
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

EFFICIENT AGENT TRAINING FOR COMPUTER USE

Anonymous authors
Paper under double-blind review

ABSTRACT

Scaling up high-quality trajectory data has long been a critical bottleneck for
developing human-like computer use agents. We introduce PC Agent-E, an efficient
agent training framework that significantly reduces reliance on large-scale human
demonstrations. Starting with just 312 human-annotated computer use trajectories,
we further augment them by synthesizing diverse alternative action decisions with
Claude 3.7 Sonnet. Trained on these enriched trajectories, our PC Agent-E model
achieved a remarkable 141% relative improvement, and even surpassed the Claude
3.7 Sonnet by 10% on WindowsAgentArena-V2, an improved benchmark we also
released. By integrating robust human computer use skills with automated AI
data synthesis capabilities, our method not only brought substantial improvements
over training on human trajectories alone, but also significantly surpassed direct
distillation from Claude 3.7 Sonnet.

1 INTRODUCTION

Figure 1: PC Agent-E achieves state-of-the-art
open-source performance in Windows computer
use with just 312 augmented trajectories.

Developing autonomous agents that can operate
computers as humans do Anthropic (2024); He
et al. (2024); OpenAI (2025) has long been a
landmark pursuit in Artificial Intelligence (AI).
Such computer use agents, powered by Vision-
Language Models (VLMs), perceive screenshots
to interact directly with Graphical User Interfaces
(GUIs) — clicking buttons, navigating menus, and
entering text. This allows them to automate a
wide range of digital tasks, ranging from routine
paperwork and online shopping to complex con-
tent creation, promising a significant reduction in
manual human workload.

However, current models still fall significantly
short of human performance Xie et al. (2024);
Bonatti et al. (2024). This capability gap is even
more pronounced within the open-source commu-
nity, which lacks any solution competitive with
leading proprietary systems like Claude 3.7 Son-
net Anthropic (2025a). Instilling these advanced
computer use capabilities in open-source mod-
els remains an unsolved problem. A key factor
contributing to these deficiencies is the extreme
scarcity of high-quality computer use trajectory data Ou et al. (2024); Xu et al. (2025a).

In this work, we explore efficient agent training for computer use, enabling open-source models to
even exceed the performance of proprietary counterparts with minimal human annotation. Inspired
by recent findings Huang et al. (2024); Muennighoff et al. (2025); Ye et al. (2025) that synthesizing
high-quality data using advanced reasoning models like Deepseek-R1 Guo et al. (2025) can efficiently
enhance LLM reasoning, we extend the similar idea to the field of computer use agents.

We propose PC Agent-E, an efficient agent training framework that integrates human expertise with
AI automation. Starting from a small set of real-world human computer use trajectories, we leverage

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Figure 2: Overview of our framework, consisting of four key components: (1) Trajectory Collection,
gathering a small set of human trajectories by recording user actions and state observations at each
step; (2) Thought Completion, reconstructing the implicit thought process missing in raw human
trajectories; and (3) Trajectory Boost, diversifying action decisions to further augment trajectories (4)
Agent Training, developing a strong computer use agent with remarkable data efficiency.

a frontier agent model to diversify action decisions (action with thought in ReAct Yao et al. (2023)
paradigm), further enhancing the data quality. Training on these augmented trajectories, our agent
demonstrates strong computer use capabilities with remarkable data efficiency.

We begin by collecting 312 human computer use trajectories with PC Tracker He et al. (2024),
a tool for gathering human-computer interaction data, with only two humans annotating one day.
These trajectories include task descriptions, screenshots, and human keyboard/mouse actions. We
subsequently reconstruct the implicit thought process behind human actions, obtaining comprehensive
human trajectories with thoughts. The successful completion of these tasks is inherently assured by
human proficiency, obviating the need for additional verification.

While these human trajectories already serve as valuable agent training data, we further augment
them through Trajectory Boost, a data synthesis method we developed to enrich each trajectory step
with diverse alternative action decisions. The key insight is that computer use tasks can be completed
through multiple valid pathways, meaning each step has various reasonable action alternatives
supported by rational thought. To capture this diversity, we use a strong agent model to synthesize
other possible action decisions. Specifically, recognizing that each human trajectory step captures
an environment snapshot essential for computer use agents to make decisions, we provide these
snapshots to Claude 3.7 Sonnet Anthropic (2025a) and sample multiple possible action decisions,
thereby significantly enriching and diversifying the trajectory data.

Experimental results demonstrate that with only a small set of human-annotated trajectories, our
method can boost the performance of an open-source model to that of frontier models. Trained with
only 312 trajectories augmented by Claude 3.7 Sonnet, our PC Agent-E model achieves an impressive
141% relative improvement over the base model Qwen2.5-VL-72B and even outperforms the teacher
model Claude 3.7 Sonnet by 10% on WindowsAgentArena-V2, a benchmark we improved from
WindowsAgentArena Bonatti et al. (2024). Furthermore, PC Agent-E generalizes well to different
operating systems on OSWorld Xie et al. (2024). Our ablation study further demonstrates that our
method for utilizing human demonstrations is not only superior to relying solely on the human
trajectories but is also significantly more effective and efficient than directly distilling from the
teacher model.

In summary, our key contributions are threefold:

1. We propose Trajectory Boost, a simple data synthesis method that unlocks remarkable
data efficiency for training computer use agents. By augmenting human trajectories with
diverse action decisions from a frontier model, our method demonstrates significantly greater
effectiveness and efficiency than both using human data alone and direct distillation.

2. We release WindowsAgentArena-V2, an improved benchmark rectifying evaluation de-
pendence, infeasible hacking, and other limitations in the original WindowsAgentArena
benchmark, ensuring more robust and fair evaluations of computer use.

3. We developed PC Agent-E, an open-source computer use agent that achieves performance
comparable to leading proprietary models. Trained with just 312 augmented trajectories,
our model successfully outperforms the strong teacher model, Claude 3.7 Sonnet, showing
exceptional data efficiency.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

2 RELATED WORK

2.1 COMPUTER USE AGENT

With the advancement of VLMs Bai et al. (2025); Deitke et al. (2024), the way computer use
agents interact with computers has gradually shifted from relying on textual representations such
as accessibility trees Agashe et al. (2024); Wu et al. (2024a) to directly using screenshots Qin et al.
(2025); Xu et al. (2025b); He et al. (2024). Existing computer use agents can be categorized based on
how much human prior is built into their design: One is modular agent workflows Agashe et al.
(2024); Wu et al. (2024a), which defines specialized modules and prompts multi-agents to collaborate.
The other is native agent models Anthropic (2024); Qin et al. (2025); OpenAI (2025), which depends
on a single model to take action step by step based on its history and current state.

While modular agent workflows can reduce task complexity, their heavy reliance on human priors
hinders adaptation to new domains and limits end-to-end optimization Saltzer et al. (1984); Pan et al.
(2024). With the continuous enhancement of model capabilities, native agent models have emerged
as the dominant paradigm. This approach offers flexibility, generalizability, and sustainable gains via
supervised fine-tuning (SFT) Xu et al. (2025b) or reinforcement learning (RL) OpenAI (2025). Our
work explores the efficient agent training methods for native agent models through SFT.

2.2 DATA SYNTHESIS

As Large Language Models (LLMs) grow ever more powerful, it has become a common practice to
use them to synthesize data. Distillation methods Taori et al. (2023); Gunasekar et al. (2023); Xu
et al. (2023) leverage state-of-the-art (SOTA) models to generate large-scale data for training weaker
models. On the other hand, self-improvement methods enable a model to bootstrap and refine its own
training data Wang et al. (2023).

In the domain of computer use agents, data synthesis can be broadly categorized into three aspects: (1)
large-scale datasets that build foundational GUI understanding, with tasks like screenshot captioning
or question–answering Liu et al. (2024); Qin et al. (2025) (2) single-step visual grounding, where
mouse click tasks are synthesized from specific locations on the GUI Gou et al. (2025); Wu et al.
(2024b) (3) multi-step trajectory, in which recent research has explored leveraging web tutorials to
guide trajectory generation Ou et al. (2024); Xu et al. (2025a) or reverse-synthesizes tasks from the
agents’ own exploration records Sun et al. (2025); Murty et al. (2024). Our work differs from prior
work by synthesizing high-quality multi-step trajectories based on real-world human demonstrations
and emphasizing data efficiency.

3 METHOD

3.1 OVERVIEW

We propose PC Agent-E, an efficient agent training framework for computer use that integrates
human expertise with AI automation, as illustrated in Figure 2. Our method generates high-quality
trajectory data by combining authentic human-computer interactions with diverse action decisions,
offering advantages in both realism and diversity.

1. First, we gathered a small set of 312 task trajectories from human annotators, recording both
the screen state observation and the human action at each step, and then filtered the data to
remove erroneous steps and trajectories. (§3.2)

2. Subsequently, we reconstructed the latent human thought process before each action decision,
based on the corresponding screen state observation and history step context. (§3.3)

3. Then, using human trajectories as environment snapshots, we employ Claude 3.7 Sonnet to
synthesize diverse alternative action decisions with the Trajectory Boost method. (§3.4)

4. Finally, we develop PC Agent-E, our SOTA native agent model for Windows computer use,
trained on our augmented trajectories with a simple end-to-end scaffold. (§3.5)

3.2 TRAJECTORY COLLECTION

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

3.3 Thought Completion

Figure 3: Distribution of the 312 task
trajectories across different applications.

We collected human computer use trajectories with PC
Tracker He et al. (2024), a tool that records the screen state
observation and the human keyboard/mouse action at each
step for a given task. The recorded actions are structured
in a unified action space A, as shown in Table 1. For task
generation, we first manually compose a small seed set
across multiple software applications and then enlarge it
with LLMs. The resulting tasks were distributed to human
annotators, who completed the tasks on their own Win-
dows computers with PC Tracker recording trajectories
automatically. After finishing a task, annotators could ei-
ther discard unsatisfactory trajectories or modify the task
descriptions based on their actual execution, thereby en-
suring the correctness and completeness of the collected
trajectories. We then applied a set of rule-based filters to
remove entire trajectories or individual steps that exhibited
errors or other undesirable behaviors.

We employed a rigorous data decontamination procedure
on these collected trajectories. Each task description was
compared against the tasks in our main evaluation benchmark (§4) using n-gram overlap and semantic
similarity metrics. Trajectories with task descriptions exhibiting excessive similarity to any test task
were removed from the dataset.

This procedure finally yielded 312 real-world human computer use trajectories, with distribution
across applications shown in Figure 3. The whole annotation process was completed by two annotators
within a single day, with an average of roughly 3 minutes per trajectory. Given humans’ proficiency
in computer use, the mechanisms for annotators to discard trajectories or revise task descriptions after
execution, and our data filtering process, no additional verification was required to ensure trajectory
correctness.

3.3 THOUGHT COMPLETION

Action Description

click (x, y) clicks at coordinates.
right click (x, y) right-click at coordinates.
double click (x, y) double-click at coordinates.
drag from (x1, y1) to (x2, y2) drag the mouse.
scroll (x) scrolls the screen with offset x.
press key: enter presses the Enter key.
hotkey (ctrl, c) performs the Ctrl+C hotkey.
type text: hello type text “hello”.
wait pauses for some time.
finish the task is finished.
fail the task is failed.

Table 1: Unified action space A.

We first reconstruct the implicit thought pro-
cess behind human actions using an iterative ap-
proach. Specifically, for each action in the raw
trajectory, we provide Claude 3.7 Sonnet with:
task description, historical actions with their pre-
viously reconstructed thought processes, the cur-
rent action, and the corresponding screenshot.
Based on this information, the model generates
the implicit thought process behind action. As
shown in Figure 4, the recorded raw human tra-
jectory was converted to a human trajectory with
thoughts, where the reconstructed thought pro-
cess is added to each step. See our prompt in
Appendix D.1.

3.4 TRAJECTORY BOOST

After thought completion, we obtain comprehensive human trajectories with explicit thought pro-
cesses. While these trajectories already serve as valuable agent training samples, we further augment
them through a simple but effective approach called Trajectory Boost, which synthesizes diverse
alternative action decisions for each step of the trajectory.

The motivation behind Trajectory Boost is that computer use tasks inherently allow for multiple valid
solution pathways. Consequently, at any given step, several reasonable actions supported by rational
thought processes may exist, extending beyond the single solution adopted by human annotators. To
capture this inherent diversity, we utilize a frontier computer use agent model, Claude 3.7 Sonnet, to
generate single-step alternative action decisions. Its long-horizon planning capabilities, advanced

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

3.5 Agent Training

Figure 4: Visualization of our Trajectory Boost method. (Left) Raw human trajectory recorded by PC
Tracker. (Center) Human trajectory with reconstructed thoughts after Thought Completion, where the
red node indicates human action decisions. (Right) The final Traj Tree, where the blue node indicates
augmented diverse action decisions synthesized by Claude 3.7 Sonnet.

reasoning patterns, and broad knowledge of computer use enable it to generate thought processes and
actions that are highly informative and valuable, thereby substantially enhancing the richness and
diversity of our trajectory data.

Specifically, we recognize that each step in a human trajectory captures an environment snap-
shot of the computer, providing the necessary information for both humans and agents to make
decisions. For step k on a human trajectory with observation ok, thought process tk, action ak
and task description T , the environment snapshot is < T, ok, hk >, where the history context
hk = (t1, a1, t2, a2, . . . , tk−1, at−1) is constructed with previous human steps. We input this envi-
ronment snapshot to Claude 3.7 Sonnet instantiate in the PC Agent-E scaffold (§3.5), and sample
multiple single-step action decisions (t′k, a′k) from it. Prompts used are shown in Appendix D.2. In
practice, we sample 9 action decisions in parallel. This produces a Traj Tree, as shown in Figure 4,
with human trajectory forming the main trunk and the augmented action decisions branching off as
leaf nodes. These sampled action decisions from Claude 3.7 Sonnet are not executed in real computer
environments, but serve as important augmented data for later agent training.

3.5 AGENT TRAINING

Figure 5: A training example that also demonstrates the inference process of the PC Agent-E scaffold.

PC Agent-E adopts a deliberately simple end-to-end scaffold, as our primary focus is on validating the
effectiveness of our agent training methodology rather than optimizing performance through complex
workflow design or elaborate prompt engineering. At inference, PC Agent-E takes 〈screenshot, task
description, history〉 as input and outputs a 〈thought, action〉 decision in the ReAct Yao et al. (2023)
paradigm, as shown in Figure 5. The action space is the same as A in Table 1, and every action is
executed via the PyAutoGUI library. The history is a textual log of previous thoughts and actions.
To maintain simplicity in both training and inference, past screenshots are excluded, although we
believe that adding this image history would be beneficial for improving model performance. The
prompt used for the scaffold is shown in Appendix D.3.

For training, we transform each action node from our Traj Tree into an individual training sample. The
training sample structure and the inference-time scaffold of the agent share a direct correspondence,

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Figure 6: (Left) Overview of the WindowsAgentArena benchmark. (Right) Our main modifications
to the updated WindowsAgentArena-V2 benchmark.

as illustrated in Figure 5. For both human-demonstrated and model-synthesized action nodes, the
history in the training sample includes only prior human actions on the main trunk of the Traj Tree.
This is consistent with the historical context available to both humans and the model when making
the corresponding action decision. We finally obtained 27K training samples from 312 augmented
trajectories, each following a consistent input-output structure at inference time.

4 WINDOWSAGENTARENA-V2

We initially performed our evaluation on WindowsAgentArena Bonatti et al. (2024), a benchmark
designed to assess computer use ability in realistic Windows OS environments through diverse tasks
across multiple applications. It provides automatic initial configuration of virtual machine (VM)
state and hand-written evaluation rules (see Figure 6). However, we identified several limitations
during our assessment. To ensure evaluation reliability, we developed WindowsAgentArena-V2, an
updated benchmark comprising 141 tasks across 11 widely-used Windows applications, all derived
from the original WindowsAgentArena but with improvements detailed below.

Addressing the evaluation dependency issue. The original benchmark lacked VM state reset
between task evaluations, allowing changes from previous tasks to potentially affect subsequent ones.
We implemented VM snapshot restoration before each evaluation, ensuring consistent starting states,
preventing inter-task interference, and aligning with the i.i.d. (independent and identically distributed)
assumption. We also installed some essential software missing from the original VM snapshot but
required for proper evaluation.

Preventing infeasible hacking. Current computer use benchmarks such as WindowsAgentArena
and OSWorld often include infeasible tasks, which are inherently impossible to complete due to
issues such as deprecated system features or user-generated hallucinated commands Xie et al. (2024).
The evaluation metric for these tasks is simply considering a task successful if the action FAIL is
output at any point during execution. However, we found such evaluation methods particularly easy
to hack: an agent can trivially achieve a perfect score on infeasible tasks by always outputting FAIL,
without demonstrating any meaningful computer use capabilities. In contrast, completing a feasible
task typically requires the agent to execute actions step-by-step to actually fulfill the task objective,
posing a significantly different level of difficulty.

We refer to this phenomenon as infeasible hacking, a vulnerability confirmed by our subsequent
experiments (§5.6), in which a weaker model achieved markedly higher scores on infeasible tasks.
Since agents receive identical scores for feasible and infeasible tasks, their coexistence undermines
benchmark fairness. Additionally, given that current computer use agents’ capabilities are far from
optimal, we argue it is presently more valuable to focus on enhancing agents’ performance on feasible
tasks. Therefore, as a temporary solution in WindowsAgentArena-V2, we removed all infeasible
tasks to prevent infeasible hacking.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Guaranteeing VM initial state stability. We found that the state of VM after task initial configura-
tion often exhibited errors like unstable network connections, software launch failures, or system
lags. To address this, we designed a validation framework combining rule-based and LLM-based
evaluations to verify the initial state, with a re-test mechanism allowing up to three restart attempts for
faulty initializations. This approach reduced the initialization failure rate from 10%–30% (depending
on hardware) to below 5%.

Fixing evaluation flaws. We discovered that some evaluation functions contained bugs or lacked
robustness. For instance, in the task “clearing YouTube history to facilitate
finding other histories”, the evaluation erroneously awarded full scores to agents that
deleted the entire browsing history, clearly contradicting user intent. We identified and corrected sev-
eral evaluation errors and relied on human evaluators for a few complex tasks to improve assessment
reliability.

5 EXPERIMENT

In this section, we conduct extensive experiments to evaluate PC Agent-E and validate our Trajectory
Boost method. Our experiments are designed to answer the following key questions:

1. How does PC Agent-E perform against SOTA methods on computer use tasks? (§5.2)

2. How does Trajectory Boost’s data scaling surpass using human demonstrations alone? (§5.3)

3. How does Trajectory Boost differ from and outperform Direct Distillation? (§5.4)

4. How does test-time scaling affect the performance of PC Agent-E? (§5.5)

5. How well does PC Agent-E generalize to unseen environments? (§5.6)

5.1 SETUP

Benchmarks We use WindowsAgentArena-V2 (§4) for the main evaluation, as our training data
were collected on the Windows system. We also include results on the original WindowsAgentArena
Bonatti et al. (2024) in Appendix B for completeness. To test generalization across operating systems,
we report results on OSWorld Xie et al. (2024), another computer use benchmark for Linux systems.

Model Baseline We compare PC Agent-E with several SOTA models. These include the leading
proprietary models Claude 3.7 Sonnet Anthropic (2025a) and Claude 3.7 Sonnet with extended
thinking Anthropic (2025b), as well as open-source models UI-TARS Qin et al. (2025), UI-TARS-
1.5 Team (2025), and Qwen2.5-VL-72B Bai et al. (2025). We also compared with the popular
GPT-4o OpenAI (2024) model.

Method Baseline We compare our Trajectory Boost method with two alternative training ap-
proaches. The first is standard behavior cloning on the 312 human trajectories after thought com-
pletion. The second is direct distillation from Claude. We sample 10 end-to-end trajectories from
Claude 3.7 Sonnet for each of the 312 tasks. The resulting 3,120 trajectories are then used for training
with the identical procedure as PC Agent-E, matching the trajectory number of our method for a fair
comparison.

Settings All experiments and models utilized a screenshot-only observation setting with a uniform
screen resolution of 1280× 720. For the UI-TARS model series, we adopted their native framework,
which supports image history and code block actions. All other models, including Claude and Qwen,
were evaluated using our simple PC Agent-E scaffold. The default maximum number of steps was
set to 30, and we also investigated the impact of varying this step limit on model performance.

Training We train our PC Agent-E model based on the Qwen2.5-VL-72B Bai et al. (2025) backbone
with 27k data mentioned in §3.5. Experiments on a smaller model Qwen2.5-VL-7B are also included
in Appendix C. We set the image resolution to 1280×720 and context length to 8,192 tokens. Further
training details can be found in Appendix A.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

5.2 Main Results

5.2 MAIN RESULTS

As shown in Table 2, PC Agent-E achieves a remarkable 141% relative improvement over the base
model Qwen2.5-VL-72B on WindowsAgentArena-V2, even surpassing the strong teacher model
Claude 3.7 Sonnet by 10%, establishing itself as the SOTA open-source model for Windows computer
use. Notably, Claude 3.7 Sonnet used to synthesize our training data did not have the thinking mode
enabled, but PC Agent-E achieves performance comparable to the stronger Claude 3.7 Sonnet with
extended thinking.

Models Libreoffice Chrome Edge System VS Code VLC Utils Total
Number of Tasks 42 17 13 24 19 14 12 141

GPT-4o 0.0 5.9 0.0 8.3 0.0 0.0 0.0 2.1
Qwen2.5-VL-72B 0.0 34.7 15.4 20.8 26.3 7.6 16.7 14.9
UI-TARS-1.5-7B 7.1 34.7 23.1 45.8 21.1 7.6 16.7 21.3
UI-TARS-72B-DPO 0.0 40.6 38.5 58.3 36.8 7.6 25.0 26.2
Claude 3.7 Sonnet 2.4 46.5 61.5 54.2 52.6 29.0 16.7 32.6
Claude 3.7 Sonnet (thinking) 2.4 64.1 46.2 66.7 52.6 21.9 25.0 35.4

PC Agent-E (Ours) 4.8 64.1 46.2 50.0 57.9 35.7 33.3 36.0

Table 2: Results of success rate (%) for different models on WindowsAgentArena-V2.

Analysis To gain deeper insight into the specific capabilities enhanced through our training, we
conducted a qualitative analysis by examining 50 trajectories that Qwen2.5-VL-72B failed but PC
Agent-E succeeded, as well as trajectories where both models failed. We categorized the failure
patterns into three types: (1) Knowledge: models may lack specific computer use knowledge. For
instance, a model might not know how to enable a particular feature in VLC (a media player software).
(2) Planning: models may make incorrect planning, such as failing to recognize and recover from
previous erroneous actions. (3) Grounding: models may execute actions that are inconsistent with
their plan, primarily manifested as mouse-clicking errors. We found that our improvements primarily
stem from enhanced planning capabilities. After training, PC Agent-E produces noticeably longer
thought processes and demonstrates improved reasoning capabilities in verification and self-correction.
We did not observe significant improvements in knowledge or grounding capabilities.

5.3 DATA SCALING OVER HUMAN DEMONSTRATIONS

Figure 7: Performance of Trajectory Boost and Di-
rect Distillation method with different data scaling
factor s on WindowsAgentArena-V2.

To validate the effectiveness of our Trajectory
Boost method, we investigate the relationship
between the scale of synthesized data and model
performance. We define data scaling factor,
s, as the ratio of the total action number used
for training to the action number in the original
human trajectory. For the model trained exclu-
sively on the human demonstrations, the scaling
factor is s = 1. Our final model, PC Agent-E,
was trained using 9 synthesized actions and 1
original human action per step, corresponding
to the scaling factor s = 9 + 1 = 10.

As the blue line shown in Figure 7, our results
reveal that model performance with the Trajec-
tory Boost method scales significantly with the
scaling factor. Compared to training on hu-
man trajectories alone, which yields a limited
gain (improved from 14.9 to 17.2), PC Agent-E
achieves substantially greater performance gains
(improved from 14.9 to 36.0). This improvement is primarily driven by the diverse action decisions
synthesized from the frontier model with thought processes. This supplements the single human-
annotated solution and instills the frontier model’s advanced planning capabilities into our agent,
thereby yielding performance that far exceeds training on human trajectories alone.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

5.4 Trajectory Boost vs. Direct Distillation

5.4 TRAJECTORY BOOST VS. DIRECT DISTILLATION

To demonstrate that our method is more than a simple form of distillation, we compare Trajectory
Boost against a direct distillation baseline. For this baseline, we directly sample trajectories from our
teacher model, Claude 3.7 Sonnet, end-to-end.

Superior Performance As shown in Figure 7, our method significantly outperforms the direct
distillation baseline at most of the training data scales (blue line versus orange line). We attribute
this to the high quality of our synthesized data. Our method uses human trajectories as a reliable
foundation and leverages the frontier model to perform single-step augmentation. This avoids the
error accumulation that can occur in end-to-end trajectory distillation.

Exceptional Efficiency Another significant advantage of our method is time efficiency. The
distillation baseline requires deploying Claude in virtual machines and collecting trajectories through
online interaction, which makes it resource-intensive and time-consuming. In contrast, our Trajectory
Boost method performs offline data synthesis without interacting with the real environment, enabling
natural parallelization. Specifically, to collect an equivalent amount (3120 trajectories) of data, the
distillation baseline took about 900 hours, while Trajectory Boost required only 3 hours under the
same hardware conditions — a drastic 300-fold speedup.

5.5 TEST TIME SCALING

Figure 8: Test time scaling on
WindowsAgentArena-V2.

We also investigate how the performance of PC Agent-E varies
with test time scaling, a topic that has received increasing at-
tention in the research community Wu et al. (2025); Snell et al.
(2024). We evaluated the model’s performance with different
numbers of max steps allowed during task completion. As shown
in Figure 8, the difference in performance between the two mod-
els increases over time as the agent continues to interact with the
computer. With improved planning capabilities, PC Agent-E ben-
efits from “action scaling”—the ability to iteratively take more
actions to respond to environmental changes, explore for solu-
tions, correct errors, and ultimately solve the task. After training,
PC Agent-E can utilize more time and computational resources
to achieve better performance.

5.6 CROSS-PLATFORM EVALUATION

Models Feasible Infeasible Total
Number of Tasks 339 30 369

Qwen2.5-VL-72B 4.4 86.7 11.1
PC Agent-E (Ours) 10.9 63.3 14.9

Table 3: Success rate (%) on OSWorld (30-step).

We further evaluated our model on OSWorld to
assess cross-platform generalization capabilities.
As shown in Table 3, despite being trained exclu-
sively on Windows data, PC Agent-E achieves a
34% relative improvement in Linux systems as
well. These results validate the generalizability
of our method.

We also identified an interesting phenomenon in this experiment, which we designate as infeasible
hacking in §4: the weaker Qwen2.5-VL-72B model paradoxically achieved markedly better perfor-
mance on infeasible tasks. This observation suggests that current infeasible task evaluations do not
accurately reflect computer use agents’ capabilities. Future research may design better criteria for
infeasible tasks, such as checking agents’ rationale when declaring tasks impossible.

6 CONCLUSION

In this work, we introduced PC Agent-E, an efficient agent training framework for computer use.
With just 312 augmented trajectories, PC Agent-E achieved a 141% improvement over the base model
and outperformed the strong teacher model Claude 3.7 Sonnet. Our findings suggest that complex
computer use capabilities can be elicited by a remarkably small set of high-quality trajectories.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

7 REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our work, we include relevant source code in the supplementary
materials. This includes code and scripts for agent training, data processing, and the evaluation on
WindowsAgentArena-V2. Furthermore, we provide detailed descriptions of our method within the
main paper. Specifically, the data collection process is detailed in §3.2, the implementation of our
Trajectory Boost method is described in §3.4, and details regarding the training and evaluation can be
found in §5.1.

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774, 2023.

Saaket Agashe, Jiuzhou Han, Shuyu Gan, Jiachen Yang, Ang Li, and Xin Eric Wang. Agent s: An
open agentic framework that uses computers like a human. arXiv preprint arXiv:2410.08164,
2024.

Anthropic. Introducing computer use, 2024. URL https://www.anthropic.com/news/
3-5-models-and-computer-use.

Anthropic. Claude 3.7 sonnet, 2025a. URL https://www.anthropic.com/news/
claude-3-7-sonnet.

Anthropic. Claude’s extended thinking, 2025b. URL https://www.anthropic.com/news/
visible-extended-thinking.

Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
Shijie Wang, Jun Tang, Humen Zhong, Yuanzhi Zhu, Mingkun Yang, Zhaohai Li, Jianqiang Wan,
Pengfei Wang, Wei Ding, Zheren Fu, Yiheng Xu, Jiabo Ye, Xi Zhang, Tianbao Xie, Zesen Cheng,
Hang Zhang, Zhibo Yang, Haiyang Xu, and Junyang Lin. Qwen2.5-vl technical report, 2025. URL
https://arxiv.org/abs/2502.13923.

Rogerio Bonatti, Dan Zhao, Francesco Bonacci, Dillon Dupont, Sara Abdali, Yinheng Li, Yadong Lu,
Justin Wagle, Kazuhito Koishida, Arthur Bucker, Lawrence Jang, and Zack Hui. Windows agent
arena: Evaluating multi-modal os agents at scale, 2024. URL https://arxiv.org/abs/
2409.08264.

Matt Deitke, Christopher Clark, Sangho Lee, Rohun Tripathi, Yue Yang, Jae Sung Park, Moham-
madreza Salehi, Niklas Muennighoff, Kyle Lo, Luca Soldaini, et al. Molmo and pixmo: Open
weights and open data for state-of-the-art multimodal models. arXiv preprint arXiv:2409.17146,
2024.

Boyu Gou, Ruohan Wang, Boyuan Zheng, Yanan Xie, Cheng Chang, Yiheng Shu, Huan Sun, and
Yu Su. Navigating the digital world as humans do: Universal visual grounding for gui agents, 2025.
URL https://arxiv.org/abs/2410.05243.

Suriya Gunasekar, Yi Zhang, Jyoti Aneja, Caio César Teodoro Mendes, Allie Del Giorno, Sivakanth
Gopi, Mojan Javaheripi, Piero Kauffmann, Gustavo de Rosa, Olli Saarikivi, Adil Salim, Shital
Shah, Harkirat Singh Behl, Xin Wang, Sébastien Bubeck, Ronen Eldan, Adam Tauman Kalai,
Yin Tat Lee, and Yuanzhi Li. Textbooks are all you need, 2023. URL https://arxiv.org/
abs/2306.11644.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Yanheng He, Jiahe Jin, Shijie Xia, Jiadi Su, Runze Fan, Haoyang Zou, Xiangkun Hu, and Pengfei
Liu. Pc agent: While you sleep, ai works – a cognitive journey into digital world, 2024. URL
https://arxiv.org/abs/2412.17589.

10

https://www.anthropic.com/news/3-5-models-and-computer-use
https://www.anthropic.com/news/3-5-models-and-computer-use
https://www.anthropic.com/news/claude-3-7-sonnet
https://www.anthropic.com/news/claude-3-7-sonnet
https://www.anthropic.com/news/visible-extended-thinking
https://www.anthropic.com/news/visible-extended-thinking
https://arxiv.org/abs/2502.13923
https://arxiv.org/abs/2409.08264
https://arxiv.org/abs/2409.08264
https://arxiv.org/abs/2410.05243
https://arxiv.org/abs/2306.11644
https://arxiv.org/abs/2306.11644
https://arxiv.org/abs/2412.17589

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

REFERENCES

Zhen Huang, Haoyang Zou, Xuefeng Li, Yixiu Liu, Yuxiang Zheng, Ethan Chern, Shijie Xia, Yiwei
Qin, Weizhe Yuan, and Pengfei Liu. O1 replication journey–part 2: Surpassing o1-preview through
simple distillation, big progress or bitter lesson? arXiv preprint arXiv:2411.16489, 2024.

Junpeng Liu, Tianyue Ou, Yifan Song, Yuxiao Qu, Wai Lam, Chenyan Xiong, Wenhu Chen, Graham
Neubig, and Xiang Yue. Harnessing webpage uis for text-rich visual understanding, 2024. URL
https://arxiv.org/abs/2410.13824.

Yadong Lu, Jianwei Yang, Yelong Shen, and Ahmed Awadallah. Omniparser for pure vision based
gui agent. arXiv preprint arXiv:2408.00203, 2024.

Niklas Muennighoff, Zitong Yang, Weijia Shi, Xiang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi, Luke
Zettlemoyer, Percy Liang, Emmanuel Candès, and Tatsunori Hashimoto. s1: Simple test-time
scaling. arXiv preprint arXiv:2501.19393, 2025.

Shikhar Murty, Dzmitry Bahdanau, and Christopher D Manning. Nnetscape navigator: Complex
demonstrations for web agents without a demonstrator. arXiv preprint arXiv:2410.02907, 2024.

OpenAI. Hello gpt-4o. openai.com, May 2024. URL https://openai.com/index/
hello-gpt-4o/.

OpenAI. Computer-using agent, 2025. URL https://openai.com/index/
computer-using-agent/.

Tianyue Ou, Frank F. Xu, Aman Madaan, Jiarui Liu, Robert Lo, Abishek Sridhar, Sudipta Sengupta,
Dan Roth, Graham Neubig, and Shuyan Zhou. Synatra: Turning indirect knowledge into direct
demonstrations for digital agents at scale, 2024. URL https://arxiv.org/abs/2409.
15637.

Jiayi Pan, Xingyao Wang, Graham Neubig, Navdeep Jaitly, Heng Ji, Alane Suhr, and Yizhe Zhang.
Training software engineering agents and verifiers with swe-gym. arXiv preprint arXiv:2412.21139,
2024.

Yujia Qin, Yining Ye, Junjie Fang, Haoming Wang, Shihao Liang, Shizuo Tian, Junda Zhang, Jiahao
Li, Yunxin Li, Shijue Huang, et al. Ui-tars: Pioneering automated gui interaction with native
agents. arXiv preprint arXiv:2501.12326, 2025.

Jerome H. Saltzer, David P. Reed, and David D. Clark. End-to-end arguments in system design. ACM
Transactions on Computer Systems, 2(4):277–288, November 1984. doi: 10.1145/357401.357402.

Charlie Snell, Jaehoon Lee, Kelvin Xu, and Aviral Kumar. Scaling llm test-time compute optimally
can be more effective than scaling model parameters, 2024. URL https://arxiv.org/abs/
2408.03314.

Qiushi Sun, Kanzhi Cheng, Zichen Ding, Chuanyang Jin, Yian Wang, Fangzhi Xu, Zhenyu Wu,
Chengyou Jia, Liheng Chen, Zhoumianze Liu, Ben Kao, Guohao Li, Junxian He, Yu Qiao, and
Zhiyong Wu. Os-genesis: Automating gui agent trajectory construction via reverse task synthesis,
2025. URL https://arxiv.org/abs/2412.19723.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin, Percy
Liang, and Tatsunori B Hashimoto. Alpaca: A strong, replicable instruction-following model.
Stanford Center for Research on Foundation Models. https://crfm. stanford. edu/2023/03/13/alpaca.
html, 3(6):7, 2023.

ByteDance Seed Team. Introducing ui-tars-1.5. seed-tars.com, 2025. URL https://seed-tars.
com/1.5/.

Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa Liu, Noah A. Smith, Daniel Khashabi, and
Hannaneh Hajishirzi. Self-instruct: Aligning language models with self-generated instructions,
2023. URL https://arxiv.org/abs/2212.10560.

Yangzhen Wu, Zhiqing Sun, Shanda Li, Sean Welleck, and Yiming Yang. Inference scaling laws: An
empirical analysis of compute-optimal inference for problem-solving with language models, 2025.
URL https://arxiv.org/abs/2408.00724.

11

https://arxiv.org/abs/2410.13824
https://openai.com/index/hello-gpt-4o/
https://openai.com/index/hello-gpt-4o/
https://openai.com/index/computer-using-agent/
https://openai.com/index/computer-using-agent/
https://arxiv.org/abs/2409.15637
https://arxiv.org/abs/2409.15637
https://arxiv.org/abs/2408.03314
https://arxiv.org/abs/2408.03314
https://arxiv.org/abs/2412.19723
https://seed-tars.com/1.5/
https://seed-tars.com/1.5/
https://arxiv.org/abs/2212.10560
https://arxiv.org/abs/2408.00724

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

REFERENCES

Zhiyong Wu, Chengcheng Han, Zichen Ding, Zhenmin Weng, Zhoumianze Liu, Shunyu Yao, Tao
Yu, and Lingpeng Kong. Os-copilot: Towards generalist computer agents with self-improvement.
arXiv preprint arXiv:2402.07456, 2024a.

Zhiyong Wu, Zhenyu Wu, Fangzhi Xu, Yian Wang, Qiushi Sun, Chengyou Jia, Kanzhi Cheng,
Zichen Ding, Liheng Chen, Paul Pu Liang, and Yu Qiao. Os-atlas: A foundation action model for
generalist gui agents, 2024b. URL https://arxiv.org/abs/2410.23218.

Tianbao Xie, Danyang Zhang, Jixuan Chen, Xiaochuan Li, Siheng Zhao, Ruisheng Cao, Toh Jing
Hua, Zhoujun Cheng, Dongchan Shin, Fangyu Lei, Yitao Liu, Yiheng Xu, Shuyan Zhou, Silvio
Savarese, Caiming Xiong, Victor Zhong, and Tao Yu. Osworld: Benchmarking multimodal agents
for open-ended tasks in real computer environments, 2024. URL https://arxiv.org/abs/
2404.07972.

Can Xu, Qingfeng Sun, Kai Zheng, Xiubo Geng, Pu Zhao, Jiazhan Feng, Chongyang Tao, and Daxin
Jiang. Wizardlm: Empowering large language models to follow complex instructions, 2023. URL
https://arxiv.org/abs/2304.12244.

Yiheng Xu, Dunjie Lu, Zhennan Shen, Junli Wang, Zekun Wang, Yuchen Mao, Caiming Xiong, and
Tao Yu. Agenttrek: Agent trajectory synthesis via guiding replay with web tutorials, 2025a. URL
https://arxiv.org/abs/2412.09605.

Yiheng Xu, Zekun Wang, Junli Wang, Dunjie Lu, Tianbao Xie, Amrita Saha, Doyen Sahoo, Tao Yu,
and Caiming Xiong. Aguvis: Unified pure vision agents for autonomous gui interaction, 2025b.
URL https://arxiv.org/abs/2412.04454.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
React: Synergizing reasoning and acting in language models, 2023. URL https://arxiv.
org/abs/2210.03629.

Yixin Ye, Zhen Huang, Yang Xiao, Ethan Chern, Shijie Xia, and Pengfei Liu. Limo: Less is more for
reasoning. arXiv preprint arXiv:2502.03387, 2025.

12

https://arxiv.org/abs/2410.23218
https://arxiv.org/abs/2404.07972
https://arxiv.org/abs/2404.07972
https://arxiv.org/abs/2304.12244
https://arxiv.org/abs/2412.09605
https://arxiv.org/abs/2412.04454
https://arxiv.org/abs/2210.03629
https://arxiv.org/abs/2210.03629

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

A TRAINING DETAILS

The PC Agent-E model is fine-tuned on a dataset of 27k samples for 2 epochs using 32 NVIDIA
GPUs over approximately 5 hours, with Qwen2.5-VL-72B as the base model. We set the context
length to 8,192 tokens, using a batch size of 128 and a learning rate of 2e-6. The training process
employs cosine annealing for learning rate scheduling, with a warm-up ratio of 0.05. The visual
tower is kept frozen throughout the training process.

B EVALUATION ON ORIGINAL WINDOWSAGENTARENA BENCHMARK

We also evaluate PC Agent-E’s performance on the original WindowsAgentArena benchmark. As
shown in Table 4, our model greatly surpasses the previous SOTA method, NAVI, across all task
categories. NAVI is a complex agent framework that integrates GPT-4V Achiam et al. (2023) with a
specialized tool called Omniparser Lu et al. (2024).

Method Office Web System Coding Media & Video Utils Overall
NAVI Bonatti et al. (2024) 0.0 27.3 33.3 27.3 30.3 8.3 19.5
PC Agent-E (Ours) 2.3 33.1 70.6 37.5 33.3 25.0 27.9

Table 4: Success Rate (%) on the original WindowsAgentArena benchmark.

C EXPERIMENT ON SMALLER MODEL

Method Overall
Qwen2.5-VL-7B 5.0
PC Agent-E 7B 6.4

Table 5: Success Rate (%) on
WindowsAgentArena-V2.

To test our method on smaller models, we also trained Qwen2.5-
VL-7B Bai et al. (2025) on the same 27K dataset for PC Agent-E,
resulting in the PC Agent-E 7B. As shown in Table 5, our method
yields improvements on the 7B model as well, although the gains
are not as significant as those observed with the 72B model. This
is because our method mainly enhances the model’s planning
ability, as discussed in §5.2, but the small model’s deficiencies in
knowledge and grounding limit the overall performance gain.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

D PROMPTS

D.1 THOUGHT COMPLETION

Table 6: Thought Completion Prompt
Prompt for Thought Completion

You are a helpful computer use agent designed to complete tasks on a
computer. Your goal is to recreate your thought process behind a
specific action.

You will be provided with:

1. The task you are attempting to complete.
2. A history of the steps you have already performed (up to 50, if any;
none if it was the first action).
3. The specific action you chose to take.
4. The name of the element you clicked (if you clicked on an element). It
might be too general or vague, you have to decied what to click based on
the screenshot.
5. A screenshot of the computer screen at the moment you decided to take
the action.
6. The red marks on the screenshot indicate the position of the click or
drag action.

To formulate your thought process, consider:

1. What do you observe on the screen? Consider your task and previous
action when you analyzing current screenshot.
2. Evaluate your previous action (if applicable):

- Did it achieve the intended effect? If not, identify possible
reasons (e.g., misclick, inactive element).

Some typical examples for ineffective action:
- misclick in an empty space
- ineffective opening some elements without double click
- ineffective type text/ press key because of inactivated input
box

- Did the result align with your previous plan, or did something
unexpected happen?

Some typical examples for ineffective action:
- misclick in a wrong element
- forget to clear existing text in input bar

3. Based on your action history, assess your progress toward completing
the overall task.
4. Consider if you’re exploring how to finish the task because of failed
attempts in history steps.

Present your thought process as a clear, natural first-person
narrative that explains your reasoning at that moment.

Important requirements:
1. **DO NOT** mention the red marks in your response. These marks were
added after the fact
to indicate the position of your click or drag actions, and they were
not on the screen when you made the decision. **DO NOT** mention "red
box", "red square", "red circle", or "red arrow" in your response.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

D.2 Trajectory Boost

2. Write as if you are thinking in real-time before taking the action.
Do not include post-action evaluation or hindsight.

The task you are attempting to complete: {task_description}
Your performing history: {history_str}
The specific action you chose to perform: {action}

D.2 TRAJECTORY BOOST

Table 7: Trajectory Boost Prompt
Prompt for Trajectory Boost

You are a helpful assistant who can help users complete computer tasks,
with **full permission** to make any operations on the user’s computer.
The operating system is windows.
Based on the provided current state, you need to suggest the next action
to complete the task. Do not try to complete the entire task in one step.
Break it down into smaller steps, and at each step you will get a new
state to interact with.

IMPORTANT: You must strictly adhere to the following rules:

1. Choose ONLY ONE action from the list below for each response, DO NOT
perform more than one action per step.
2. Follow the exact syntax format for the selected action, DO NOT create
or use any actions other than those listed.
3. Once the task is completed, output action finish.

Valid actions:
1. click (x, y)

click the element at the position (x, y) on the screen
2. right click (x, y)

right click the element at the position (x, y) on the screen
3. double click (x, y)

double click the element at the position (x, y) on the screen
4. drag from (x1, y1) to (x2, y2)

drag the element from position (x1, y1) to (x2, y2).
5. scroll (x)

scroll the screen vertically with pixel offset x. Positive values of
x: scroll up, negative values of x: scroll down.

6. press key: key_content
press the key key_content on the keyboard.

7. hotkey (key1, key2)
press the hotkey composed of key1 and key2.

8. hotkey (key1, key2, key3)
press the hotkey composed of key1, key2, and key3.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

D.2 Trajectory Boost

9. type text: text_content
type content text_content on the keyboard.
Note that before typing text, you need to ensure the text box or input
field is active/focused first. If the text box is not yet activated,
you should first click on it to activate it, and then use type text in
a separate step.

10. wait
wait for some time, usually for the system to respond, screen to
refresh, advertisement to finish.

11. finish
indicating that the task has been completed.

12. fail
indicating that the task has failed, of this task is infeasible
because not enough information is provided.

Before deciding your next action, you should think carefully about the
current state of the screen and your history steps. Contain the
following points in your thought process:

1. What do you observe on the screen? Consider your task and previous
action when you analyzing current screenshot.
2. What’s your previous plan and action (if applicable)? Evaluate your
previous plan and action in three conditions:

1. It didn’t make any effect. You should dentify possible reasons (e.
g., misclick, inactive element) and adjust your plan in this step.

Some typical examples for ineffective action:
- misclick in an empty space
- ineffective opening some elements without double click
- ineffective type text/ press key because of inactivated input
box

2. It made some effect, but the result does not align with previous
plan. You should dentify possible reasons (e.g., misclick, inactive
element) and correct it in this step.

Some typical examples for ineffective action:
- misclick in a wrong element
- forget to clear existing text in input bar

3. It made some effect, and it successfully align with previous plan.
You should progress to the next step based on the current state.

3. Based on your action history, assess your progress toward completing
the overall task.
4. Exploring new ways to finish the task if there are already failed
attempts in history steps. **DO NOT repeat** the history actions.

Response Format: Your thought process\n\nAction: The specific action
you choose to take.

The task you are attempting to complete: {task_description}
Your performing history: {history_str}
Given the screenshot as below. What’s the next step that you will do to
help with the task?

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

D.3 PC Agent-E scaffold

D.3 PC AGENT-E SCAFFOLD

Table 8: PC Agent-E scaffold Prompt
Prompt for PC Agent-E scaffold

You are a helpful assistant who can help users complete computer tasks,
with **full permission** to make any operations on the user’s computer.
Based on the provided current state, you need to suggest the next action
to complete the task. Do not try to complete the entire task in one step.
Break it down into smaller steps, and at each step you will get a new
state to interact with.
IMPORTANT: You must strictly adhere to the following rules:
1. Choose ONLY ONE action from the list below for each response, DO NOT
perform more than one action per step.
2. Follow the exact syntax format for the selected action, DO NOT create
or use any actions other than those listed.
3. Once the task is completed, output action finish.

Valid actions:
1. click (x, y)
click the element at the position (x, y) on the screen

2. right click (x, y)
right click the element at the position (x, y) on the screen

3. double click (x, y)
double click the element at the position (x, y) on the screen

4. drag from (x1, y1) to (x2, y2)
drag the element from position (x1, y1) to (x2, y2).

5. scroll (x)
scroll the screen vertically with pixel offset x. Positive values of x:
scroll up, negative values of x: scroll down.

6. press key: key_content
press the key key_content on the keyboard.

7. hotkey (key1, key2)
press the hotkey composed of key1 and key2.

8. hotkey (key1, key2, key3)
press the hotkey composed of key1, key2, and key3.

9. type text: text_content
type content text_content on the keyboard.

10. wait
wait for some time, usually for the system to respond, screen to refresh
, advertisement to finish.

11. finish
indicating that the task has been completed.

12. fail
indicating that the task has failed, of this task is infeasible because
not enough information is provided.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

D.3 PC Agent-E scaffold

Response Format: {Your thought process}
Action: {The specific action you choose to take}

Your task is: {task_description}
History of the previous actions and thoughts you have done to reach the
current screen: {history_str}
--
Given the screenshot, what’s the next step you will do to help with the
task?

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

E PC TRACKER USER MANUAL

1. INTRODUCTION

PC Tracker is a lightweight infrastructure for efficiently collecting large-scale human-computer
interaction trajectories. The program runs seamlessly in the background, automatically capturing
screenshots and keyboard & mouse activities.

2. INSTALLATION

• Ensure your operating system is Windows.
• Extract our software package to a location with sufficient disk space (recommended to

have more than 3GB of available space for storing recorded data).

3. QUICK START

• (Optional) Set screen resolution to 16:9.
• Open the extracted folder and launch main.exe.

4. INSTRUCTIONS

After launching the tracker, you can choose between Task Oriented Mode or Non-Task Ori-
ented Mode for recording.

TASK ORIENTED MODE

This mode is divided into two sub-modes: Given Task and Free Task.

Given Task In this mode, you will be assigned an uncompleted task each time.

• Next Task: Click Next Task to get the next task.

• Previous Task: Click Previous Task to return to the previous task.
• Bad Task Feedback: If you think the current task is difficult to complete, click

Bad Task to discard it permanently. Alternatively, you can start the task and modify
its description after completion based on your actual execution.

• Start Recording: Click Start , and the tracker window will automatically minimize
while recording begins.

• End Task: After completing the task, click Finish to save the record. Or if the task
execution fails or you don’t want to record it, click Fail .

• Modify Task Description: After finishing the task, you can modify the task description
based on your actual execution.

Free Task In this mode, you can freely use the computer and summarize the task description
and difficulty yourself.

• Start Recording: Click Start , and the tracker window will automatically minimize
while recording begins.

• Save and Summarize This Record: Fill in the task description, select difficulty
(easy/medium/hard), and click Save to save the record.

• Discard This Record: Click Discard to discard the record.

NON-TASK ORIENTED MODE

In this mode, you can freely use the computer, with similar methods to start and stop recording
as described above.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

5. USAGE NOTES

• Does not currently support using extended screens.
• Does not currently support using Chinese input methods.
• Does not currently support using touchpads.
• The tracker window is fixed in fullscreen. To support the filtering of tracker-related

actions (such as clicking the Start button) in post-processing, the tracker window is
fixed in fullscreen. You can reopen the tracker window by clicking to view the task de-
scription, then minimize it again, but please do not drag it to display in a non-fullscreen
state.

6. DATA PRIVACY

• After starting recording, your screenshots and keyboard & mouse operations will be
automatically recorded. PC Tracker does not record any information from unopened
software. If you believe the recording may infringe on your privacy, you can choose to
discard the record.

• Collected data is saved in the ./events folder (hidden by default). Each trajectory
includes a Markdown file for easy visualization.

7. FAQ

Does the tracker have networking capabilities? PC Tracker is completely local, does not
support networking, and will not upload your data.

What if my computer screen resolution is not 16:9? If your screen resolution is not 16:9,
it will affect the subsequent unified processing of data. We recommend adjusting your screen
resolution to 16:9.

How much space does the collected data occupy? The specific data size varies. Generally,
even with intensive recording operations for 1 hour, it will not generate more than 1GB of data.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

F THE USE OF LLMS

We used LLMs to improve the grammar, clarity, and overall readability of this paper. All re-
search ideas, content, and scientific contributions were developed and written by the human
authors. All suggestions from LLMs were reviewed and edited by the authors, who retain full
responsibility for the final content of this paper.

21

	Introduction
	Related Work
	Computer Use Agent
	Data Synthesis

	Method
	Overview
	Trajectory Collection
	Thought Completion
	Trajectory Boost
	Agent Training

	WindowsAgentArena-V2
	Experiment
	Setup
	Main Results
	Data Scaling over Human Demonstrations
	Trajectory Boost vs. Direct Distillation
	Test Time Scaling
	Cross-Platform Evaluation

	Conclusion
	Reproducibility Statement
	Training Details
	Evaluation On Original WindowsAgentArena Benchmark
	Experiment on Smaller Model
	Prompts
	Thought Completion
	Trajectory Boost
	PC Agent-E scaffold

	PC Tracker User Manual
	The Use of LLMs

