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Abstract

Recent research shows that more data and
larger models can provide more accurate solu-
tions to natural language problems requiring
reasoning. However, models can easily fail to
provide solutions in unobserved complex input
compositions due to not achieving the level of
abstraction required for generalizability. To al-
leviate this issue, we propose training the lan-
guage models with neuro-symbolic techniques
that can exploit the logical rules of reason-
ing as constraints and provide additional su-
pervision sources to the model. Training mod-
els to adhere to the regulations of reasoning
pushes them to make more effective abstrac-
tions needed for generalizability and transfer
learning. We focus on a challenging problem
of spatial reasoning over text. Our results on
various benchmarks using multiple language
models confirm our hypothesis of effective do-
main transfer based on neuro-symbolic train-
ing.

1 Introduction

Large language models dramatically altered the
world of natural language processing (NLP) re-
search through their performance on various
benchmarks (OpenAI, 2023; Brown et al., 2020).
Nevertheless, several limitations have been ad-
dressed by many researchers. One of the signifi-
cant limitations is complex reasoning (Valmeekam
et al., 2023a; Hao et al., 2023). Reasoning plays a
crucial role in human cognition. Therefore, rea-
soning abilities are essential for establishing more
reliable human-like intelligent systems (Huang
and Chang, 2023). The high performance of the
LLMs (OpenAI, 2023; Brown et al., 2020; Tou-
vron et al., 2023) promised the research commu-
nity that they could achieve the level of abstrac-
tion required for the reasoning process and achieve
a deeper understanding of natural language. Par-
ticularly, the recent results on QA tasks indicate

that the LLMs are competitive with human per-
formance, and LLMs also show significant im-
provements in various reasoning of LLMs, such as
mathematical reasoning (Imani et al., 2023), and
logical reasoning (Creswell et al., 2022). How-
ever, it is still unclear whether LLMs are capable
of true reasoning or simply memorizing patterns
from training data (Huang and Chang, 2023). Re-
cent research also illustrates that LLMs lack funda-
mental properties for generalization and perform-
ing human-like interactions (Gendron et al., 2023).
One type of reasoning where LLMs still lag signif-
icantly is spatial reasoning.

Spatial reasoning is essential for many applica-
tions, including language grounding (Zhang et al.,
2021), computer vision (Zhang and Kordjamshidi,
2022; Liu et al., 2023), robotics (Sisbot et al.,
2007; Yadollahi et al., 2023) and more specific
fields such as medical domain (Atif et al., 2007;
Datta et al., 2020; Gong et al., 2023). Recent
works (Liu et al., 2023; Chen et al., 2024) on high-
level domains highlight this significant shortcom-
ings in the spatial reasoning abilities of LLMs.
Moreover, LLMs alone occasionally falter in ab-
stract reasoning when multiple hops of reasoning
in basic domains (Yang et al., 2023; Mirzaee and
Kordjamshidi, 2023a). This indicates the chal-
lenge of spatial reasoning that needs attention. In
this paper, we focus on one basic domain, spa-
tial reasoning over text. Improvements in this
area could potentially encourage advancements in
more complex domains.

In the context of utilizing explicit logic to ad-
dress multi-hop spatial reasoning, Yang et al.
2023 incorporates LLMs in a neuro-symbolic
framework to pass the formal extractions to the
Answer Set Programming for solving the problem.
This technique overcomes the lack of spatial rea-
soning of LLMs and achieves a very high accuracy
over a synthetic benchmark. However, utilizing
this technique requires human-engineered knowl-



edge that often does not cover all possible sce-
narios and rules. In particular, formalizing all re-
quired commonsense knowledge for utilizing this
framework is not possible in realistic domains.

We tackle the issue of spatial reasoning in
LLMs and their difficulty in achieving the abstrac-
tions required for generalizability in unobserved
complex situations with a more generic neuro-
symbolic framework. The main idea is to exploit
spatial knowledge with available data and knowl-
edge. Exploiting knowledge can alleviate the need
for huge amounts of data and provide more robust
models in unobserved situations (Faghihi et al.,
2023). The main idea is to exploit spatial knowl-
edge with available data and knowledge. Exploit-
ing knowledge can alleviate the need for huge
amounts of data and provide more robust models
in unobserved situations (Faghihi et al., 2023). We
proposed to fine-tune the language models with a
neuro-symbolic technique that leverages available
spatial logical rules of reasoning to strengthen the
level of abstraction obtained by the pre-trained lan-
guage model. Particularly, we train the models
to minimize not only the cross-entropy loss but
also the violation of logical constraints. Our hy-
pothesis is that obtaining supervision from logical
knowledge enriches the models with levels of ab-
straction that improve generalizability. The advan-
tage of our proposed approach is that it does not
require full access to logical knowledge. Any par-
tially available knowledge can be exploited during
training without further use at inference time. This
is crucial since inference-time symbolic reasoning
can be problematic for real-time applications.

We select three benchmarks, SPARTQA-
HUMAN (Mirzaee et al., 2021), ResQ (Mirzaee
and Kordjamshidi, 2022), and STEPGAME (Shi
et al., 2022) to evaluate our proposed method. Our
improved results confirm our hypothesis about the
impact of neuro-symbolic training on generaliz-
ability. The contribution1 of this paper can be
summarized as follows, (1) We propose to ex-
ploit the available logical spatial knowledge in tun-
ing language models to deal with their lack of
spatial reasoning indicated by previous research.
(2) We provide extensive experimental results and
analysis on the existing benchmarks. Our results
consistently confirm the effectiveness of our pro-
posed approach in both encoder-based and genera-

1all the code is publicly available
https://github.com/premsrit/SPARTUNQChain.git

tive language models and their generalizability for
transferring knowledge to different domains. (3)
We show that the smaller models with our pro-
posed method generalize better on out-of-domain
and complex reasoning compared to using prompt-
engineered larger models.

C: There are three blocks called A, B, and C. A is to the left of B and B 
is to the left of C. In A, there is a small yellow square near and to the 
left of a large yellow circle. The large circle is near and to the left of a 
large blue triangle. In B, there is a small yellow square near and 
below a large blue triangle. There is a medium black triangle near 
and above the large blue triangle. In C, there is a small black square 
far to the left and above a small blue circle. The blue circle is near 
and to the left of a large yellow square.”
q1: Is the small black thing to the right of medium black thing?
a1:Yes
q2: What is the position of small black thing relative to medium black 
thing.
a2: Right

Figure 1: An example of story and questions of SQA.
q1 is Yes-No and q2 is Find relation type of questions.

2 Related Works

Investigating the reasoning capability of NLP
models has become a trending research topic given
the instability in the performance of LLMs (Gen-
dron et al., 2023; Valmeekam et al., 2023b; Feng
et al., 2024; Chen et al., 2024). Usually, this
ability is measured via question-answering bench-
marks (Weston et al., 2015; Zhou et al., 2020; Tan
et al., 2023). However, there are fewer studies
focusing on spatial reasoning over text. Recent
benchmarks, such as SPARTUN (Mirzaee and Ko-
rdjamshidi, 2022) and STEPGAME (Shi et al.,
2022) datasets, are created to address this issue by
providing evaluation resources.

Some studies based on the aforementioned
benchmarks report the performance of LLMs and
highlight their struggle even when reasoning based
on synthetic benchmarks (Yang et al., 2023). This
is problematic when multi-hop reasoning is in-
volved in inferring the answer. Multiple research
papers have tried to improve the spatial reasoning
capability of LLMs. Mirzaee and Kordjamshidi
2022 utilizes fine-tuning on synthetic data and il-
lustrates an improvement in multi-hop reasoning
even when applied to realistic domains. Another
approach was designing the specialized memory
network based on the recurrence neural network
to manipulate the deep reasoning questions (Shi
et al., 2022). Nevertheless, it was less effective
than tuning pre-trained language models (PLMs).
Some papers also focus on improving in-context



learning approaches. Sharma 2023 proposes a
prefix-based prompting that retrieves specific few-
shot examples, aiming to transfer knowledge from
simple to more complex spatial relations. Mean-
while, Hu et al. presents the idea of modify-
ing the commonly used in-context learning tech-
nique, Chain-of-Thought (CoT) (Wei et al., 2023).
They replace the textual explanation of spatial rela-
tions with symbolic representation. The approach
has significantly improved spatial understanding
in simple environments but is less applicable to
environments with more diverse and complex re-
lations. Another notable methodology is the dis-
entangling of relation extraction and reasoning.
Yang et al. 2023 uses GPT to perform extraction
and then applies Answer set programming (ASP)
to perform the reasoning process. While Mirzaee
and Kordjamshidi 2023b utilizes fine-tuned mod-
els for both extraction and reasoning procedures.

In this work, we take the spatial-logical knowl-
edge into account of the language models, so-
called a neuro-symbolic training approach to solve
the reasoning problem. There are many studies
that emphasize the usefulness of logical knowl-
edge to solve question-answering tasks (Sun et al.,
2022; Amizadeh et al., 2020; Prager et al., 2004).
We utilize logical knowledge in the form of logical
constraints. Similar approaches have been used in
solving multiple NLP problems. For example, Lu
et al. 2021 uses a heuristic function inspired by
the A* algorithm to restrict the generator given a
set of constraints. While Qin et al. 2022 uses a
sampling method looking for the most optimal so-
lution that satisfies the constraints. However, both
of these techniques apply the constraints during
inference, which is different from what we pro-
posed for using them during the training. There
is also the benchmark that investigates the ben-
efits of logical constraints in several NLP prob-
lems (Faghihi et al., 2023) under the DomiKnowS
framework (Faghihi et al., 2021). Though we use
techniques previously proposed to integrate the
logic, our approach utilizes constraints solely dur-
ing training, eliminating the need for access to log-
ical constraints during inference where using them
might be problematic for real-time applications.
As demonstrated in our experiments, leveraging
logic can guide models to achieve higher levels of
abstraction during training, resulting in better gen-
eralization at test time.

3 Methodology

3.1 Problem Definition

For the spatial QA task, the input consists of tex-
tual context C and a textual question Q asking
about spatial relations of objects within the scene
description. The output is the answer(s) to the
question, denoted as A. There are two types of
questions/answers. The first type is Yes/No (YN)
questions, and the other is find-relation (FR) ques-
tions. We restrict the answer domain of YN to A
= {Y es,No}, while the answers for FR depend
on the dataset. An example of answer domain for
FR is A = {left, right, above, below,. . . }. More
details on the variations of FR answer(s) are pro-
vided in the experimental section.

3.2 Backbone Language Models

We selected two types of language models, which
are encoder-based models, BERT family (De-
vlin et al., 2019), and generative models, Flan-
T5 (Chung et al., 2022), to evaluate the effective-
ness of our proposed neuro-symbolic fine-tuning
approach. Furthermore, we evaluate the perfor-
mance of Large Language Models, GPT-family,
and Llama3 on these tasks to compare them with
our proposed approach.

3.2.1 Encoder-based Language Models
We utilize BERT as the backbone architecture, fol-
lowing previously reported results (Mirzaee and
Kordjamshidi, 2022). We fine-tune BERT with an
additional classification layer to perform QA tasks.
For the YN domain, we use a binary classifica-
tion layer, while for the FR domain, we use mul-
tiple binary classification layers to conduct multi-
label/multi-class classification. The number of bi-
nary classification layers in the FR domain de-
pends on the number of possible answers, |A|. The
input to the BERT model is formed by concatenat-
ing the question, Q, and the context, C. After feed-
ing this input to BERT, we use the [CLS] token
from the last layer as the input to the classification
layer(s) for final answer prediction.

3.2.2 Generative Language Models
We use Flan-T5 (Chung et al., 2022) as the gen-
erative baseline model, which is an open-source
model for our fine-tuning purposes. To reduce the
intensive computational cost, we utilize the LoRA
adapter (Hu et al., 2021), which decreases the num-
ber of training parameters.



We applied the YN setting to Flan-T5, where
processing the output is more straightforward
since the first token can simply represent the out-
puts and be accessible from the generation of the
model. We select the highest probability between
the Yes and No tokens from the first token of the
Flan-T5 output as the answer to the input question.
The input prompt to the Flan-T5 model has the fol-
lowing structure, "Answer based on the context: C
Q."

For In-context Learning, we select Llama3-
8B (AI@Meta, 2024), GPT3.5 (Brown et al.,
2020), and GPT-4 (OpenAI, 2023) as the back-
bone LLMs for prompt engineering. Then, we ap-
ply Zero_shot, Few_shot techniques as the base-
line of prompt-based learning.
Zero-shot. We give the prompt to LLMs for an-
swers based on the scene description and the ques-
tion without having any examples.
Few-shots. We randomly select four questions
from the training set. Then, we add the informa-
tion about the response format for each question
with the corresponding label. We provide these ex-
amples along with the scene description and target
question to GPT for querying the answer.

q1: Box above 
triangle q2: Square is in box 

q3: Triangle 
below box

q4: Box contain 
square

T: Triangle below 
Square

Target

Intermediate

Initial facts

+

Converse: 
Above(X, Y) :- 

Below(Y, X) 

Topological: 
Below(X, Y) + Contain(Y, Z) + :- 

Below(X, Z) 

Converse: 
CoveredBy(X, Y) :- 

Contain(Y, X) 

Figure 2: An example of the chain of reasoning ques-
tions (Q-chain). Note that the factual sentences will
turn to questions like "Is triangle below square?"

3.3 Training with Spatial Logic
To address the challenge of multi-hop spatial rea-
soning, we utilize symbolic knowledge that ex-
presses logical spatial reasoning rules during train-
ing. We assume a formal knowledge base (KB) of
rules, referred to as spatial logic, is given during
training time. This spatial logic does not need to
be exhaustive or cover all reasoning aspects. Any
available knowledge can be exploited to enhance
the reasoning ability of the underlying Language
Model. In this work, we use 79 rules of reason-
ing collected in (Mirzaee and Kordjamshidi, 2022).

These rules are divided into four categories: con-
verse, inverse, transitive, and transitive + topolog-
ical. The KB covers rules between 15 spatial re-
lations, including directional and topological rela-
tions, such as "If above(x,y) then below (y,x)." or
"If inside(x,y) and left(x,z) then left(y,z)." Our main
hypothesis is that providing supervision from high-
level logical knowledge enables the model to cap-
ture higher levels of abstraction, improving gen-
eralization to other domains. To exploit the spa-
tial logic, we follow two steps, 1) Translate spatial
logic: we convert the spatial logic into example-
based logical constraints, 2) Obtain the soft logic
surrogate: we convert the logical constraints to dif-
ferentiable soft logic, 3) Incorporate Constraints:
we add the constraint violations as the part of train-
ing loss objective.

Translate spatial logic. As questions in the
dataset require multiple hops of reasoning follow-
ing spatial logic, we formulate the constraints to
express consistency with this chain of reasoning.
An example of a question is shown in Figure 2.
The target question asks about the relation be-
tween a triangle and a square, "Is the triangle be-
low square?". To answer this question, we intro-
duce the intermediate facts and turn them into a set
of questions, denoted as Q-chain. An example of
intermediate questions in Q-chain is shown in the
green boxes of Figure 2. Given the chain of reason-
ing, we observe that two initial facts, q1 entails q3,
q2 entails q4, and q4 using the converse rule. Both
q3 and q4 entail the target question using the tran-
sitivity rule. The corresponding logical constraint
between q1 and q3 is q1 ⇒ q3. More constraints
associated with this example can be found in Ta-
ble 1. All conversions of spatial logic to constraint
can be found in Appendix B.

Obtain the soft logic surrogate There are three
commonly used types of conversions for mapping
logical constraints into differentiable soft logic:
t-norm product, t-norm ukasiewicz, and t-norm
Gödel (Li et al., 2019). We use the t-norm prod-
uct for our conversion, ¬A is 1 - a, A ∧ B is ab,
A ∨ B is a + b - ab, and A ⇒ B is min(1, b

a )
where A, B are concepts with probabilities a, b,
respectively.

Incorporate Constraints. Optimization of an ob-
jective that includes both task performance and
soft constraints loss has been proposed in several
previous research (Li et al., 2019; Asai and Ha-
jishirzi, 2020; Étienne Bamas et al., 2020). In-



spired by them, we use the following objective,

∇wL(w; Λ) = ∇wL(w) +
K∑
k=1

λk∇whk(w) (1)

where L(w) is the task-performance loss function,
i.e. Cross-Entropy loss, K is the number of logi-
cal constraints, hk measures the violation from a
given logical constraint in soft logic differentiable
form, and λk is a learning parameter indicating the
importance of obeying kth rule.

In fact, in this work, we utilize the implemen-
tation in DominKnowS (Faghihi et al., 2021) for
integration of the constraints. The DomiKnowS
framework provides a declarative language to in-
tegrate symbolic knowledge as logical constraints.
We provide the original logical forms, and it auto-
matically converts them to the differentiable form
and facilitates incorporating them in the loss func-
tion. We, specifically, use an implemented opti-
mization that exploits a dual formulation of the
original loss proposed in (Étienne Bamas et al.,
2020), called the Primal-Dual(PD) program.
Creating the Q-chain. We automatically aug-
mented the questions in the training data to include
the Q-chain for every question. To automatically
create the Q-chain, we use the initial fact annota-
tions provided in SpaRTUN to obtain the interme-
diate facts for concluding the target answer. We
exhaustively search for finding the resolution tree
for the target fact.

Rules Constraints in YN Constraints in FR
R1 q1 ⇒ q3 Above(q1) ⇒ Below(q3)
R2 q2 ⇒ q4 CoveredBy(q2) ⇒ Contain(q4)
R3 q3 ∧ q4 ⇒ t Below(q3) ∧ Contain(q4) ⇒ Below(t)

Table 1: Example of logical constraints presented in
above example of Q − chain, where Ri refer to pre-
sented rule i used in the example.

3.4 In-context Learning with Spatial Logic
We utilize spatial logical reasoning to create few-
shot examples in the in-context prompting ap-
proaches, including Chain-of-Thoughts (Wei et al.,
2023), Chain-of-Symbols (Hu et al., 2023), and
others. The intention of these experiments is
to analyze and compare the LLMs’ performance
against our proposed fine-tuning method.
Chain-of-Thought (CoT). To enable LLMs to
provide reasoning explanations rather than a single
answer, we use CoT. In this setting, we manually
augment the answer response with the reasoning

explanations based on spatial logical rules. Then,
we give these CoT examples alongside prompt and
target questions to generate the target answer with
an explanation. An example of a reasoning expla-
nation of CoT is given in Table 2.

Logical Representation (LR). Generating the
chain of reasoning requires applying spatial log-
ical rules such as symmetric and transitivity. In
our problem setting, we further modify the CoT
format to a first-order logical form. The predicate-
argument form, R(obji, objj) represents relation
R holds between arguments obji and objj that de-
note object i and object j respectively. We fol-
low the same pipeline for CoT by replacing the
response format with this logical form. An exam-
ple of CoT using formal rules format, denoted as
LR, is provided in Table 2.

Chain of Symbol (CoS). This approach was intro-
duced in (Hu et al., 2023). This method illustrates
the advantage of symbolic representation over nat-
ural language on both number of tokens and perfor-
mance effectiveness. We construct the symbolic
explanations of our CoT with their proposed for-
mat. An example of the CoS counterpart of our
CoT expression is shown in Table 2.

Step-by-Step Reasoning. Based on the few-shot
examples of the SPARTQA-Human dataset, often
scene descriptions are complex and long. There-
fore, we decided to simplify the context. We take
an additional prompting step to split the context
using LLMs before asking the question. In this set-
ting, we expect that each line of generated context
contains only one simple spatial description. An
example of the original context is "There exists a
big red square, and medium red square in a block
called A. The big one is touching the right edge of
the block." The expected generated context from
LLM should be in the form of "The big red square
in block A. The big red square is touching the right
edge of block A..." More examples can be found
in Appendix A.2. We call this prompting approach
Step-by-Step Reasoning in the experiments.

Domain Text
Chain of Thought(CoT) large red square is to the left of a small green square

Logical Representation(LR) Left(large red square, small green square)
Chain of Symbol(CoS) (large, red, square) < (small, green, square)

Table 2: An example of a spatial relation used in Chain
of Thought, Logical Representation, and Chain of Sym-
bol.



4 Experimental

The main focus of the experiments is evaluating
the ability of LMs in spatial reasoning by look-
ing into both fine-tuning and in-context learning.
Moreover, we explore the impact of using spatial
logic in both models, especially demonstrating the
advantage of our proposed neuro-symbolic model.

4.1 Datasets

Our experiments are conducted on the following
datasets: SpaRTUN, SPARTQA-Human, ResQ,
and STEPGAME. However, we only evaluate
models on three out of four datasets, which are
SPARTQA-Human, ResQ, and STEPGAME. This
decision is based on the previous results (Mirzaee
and Kordjamshidi, 2022) that demonstrate the
challenge of these datasets compared to testing on
SpaRTUN which is likely to be solved with typical
fine-tuning on SpaRTUN.
SpaRTUN (Mirzaee and Kordjamshidi, 2022) is a
synthetic SQA dataset. This dataset contains both
YN and FR types of questions that require multi-
hop reasoning to answer. It covers a wide range
of spatial relations.2 The answer for YN is A =
{Y es,No}. While, the answer for the FR is the
subset of A = {left, right, above, below, behind,
front, near, far, dc, ec, po, tpp, ntpp, tppi, ntppi}.
The dataset provides the chain of reasoning anno-
tations which we use to create the Q− chains for
our proposed training method.
SPARTQA-Human (Ver.1) (Mirzaee et al., 2021)
is a small human-annotated SQA dataset. The
dataset contains both YN and FR types of ques-
tions. We only use the YN portion of this dataset
to fine-tune and evaluate our models.
SPARTQA-HUMAN (Ver.2), we follow the
methodologies from (Mirzaee et al., 2021) to fur-
ther extend the human annotation dataset with the
new contexts and questions. The purpose of cre-
ation is to enrich the SPARTQA-HUMAN with a
larger test for more diverse patterns and questions.
Annotators included authors and an undergrad stu-
dent paid as a research assistant.
ResQ (Kordjamshidi et al., 2017; Mirzaee and Ko-
rdjamshidi, 2022) is a small realistic domain SQA
dataset that includes multi-hop reasoning ques-
tions. The depth of reasoning is smaller than other
synthetic datasets, but it often requires common-

2The dataset also includes Don’t Know questions but for
simplicity we assume a closed world assumption and use No
label for those questions.

sense knowledge to infer the answer. It includes
the information about the depth of reasoning de-
noted as k that can be 1 or 2. For many questions,
the reasoning is complex and mixed up with com-
monsense in which case this is annotated as un-
classified depth. 12.30% of the test examples fall
in the k=1 split, 23.93% fall in the k=2 split, and
the rest are unclassified. This dataset contains only
YN questions. We use this dataset to evaluate the
performance of our models in realistic domains.
STEPGAME (Shi et al., 2022) is a synthetic SQA
dataset containing extensive multi-hop reasoning
questions over spatial relations until the depth of
ten with annotation denoted as k in our tables of
experimental results. This dataset contains only
FR questions. The domain of answer is a = {left,
right, above, below, overlap, lower-left, lower-
right, upper-left, upper-right}. The advantage
of utilizing this dataset is the possibility of eval-
uating the performance of the models at various
depths of reasoning.

4.2 Experimental Models

4.2.1 Fine-tuning Models
BERT. This is the baseline architecture described
in Section 3.2.1. We use bert-based-uncased as the
initial checkpoint. This model only fine-tune with
the target dataset in each experiment.
BERT-T. This is the baseline model for transfer
learning. We fine-tune the model with SpaRTUN
first. Then, we further fine-tune with the target
dataset of each experiment.
BERT-T + Q-Chain. We follow the method-
ology explained in section 3.3 to inject logical
knowledge into the BERT-T model via training
with constraints using the DomiKnowS frame-
work (Faghihi et al., 2021).
Flan-T5. We follow the methodology described in
section 3.2.2. We selected the flan-t5-base in this
experiment as the starting checkpoint.
Flan-T5-T. We utilize the same setting as the Flan-
T5 model. However, we further fine-tuned the
model with SpaRTUN before finally fine-tuning it
with the target dataset.
Flan-T5-T + Q-Chain. We inject the logical
knowledge into Flan-T5-T model using proposed
method in section 3.3. The backbone is the same
as the baseline model without any changes.
Experimental Setup. We use the same hyperpa-
rameters on all experiments. The learning rate was
one of {1e − 5, 8e − 6, 1e − 6}. For SPARTQA-



SPARTQA-Human ResQ
Model Ver.1 Ver.2 k=1 k=2 unclassified All Line
BERT 54.54 53.57 70.67 56.85 60.66 60.98 1
RoBERTa 54.54 - 76.00 56.16 58.87 60.33 2
BERT-T 55.94 58.03 76.00 54.79 61.18 61.15 3
RoBERTa-T 49.65 - 64.67 57.87 55.78 56.72 4
BERT-T+Q-Chain (Our) 59.44 58.92 72.00 58.90 59.90 61.31 5
Flan-T5 54.54 60.71 74.67 56.16 61.44 61.80 6
Flan-T5-T 49.65 57.14 81.33 54.79 61.44 62.30 7
Flan-T5-T+Q-Chain (Our) 55.94 61.61 81.33 57.53 63.75 64.43 8
GPT3.5 (zero-shot) 58.04 58.03 74.67 60.95 66.58 66.22 9
GPT3.5 (few-shot) 62.23 58.92 84.00 68.49 68.12 70.16 10
GPT3.5 (CoT) 65.73 71.43 86.67 67.12 68.64 70.49 11
GPT-4 (zero-shot) 77.62 68.75 84.00 73.97 76.86 77.05 12
Llama-3 (zero-shot) 61.54 50.89 80.00 64.38 67.35 68.20 13
Llama-3 (few-shot) 62.94 60.71 82.67 69.86 71.46 72.46 14
Llama-3 (CoT) 67.83 70.54 82.76 76.03 67.10 71.15 15

Table 3: Accuracy of SPARTQA-Human and ResQ with various models. For ResQ, k is the number of the
reasoning steps required for answering the questions. Unclassified indicates the cases in which k was a challenge
for human annotators to decide.

Human and ResQ, the number of epochs was 100,
whereas for STEPGAME, it was 30. For fine-
tuning with SPARTUN, 12 epochs for BERT and
8 epochsfor Flan-T5 were used. The final hyper-
parameters were selected using the development
portion of the target dataset. The loss function in
all experiments was Cross-Entropy Loss, and the
optimizer was Adam with amsgrad parameters set
to True. We run all experiments on 8 A6000 GPUs,
taking roughly 100 GPU hours.

4.2.2 In-context Learning with LLMs.
As explained in Section 3.2.2 and Section 3.4, we
evaluate the performance of all selected LLMs,
GPT3.5, GPT-4, and Llama3-8B, using ResQ
and SPARTQA-Human to compare with our fine-
tuning approach. The selected examples and
prompts for each in-context learning method can
be found in the Appendix A.2.
Zero-shot. We directly ask LLMs to answer the
question given the corresponding context.
Few-shot. We provide LLMs with four randomly
selected examples from the training data.
CoT. We augment the few-shot setting with rea-
soning explanations along with the CoT examples.
CoT-Formal. We provide the few-shot examples
with the described logical format in Section 3.4.
CoS. We further alter the few-shot examples with
the CoS symbolic forms explained in Section 3.4.

4.3 Results

Realistic Domain. ResQ is our realistic domain.
As observed in Table 3, using the Q-chain demon-
strates its effectiveness on both fine-tuning mod-

els (BERT and Flan-T5) with more significant
improvement on Flan-T5. Specifically, Flan-T5-
T+Q-chain (line 8) shows a 2% improvement
over Flan-T5-T (line 7). For a deeper analysis of
this result, we evaluated the performances of the
three different splits of ResQ. Based on our obser-
vations in Table 3, it revleals that our model con-
sistently imporve on k = 2, but adversely affects
BERT’s performance on k = 1 and the unclassi-
fied categories. We emphasize that the k = 2 split
requires more hops of reasoning, while the unclas-
sified portion requires commonsense knowledge.
It is expected that our method enhances deeper rea-
soning steps while it does not address the lack of
commonsense knowledge in the model. This hy-
pothesis is confirmed by results with LLMs. We
can observe that LLMs, on average, achieve higher
performance on this dataset, especially in unclas-
sified category (lines 9 to 15). LLMs consistently
show around 2% to 13% improvement over Flan-
T5+T+Q-Chain. This indicates that most LLMs’
improvement is mainly due to their commonsense
knowledge rather than their complex reasoning
capability, the main objective of our proposed
method. We tried few-shot and CoT prompting,
and the results did not significantly vary the results.
Therefore, we believe integrating our method into
the baselines with a stronger commonsense capa-
bility will increase the overall performance. This
improvement can be seen when comparing Flan-
T5 to BERT, where the larger generative model
(Flan-T5 here) shows a larger improvement on the
unclassified category. Consequently enhancing its
performance in other sub-categories as well.



Model k=1 k=2 k=3 k=4 k=5 k=6 k=7 k=8 k=9 k=10
BERT 98.51 95.53 91.68 66.71 49.11 41.47 41.47 32.09 28.94 28.16

BERT-T 98.50 95.32 93.26 76.78 66.36 58.76 53.70 46.27 42.71 40.12
BERT-T+Q-Chain (Our) 98.70 96.45 93.03 74.58 64.95 59.04 54.38 49.23 45.36 44.05

GPT3 (few-shot) 55.00 37.00 25.00 30.00 32.00 29.00 21.00 22.00 34.00 31.00
GPT3 (CoT) 61.00 45.00 30.00 35.00 35.00 27.00 22.00 24.00 23.00 25.00

Llama-3 (few-shot) 38.01 27.87 24.15 21.27 19.75 18.03 16.88 15.52 15.17 14.70

Table 4: Accuracy of STEPGAME on several models including results of GPT3 reported in (Yang et al., 2023).

Synthetic Domain with More Complex Logical
Reasoning. We evaluated SPARTQA-Human and
STEPGAME for this analysis. We consistently ob-
serve improvement with our proposed Q-chain in
this domain, which requires multiple hops of rea-
soning. As observed in Table 3, Q-chain con-
sistently shows improvement in both Flan-T and
BERT compared to fine-tuning without it. More-
over, the gap between small PLMs and LLMs is
much less on this dataset compared to the real-
istic domain (ResQ). This is expected, as LLMs
are better at commonsense rather than complex
reasoning, as previously explained. This result is
further supported when evaluating the model on
STEPGAME. As seen in Table 4, the fine-tuning
method consistently demonstrates significant dif-
ferences in all steps of reasoning compared to
LLMs. The struggle of GPT3 on reasoning on this
dataset is also investigated in (Yang et al., 2023).
We took the reported results from this paper in Ta-
ble 4. Looking into the details of STEPGAME,
we notice that our proposed method consistently
gains an improvement of 1% - 4% on high hops of
reasoning (k = 6 to k = 10), similar to the obser-
vation in ResQ. Overall, these results confirm our
main hypothesis that our proposed method equips
the models with a higher level of logical abstrac-
tion to conduct deeper steps of reasoning.

Model Raw Context Step by step
GPT3.5 (zero-shot) 58.04 63.64
GPT3.5 (few-shot) 62.23 64.33

GPT3.5 (CoT) 65.73 67.83
GPT3.5 (LR) 64.33 59.44
GPT3.5 (CoS) 60.14 58.74

GPT-4 (zero-shot) 77.62 78.32

Table 5: The accuracy of LLMs on SPARTQA-
HUMAN.

In-context Learning. For comparison, we also
experimented with variations of in-context learn-
ing and prompt engineering. According to Table 3,
Table 5, we found that CoT is the most effective
way to conduct spatial reasoning in both LLMs
(GPT and Llama). We also investigated whether

using Formal Representations in the context would
make a difference in the performance. However,
our results in Table 5 (line 4), show that the formal
representation slightly worsened the performance,
and using natural language in CoT was more ef-
fective. We further evaluated a CoS symbolic rep-
resentation alternative in our experiments. Our re-
sults show that CoT and LR outperform the CoS
while using the same in-context examples. This
demonstrates the advantage of using natural lan-
guage text in the prompt compared to the symbolic
representation proposed in CoS. To evaluate more
sophisticated prompting techniques, we ran the
step-by-step reasoning explained in Section 3.4 on
LLMs. As shown in Table 5, step-by-step reason-
ing achieves higher results compared to the major-
ity of natural prompting techniques including zero-
shot, few-shot, and CoT. The improvement ranges
from 2% to 5%, indicating a simpler and shorter
context can lead to a better understanding of the
spatial relations in LLMs. Lastly, to compare the
opened-source, Llama, and closed-source models,
GPT. Our experiments indicate that Llama-3 is
competitive with the closed-source GPT3.5, with
only a small difference in the Yes/No domain as
shown in Table 3. Therefore, we prioritize utiliz-
ing open-source models in our future research.

5 Conclusion

Given the importance of spatial reasoning in many
real-world applications, we focus on improving
this reasoning skill in language models. We equip
LLMs with neuro-symbolic supervision to lever-
age logical knowledge during fine-tuning. This
practice boosts their capability of capturing the
necessary level of abstraction for spatial reasoning
and enhances the generalizability for transferring
knowledge across domains. We demonstrate that
our constraint-based training technique achieves
higher accuracy compared to other competitive
Spatial Question-answering baselines across var-
ious benchmarks. Furthermore, the results in-
dicate that our model performs better in scenar-



ios requiring more reasoning steps. Lastly, we
compare our models with state-of-the-art LLMs.
Experimental comparisons show that while large
LLMs like GPT3.5 perform better in common-
sense reasoning, we achieve higher performance
in multi-hop spatial question-answering with com-
paratively smaller language models like BERT.

6 Limitations

While we improve the reasoning capability of the
models, our approach by no means solves the gen-
eral reasoning problem. The trustworthiness and
reliability of the LLMs are still a research chal-
lenge. Our models will need GPU resources to run
which might be expensive. Our research is based
on open source data and code and the results will
be reproducible. We do not see any ethical con-
cerns in our research approach and in the impact
of our results. Our data, being limited to the spa-
tial reasoning domain, does not include any spe-
cific type of bias that can harm minority people
belonging to any specific gender or race.
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A Appendix

A.1 Data Statistic

The data statistic of each dataset is shown in Ta-
ble 6.

Dataset Train Test Dev
SpaRTUN (YN) 20633 3232 3152
SpaRTUN (FR) 18400 2818 2830
Q-Chain (YN) 56987 - -
Q-Chain (FR) 46750 - -

SPARTQA-Human(Ver.1) 161 143 51
SPARTQA-Human(Ver.2) 200 112 60

ResQ 1008 610 333
STEPGAME 50000 5000 100000

Table 6: Size of each SQA benchmark used in experi-
ments

A.2 In-context Learning Examples

The example of each in-context learning prompt
and example is indicated below.

A.2.1 Few-Shot

system : You will be given story and question.
Then, you will answer either only Yes or No based
on given story. Candidate answer: [Yes, No]
user : There exist a big red square, a big red tri-

angle, a medium red square, and a small green cir-
cle in a block called A. The triangle and medium
square are touching the bottom edge of the block.
The big and medium square are touching the right
edge of the block. And the circle is above the big
square which is above the medium square. There
is another block called B to the left of block A. A
medium green square is touching the left edge of
block B and is below a medium red square. The
medium red square is above and to the left of a
small green square. Also a medium red triangle is
below and to the left of the small square. Is the
medium red triangle below the red square in block
B?
assistant : Yes
user : There are three blocks A, B and C. Block

A has a medium white triangle and a small red rect-
angle. There exists a medium white rectangle to
the left of the triangle and to the right of the red
rectangle. Aove block A there is block B. It has a
small white oval touching the bottom edge of the
block and a medium white triangle to the right of
it. Below block A there is block C. Its has a small
green triangle touching the top edge of the block.
A medium white triangle is below a small green
rectangle. Another small green triangle is below
and to the right of the white triangle. Are all rect-
angles above a white triangle?’
assistant : Yes
user : There is a block called A. Inside A, there

is a black triangle that is above and to the left of a
black circle. There is another block called B which
is to the right of A. In B, there are two yellow cir-
cles, a blue circle, and a blue square. The blue cir-
cle is touching the left edge of B. One of the yellow
circles is to the right of the blue circle and to the
left of the blue square. The blue square is touching
the right edge of B and is above the other yellow
circle, Which is also touching the right edge of B.
Does block B have all of the circles inside it?
assistant : No
user : There is a block called A. In A, there is

a large blue square near and below a medium blue
triangle. Far to the left of the medium blue triangle
is a small yellow square. Far above the medium
blue triangle is a small blue triangle. There is an-
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other block called B, which is to the right of A. In
B, There is a small yellow circle touching the left
edge of B. Far to the right of the circle is a large
yellow square. Near and above the large square
is a small yellow square. There is another block
called C, which is to the right of B. In C, there is a
small blue circle near and to the left of a large yel-
low triangle. The large yellow triangle is near and
to the left of a large blue triangle. The large blue
triangle is far above a large blue circle. The large
blue circle is touching the bottom edge of C. Are
the large blue things in C to the left of the large
blue thing in A?

assistant : No
user : There is a block called A. In A there is

a red triangle Which is above a black circle. The
black circle is touching the bottom of A. A yellow
square is touching the top edge of A and below that
there is a red oval is touching the right edge of A.
There is a second block call B Which is to the left
of A. Inside B there are 3 squares, a brown one,
a green one, and a red one. The green square is
above the red square and touching the left edge of
B. The brown square is touching both the bottom
edge and the right edge of B. The red square is
touching the left edge of the brown square. Is the
oval to the right of the brown thing?

A.2.2 Chain of Thought
system : You will be given story and question.
Then, you will answer either Yes or No with ex-
planation based on given story step by step. Can-
didate answer: [Yes, No]
user : There exist a big red square, a big red tri-

angle, a medium red square, and a small green cir-
cle in a block called A. The triangle and medium
square are touching the bottom edge of the block.
The big and medium square are touching the right
edge of the block. And the circle is above the big
square which is above the medium square. There
is another block called B to the left of block A. A
medium green square is touching the left edge of
block B and is below a medium red square. The
medium red square is above and to the left of a
small green square. Also a medium red triangle is
below and to the left of the small square. Is the
medium red triangle below the red square in block
B?

assistant : From information provided:The
medium red square is above a small green square
in B.Therefore, the small green square is below the
medium red square in B. The medium red trian-

gle is below the small square in B, and the small
green square is below the medium red square in
B.Therefore, the medium red triangle is below the
medium red square in B. Answer: Yes
user : There are three blocks A, B and C. Block

A has a medium white triangle and a small red rect-
angle. There exists a medium white rectangle to
the left of the triangle and to the right of the red
rectangle. Aove block A there is block B. It has a
small white oval touching the bottom edge of the
block and a medium white triangle to the right of
it. Below block A there is block C. Its has a small
green triangle touching the top edge of the block.
A medium white triangle is below a small green
rectangle. Another small green triangle is below
and to the right of the white triangle. Are all rect-
angles above a white triangle?’
assistant : From given information: A

medium white triangle is below a small green rect-
angle in C.Then, small green rectangle is above
medium white triangle in C.A small red rectan-
gle in block A, a medium white triangle in C,
and block C is below block A.Then, a medium
white triangle is below a A small red rectangle. A
medium white triangle is below a A small red rect-
angle. Therefore, a small red rectangle is above a
medium white triangle.A medium white rectangle
is in A,a medium white triangle in C, and block C
is below block A.Then, a medium white triangle
is below a A medium white rectangle. A medium
white triangle is below a A medium white rectan-
gle. Therefore, a medium white rectangle is above
a medium white triangle.A medium white rectan-
gle is above a medium white triangle.Thus, all rect-
angles from given story are above a white triangle.
Answer: Yes’

user : There is a block called A. Inside A, there
is a black triangle that is above and to the left of a
black circle. There is another block called B which
is to the right of A. In B, there are two yellow cir-
cles, a blue circle, and a blue square. The blue cir-
cle is touching the left edge of B. One of the yellow
circles is to the right of the blue circle and to the
left of the blue square. The blue square is touching
the right edge of B and is above the other yellow
circle, Which is also touching the right edge of B.
Does block B have all of the circles inside it?
assistant : From given relation, A black trian-

gle is above a black circle in A.Then, there is black
circle in A.Therefore, not all circle are in B. An-
swer: No
user : There is a block called A. In A, there is



a large blue square near and below a medium blue
triangle. Far to the left of the medium blue triangle
is a small yellow square. Far above the medium
blue triangle is a small blue triangle. There is an-
other block called B, which is to the right of A. In
B, There is a small yellow circle touching the left
edge of B. Far to the right of the circle is a large
yellow square. Near and above the large square
is a small yellow square. There is another block
called C, which is to the right of B. In C, there is a
small blue circle near and to the left of a large yel-
low triangle. The large yellow triangle is near and
to the left of a large blue triangle. The large blue
triangle is far above a large blue circle. The large
blue circle is touching the bottom edge of C. Are
the large blue things in C to the left of the large
blue thing in A?

assistant : Based on the provided content.
Block B is to the right if block A.Block C is to the
right of block B.Therefore, block C is to the right
of block A.In block C, the yellow triangle is near
and to the left of large blue triangle. Therefore,
there is large blue triangle in C.In block A, there
is a large blue square near and below a medium
blue triangle.Therefore, there is large blue square
in A.Then, large blue triangle in C is to the right of
large blue square in A.So, large blue triangle in C
is not to the left of large blue square in A. Answer:
No

user : There is a block called A. In A there is
a red triangle Which is above a black circle. The
black circle is touching the bottom of A. A yellow
square is touching the top edge of A and below that
there is a red oval is touching the right edge of A.
There is a second block call B Which is to the left
of A. Inside B there are 3 squares, a brown one,
a green one, and a red one. The green square is
above the red square and touching the left edge of
B. The brown square is touching both the bottom
edge and the right edge of B. The red square is
touching the left edge of the brown square. Is the
oval to the right of the brown thing?

A.2.3 Formal Language
system : You will be given story and question.
Then, you will answer either Yes or No with ex-
planation based on given story step by step. Can-
didate answer: [Yes, No]
user : There exist a big red square, a big red tri-

angle, a medium red square, and a small green cir-
cle in a block called A. The triangle and medium
square are touching the bottom edge of the block.

The big and medium square are touching the right
edge of the block. And the circle is above the big
square which is above the medium square. There
is another block called B to the left of block A. A
medium green square is touching the left edge of
block B and is below a medium red square. The
medium red square is above and to the left of a
small green square. Also a medium red triangle is
below and to the left of the small square. Is the
medium red triangle below the red square in block
B?
assistant : Below(Medium red triangle in B,

red square in block B) Answer: Yes
user : There are three blocks A, B and C. Block

A has a medium white triangle and a small red rect-
angle. There exists a medium white rectangle to
the left of the triangle and to the right of the red
rectangle. Above block A there is block B. It has
a small white oval touching the bottom edge of the
block and a medium white triangle to the right of
it. Below block A there is block C. Its has a small
green triangle touching the top edge of the block.
A medium white triangle is below a small green
rectangle. Another small green triangle is below
and to the right of the white triangle. Are all rect-
angles above a white triangle?’
assistant : Below(C, A) => Above(A, C) Con-

tain(A, Small red rectangle) + Above(A, C) + Con-
tain(C, Medium white triangle)=>Above(Small
red rectangle, Medium White triangle) Above(A,
C) & Contain(A, Medium white rectangle) & Con-
tain(C, Medium white triangle)=>Above(Medium
white rectangle, Medium White triangle) Be-
low(Medium white triangle in C, small green
rectangle in C) =>Above(small green rectangle,
Medium white triangle)Answer: Yes
user : There is a block called A. Inside A, there

is a black triangle that is above and to the left of a
black circle. There is another block called B which
is to the right of A. In B, there are two yellow cir-
cles, a blue circle, and a blue square. The blue cir-
cle is touching the left edge of B. One of the yellow
circles is to the right of the blue circle and to the
left of the blue square. The blue square is touching
the right edge of B and is above the other yellow
circle, Which is also touching the right edge of B.
Does block B have all of the circles inside it?
assistant : Contain(A, Black Circle) =>

¬Contain(B, Black Circle) ¬Contain(B, Black Cir-
cle) => Some x, ¬Contain(B, x) where x is Circle.
Answer: No

user : There is a block called A. In A, there is



a large blue square near and below a medium blue
triangle. Far to the left of the medium blue triangle
is a small yellow square. Far above the medium
blue triangle is a small blue triangle. There is an-
other block called B, which is to the right of A. In
B, There is a small yellow circle touching the left
edge of B. Far to the right of the circle is a large
yellow square. Near and above the large square
is a small yellow square. There is another block
called C, which is to the right of B. In C, there is a
small blue circle near and to the left of a large yel-
low triangle. The large yellow triangle is near and
to the left of a large blue triangle. The large blue
triangle is far above a large blue circle. The large
blue circle is touching the bottom edge of C. Are
the large blue things in C to the left of the large
blue thing in A?

assistant : Question: Left(large blue thing in
C, large blue thing in A)Related relation from
story: Right(B, A), Right(C, B), Contain(C, large
blue triangle), Contain(A, large blue square)Steps:
Right(C, B) + Right(B, A) => Right(C, A) Con-
tain(C, large blue triangle) + Right(C, A) + Con-
tain(A, large blue square) => Right(large blue tri-
angle in C, large blue square in A)Right(large
blue triangle in C, large blue square in A) =>
!Left(large blue thing in C, large blue thing in A)
Answer: No

user : There is a block called A. In A there is
a red triangle Which is above a black circle. The
black circle is touching the bottom of A. A yellow
square is touching the top edge of A and below that
there is a red oval is touching the right edge of A.
There is a second block call B Which is to the left
of A. Inside B there are 3 squares, a brown one,
a green one, and a red one. The green square is
above the red square and touching the left edge of
B. The brown square is touching both the bottom
edge and the right edge of B. The red square is
touching the left edge of the brown square. Is the
oval to the right of the brown thing?

A.2.4 Chain of Symbol
system : You will be given story and question.
Then, you will answer either Yes or No with ex-
planation based on given story step by step. Can-
didate answer: [Yes, No]
user : There exist a big red square, a big red tri-

angle, a medium red square, and a small green cir-
cle in a block called A. The triangle and medium
square are touching the bottom edge of the block.
The big and medium square are touching the right

edge of the block. And the circle is above the big
square which is above the medium square. There
is another block called B to the left of block A. A
medium green square is touching the left edge of
block B and is below a medium red square. The
medium red square is above and to the left of a
small green square. Also a medium red triangle is
below and to the left of the small square. Is the
medium red triangle below the red square in block
B?
assistant : Let analyze the relations given

from context to answer question.B: 1. (medium,
red, triangle) , < (small, red, square)Based on
the information, B: 1. (medium, red, triangle) ,
< (small, red, square)2. (medium, red, triangle)
(small, red, square)Answer: Yes

user : There are three blocks A, B and C. Block
A has a medium white triangle and a small red rect-
angle. There exists a medium white rectangle to
the left of the triangle and to the right of the red
rectangle. Above block A there is block B. It has
a small white oval touching the bottom edge of the
block and a medium white triangle to the right of
it. Below block A there is block C. Its has a small
green triangle touching the top edge of the block.
A medium white triangle is below a small green
rectangle. Another small green triangle is below
and to the right of the white triangle. Are all rect-
angles above a white triangle?’
assistant : Let consider the related relations

to answer the questions,A: 1. (small, red, rectan-
gle) 2. (medium, white, rectangle) C: 1. (small,
green, rectangle) = edge 2. (medium, white, tri-
angle) ) (small, green, rectangle) C A Based on
the information, let determined the relation of all
rectangle and white triangles, 1. C A. There-
fore, A C 2. A C, A: (small, red, rectangle),
and C: (medium, white, triangle). Therefore, A:
(small, red, rectangle) C: (medium, white, trian-
gle) 3. A C, A: (medium, white, rectangle), and C:
(medium, white, triangle). Therefore, A: (medium,
white, rectangle) C: (medium, white, triangle).
4. C: (medium, white, triangle) ) (small, green,
rectangle). Therefore, (small, green, rectangle)
(medium, white, triangle).5. A: (small, red, rect-
angle) C: (medium, white, triangle), A: (medium,
white, rectangle) C: (medium, white, triangle),
and C: (small, green, rectangle) (medium, white,
triangle), therefore,all rectangle above a white tri-
angle. Answer: Yes
user : There is a block called A. Inside A, there

is a black triangle that is above and to the left of a



black circle. There is another block called B which
is to the right of A. In B, there are two yellow cir-
cles, a blue circle, and a blue square. The blue cir-
cle is touching the left edge of B. One of the yellow
circles is to the right of the blue circle and to the
left of the blue square. The blue square is touching
the right edge of B and is above the other yellow
circle, Which is also touching the right edge of B.
Does block B have all of the circles inside it?

assistant : Let consider the related relations
to answer the questions,A: 1. (black, triangle) <
(black, circle)B: 1. (yellow, circle1) right (blue,
circle)2. (blue, square) (yellow, circle2) 3.(blue,
circle) =left edge of B Based on the information,
let determined the relation of all rectangle and
white triangles, 1. A: 1. (black, triangle) < (black,
circle). Therefore, A: (black, circle)2. A: (black,
circle). Therefore, B doesn’t have all circle. An-
swer: No

user : There is a block called A. In A, there is
a large blue square near and below a medium blue
triangle. Far to the left of the medium blue triangle
is a small yellow square. Far above the medium
blue triangle is a small blue triangle. There is an-
other block called B, which is to the right of A. In
B, There is a small yellow circle touching the left
edge of B. Far to the right of the circle is a large
yellow square. Near and above the large square
is a small yellow square. There is another block
called C, which is to the right of B. In C, there is a
small blue circle near and to the left of a large yel-
low triangle. The large yellow triangle is near and
to the left of a large blue triangle. The large blue
triangle is far above a large blue circle. The large
blue circle is touching the bottom edge of C. Are
the large blue things in C to the left of the large
blue thing in A?

assistant : Let consider the related relations to
answer the questions,B > A,C > BA: 1. (large, blue
square) (medium, blue square)C: 1. (large, yel-
low, triangle)Based on the information, let deter-
mined the relation large blue things in C and the
large blue thing in A,1. C > B and B > A. There-
fore, C > A2. A: 1. (large, blue, square) (medium,
blue square). Therefore, A: (large, blue, square)3.
C > A, A: (large, blue, square), and C: (large, yel-
low, triangle).Therefore, C: (large, yellow, trian-
gle) > A: (large, blue, square).4. C: (large, yel-
low, triangle) > A: (large, blue, square).Therefore,
C: (large, yellow, triangle) !< A: (large, blue,
square)large blue things in C is not to the left of
the large blue thing in A. Answer: No

user : There is a block called A. In A there is
a red triangle Which is above a black circle. The
black circle is touching the bottom of A. A yellow
square is touching the top edge of A and below that
there is a red oval is touching the right edge of A.
There is a second block call B Which is to the left
of A. Inside B there are 3 squares, a brown one,
a green one, and a red one. The green square is
above the red square and touching the left edge of
B. The brown square is touching both the bottom
edge and the right edge of B. The red square is
touching the left edge of the brown square. Is the
oval to the right of the brown thing?

A.2.5 Clarify Sentence Prompting
Rawcontext : There exist a big red square, a
big red triangle, a medium red square, and a small
green circle in a block called A. The triangle and
medium square are touching the bottom edge of
the block. The big and medium square are touch-
ing the right edge of the block. And the circle is
above the big square which is above the medium
square. There is another block called B to the left
of block A. A medium green square is touching
the left edge of block B and is below a medium
red square. The medium red square is above and
to the left of a small green square. Also a medium
red triangle is below and to the left of the small
square.
Spliting context : A big red square in block

A.
A big red triangle in block A.
A medium red square in block A.
A small green circle in block A.
The triangle is touching the bottom edge of

block A.
The medium square is touching the bottom edge

of block A.
The big square is touching the right edge of

block A.
The medium square is touching the right edge

of block A.
The circle is above the big square in A.
The big square is above the medium square in

A.
Block B is to the left of block A.
A medium green square is touching the left edge

of block B.
A medium green square is below a medium red

square in B.
The medium red square is above a small green

square in B.



The medium red square is left of a small green
square in B.

The medium red triangle is below the small
square in B.

The medium red triangle is left the small square
in B.

B Spatial Logical Rules

The conversion from spatial logical rules proposed
in (Mirzaee and Kordjamshidi, 2022) to logical
constraints used in our experiment is shown in Ta-
ble 7.



Rule Type Rule Constraints in YN Constraints in FR
above(x, y) ⇒ below(y, x) above(q0) ⇒ below(q1)
below(x, y) ⇒ above(y, x) below(q0) ⇒ above(q1)
left(x, y) ⇒ right(y, x) left(q0) ⇒ right(q1)
right(x, y) ⇒ left(y, x) right(q0) ⇒ left(q1)

front(x, y) ⇒ behind(y, x) front(q0) ⇒ behind(q1)
Converse behind(x, y) ⇒ front(y, x) q0 ⇒ q1 behind(q0) ⇒ front(q1)

coveredby(x, y) ⇒ cover(y, x) coveredby(q0) ⇒ cover(q1)
cover(x, y) ⇒ coveredby(y, x) cover(q0) ⇒ coveredby(q1)
inside(x, y) ⇒ contain(y, x) inside(q0) ⇒ contain(q1)
contain(x, y) ⇒ inside(y, x) contain(q0) ⇒ inside(q1)

near(x, y) ⇒ near(y, x) near(q0) ⇒ near(q1)
far(x, y) ⇒ far(y, x) far(q0) ⇒ far(q1)

Symmetric touch(x, y) ⇒ touch(y, x) q0 ⇒ q1 touch(q0) ⇒ touch(q1)
disconnected(x, y) ⇒ disconnected(y, x) disconnected(q0) ⇒ disconnected(q1)

overlap(x, y) ⇒ overlap(y, x) overlap(q0) ⇒ overlap(q1)

left(x, y) ∧ left(y, z) ⇒ left(x, z) left(q0) ∧ left(q1) ⇒ left(q2)
right(x, y) ∧ right(y, z) ⇒ right(x, z) right(q0) ∧ right(q1) ⇒ right(q2)
above(x, y) ∧ above(y, z) ⇒ above(x, z) above(q0) ∧ above(q1) ⇒ above(q2)
below(x, y) ∧ below(y, z) ⇒ below(x, z) below(q0) ∧ below(q1) ⇒ below(q2)

behind(x, y) ∧ behind(y, z) ⇒ behind(x, z) behind(q0) ∧ behind(q1) ⇒ behind(q2)
front(x, y) ∧ front(y, z) ⇒ front(x, z) front(q0) ∧ front(q1) ⇒ front(q2)
inside(x, y) ∧ inside(y, z) ⇒ inside(x, z) inside(q0) ∧ inside(q1) ⇒ inside(q2)

contain(x, y) ∧ contain(y, z) ⇒ contain(x, z) contain(q0) ∧ contain(q1) ⇒ contain(q2)
inside(x, y) ∧ coveredby(y, z) ⇒ inside(x, z) inside(q0) ∧ coveredby(q1) ⇒ inside(q2)
contain(x, y) ∧ cover(y, z) ⇒ contain(x, z) contain(q0) ∧ cover(q1) ⇒ contain(q2)

inside(x, y) ∧ left(y, z) ⇒ left(x, z) inside(q0) ∧ left(q1) ⇒ left(q2)
inside(x, y) ∧ right(y, z) ⇒ right(x, z) inside(q0) ∧ right(q1) ⇒ right(q2)
inside(x, y) ∧ above(y, z) ⇒ above(x, z) inside(q0) ∧ above(q1) ⇒ above(q2)
inside(x, y) ∧ below(y, z) ⇒ below(x, z) inside(q0) ∧ below(q1) ⇒ below(q2)

Transitivity inside(x, y) ∧ behind(y, z) ⇒ behind(x, z) q0 ∧ q1 ⇒ q2 inside(q0) ∧ behind(q1) ⇒ behind(q2)
inside(x, y) ∧ front(y, z) ⇒ front(x, z) inside(q0) ∧ front(q1) ⇒ front(q2)
inside(x, y) ∧ near(y, z) ⇒ near(x, z) inside(q0) ∧ near(q1) ⇒ near(q2)
inside(x, y) ∧ far(y, z) ⇒ far(x, z) inside(q0) ∧ far(q1) ⇒ far(q2)

inside(x, y) ∧ disconnected(y, z) ⇒ disconnected(x, z) inside(q0) ∧ disconnected(q1) ⇒ disconnected(q2)
coveredby(x, y) ∧ left(y, z) ⇒ left(x, z) coveredby(q0) ∧ left(q1) ⇒ left(q2)

coveredby(x, y) ∧ right(y, z) ⇒ right(x, z) coveredby(q0) ∧ right(q1) ⇒ right(q2)
coveredby(x, y) ∧ above(y, z) ⇒ above(x, z) coveredby(q0) ∧ above(q1) ⇒ above(q2)
coveredby(x, y) ∧ below(y, z) ⇒ below(x, z) coveredby(q0) ∧ below(q1) ⇒ below(q2)
coveredby(x, y) ∧ behind(y, z) ⇒ behind(x, z) coveredby(q0) ∧ behind(q1) ⇒ behind(q2)
coveredby(x, y) ∧ front(y, z) ⇒ front(x, z) coveredby(q0) ∧ front(q1) ⇒ front(q2)
coveredby(x, y) ∧ near(y, z) ⇒ near(x, z) coveredby(q0) ∧ near(q1) ⇒ near(q2)
coveredby(x, y) ∧ far(y, z) ⇒ far(x, z) coveredby(q0) ∧ far(q1) ⇒ far(q2)

coveredby(x, y) ∧ disconnected(y, z) ⇒ disconnected(x, z) coveredby(q0) ∧ disconnected(q1) ⇒ disconnected(q2)

inside(x, y) ∧ inside(h, z) ∧ left(y, z) ⇒ left(x, h) inside(q0) ∧ inside(q1) ∧ left(q2) ⇒ left(q3)
inside(x, y) ∧ inside(h, z) ∧ right(y, z) ⇒ right(x, h) inside(q0) ∧ inside(q1) ∧ right(q2) ⇒ right(q3)
inside(x, y) ∧ inside(h, z) ∧ above(y, z) ⇒ above(x, h) inside(q0) ∧ inside(q1) ∧ above(q2) ⇒ above(q3)
inside(x, y) ∧ inside(h, z) ∧ below(y, z) ⇒ below(x, h) inside(q0) ∧ inside(q1) ∧ below(q2) ⇒ below(q3)
inside(x, y) ∧ inside(h, z) ∧ behind(y, z) ⇒ behind(x, h) inside(q0) ∧ inside(q1) ∧ behind(q2) ⇒ behind(q3)
inside(x, y) ∧ inside(h, z) ∧ front(y, z) ⇒ front(x, h) inside(q0) ∧ inside(q1) ∧ front(q2) ⇒ front(q3)
inside(x, y) ∧ inside(h, z) ∧ near(y, z) ⇒ near(x, h) inside(q0) ∧ inside(q1) ∧ near(q2) ⇒ near(q3)
inside(x, y) ∧ inside(h, z) ∧ far(y, z) ⇒ far(x, h) inside(q0) ∧ inside(q1) ∧ far(q2) ⇒ far(q3)

inside(x, y) ∧ inside(h, z) ∧ disconnected(y, z) ⇒ disconnected(x, h) inside(q0) ∧ inside(q1) ∧ disconnected(q2) ⇒ disconnected(q3)
coveredby(x, y) ∧ coveredby(h, z) ∧ left(y, z) ⇒ left(x, h) coveredby(q0) ∧ coveredby(q1) ∧ left(q2) ⇒ left(q3)

coveredby(x, y) ∧ coveredby(h, z) ∧ right(y, z) ⇒ right(x, h) coveredby(q0) ∧ coveredby(q1) ∧ right(q2) ⇒ right(q3)
coveredby(x, y) ∧ coveredby(h, z) ∧ above(y, z) ⇒ above(x, h) coveredby(q0) ∧ coveredby(q1) ∧ above(q2) ⇒ above(q3)
coveredby(x, y) ∧ coveredby(h, z) ∧ below(y, z) ⇒ below(x, h) coveredby(q0) ∧ coveredby(q1) ∧ below(q2) ⇒ below(q3)
coveredby(x, y) ∧ coveredby(h, z) ∧ behind(y, z) ⇒ behind(x, h) coveredby(q0) ∧ coveredby(q1) ∧ behind(q2) ⇒ behind(q3)
coveredby(x, y) ∧ coveredby(h, z) ∧ front(y, z) ⇒ front(x, h) coveredby(q0) ∧ coveredby(q1) ∧ front(q2) ⇒ front(q3)
coveredby(x, y) ∧ coveredby(h, z) ∧ near(y, z) ⇒ near(x, h) coveredby(q0) ∧ coveredby(q1) ∧ near(q2) ⇒ near(q3)
coveredby(x, y) ∧ coveredby(h, z) ∧ far(y, z) ⇒ far(x, h) coveredby(q0) ∧ coveredby(q1) ∧ far(q2) ⇒ far(q3)

Transitivity + Topological coveredby(x, y) ∧ coveredby(h, z) ∧ disconnected(y, z) ⇒ disconnected(x, h) q0 ∧ q1 ∧ q2 ⇒ q3 coveredby(q0) ∧ coveredby(q1) ∧ disconnected(q2) ⇒ disconnected(q3)
left(x, y) ∧ left(h, z) ∧ contain(y, z) ⇒ left(x, h) left(q0) ∧ left(q1) ∧ contain(q2) ⇒ left(q3)
left(x, y) ∧ left(h, z) ∧ cover(y, z) ⇒ left(x, h) left(q0) ∧ left(q1) ∧ cover(q2) ⇒ left(q3)

right(x, y) ∧ right(h, z) ∧ contain(y, z) ⇒ right(x, h) right(q0) ∧ right(q1) ∧ contain(q2) ⇒ right(q3)
right(x, y) ∧ right(h, z) ∧ cover(y, z) ⇒ right(x, h) right(q0) ∧ right(q1) ∧ cover(q2) ⇒ right(q3)

above(x, y) ∧ above(h, z) ∧ contain(y, z) ⇒ above(x, h) above(q0) ∧ above(q1) ∧ contain(q2) ⇒ above(q3)
above(x, y) ∧ above(h, z) ∧ cover(y, z) ⇒ above(x, h) above(q0) ∧ above(q1) ∧ cover(q2) ⇒ above(q3)

below(x, y) ∧ below(h, z) ∧ contain(y, z) ⇒ below(x, h) below(q0) ∧ below(q1) ∧ contain(q2) ⇒ below(q3)
below(x, y) ∧ below(h, z) ∧ cover(y, z) ⇒ below(x, h) below(q0) ∧ below(q1) ∧ cover(q2) ⇒ below(q3)

behind(x, y) ∧ behind(h, z) ∧ contain(y, z) ⇒ behind(x, h) behind(q0) ∧ behind(q1) ∧ contain(q2) ⇒ behind(q3)
behind(x, y) ∧ behind(h, z) ∧ cover(y, z) ⇒ behind(x, h) behind(q0) ∧ behind(q1) ∧ cover(q2) ⇒ behind(q3)
front(x, y) ∧ front(h, z) ∧ contain(y, z) ⇒ front(x, h) front(q0) ∧ front(q1) ∧ contain(q2) ⇒ front(q3)
front(x, y) ∧ front(h, z) ∧ cover(y, z) ⇒ front(x, h) front(q0) ∧ front(q1) ∧ cover(q2) ⇒ front(q3)
near(x, y) ∧ near(h, z) ∧ contain(y, z) ⇒ near(x, h) near(q0) ∧ near(q1) ∧ contain(q2) ⇒ near(q3)
near(x, y) ∧ near(h, z) ∧ cover(y, z) ⇒ near(x, h) near(q0) ∧ near(q1) ∧ cover(q2) ⇒ near(q3)
far(x, y) ∧ far(h, z) ∧ contain(y, z) ⇒ far(x, h) far(q0) ∧ far(q1) ∧ contain(q2) ⇒ far(q3)
far(x, y) ∧ far(h, z) ∧ cover(y, z) ⇒ far(x, h) far(q0) ∧ far(q1) ∧ cover(q2) ⇒ far(q3)

disconnected(x, y) ∧ disconnected(h, z) ∧ contain(y, z) ⇒ disconnected(x, h) disconnected(q0) ∧ disconnected(q1) ∧ contain(q2) ⇒ disconnected(q3)
disconnected(x, y) ∧ disconnected(h, z) ∧ cover(y, z) ⇒ disconnected(x, h) disconnected(q0) ∧ disconnected(q1) ∧ cover(q2) ⇒ disconnected(q3)

Table 7: The conversion from spatial logical rules proposed in (Mirzaee and Kordjamshidi, 2022) to logical
constraints used in our experiment.
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