, 2011); pseudowords214

can thus be thought of as former possible-but-215

uninstantiated extant words—e.g., “cyberspace”216

was a pseudoword before the internet. We embed217

randomly generated pseudowords into our model to218

study their information content and relation to both219

extant words and randomly-generated n-grams.220

3.4 Morphology221

Morphology deals with the systems of natural lan-222

guage that create words and word forms from223

smaller units (Trost, 1992). Embedding spaces224

and the distributional hypothesis offer insights into225

the relationship between character combination,226

morphology and semantics. Notably, morphologi-227

cal irregularities complicate the statistics of global228

character-level findings in the embedding space,229

like through suppletion—where word forms change230

idiosynchratically e.g. go’s past tense is went,231

or epenthesis—where character are inserted un- 232

der certain phonological conditions e.g. fox plu- 233

ralizes as foxes (Trost, 1992). As do the multi- 234

ple ’correct’ spellings of pseudowords under con- 235

ventional phoneme-to-grapheme mapping (Needle 236

et al., 2020). Distinctions between morphological 237

phenomena can also be hard to define; the bound- 238

ary between derivation and compounding is “fuzzy” 239

(Trost, 1992). 240

4 Character-Level Language Models for 241

Information Analysis 242

As described above, state-of-the-art language mod- 243

els serve as a tool to study meaning as it emerges 244

though the distributional hypothesis paradigm. Ex- 245

isting work on the analysis of Transformers and 246

BERT-based models have explored themes we are 247

interested in, such as semantics (Ethayarajh, 2019), 248

syntax (Goldberg, 2019), morphology (Hofmann 249

et al., 2020, 2021), and the structure of language 250

(Jawahar et al., 2019). However, all of this work has 251

limited itself to the focus of extant words, largely 252

due to the word and sub-word-based nature of these 253

models. 254

We study the structure of the largely unexplored 255

character n-gram space which includes extant lan- 256

guage, pseudoword and garble character n-grams, 257

seen through the representations created by Char- 258

acterBERT, as follows. To explore how the char- 259

acter n-gram space is structured in the context of 260

character based distributional semantics, we embed 261

40,000 extant English words, 40,000 randomly- 262

generated character n-grams, and 20,000 pseu- 263

dowords. We choose the 40,000 most used En- 264

glish words that have been annotated for concrete- 265

ness/abstractness ratings (Brysbaert et al., 2014). 266

Randomly-generated character n-grams are forced 267

to have a string length distributions that matches 268

the corpus of extant words we analyze. To generate 269

pseudowords, we use a pseudoword generator.2 270

The CharacterBERT (El Boukkouri et al., 2020) 271

general model has been trained on nearly 40 GB of 272

Reddit data using character sequences. We leverage 273

this model to create representations of character n- 274

grams that may not have been seen in the training 275

data. This allows us to use the resulting 512 dimen- 276

sional embeddings for exploration via visualisation, 277

topology modelling via distances and projections, 278

and classification error analysis. 279

2http://soybomb.com/tricks/words/
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Figure 1: UMAP projection of CharacterBERT embeddings for extant words (blue), pseudowords (magenta), and
randomly-generated character n-grams (black). The solid black line shows the information axis that we define
in this work. The bottom-most cluster of random and pseudoword character n-grams is comprised of character
n-grams ending in “s”, and the top-most clusters of extant words are comprised of compound words.

4.1 Identifying the Information Axis280

To guide our exploration of the high-dimensional281

topology of the resulting embeddings, we use282

the UMAP dimensionality reduction technique283

(McInnes et al., 2018). UMAP creates a low-284

dimensional embedding by searching for a low-285

dimensional projection of the data that has the clos-286

est possible equivalent fuzzy topological structure287

as the original representations, thereby preserving288

both local and global structure.289

We use the UMAP embeddings to extract an in-290

formation axis that captures most variance among291

extant and randomly-generated n-grams. To assign292

n-grams an “information axis score,” we minmax-293

normalize the UMAP coordinates along this axis.294

Thus, our information axis establishes a link be-295

tween extant language and garble, thereby connect-296

ing semantic meaning and primitive information.297

Figure 1 shows how CharacterBERT embeddings298

of extant, pseudoword, and randomly-generated299

character n-grams arrange themselves in this space. 300

4.2 Statistical Properties of n-grams Along 301

the Information Axis 302

We perform several statistical tests to differentiate 303

between categories of character n-grams along the 304

information axis. First, Table 1 lists the median and 305

standard deviation of minmax-normalized position 306

along the information axis, demonstrating that ex- 307

tant words, pseudowords, and garble are clearly 308

separated. 309

Next, we use the Kolmogorov-Smirnov (KS; 310

Massey Jr 1951) two-sample test to assess differ- 311

ences between the information axis distributions of 312

our n-gram classes. All of the KS tests very signifi- 313

cantly indicate differences between types of charac- 314

ter n-gram and parts of speech along the informa- 315

tion axis (p ≪ 0.001). Furthermore, the KS statis- 316

tic score is 0.94 for (extant, random), 0.83 for (ex- 317

tant, pseudoword), and 0.70 for (pseudoword, ran- 318
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Figure 2: Probability density of CharacterBERT embed-
dings for extant words (blue), pseudowords (magenta),
and randomly-generated character n-grams (black) as
a function of minmax-normalized position along the
information axis shown in Figure 1.

dom), indicating that extant and random n-grams319

differ most significantly along the information axis320

(consistent with Figures 1–2).321

4.3 Hyperplane Classifier322

The visualisation of the character n-grams suggests323

that a hyperplane classifier is suitable for separating324

extant words and garble. We use a support vector325

machine (Cortes and Vapnik, 1995) trained on half326

of our 40,000 commonly-used extant words and327

half of our computer-generated garble to classify328

unseen extant, garble and pseudoword character329

n-grams. We use this method to explore the infor-330

mation in the high-dimensional embeddings, and to331

observe which words cross over a so-called ’river’332

of meaning, located at 0.5 of the information axis,333

its midpoint.334

The classifier achieves an accuracy of 98.9%335

on unseen extant language and garble character336

n-grams, suggesting we can learn about the em-337

beddings through error analysis. In particular, we338

found similarities among extant words classified as339

garble. 74% (270/363) were compound or deriva-340

tive words, similar to many extant language terms341

that lie near the midpoint of the information axis.342

19% (69/363) were foreign words like “hibachi”,343

or dialect words like “doohickey.” The garble344

classification errors—garble classified as extant345

language—were in small part due to our randomiza-346

tion method inadvertently creating extant language347

mislabelled as garble, accounting for ∼ 10% of the348

377 errors we identify.349

Character n-gram type information axis Position
Extant 0.75± 0.12
Noun 0.74± 0.12
Verb 0.72± 0.09

Adjective 0.76± 0.11
Adverb 0.87± 0.09

Pseudoword 0.50± 0.15
Random 0.17± 0.11

Table 1: Median and standard deviation of minmax-
normalized position along the information axis shown
in Figure 1, for extant words (including parts of speech),
pseudowords, and randomly-generated n-grams.

The garble misclassified as extant language 350

mostly contained phonologically impossible ele- 351

ments, though some were pseudowords. 352

When pseudowords were forcibly classified into 353

extant or garble character n-grams, more pseu- 354

dowords were classified as extant language than 355

garble (7106 as garble to 12894 as extant). La- 356

belling affirms these intuitions, with pseudowords 357

like “flought” looking intuitively familiar. Given 358

CharacterBERT’s massive Reddit training data, ty- 359

pos and localized language may account for the 360

classifier’s tendency to classify pseudowords as ex- 361

tant language. Also, our embedding space only 362

uses the 40,000 most common English words out 363

of 208,000 distinct lexicalized lemma words (Brys- 364

baert et al., 2016), which if included may impact 365

spatial structure. 366

5 Structure of Extant Words along the 367

Information Axis 368

We use this section to discuss the structure of lan- 369

guage across the information axis derived from our 370

low-dimensional UMAP space. We structure our 371

analysis across this axis as it organises the relative 372

structure of extant words vs. randomly-generated 373

character n-grams, while also distinguishing inter- 374

nal structure within the extant word space. 375

5.1 Extant vs. Pseudowords vs. Garble 376

At the scale of global structure, the information 377

axis highlights that extant words are separated 378

from randomly-generated character n-grams (Fig- 379

ure 1). We note the midpoint of the two character 380

n-gram classes at 0.5 on our information axis. Pseu- 381

dowords populate the region near the midpoint of 382

the information axis, and also overlap with both 383

extant English and garble character n-grams (Fig- 384

ure 2). There is no distinct boundary between 385
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Figure 3: Left panel: UMAP projection of CharacterBERT embeddings for extant words split by part of speech into
nouns (red), verbs (cyan), adjectives (blue), and adverbs (green). Right panel: Probability density of extant words,
split by part of speech, as a function of minmax-normalized position along the information axis shown in Figure 1.

the three classes of n-grams, which is consistent386

with both morphological descriptions of compound387

and derivational words and descriptions of paralan-388

guage as “fuzzy”. This global structure—and the389

structure internal to extant language (Figure 3)—390

goes beyond the distributional hypothesis by in-391

cluding n-grams that do not appear in consistent392

(or any) contexts. Pseudowords lie between extant393

and garble character n-grams, but there is no dis-394

tinct boundary between pseudowords and the other395

classes of n-grams.396

Extant language and garble regions have differ-397

ent internal structure (Figure 1). The garble region398

has comparatively less structure than the extant lan-399

guage region, though there is some internal struc-400

ture, notably a cluster of character n-grams ending401

in character “s” separated from the main garble402

region.403

5.2 Parts of Speech and Morphology404

In our UMAP projection, detailed structure405

emerges for extant words split by part-of-speech406

(Figure 3). In particular KS statistics between all407

part-of-speech pairs significantly indicate that their408

distributions differ along the information axis. Fur-409

thermore, KS statistic values are 0.12 for (noun,410

verb), 0.11 for (noun, adjective), 0.64 for (noun,411

adverb), 0.22 for (verb, adjective), 0.72 for (verb,412

adverb), and 0.64 for (adjective, adverb). This413

suggests that adverbs are most cleanly separated414

from other parts of speech along the information415

axis (consistent with Figure 3), which may indicate416

that morphemes/prefixes/suffixes have important417

effects in embedding space. A detailed investiga-418

tion is beyond the scope of this paper and may 419

require analyses through alternative heuristics such 420

as pseudomorphology and lexical neighborhood 421

density (Needle et al., 2020). 422

Many extant words near the midpoint of the in- 423

formation axis are, or may be, compound words; 424

the boundary between derivative and compound 425

words is thought to be fuzzy because many deriva- 426

tional suffixes developed from words frequently 427

used in compounding (Trost, 1992). Both deriva- 428

tive and compound words populate other spaces of 429

the extant language region, but conflicting defini- 430

tions hamper straightforward statistical analysis. 431

Morphological traits such as adjectival suffixes 432

−ness, −ism, −ility, and −able, or the adverbial 433

suffix −ly correlate to mapping, but the boundaries 434

for morphological classes are not distinct. Garble 435

ending in “s” occupies a closer region to extant lan- 436

guage, arguably due to the semantic associations 437

of ending in “s” derived from the suffix −s. Note, 438

the morphological heuristics of affixation applies 439

to lexicalized words but not garble. Pseudowords 440

ending in “s” share that region of garble ending in 441

“s”, however, such seemingly plural pseudowords 442

tend closer to extant language, reflecting the notion 443

that wordform similarity increases with semantic 444

similarity (Dautriche et al., 2017). Given the fuzzi- 445

ness of morphology and the opaqueness of English 446

spelling (Needle et al., 2020), pseudowords ending 447

in “s” may or may not be due to affixation. 448

5.3 Concreteness/Abstractness 449

The internal positioning of different parts of speech 450

within the extant language space of our low- 451
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Figure 4: Left panel: UMAP projection of CharacterBERT embeddings for extant words (blue), pseudowords
(magenta), and randomly-generated character n-grams (black). The solid black line shows the information axis that
we define in this work, and the red line shows the axis that captures variability in word concreteness, computed by
connecting the unweighted average UMAP position for extant words with that weighted by minmax-normalized
concreteness (red dots). Right panel: UMAP of only extant words, colored by minmax-normalized concreteness,
with lighter colors indicating more concrete words.

dimensional space suggests that the representations452

also capture notions of concreteness (e.g nouns)453

and abstractness (e.g adverbs) which we explore454

by projecting concreteness scores from the (Brys-455

baert et al., 2014) study. We calculate the center of456

extant UMAP coordinates with no weighting and457

with weighting by minmax-normalized concrete-458

ness and used those points to define a Concreteness459

Axis (Figure 4 left panel). It captures the visual460

intuition (Figure 4 right panel) that concreteness is461

roughly orthogonal to our information axis. The462

bootstrap-resampled angle distribution between in-463

formation and concreteness axes is 86.6± 1.2 de-464

grees.465

This suggests that among the many latent fea-466

tures that structure the CharacterBERT represen-467

tations, our information axis measure and word468

concreteness are approximately orthogonal to each469

other in projection. We leave a detailed investi-470

gation of this finding, including its relation to the471

visual information (Brysbaert et al., 2016) carried472

by concrete and abstract words, to future work.473

5.4 Markov Chain Model474

We also create a language model using the Pre-475

diction by Partial Matching (PPM) variable order476

Markov model (VOMM) to estimate the probability477

of each of these character n-grams (Begleiter et al.,478

2004). The model calculates the logpdf for each479

character n-gram in which more commonly occur-480

ring character n-grams have a lower score, and less481

commonly occurring character n-grams receive a 482

high score. The model is trained on extant words, 483

then used to score all of the extant, pseudowords 484

and garble character n-grams. We use this score to 485

capture the likelihood of character n-grams in our 486

character sequence space (Figure 5). 487

These Markov model values correlate with our 488

information axis measure. In particular, the Spear- 489

man correlation coefficient between information 490

axis and Markov chain information content is 491

0.4 (highly significant) for randomly-generated n- 492

grams, and 0.007 (not significant) for extant words. 493

Thus, for random character n-grams, our informa- 494

tion axis measure is correlated with statistical prop- 495

erties of the character n-grams from the Markov 496

model (see the left panel of Figure 5). However, 497

our information axis measure more clearly sepa- 498

rates the classes of n-grams, thus going beyond 499

purely statistical information (see the right panel of 500

Figure 5). This suggests that the CharacterBERT 501

model learns information beyond character-level 502

statistical information, even for n-grams that never 503

explicitly appear in the training data. 504

6 Discussion and Conclusion 505

Using the CharacterBERT model, we embedded a 506

large corpus of character level n-grams outside of 507

extant language to study how the primitive informa- 508

tion they contain relates to the semantic informa- 509

tion carried by extant language. The key findings 510

of this paper are: 511
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Figure 5: Left panel: Minmax-normalized position along the information axis shown in Figure 1 vs. minmax-
normalized information content from our Markov Chain model, for extant words (blue) and randomly-generated
character n-grams (black). Right panel: Probability density of minmax-normalized information content measures
from our UMAP projection (filled histograms) and Markov Chain model (unfilled histograms).

1. Extant words and randomly-generated charac-512

ter n-grams are separated along a particular513

axis in our UMAP projection of Character-514

BERT embedding space (Figures 1–2);515

2. Pseudowords lie between extant and516

randomly-generated n-grams along this axis,517

but there is no distinct boundary between the518

classes of n-grams (Figures 1–2);519

3. The structure of CharacterBERT embeddings520

of extant language, including based on part-521

of-speech and morphology, is correlated with522

the information axis (Figure 3);523

4. Word concreteness varies along a dimension524

that is roughly orthogonal to the information525

axis in our UMAP projection (Figure 4);526

5. Separation between extant and randomly-527

generated n-grams captured by Character-528

BERT is correlated with and more coherent529

than that based purely on the statistical prop-530

erties of n-grams (Figure 5).531

These findings suggest that character-based532

Transformer models are largely able to explore533

the relation between extant words and randomly-534

generated character strings. In particular, character-535

level models capture complex structure in the space536

of words, pseudowords, and randomly-generated n-537

grams. These findings are consistent with work sug-538

gesting that character-level and morpheme-aware539

representations are rich in semantic meaning, even540

compared to word or sub-word models (Al-Rfou541

et al., 2019; El Boukkouri et al., 2020; Ma et al., 542

2020; Hofmann et al., 2020, 2021). 543

Our study is limited to extant words in English 544

and randomly-generated character n-grams using 545

the English alphabet. Given the unique impact of 546

a specific language and alphabet on representation 547

spaces, there is motivation to see whether the rela- 548

tionships we identify generalise to other languages 549

and alphabets. Finally, we reiterate that our anal- 550

ysis was limited to the last embedding layer of 551

the CharacterBERT model; future work may fo- 552

cus on weights in earlier layers, including attention 553

mechanisms explored by other BERTology stud- 554

ies (Clark et al., 2019; Jawahar et al., 2019). By 555

only analysing the final embedding layer, we study 556

the ’psychology’ of such character-level models; 557

in analogy, much may be gained by studying the 558

’neuroscience’ of such models encoded in their at- 559

tention weights (Wang, 2020). 560

Our work may prompt avenues for future work 561

with character-aware language models, such as the 562

analyses of nonsense poetry like Lewis Caroll’s 563

“Jabberwocky,” or the innovative and highly per- 564

sonalized lyrics of rap artists. Philological studies 565

also may benefit from character-level models using 566

broader n-gram spaces especially if dynamic analy- 567

ses are employed, as may studies into lexicalization 568

or pseudoword acceptability. Language acquisition 569

studies which require the distinction of language 570

from noise may also be aided by character-level 571

models that perform well using information out- 572

side extant language. 573
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