EFFICIENT AGENT TRAINING FOR COMPUTER USE

Anonymous authors
Paper under double-blind review

ABSTRACT

Scaling up high-quality trajectory data has long been a critical bottleneck for
developing human-like computer use agents. We introduce PC Agent-E, an efficient
agent training framework that significantly reduces reliance on large-scale human
demonstrations. Starting with just 312 human-annotated computer use trajectories,
we further augment them by synthesizing diverse alternative action decisions with
Claude 3.7 Sonnet. Trained on these enriched trajectories, our PC Agent-E model
achieved a remarkable 141% relative improvement, and even surpassed the Claude
3.7 Sonnet by 10% on WindowsAgentArena-V2, an improved benchmark we also
released. By integrating robust human computer use skills with automated Al
data synthesis capabilities, our method not only brought substantial improvements
over training on human trajectories alone, but also significantly surpassed direct
distillation from Claude 3.7 Sonnet.

1 INTRODUCTION

Developing autonomous agents that can operate

computers as humans do |Anthropic| (2024); He Trajectory Boost X

et al. (2024); [OpenAll (2025) has long been a 60% 000 —p erel> C,o
landmark pursuit in Artificial Intelligence (AI). o (@) % Claude ™) S , ™)
Such computer use agents, powered by Vision- 2% 312 human more diverse
Language Models (VLMs), perceive screenshots — trajectories action decision
to interact directly with Graphical User Interfaces ~ 40% i
(GUIs) — clicking buttons, navigating menus, and 36.0%
entering text. This allows them to automate a 30%
wide range of digital tasks, ranging from routine
paperwork and online shopping to complex con- 20%
tent creation, promising a significant reduction in 12.9%

manual human workload. 10% : 141%1

Claude 3.7 Sonnet

However, current models still fall significantly 0% EE—
short of human performance Xie et al.| (2024); Qwen2.5-VL PC Agent-E
Bonatti et al.| (2024])). This capability gap is even

more pronounced within the open-source commu-

nity, which lacks any solution competitive with

leading proprietary systems like Claude 3.7 Son- Figure 1: PC Agent-E achieves state-of-the-art
net[Anthropic| (2025a). Instilling these advanced open-source performance in Windows computer
computer use capabilities in open-source mod- use with just 312 augmented trajectories.

els remains an unsolved problem. A key factor

contributing to these deficiencies is the extreme

scarcity of high-quality computer use trajectory data|Ou et al.[(2024)); Xu et al.| (2025a)).

In this work, we explore efficient agent training for computer use, enabling open-source models to
even exceed the performance of proprietary counterparts with minimal human annotation. Inspired
by recent findings [Huang et al.|(2024)); [Muennighoff et al.| (2025);|Ye et al.|(2025)) that synthesizing
high-quality data using advanced reasoning models like Deepseek-R1|Guo et al.| (2025) can efficiently
enhance LLM reasoning, we extend the similar idea to the field of computer use agents.

We propose PC Agent-E, an efficient agent training framework that integrates human expertise with
Al automation. Starting from a small set of real-world human computer use trajectories, we leverage

Trajectory Collection

Thought Completion

Trajectory Boost

Agent Training

missing :0):
in recar —~—0—0 Q‘)othought

E;) {. single action decisions BTG ;ﬂ

—
th ht =% thought
ough oug| bl /_;o 7
click (670,537) click (670, 537) SONON 2 d-m action
312 trajectories EEIE action diverse action decisions PC Agent-E computer

Figure 2: Overview of our framework, consisting of four key components: (1) Trajectory Collection,
gathering a small set of human trajectories by recording user actions and state observations at each
step; (2) Thought Completion, reconstructing the implicit thought process missing in raw human
trajectories; and (3) Trajectory Boost, diversifying action decisions to further augment trajectories (4)
Agent Training, developing a strong computer use agent with remarkable data efficiency.

a frontier agent model to diversify action decisions (action with thought in ReAct|Yao et al.|(2023))
paradigm), further enhancing the data quality. Training on these augmented trajectories, our agent
demonstrates strong computer use capabilities with remarkable data efficiency.

We begin by collecting 312 human computer use trajectories with PC Tracker He et al.| (2024),
a tool for gathering human-computer interaction data, with only two humans annotating one day.
These trajectories include task descriptions, screenshots, and human keyboard/mouse actions. We
subsequently reconstruct the implicit thought process behind human actions, obtaining comprehensive
human trajectories with thoughts. The successful completion of these tasks is inherently assured by
human proficiency, obviating the need for additional verification.

While these human trajectories already serve as valuable agent training data, we further augment
them through Trajectory Boost, a data synthesis method we developed to enrich each trajectory step
with diverse alternative action decisions. The key insight is that computer use tasks can be completed
through multiple valid pathways, meaning each step has various reasonable action alternatives
supported by rational thought. To capture this diversity, we use a strong agent model to synthesize
other possible action decisions. Specifically, recognizing that each human trajectory step captures
an environment snapshot essential for computer use agents to make decisions, we provide these
snapshots to Claude 3.7 Sonnet|Anthropic|(2025al) and sample multiple possible action decisions,
thereby significantly enriching and diversifying the trajectory data.

Experimental results demonstrate that with only a small set of human-annotated trajectories, our
method can boost the performance of an open-source model to that of frontier models. Trained with
only 312 trajectories augmented by Claude 3.7 Sonnet, our PC Agent-E model achieves an impressive
141% relative improvement over the base model Qwen2.5-VL-72B and even outperforms the teacher
model Claude 3.7 Sonnet by 10% on WindowsAgentArena-V2, a benchmark we improved from
WindowsAgentArena |Bonatti et al.| (2024). Furthermore, PC Agent-E generalizes well to different
operating systems on OSWorld Xie et al.|(2024). Our ablation study further demonstrates that our
method for utilizing human demonstrations is not only superior to relying solely on the human
trajectories but is also significantly more effective and efficient than directly distilling from the
teacher model.

In summary, our key contributions are threefold:

1. We propose Trajectory Boost, a simple data synthesis method that unlocks remarkable
data efficiency for training computer use agents. By augmenting human trajectories with
diverse action decisions from a frontier model, our method demonstrates significantly greater
effectiveness and efficiency than both using human data alone and direct distillation.

2. We release WindowsAgentArena-V2, an improved benchmark rectifying evaluation de-
pendence, infeasible hacking, and other limitations in the original WindowsAgentArena
benchmark, ensuring more robust and fair evaluations of computer use.

3. We developed PC Agent-E, an open-source computer use agent that achieves performance
comparable to leading proprietary models. Trained with just 312 augmented trajectories,
our model successfully outperforms the strong teacher model, Claude 3.7 Sonnet, showing
exceptional data efficiency.

2 RELATED WORK

2.1 COMPUTER USE AGENT

With the advancement of VLMs Bai et al.| (2025)); [Deitke et al.| (2024), the way computer use
agents interact with computers has gradually shifted from relying on textual representations such
as accessibility trees Agashe et al.|(2024); [Wu et al.|(2024al) to directly using screenshots Qin et al.
(2025); |Xu et al.| (2025b); [He et al.| (2024). Existing computer use agents can be categorized based on
how much human prior is built into their design: One is modular agent workflows Agashe et al.
(2024)); |Wu et al.| (2024a)), which defines specialized modules and prompts multi-agents to collaborate.
The other is native agent models|Anthropic|(2024)); |Qin et al.|(2025); OpenAl|(2025)), which depends
on a single model to take action step by step based on its history and current state.

While modular agent workflows can reduce task complexity, their heavy reliance on human priors
hinders adaptation to new domains and limits end-to-end optimization |Saltzer et al.|(1984)); Pan et al.
(2024). With the continuous enhancement of model capabilities, native agent models have emerged
as the dominant paradigm. This approach offers flexibility, generalizability, and sustainable gains via
supervised fine-tuning (SFT) |Xu et al.[(2025b)) or reinforcement learning (RL) |OpenAl| (2025). Our
work explores the efficient agent training methods for native agent models through SFT.

2.2 DATA SYNTHESIS

As Large Language Models (LLMs) grow ever more powerful, it has become a common practice to
use them to synthesize data. Distillation methods Taori et al.[(2023)); |Gunasekar et al.| (2023)); Xu
et al.| (2023)) leverage state-of-the-art (SOTA) models to generate large-scale data for training weaker
models. On the other hand, self-improvement methods enable a model to bootstrap and refine its own
training data|Wang et al.|(2023).

In the domain of computer use agents, data synthesis can be broadly categorized into three aspects: (1)
large-scale datasets that build foundational GUI understanding, with tasks like screenshot captioning
or question—answering |[Liu et al.| (2024)); |Qin et al.| (2025)) (2) single-step visual grounding, where
mouse click tasks are synthesized from specific locations on the GUI|Gou et al.| (2025)); [Wu et al.
(2024b) (3) multi-step trajectory, in which recent research has explored leveraging web tutorials to
guide trajectory generation |Ou et al.| (2024); Xu et al.| (2025a)) or reverse-synthesizes tasks from the
agents’ own exploration records |Sun et al.|(2025)); Murty et al.| (2024). Our work differs from prior
work by synthesizing high-quality multi-step trajectories based on real-world human demonstrations
and emphasizing data efficiency.

3 METHOD

3.1 OVERVIEW

We propose PC Agent-E, an efficient agent training framework for computer use that integrates
human expertise with Al automation, as illustrated in Our method generates high-quality
trajectory data by combining authentic human-computer interactions with diverse action decisions,
offering advantages in both realism and diversity.

1. First, we gathered a small set of 312 task trajectories from human annotators, recording both
the screen state observation and the human action at each step, and then filtered the data to
remove erroneous steps and trajectories. (§3.2)

2. Subsequently, we reconstructed the latent human thought process before each action decision,
based on the corresponding screen state observation and history step context. (§3.3)

3. Then, using human trajectories as environment snapshots, we employ Claude 3.7 Sonnet to
synthesize diverse alternative action decisions with the Trajectory Boost method. (§3.4)

4. Finally, we develop PC Agent-E, our SOTA native agent model for Windows computer use,
trained on our augmented trajectories with a simple end-to-end scaffold. (§3.5))

3.2 TRAJECTORY COLLECTION

3.3 Thought Completion

We collected human computer use trajectories with PC
TrackerHe et al.|(2024), a tool that records the screen state 33

. . Chrome
observation and the human keyboard/mouse action at each LibreOffice 70
step for a given task. The recorded actions are structured 25
in a unified action space A, as shown in[Table 1| For task
generation, we first manually compose a small seed set
across multiple software applications and then enlarge it

Utils

Total Trajectory

with LLMs. The resulting tasks were distributed to human system 312
annotators, who completed the tasks on their own Win- 50
dows computers with PC Tracker recording trajectories E‘s’ge

automatically. After finishing a task, annotators could ei-

ther discard unsatisfactory trajectories or modify the task

descriptions based on their actual execution, thereby en- Vs"sc

suring the correctness and completeness of the collected "s,f;"‘"
trajectories. We then applied a set of rule-based filters to

remove entire trajectories or individual steps that exhibited

errors or other undesirable behaviors. Figure 3: Distribution of the 312 task

trajectories across different applications.
We employed a rigorous data decontamination procedure
on these collected trajectories. Each task description was
compared against the tasks in our main evaluation benchmark (§4) using n-gram overlap and semantic
similarity metrics. Trajectories with task descriptions exhibiting excessive similarity to any test task
were removed from the dataset.

This procedure finally yielded 312 real-world human computer use trajectories, with distribution
across applications shown in[Figure 3] The whole annotation process was completed by two annotators
within a single day, with an average of roughly 3 minutes per trajectory. Given humans’ proficiency
in computer use, the mechanisms for annotators to discard trajectories or revise task descriptions after
execution, and our data filtering process, no additional verification was required to ensure trajectory
correctness.

3.3 THOUGHT COMPLETION

We first reconstruct the implicit thought pro-
cess behind human actions using an iterative ap-

X _ N Action Description
proach. Specifically, for each action in the raw — ; -

. : ... click(x,y) clicks at coordinates.
tra]ectoryz W.e pro.\llde.Claudis 3.7 S.OI’lIlet.WIth. right click (x, y) right-click at coordinates.
task description, historical actions with their pre- double click (x, y) double-click at coordinates.
viously reconstructed thought processes, the cur- 4ragfrom (x1, yl)to (x2,y2) drag the mouse.

. A scroll (x) scrolls the screen with offset x.
rent action, and the corresponding screenshot. pregs key: enter presses the Enter key.
Based on this information, the model generates hotkey (ctrl, ¢) performs the Ctrl+C hotkey.
the implicit thought process behind action. As ~2P¢ fext: hello type text “hello”.

. wait pauses for some time.
shown in the recorded raw human tra- finish the task is finished.
jectory was converted to a human trajectory with fail the task is failed.
thoughts, where the reconstructed thought pro-
cess is added to each step. See our prompt in Table 1: Unified action space A.
Appendix

3.4 TRAJECTORY BOOST

After thought completion, we obtain comprehensive human trajectories with explicit thought pro-
cesses. While these trajectories already serve as valuable agent training samples, we further augment
them through a simple but effective approach called Trajectory Boost, which synthesizes diverse
alternative action decisions for each step of the trajectory.

The motivation behind Trajectory Boost is that computer use tasks inherently allow for multiple valid
solution pathways. Consequently, at any given step, several reasonable actions supported by rational
thought processes may exist, extending beyond the single solution adopted by human annotators. To
capture this inherent diversity, we utilize a frontier computer use agent model, Claude 3.7 Sonnet, to
generate single-step alternative action decisions. Its long-horizon planning capabilities, advanced

3.5 Agent Training

O screen state

human action

Thought Trajectory O (wo thought)
Completion Boost .
E—— > © human action decision

(w/ thought)

Claude action decision
(w/ thought)
raw human human trajectory

trajectory with thoughts Traj Tree

Figure 4: Visualization of our Trajectory Boost method. (Left) Raw human trajectory recorded by PC
Tracker. (Center) Human trajectory with reconstructed thoughts after Thought Completion, where the
red node indicates human action decisions. (Right) The final Traj Tree, where the blue node indicates
augmented diverse action decisions synthesized by Claude 3.7 Sonnet.

reasoning patterns, and broad knowledge of computer use enable it to generate thought processes and
actions that are highly informative and valuable, thereby substantially enhancing the richness and
diversity of our trajectory data.

Specifically, we recognize that each step in a human trajectory captures an environment snap-
shot of the computer, providing the necessary information for both humans and agents to make
decisions. For step k on a human trajectory with observation og, thought process ¢, action ay,
and task description T, the environment snapshot is < T, o0k, hy, >, where the history context
hi = (t1,a1,ta,a9,...,tg_1,a;—1) is constructed with previous human steps. We input this envi-
ronment snapshot to Claude 3.7 Sonnet instantiate in the PC Agent-E scaffold (§3.3)), and sample
multiple single-step action decisions (;C, a},) from it. Prompts used are shown in Appendix . In
practice, we sample 9 action decisions in parallel. This produces a Traj Tree, as shown in|Figure 4]
with human trajectory forming the main trunk and the augmented action decisions branching off as
leaf nodes. These sampled action decisions from Claude 3.7 Sonnet are not executed in real computer
environments, but serve as important augmented data for later agent training.

3.5 AGENT TRAINING

Input Output
Task Description History Screenshot Thought

Stepl I'll help you enable the
Can you help me enable Thought: Looking at the screen = ‘Do Not Track’ feature...
the 'Do Not Track' feature Action: click (1265, 121)
in Chrome to enhance my Step2 Action
online privacy? Thought: I need to navigate to... .

Action: click (1195, 661) click (1263, 49)

Figure 5: A training example that also demonstrates the inference process of the PC Agent-E scaffold.

PC Agent-E adopts a deliberately simple end-to-end scaffold, as our primary focus is on validating the
effectiveness of our agent training methodology rather than optimizing performance through complex
workflow design or elaborate prompt engineering. At inference, PC Agent-E takes (screenshot, task
description, history) as input and outputs a (thought, action) decision in the ReAct|Yao et al.{(2023)
paradigm, as shown in Figure[5] The action space is the same as A in[Table T] and every action is
executed via the PyAutoGUT library. The history is a textual log of previous thoughts and actions.
To maintain simplicity in both training and inference, past screenshots are excluded, although we
believe that adding this image history would be beneficial for improving model performance. The
prompt used for the scaffold is shown in Appendix

For training, we transform each action node from our Traj Tree into an individual training sample. The
training sample structure and the inference-time scaffold of the agent share a direct correspondence,

Evaluation Infeasible

Initial Configuation Task Description Dependency Hacking
S
Task Execution l n .\}
Virtual Machine Agent p f 0
LT feasible infeasible
Qg ¢ observation E VM snapshot tasks tasks
— @
—
8 cction \ o} Initial State Evaluation
Instability Flaws

\’ FinalState) =@ | fgl\ x

hand written 5

evaluation rules geqra 0 hand written
initial state error evaluation rules

Figure 6: (Left) Overview of the WindowsAgentArena benchmark. (Right) Our main modifications
to the updated WindowsAgentArena-V?2 benchmark.

as illustrated in [Figure 3] For both human-demonstrated and model-synthesized action nodes, the
history in the training sample includes only prior human actions on the main trunk of the Traj Tree.
This is consistent with the historical context available to both humans and the model when making
the corresponding action decision. We finally obtained 27K training samples from 312 augmented
trajectories, each following a consistent input-output structure at inference time.

4 WINDOWSAGENTARENA-V?2

We initially performed our evaluation on WindowsAgentArena Bonatti et al.|(2024), a benchmark
designed to assess computer use ability in realistic Windows OS environments through diverse tasks
across multiple applications. It provides automatic initial configuration of virtual machine (VM)
state and hand-written evaluation rules (see [Figure 6). However, we identified several limitations
during our assessment. To ensure evaluation reliability, we developed WindowsAgentArena-V2, an
updated benchmark comprising 141 tasks across 11 widely-used Windows applications, all derived
from the original WindowsAgentArena but with improvements detailed below.

Addressing the evaluation dependency issue. The original benchmark lacked VM state reset
between task evaluations, allowing changes from previous tasks to potentially affect subsequent ones.
We implemented VM snapshot restoration before each evaluation, ensuring consistent starting states,
preventing inter-task interference, and aligning with the i.i.d. (independent and identically distributed)
assumption. We also installed some essential software missing from the original VM snapshot but
required for proper evaluation.

Preventing infeasible hacking. Current computer use benchmarks such as WindowsAgentArena
and OSWorld often include infeasible tasks, which are inherently impossible to complete due to
issues such as deprecated system features or user-generated hallucinated commands Xie et al.| (2024)).
The evaluation metric for these tasks is simply considering a task successful if the action FAIL is
output at any point during execution. However, we found such evaluation methods particularly easy
to hack: an agent can trivially achieve a perfect score on infeasible tasks by always outputting FATL,
without demonstrating any meaningful computer use capabilities. In contrast, completing a feasible
task typically requires the agent to execute actions step-by-step to actually fulfill the task objective,
posing a significantly different level of difficulty.

We refer to this phenomenon as infeasible hacking, a vulnerability confirmed by our subsequent
experiments (§5.6)), in which a weaker model achieved markedly higher scores on infeasible tasks.
Since agents receive identical scores for feasible and infeasible tasks, their coexistence undermines
benchmark fairness. Additionally, given that current computer use agents’ capabilities are far from
optimal, we argue it is presently more valuable to focus on enhancing agents’ performance on feasible
tasks. Therefore, as a temporary solution in WindowsAgentArena-V2, we removed all infeasible
tasks to prevent infeasible hacking.

Guaranteeing VM initial state stability. We found that the state of VM after task initial configura-
tion often exhibited errors like unstable network connections, software launch failures, or system
lags. To address this, we designed a validation framework combining rule-based and LLM-based
evaluations to verify the initial state, with a re-test mechanism allowing up to three restart attempts for
faulty initializations. This approach reduced the initialization failure rate from 10%—-30% (depending
on hardware) to below 5%.

Fixing evaluation flaws. We discovered that some evaluation functions contained bugs or lacked
robustness. For instance, in the task “clearing YouTube history to facilitate
finding other histories”, the evaluation erroneously awarded full scores to agents that
deleted the entire browsing history, clearly contradicting user intent. We identified and corrected sev-
eral evaluation errors and relied on human evaluators for a few complex tasks to improve assessment
reliability.

5 EXPERIMENT

In this section, we conduct extensive experiments to evaluate PC Agent-E and validate our Trajectory
Boost method. Our experiments are designed to answer the following key questions:

. How does PC Agent-E perform against SOTA methods on computer use tasks? (§5.2)

. How does Trajectory Boost’s data scaling surpass using human demonstrations alone?
. How does Trajectory Boost differ from and outperform Direct Distillation? (§5.4)

. How does test-time scaling affect the performance of PC Agent-E? (§5.5)

. How well does PC Agent-E generalize to unseen environments?

whn A W N =

5.1 SETUP

Benchmarks We use WindowsAgentArena-V2 for the main evaluation, as our training data
were collected on the Windows system. We also include results on the original WindowsAgentArena
Bonatti et al.| (2024) in Appendix [B]for completeness. To test generalization across operating systems,
we report results on OSWorld Xie et al.| (2024)), another computer use benchmark for Linux systems.

Model Baseline We compare PC Agent-E with several SOTA models. These include the leading
proprietary models Claude 3.7 Sonnet |Anthropic| (2025a) and Claude 3.7 Sonnet with extended
thinking |Anthropic| (2025b)), as well as open-source models UI-TARS |Qin et al.| (2025)), UI-TARS-
1.5 [Team| (2025)), and Qwen2.5-VL-72B Bai et al.| (2025). We also compared with the popular
GPT-40|0OpenAll(2024) model.

Method Baseline We compare our Trajectory Boost method with two alternative training ap-
proaches. The first is standard behavior cloning on the 312 human trajectories after thought com-
pletion. The second is direct distillation from Claude. We sample 10 end-to-end trajectories from
Claude 3.7 Sonnet for each of the 312 tasks. The resulting 3,120 trajectories are then used for training
with the identical procedure as PC Agent-E, matching the trajectory number of our method for a fair
comparison.

Settings All experiments and models utilized a screenshot-only observation setting with a uniform
screen resolution of 1280 x 720. For the UI-TARS model series, we adopted their native framework,
which supports image history and code block actions. All other models, including Claude and Qwen,
were evaluated using our simple PC Agent-E scaffold. The default maximum number of steps was
set to 30, and we also investigated the impact of varying this step limit on model performance.

Training We train our PC Agent-E model based on the Qwen2.5-VL-72B |Bai et al.[(2025) backbone
with 27k data mentioned in[§3.5] Experiments on a smaller model Qwen2.5-VL-7B are also included
in Appendix|C] We set the image resolution to 1280 x 720 and context length to 8,192 tokens. Further
training details can be found in Appendix [A]

5.2 Main Results

5.2 MAIN RESULTS

As shown in PC Agent-E achieves a remarkable 141% relative improvement over the base
model Qwen2.5-VL-72B on WindowsAgentArena-V2, even surpassing the strong teacher model
Claude 3.7 Sonnet by 10%, establishing itself as the SOTA open-source model for Windows computer
use. Notably, Claude 3.7 Sonnet used to synthesize our training data did not have the thinking mode
enabled, but PC Agent-E achieves performance comparable to the stronger Claude 3.7 Sonnet with
extended thinking.

Models Libreoffice Chrome Edge System VS Code VLC Utils Total
Number of Tasks 42 17 13 24 19 14 12 141

GPT-40 0.0 59 0.0 8.3 0.0 0.0 0.0 2.1

Qwen2.5-VL-72B 0.0 34.7 154 20.8 26.3 7.6 16.7 149
UI-TARS-1.5-7B 7.1 34.7 23.1 45.8 21.1 7.6 16.7 213
UI-TARS-72B-DPO 0.0 40.6 38.5 58.3 36.8 76 250 262
Claude 3.7 Sonnet 2.4 46.5 61.5 54.2 52.6 29.0 167 32.6
Claude 3.7 Sonnet (thinking) 2.4 64.1 46.2 66.7 52.6 219 250 354
PC Agent-E (Ours) 4.8 64.1 46.2 50.0 57.9 357 333 36.0

Table 2: Results of success rate (%) for different models on WindowsAgentArena-V2.

Analysis To gain deeper insight into the specific capabilities enhanced through our training, we
conducted a qualitative analysis by examining 50 trajectories that Qwen2.5-VL-72B failed but PC
Agent-E succeeded, as well as trajectories where both models failed. We categorized the failure
patterns into three types: (1) Knowledge: models may lack specific computer use knowledge. For
instance, a model might not know how to enable a particular feature in VLC (a media player software).
(2) Planning: models may make incorrect planning, such as failing to recognize and recover from
previous erroneous actions. (3) Grounding: models may execute actions that are inconsistent with
their plan, primarily manifested as mouse-clicking errors. We found that our improvements primarily
stem from enhanced planning capabilities. After training, PC Agent-E produces noticeably longer
thought processes and demonstrates improved reasoning capabilities in verification and self-correction.
We did not observe significant improvements in knowledge or grounding capabilities.

5.3 DATA SCALING OVER HUMAN DEMONSTRATIONS

To validate the effectiveness of our Trajectory

Boost method, we investigate the relationship 45 Trajectory Boost

i 40
between the scale of synthesized data. and model e Direct Distillation PC Agent-E
performance. We define data scaling factor, =35 36.0
s, as the ratio of the total action number used < 54 350
for training to the action number in the original % 25 B4 e —
human trajectory. For the model trained exclu- & P ’ 26.0 262

. . . 0 20 17.2 22.7
sively on the human demonstrations, the scaling @ 72_gr”
factor is s = 1. Our final model, PC Agent-E, § 15{-% 63 14.9
was trained using 9 synthesized actions and 1~ & 10 R o e
original human action per step, corresponding s
to the scaling factor s = 9 + 1 = 10.
o

As the blue line shown in [Figure 7| our results 1 = 4 $ 10
- . Scaling Factor s
reveal that model performance with the Trajec-

tory Boost method scales significantly with the)]
scaling factor. Compared to training on hu- Figure 7: Performance of Trajectory Boost and Di-

man trajectories alone, which yields a limited T€ct Distillatiqn method with different data scaling
gain (improved from 14.9 to 17.2), PC Agent-E factor s on WindowsAgentArena-V2.

achieves substantially greater performance gains

(improved from 14.9 to 36.0). This improvement is primarily driven by the diverse action decisions
synthesized from the frontier model with thought processes. This supplements the single human-
annotated solution and instills the frontier model’s advanced planning capabilities into our agent,
thereby yielding performance that far exceeds training on human trajectories alone.

5.4 Trajectory Boost vs. Direct Distillation

5.4 TRAJECTORY BOOST VS. DIRECT DISTILLATION

To demonstrate that our method is more than a simple form of distillation, we compare Trajectory
Boost against a direct distillation baseline. For this baseline, we directly sample trajectories from our
teacher model, Claude 3.7 Sonnet, end-to-end.

Superior Performance As shown in|Figure 7} our method significantly outperforms the direct
distillation baseline at most of the training data scales (blue line versus orange line). We attribute
this to the high quality of our synthesized data. Our method uses human trajectories as a reliable
foundation and leverages the frontier model to perform single-step augmentation. This avoids the
error accumulation that can occur in end-to-end trajectory distillation.

Exceptional Efficiency Another significant advantage of our method is time efficiency. The
distillation baseline requires deploying Claude in virtual machines and collecting trajectories through
online interaction, which makes it resource-intensive and time-consuming. In contrast, our Trajectory
Boost method performs offline data synthesis without interacting with the real environment, enabling
natural parallelization. Specifically, to collect an equivalent amount (3120 trajectories) of data, the
distillation baseline took about 900 hours, while Trajectory Boost required only 3 hours under the
same hardware conditions — a drastic 300-fold speedup.

5.5 TEST TIME SCALING

. . . % PC Agent-E @ Qwen2.5-VL-72B
We also investigate how the performance of PC Agent-E varies 40

with test time scaling, a topic that has received increasing at- 35

tention in the research community Wu et al.|(2025); |Snell et al. 30 /:O
(2024). We evaluated the model’s performance with different 25 0 [
numbers of max steps allowed during task completion. As shown

Success Rate (%)
N
o

in the difference in performance between the two mod- 15 ./.
els increases over time as the agent continues to interact with the 10 14.9
computer. With improved planning capabilities, PC Agent-E ben- 5 "3

efits from “action scaling”—the ability to iteratively take more
actions to respond to environmental changes, explore for solu-
tions, correct errors, and ultimately solve the task. After training,
PC Agent-E can utilize more time and computational resources

to achieve better performance. Figure 8: Test time scaling on
WindowsAgentArena-V2.

15 30
Max Steps Allowed

5.6 CROSS-PLATFORM EVALUATION

We further evaluated our model on OSWorld to

.. [Models Feasible Infeasible Total
assess cross-platform generalization capabilities.
As shown in[Table 3] despite being trained exclu- _Number of Tasks 339 30 369
sively on Windows data, PC Agent-E achievesa = Qwen2.5-VL-72B 44 86.7 11.1
34% relative improvement in Linux systems as ~_ PC Agent-E (Ours) 10.9 63.3 14.9
well. These results validate the generalizability
of our method. Table 3: Success rate (%) on OSWorld (30-step).

We also identified an interesting phenomenon in this experiment, which we designate as infeasible
hacking in[§4} the weaker Qwen2.5-VL-72B model paradoxically achieved markedly better perfor-
mance on infeasible tasks. This observation suggests that current infeasible task evaluations do not
accurately reflect computer use agents’ capabilities. Future research may design better criteria for
infeasible tasks, such as checking agents’ rationale when declaring tasks impossible.

6 CONCLUSION

In this work, we introduced PC Agent-E, an efficient agent training framework for computer use.
With just 312 augmented trajectories, PC Agent-E achieved a 141% improvement over the base model
and outperformed the strong teacher model Claude 3.7 Sonnet. Our findings suggest that complex
computer use capabilities can be elicited by a remarkably small set of high-quality trajectories.

7 REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our work, we include relevant source code in the supplementary
materials. This includes code and scripts for agent training, data processing, and the evaluation on
WindowsAgentArena-V2. Furthermore, we provide detailed descriptions of our method within the
main paper. Specifically, the data collection process is detailed in[§3.2} the implementation of our
Trajectory Boost method is described in and details regarding the training and evaluation can be

found in[§5.1}

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774, 2023.

Saaket Agashe, Jiuzhou Han, Shuyu Gan, Jiachen Yang, Ang Li, and Xin Eric Wang. Agent s: An
open agentic framework that uses computers like a human. arXiv preprint arXiv:2410.08164,
2024.

Anthropic. Introducing computer use, 2024. URL https://www.anthropic.com/news/
3-5-models—-and-computer-use.

Anthropic. Claude 3.7 sonnet, 2025a. URL |https://www.anthropic.com/news/
claude—3-"7-sonnet!

Anthropic. Claude’s extended thinking, 2025b. URL https://www.anthropic.com/news/
visible-extended-thinking.

Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
Shijie Wang, Jun Tang, Humen Zhong, Yuanzhi Zhu, Mingkun Yang, Zhaohai Li, Jiangiang Wan,
Pengfei Wang, Wei Ding, Zheren Fu, Yiheng Xu, Jiabo Ye, Xi Zhang, Tianbao Xie, Zesen Cheng,
Hang Zhang, Zhibo Yang, Haiyang Xu, and Junyang Lin. Qwen2.5-vl technical report, 2025. URL
https://arxiv.org/abs/2502.13923\

Rogerio Bonatti, Dan Zhao, Francesco Bonacci, Dillon Dupont, Sara Abdali, Yinheng Li, Yadong Lu,
Justin Wagle, Kazuhito Koishida, Arthur Bucker, Lawrence Jang, and Zack Hui. Windows agent
arena: Evaluating multi-modal os agents at scale, 2024. URL https://arxiv.org/abs/
2409.08264.

Matt Deitke, Christopher Clark, Sangho Lee, Rohun Tripathi, Yue Yang, Jae Sung Park, Moham-
madreza Salehi, Niklas Muennighoff, Kyle Lo, Luca Soldaini, et al. Molmo and pixmo: Open
weights and open data for state-of-the-art multimodal models. arXiv preprint arXiv:2409.17146,
2024.

Boyu Gou, Ruohan Wang, Boyuan Zheng, Yanan Xie, Cheng Chang, Yiheng Shu, Huan Sun, and
Yu Su. Navigating the digital world as humans do: Universal visual grounding for gui agents, 2025.
URLhttps://arxiv.org/abs/2410.05243.

Suriya Gunasekar, Yi Zhang, Jyoti Aneja, Caio César Teodoro Mendes, Allie Del Giorno, Sivakanth
Gopi, Mojan Javaheripi, Piero Kauffmann, Gustavo de Rosa, Olli Saarikivi, Adil Salim, Shital
Shah, Harkirat Singh Behl, Xin Wang, Sébastien Bubeck, Ronen Eldan, Adam Tauman Kalai,
Yin Tat Lee, and Yuanzhi Li. Textbooks are all you need, 2023. URL https://arxiv.org/
abs/2306.11644l

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-rl: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Yanheng He, Jiahe Jin, Shijie Xia, Jiadi Su, Runze Fan, Haoyang Zou, Xiangkun Hu, and Pengfei
Liu. Pc agent: While you sleep, ai works — a cognitive journey into digital world, 2024. URL
https://arxiv.org/abs/2412.17589.

10

https://www.anthropic.com/news/3-5-models-and-computer-use
https://www.anthropic.com/news/3-5-models-and-computer-use
https://www.anthropic.com/news/claude-3-7-sonnet
https://www.anthropic.com/news/claude-3-7-sonnet
https://www.anthropic.com/news/visible-extended-thinking
https://www.anthropic.com/news/visible-extended-thinking
https://arxiv.org/abs/2502.13923
https://arxiv.org/abs/2409.08264
https://arxiv.org/abs/2409.08264
https://arxiv.org/abs/2410.05243
https://arxiv.org/abs/2306.11644
https://arxiv.org/abs/2306.11644
https://arxiv.org/abs/2412.17589

REFERENCES

Zhen Huang, Haoyang Zou, Xuefeng Li, Yixiu Liu, Yuxiang Zheng, Ethan Chern, Shijie Xia, Yiwei
Qin, Weizhe Yuan, and Pengfei Liu. O1 replication journey—part 2: Surpassing ol-preview through
simple distillation, big progress or bitter lesson? arXiv preprint arXiv:2411.16489, 2024.

Junpeng Liu, Tianyue Ou, Yifan Song, Yuxiao Qu, Wai Lam, Chenyan Xiong, Wenhu Chen, Graham
Neubig, and Xiang Yue. Harnessing webpage uis for text-rich visual understanding, 2024. URL
https://arxiv.org/abs/2410.13824l

Yadong Lu, Jianwei Yang, Yelong Shen, and Ahmed Awadallah. Omniparser for pure vision based
gui agent. arXiv preprint arXiv:2408.00203, 2024.

Niklas Muennighoff, Zitong Yang, Weijia Shi, Xiang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi, Luke
Zettlemoyer, Percy Liang, Emmanuel Candés, and Tatsunori Hashimoto. sl: Simple test-time
scaling. arXiv preprint arXiv:2501.19393, 2025.

Shikhar Murty, Dzmitry Bahdanau, and Christopher D Manning. Nnetscape navigator: Complex
demonstrations for web agents without a demonstrator. arXiv preprint arXiv:2410.02907, 2024.

OpenAl. Hello gpt-40. openai.com, May 2024. URL https://openai.com/index/
hello—-gpt—40o/.

OpenAl Computer-using agent, 2025. URL |https://openai.com/index/
computer—using—agent/\

Tianyue Ou, Frank F. Xu, Aman Madaan, Jiarui Liu, Robert Lo, Abishek Sridhar, Sudipta Sengupta,
Dan Roth, Graham Neubig, and Shuyan Zhou. Synatra: Turning indirect knowledge into direct
demonstrations for digital agents at scale, 2024. URL https://arxiv.org/abs/2409,
15637.

Jiayi Pan, Xingyao Wang, Graham Neubig, Navdeep Jaitly, Heng Ji, Alane Suhr, and Yizhe Zhang.
Training software engineering agents and verifiers with swe-gym. arXiv preprint arXiv:2412.21139,
2024.

Yujia Qin, Yining Ye, Junjie Fang, Haoming Wang, Shihao Liang, Shizuo Tian, Junda Zhang, Jiahao
Li, Yunxin Li, Shijue Huang, et al. Ui-tars: Pioneering automated gui interaction with native
agents. arXiv preprint arXiv:2501.12326, 2025.

Jerome H. Saltzer, David P. Reed, and David D. Clark. End-to-end arguments in system design. ACM
Transactions on Computer Systems, 2(4):277-288, November 1984. doi: 10.1145/357401.357402.

Charlie Snell, Jaechoon Lee, Kelvin Xu, and Aviral Kumar. Scaling llm test-time compute optimally
can be more effective than scaling model parameters, 2024. URL https://arxiv.org/abs/
2408.03314.

Qiushi Sun, Kanzhi Cheng, Zichen Ding, Chuanyang Jin, Yian Wang, Fangzhi Xu, Zhenyu Wu,
Chengyou Jia, Liheng Chen, Zhoumianze Liu, Ben Kao, Guohao Li, Junxian He, Yu Qiao, and
Zhiyong Wu. Os-genesis: Automating gui agent trajectory construction via reverse task synthesis,
2025. URL https://arxiv.org/abs/2412.19723.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin, Percy
Liang, and Tatsunori B Hashimoto. Alpaca: A strong, replicable instruction-following model.
Stanford Center for Research on Foundation Models. https://crfm. stanford. edu/2023/03/13/alpaca.
html, 3(6):7, 2023.

ByteDance Seed Team. Introducing ui-tars-1.5. seed-tars.com, 2025. URL https://seed-tars,
com/1.5/l

Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa Liu, Noah A. Smith, Daniel Khashabi, and
Hannaneh Hajishirzi. Self-instruct: Aligning language models with self-generated instructions,
2023. URL https://arxiv.org/abs/2212.10560.

Yangzhen Wu, Zhiqging Sun, Shanda Li, Sean Welleck, and Yiming Yang. Inference scaling laws: An
empirical analysis of compute-optimal inference for problem-solving with language models, 2025.
URL https://arxiv.org/abs/2408.00724.

11

https://arxiv.org/abs/2410.13824
https://openai.com/index/hello-gpt-4o/
https://openai.com/index/hello-gpt-4o/
https://openai.com/index/computer-using-agent/
https://openai.com/index/computer-using-agent/
https://arxiv.org/abs/2409.15637
https://arxiv.org/abs/2409.15637
https://arxiv.org/abs/2408.03314
https://arxiv.org/abs/2408.03314
https://arxiv.org/abs/2412.19723
https://seed-tars.com/1.5/
https://seed-tars.com/1.5/
https://arxiv.org/abs/2212.10560
https://arxiv.org/abs/2408.00724

REFERENCES

Zhiyong Wu, Chengcheng Han, Zichen Ding, Zhenmin Weng, Zhoumianze Liu, Shunyu Yao, Tao
Yu, and Lingpeng Kong. Os-copilot: Towards generalist computer agents with self-improvement.
arXiv preprint arXiv:2402.07456, 2024a.

Zhiyong Wu, Zhenyu Wu, Fangzhi Xu, Yian Wang, Qiushi Sun, Chengyou Jia, Kanzhi Cheng,
Zichen Ding, Liheng Chen, Paul Pu Liang, and Yu Qiao. Os-atlas: A foundation action model for
generalist gui agents, 2024b. URL https://arxiv.org/abs/2410.23218,

Tianbao Xie, Danyang Zhang, Jixuan Chen, Xiaochuan Li, Siheng Zhao, Ruisheng Cao, Toh Jing
Hua, Zhoujun Cheng, Dongchan Shin, Fangyu Lei, Yitao Liu, Yiheng Xu, Shuyan Zhou, Silvio
Savarese, Caiming Xiong, Victor Zhong, and Tao Yu. Osworld: Benchmarking multimodal agents
for open-ended tasks in real computer environments, 2024. URL https://arxiv.org/abs/
2404.07972.

Can Xu, Qingfeng Sun, Kai Zheng, Xiubo Geng, Pu Zhao, Jiazhan Feng, Chongyang Tao, and Daxin
Jiang. Wizardlm: Empowering large language models to follow complex instructions, 2023. URL
https://arxiv.org/abs/2304.12244l

Yiheng Xu, Dunjie Lu, Zhennan Shen, Junli Wang, Zekun Wang, Yuchen Mao, Caiming Xiong, and
Tao Yu. Agenttrek: Agent trajectory synthesis via guiding replay with web tutorials, 2025a. URL
https://arxiv.org/abs/2412.09605.

Yiheng Xu, Zekun Wang, Junli Wang, Dunjie Lu, Tianbao Xie, Amrita Saha, Doyen Sahoo, Tao Yu,
and Caiming Xiong. Aguvis: Unified pure vision agents for autonomous gui interaction, 2025b.
URL https://arxiv.orqg/abs/2412.04454.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
React: Synergizing reasoning and acting in language models, 2023. URL https://arxiv,
org/abs/2210.036209.

Yixin Ye, Zhen Huang, Yang Xiao, Ethan Chern, Shijie Xia, and Pengfei Liu. Limo: Less is more for
reasoning. arXiv preprint arXiv:2502.03387, 2025.

12

https://arxiv.org/abs/2410.23218
https://arxiv.org/abs/2404.07972
https://arxiv.org/abs/2404.07972
https://arxiv.org/abs/2304.12244
https://arxiv.org/abs/2412.09605
https://arxiv.org/abs/2412.04454
https://arxiv.org/abs/2210.03629
https://arxiv.org/abs/2210.03629

A TRAINING DETAILS

The PC Agent-E model is fine-tuned on a dataset of 27k samples for 2 epochs using 32 NVIDIA
GPUs over approximately 5 hours, with Qwen2.5-VL-72B as the base model. We set the context
length to 8,192 tokens, using a batch size of 128 and a learning rate of 2e-6. The training process
employs cosine annealing for learning rate scheduling, with a warm-up ratio of 0.05. The visual
tower is kept frozen throughout the training process.

B EVALUATION ON ORIGINAL WINDOWSAGENTARENA BENCHMARK

We also evaluate PC Agent-E’s performance on the original WindowsAgentArena benchmark. As
shown in our model greatly surpasses the previous SOTA method, NAVI, across all task
categories. NAVI is a complex agent framework that integrates GPT-4V |Achiam et al.|(2023)) with a
specialized tool called Omniparser Lu et al.|(2024).

Method Office Web System Coding Media & Video Utils Overall
NAVI Bonatti et al.|(2024) 0.0 27.3 33.3 27.3 30.3 8.3 19.5
PC Agent-E (Ours) 2.3 33.1 70.6 37.5 333 25.0 27.9

Table 4: Success Rate (%) on the original WindowsAgentArena benchmark.

C EXPERIMENT ON SMALLER MODEL

To test our method on smaller models, we also trained Qwen?2.5-
VL-7B Bai et al.|(2025) on the same 27K dataset for PC Agent-E, Method Overall
resulting in the PC Agent-E 7B. As shown in our method Qwen2.5-VL-7B 5.0
yields improvements on the 7B model as well, although the gains ~ PC Agent-E 7B 6.4
are not as significant as those observed with the 72B model. This
is because our method mainly enhances the model’s planning Table 5: Success Rate (%) on
ability, as discussed in[§5.2] but the small model’s deficiencies in Windows AgentArena-V2.
knowledge and grounding limit the overall performance gain.

13

D PROMPTS

D.1 THOUGHT COMPLETION

Table 6: Thought Completion Prompt

Prompt for Thought Completion

You are a helpful computer use agent designed to complete tasks on a
computer. Your goal is to recreate your thought process behind a
specific action.

You will be provided with:

1. The task you are attempting to complete.

2. A history of the steps you have already performed (up to 50, if any;
none if it was the first action).

3. The specific action you chose to take.

4. The name of the element you clicked (if you clicked on an element) . It
might be too general or vague, you have to decied what to click based on
the screenshot.

5. A screenshot of the computer screen at the moment you decided to take
the action.

6. The red marks on the screenshot indicate the position of the click or
drag action.

To formulate your thought process, consider:

1. What do you observe on the screen? Consider your task and previous
action when you analyzing current screenshot.
2. Evaluate your previous action (if applicable):
— Did it achieve the intended effect? If not, identify possible
reasons (e.g., misclick, inactive element) .
Some typical examples for ineffective action:
- misclick in an empty space
— ineffective opening some elements without double click
- ineffective type text/ press key because of inactivated input
box
- Did the result align with your previous plan, or did something
unexpected happen?
Some typical examples for ineffective action:
- misclick in a wrong element
- forget to clear existing text in input bar
3. Based on your action history, assess your progress toward completing
the overall task.
4. Consider if you’re exploring how to finish the task because of failed
attempts in history steps.

Present your thought process as a clear, natural first-person
narrative that explains your reasoning at that moment.

Important requirements:

1. *»xDO NOT*x mention the red marks in your response. These marks were
+xadded after the factxx

to indicate the position of your click or drag actions, and they were
not on the screen when you made the decision. *»*DO NOTxx mention "red
box", "red square", "red circle", or "red arrow" in your response.

14

D.2 Trajectory Boost

2. Write as if you are thinking in real-time before taking the action.
Do not include post-action evaluation or hindsight.

The task you are attempting to complete: {task_description}
Your performing history: {history_str}
The specific action you chose to perform: {action}

D.2 TRAJECTORY BOOST

Table 7: Trajectory Boost Prompt

Prompt for Trajectory Boost

You are a helpful assistant who can help users complete computer tasks,
with »xfull permissionx» to make any operations on the user’s computer.
The operating system is windows.

Based on the provided current state, you need to suggest the next action
to complete the task. Do not try to complete the entire task in one step.
Break it down into smaller steps, and at each step you will get a new
state to interact with.

IMPORTANT: You must strictly adhere to the following rules:

1. Choose ONLY ONE action from the list below for each response, DO NOT
perform more than one action per step.

2. Follow the exact syntax format for the selected action, DO NOT create
or use any actions other than those listed.

3. Once the task is completed, output action finish.

Valid actions:
1. click (%, vy)
click the element at the position (x, y) on the screen
2. right click (%, y)
right click the element at the position (x, y) on the screen
3. double click (x, y)
double click the element at the position (x, y) on the screen
4. drag from (x1, yl) to (x2, y2)
drag the element from position (x1, y1l) to (x2, y2).
5. scroll (x)
scroll the screen vertically with pixel offset x. Positive values of
x: scroll up, negative values of x: scroll down.
6. press key: key_content
press the key key_content on the keyboard.
7. hotkey (keyl, key2)
press the hotkey composed of keyl and key2.
8. hotkey (keyl, key2, key3)
press the hotkey composed of keyl, key2, and key3.

15

D.2 Trajectory Boost

9. type text: text_content
type content text_content on the keyboard.
Note that before typing text, you need to ensure the text box or input
field is active/focused first. If the text box is not yet activated,
you should first click on it to activate it, and then use type text in
a separate step.

10. wait
wait for some time, usually for the system to respond, screen to
refresh, advertisement to finish.

11. finish
indicating that the task has been completed.
12. fail

indicating that the task has failed, of this task is infeasible
because not enough information is provided.

Before deciding your next action, you should think carefully about the
current state of the screen and your history steps. Contain the
following points in your thought process:

1. What do you observe on the screen? Consider your task and previous
action when you analyzing current screenshot.
2. What'’s your previous plan and action (if applicable)? Evaluate your
previous plan and action in three conditions:
1. It didn’t make any effect. You should dentify possible reasons (e.
g., misclick, inactive element) and adjust your plan in this step.
Some typical examples for ineffective action:
-misclick in an empty space
— ineffective opening some elements without double click
- ineffective type text/ press key because of inactivated input
box
2. It made some effect, but the result does not align with previous
plan. You should dentify possible reasons (e.g., misclick, inactive
element) and correct it in this step.
Some typical examples for ineffective action:
—misclick in a wrong element
- forget to clear existing text in input bar
3. It made some effect, and it successfully align with previous plan.
You should progress to the next step based on the current state.
3. Based on your action history, assess your progress toward completing
the overall task.
4. Exploring new ways to finish the task if there are already failed
attempts in history steps. **DO NOT repeat** the history actions.

Response Format: Your thought process\n\nAction: The specific action
you choose to take.

The task you are attempting to complete: {task_description}

Your performing history: {history_str}

Given the screenshot as below. What’s the next step that youwill do to
help with the task?

16

D.3 PC Agent-E scaffold

D.3 PC AGENT-E SCAFFOLD

Table 8: PC Agent-E scaffold Prompt

Prompt for PC Agent-E scaffold

You are a helpful assistant who can help users complete computer tasks,
with »xfull permissionxx to make any operations on the user’s computer.
Based on the provided current state, you need to suggest the next action
to complete the task. Do not try to complete the entire task in one step.
Break it down into smaller steps, and at each step you will get a new
state to interact with.

IMPORTANT: You must strictly adhere to the following rules:

1. Choose ONLY ONE action from the list below for each response, DO NOT
perform more than one action per step.

2. Follow the exact syntax format for the selected action, DO NOT create
or use any actions other than those listed.

3. Once the task is completed, output action finish.

Valid actions:
1. click (%, vy)
click the element at the position (x, y) on the screen

2. right click (x, vy)
right click the element at the position (x, y) on the screen

3. double click (x, y)
double click the element at the position (x, y) on the screen

4. drag from (x1, yl) to (x2, y2)
drag the element from position (x1, yl) to (x2, y2).

5. scroll (x)
scroll the screen vertically with pixel offset x. Positive values of x:
scroll up, negative values of x: scroll down.

6. press key: key_content
press the key key_content on the keyboard.

7. hotkey (keyl, key2)
press the hotkey composed of keyl and key2.

8. hotkey (keyl, key2, key3)
press the hotkey composed of keyl, key2, and key3.

9. type text: text_content
type content text_content on the keyboard.

10. wait
wait for some time, usually for the system to respond, screen to refresh
, advertisement to finish.

11. finish
indicating that the task has been completed.

12. fail

indicating that the task has failed, of this task is infeasible because
not enough information is provided.

17

D.3 PC Agent-E scaffold

Response Format: {Your thought process}
Action: {The specific action you choose to take}

Your task is: {task_description}

History of the previous actions and thoughts you have done to reach the
current screen: {history_str}

Given the screenshot, what’s the next step youwill do to help with the
task?

18

E PC TRACKER USER MANUAL

1. INTRODUCTION

PC Tracker is a lightweight infrastructure for efficiently collecting large-scale human-computer
interaction trajectories. The program runs seamlessly in the background, automatically capturing
screenshots and keyboard & mouse activities.

2. INSTALLATION

» Ensure your operating system is Windows.

 Extract our software package to a location with sufficient disk space (recommended to
have more than 3GB of available space for storing recorded data).

3. QUICK START

* (Optional) Set screen resolution to 16:9.
* Open the extracted folder and launch main.exe.

4. INSTRUCTIONS

After launching the tracker, you can choose between Task Oriented Mode or Non-Task Ori-
ented Mode for recording.

TASK ORIENTED MODE

This mode is divided into two sub-modes: Given Task and Free Task.

Given Task In this mode, you will be assigned an uncompleted task each time.

 Next Task: Click (Next Task] to get the next task.
* Previous Task: Click to return to the previous task.

* Bad Task Feedback: If you think the current task is difficult to complete, click
Bad Task) to discard it permanently. Alternatively, you can start the task and modify
its description after completion based on your actual execution.

 Start Recording: Click , and the tracker window will automatically minimize
while recording begins.

* End Task: After completing the task, click to save the record. Or if the task
execution fails or you don’t want to record it, click (Fail).

* Modify Task Description: After finishing the task, you can modify the task description
based on your actual execution.

Free Task In this mode, you can freely use the computer and summarize the task description
and difficulty yourself.

» Start Recording: Click , and the tracker window will automatically minimize
while recording begins.

* Save and Summarize This Record: Fill in the task description, select difficulty
(easy/medium/hard), and click to save the record.

* Discard This Record: Click to discard the record.

NON-TASK ORIENTED MODE

In this mode, you can freely use the computer, with similar methods to start and stop recording
as described above.

19

5. USAGE NOTES

* Does not currently support using extended screens.

* Does not currently support using Chinese input methods.

* Does not currently support using touchpads.

* The tracker window is fixed in fullscreen. To support the filtering of tracker-related
actions (such as clicking the Start button) in post-processing, the tracker window is
fixed in fullscreen. You can reopen the tracker window by clicking to view the task de-

scription, then minimize it again, but please do not drag it to display in a non-fullscreen
state.

6. DATA PRIVACY

* After starting recording, your screenshots and keyboard & mouse operations will be
automatically recorded. PC Tracker does not record any information from unopened
software. If you believe the recording may infringe on your privacy, you can choose to
discard the record.

* Collected data is saved in the . /events folder (hidden by default). Each trajectory
includes a Markdown file for easy visualization.

7. FAQ

Does the tracker have networking capabilities? PC Tracker is completely local, does not
support networking, and will not upload your data.

What if my computer screen resolution is not 16:9? If your screen resolution is not 16:9,
it will affect the subsequent unified processing of data. We recommend adjusting your screen
resolution to 16:9.

How much space does the collected data occupy? The specific data size varies. Generally,
even with intensive recording operations for 1 hour, it will not generate more than 1GB of data.

20

F THE USE OoF LLMS

We used LLMs to improve the grammar, clarity, and overall readability of this paper. All re-
search ideas, content, and scientific contributions were developed and written by the human
authors. All suggestions from LLMs were reviewed and edited by the authors, who retain full
responsibility for the final content of this paper.

21

	Introduction
	Related Work
	Computer Use Agent
	Data Synthesis

	Method
	Overview
	Trajectory Collection
	Thought Completion
	Trajectory Boost
	Agent Training

	WindowsAgentArena-V2
	Experiment
	Setup
	Main Results
	Data Scaling over Human Demonstrations
	Trajectory Boost vs. Direct Distillation
	Test Time Scaling
	Cross-Platform Evaluation

	Conclusion
	Reproducibility Statement
	Training Details
	Evaluation On Original WindowsAgentArena Benchmark
	Experiment on Smaller Model
	Prompts
	Thought Completion
	Trajectory Boost
	PC Agent-E scaffold

	PC Tracker User Manual
	The Use of LLMs

