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How Do Transformers “Do” Physics? Investigating the Simple Harmonic
Oscillator
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Abstract

How do transformers model physics? We take a
step to demystify this larger puzzle by investigat-
ing how transformers model the simple harmonic
oscillator (SHO), ẍ+ 2γẋ+ ω2

0x = 0, one of the
most fundamental systems in physics. Our goal is
to identify the methods transformers use to model
the SHO, and to do so we hypothesize and evalu-
ate possible methods by analyzing the encoding
of these methods’ intermediates. We develop two
correlational and two causal criteria for the use
of a method within the simple testbed of linear
regression, where our method is y = wx and our
intermediate is w. Armed with these four crite-
ria, we determine that transformers use known
numerical methods to model trajectories of the
simple harmonic oscillator, specifically the matrix
exponential method. Our analysis framework can
conveniently extend to high-dimensional linear
systems and nonlinear systems, which we hope
will help reveal the “world model” hidden in trans-
formers.

1. Introduction
Transformers are state of the art models on a range of tasks
(1; 2; 3; 4), but our understanding of how these models
represent the world is limited. Recent work in mechanistic
interpretability (5; 6; 7; 8; 9; 10; 11; 12) has shed light on
how transformers represent mathematical tasks like mod-
ular addition (13; 14; 7), yet little work has been done to
understand how transformers model physics. This question
is crucial, as for transformers to build any sort of “world
model,” they must have a grasp of the physical laws that
govern the world (15)1.

1Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>.

Preliminary work. Under review by the International Conference
on Machine Learning (ICML). Do not distribute.

1Transformers with better “world models” are also at greater
risk of misuse.

Our key research question is: How do transformers model
physics? This question is intimidating, since even humans
have many different ways of modeling the same underlying
physics (16). In the spirit of hypothesis testing, we reformu-
late the question as: given a known modeling method g, does
the transformer learn g? If a transformer leverages g, its hid-
den states must encode information about important interme-
diate quantities in g. We focus our study on the simple har-
monic oscillator ẍ+2γẋ+ω2

0x = 0, where γ and ω0 are the
damping and frequency of the system respectively. Given
the trajectory points {(x0, v0), (x1, v1), . . . , (xn, vn)} at
discrete times {t0, t1, . . . , tn}, we task a transformer with
predicting (xn+1, vn+1) at time tn+1, as shown in Fig. 1.
In this setting, g could be a numerical simulation the trans-
former runs after inferring γ, ω0 from past data points. We
would then expect some form of γ and ω0 to be interme-
diates encoded in the transformer. How can we show that
intermediates and the method g are being used?

We develop criteria to demonstrate the transformer is using
g by studying intermediates in a simpler setting: in-context
linear regression, y = wx. As correlational evidence for
the model’s internal use of w, we find that the intermediate
w can be encoded linearly, nonlinearly, or not at all. We
also link the performance of models to their encoding of
w and use it as an explanation for in-context learning. We
generate causal evidence for the use of w by analyzing
how much of the hidden states’ variance w explains and
linearly intervening on the network to predictably change
its behavior.

We use these developed criteria of intermediates to study
how transformers model the simple harmonic oscillator
(SHO), a fundamental model in physics. We generate multi-
ple hypotheses for the method(s) transformers use to model
the trajectories of SHOs, and use our criteria from linear
regression to show correlational and causal evidence that
transformers employ known numerical methods, specifically
the matrix exponential, to model trajectories of SHOs. Al-
though our analysis is constrained to the SHO in this paper,
our framework naturally extends to some high-dimensional
linear and nonlinear systems.

Organization In Section 2 we define and investigate inter-
mediates in the setting of linear regression and use this to
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develop criteria for transformers’ use of a method g. In
Section 3 we hypothesize that transformers use numerical
methods to model the SHO, and use our criteria of inter-
mediates to provide causal and correlational evidence for
transformers’ use of the matrix exponential. Due to limited
space, related work is deferred to Appendix A.

2. Developing Criteria for Intermediates with
Linear Regression

Our main goal is to determine which methods transformers
use to model the simple harmonic oscillator. We would
like to do this by generating criteria based on the encoding
of relevant intermediates. In this section, we develop our
criteria of intermediates in a simpler setting: linear regres-
sion. Notably, linear regression is identical to predicting the
acceleration from the position of an undamped harmonic
oscillator (γ = 0), making this setup physically relevant.

Setup In our linear regression setup, we generate X and w
between [−0.75, 0.75], where X has size (5000, 65) and w
has size (5000, ). We generate Y = wX , and train trans-
formers to predict yn+1 given {x1, y1, ..., xn, yn, xn+1}.

Since in-context linear regression is well studied for trans-
formers (17; 18), we use this simple setting to ask and
answer fundamental questions about intermediates, namely:

• What is an intermediate?

• How can intermediates be encoded and how can we
robustly probe for them?

• When, or under what circumstances, are intermediates
encoded?

All of these questions develop an understanding of interme-
diates that builds up to the Key Question: How can we use
intermediates to demonstrate that a transformer is actu-
ally using a method in its computations? By answering
this question for linear regression, we generate four corre-
lational and causal criteria to demonstrate a transformer is
using a method in its computations, which we can then ap-
ply to understand the simple harmonic oscillator, as shown
in Fig. 1.

2.1. What is an intermediate?

We define an intermediate as a quantity that a transformer
uses during computation, but is not a direct input/output
to/of the transformer. More formally, if the input to the
transformer is X and its output is Y , we can model the
transformer’s computation as Y = g(X, I), where g is
the method used and I is the intermediate of that method.
For example, if we want to determine if the transformer is

computing the linear regression task using Y = wX , then
I = w, g(X, I) = g(X,w) = wX .

2.2. How can intermediates be encoded and how can we
robustly probe for them?

We want to understand what form of the intermediate, f(I),
is encoded in the network’s hidden states. For example,
while it may be obvious to humans to compute y = wx, per-
haps transformers prefer exp(log(w) + log(x)) or

√
w2x2.

We want to develop a robust probing methodology that cap-
tures these diverse possibilities. We identify three ways an
intermediate I can be represented: linearly encoded, nonlin-
early encoded, and not encoded at all. We use HS to mean
hidden state.

Linearly encoded We say I is linearly encoded in a hid-
den state HS if there is a linear network that takes I =
Linear(HS). We determine the strength of the linear en-
coding by evaluating how much of the variance in I can be
explained by HS, i.e. the R2 of the probe.

Nonlinearly encoded To probe for an arbitrary f(I), we
define a novel Taylor probe, which finds coefficients
ai such that f(I) = a1I + a2I

2 + ... + anI
n, and

f(I) = Linear(HS). To actually implement this probing
style, we use Canonical Correlation Analysis probes, which
given some multivariate data X and Y , finds directions
within X and Y that are maximally correlated (19). Here,
X = [I, I2, I3, ..., In], and Y = HS. If I is of bounded
magnitude and n is sufficiently large, we are able to probe
the transformer for any function f(I). In practice, we use
n ≤ 5.

Not encoded If I fails to be linearly or nonlinearly en-
coded, we say that it is not encoded within the network.
For example, there are at least two ways to predict y2 from
{x1, y1, x2} such that y2 = y1

x1
x2. (1) w = y1/x1 is en-

coded, and y2 = wx2. (2) w′ = x2/x1 is encoded (so
w = y1/x1 is not encoded), and y2 = w′y1. Thus, it is not
guaranteed that w is encoded.

2.3. When, or under what circumstances, are
intermediates encoded?

We want to apply our probing techniques to better under-
stand what type of models generate intermediates. Under
the described setting of linear regression, we train trans-
formers of size L = [1, 2, 3, 4, 5] and H = [2, 4, 8, 16, 32]
2, where L is the number of layers and H is the hidden size
of the transformer. We find that these models generalize to

2All transformers trained in this study use one attention head
and no LayerNorm to aid interpretability, and are trained on
a NVIDIA Volta GPU with the hyperparameters epochs =
20000, lr = 10−3, batchsize = 64 using the Adam optimizer
(20).
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Figure 1. We aim to understand how transformers model physics through the study of meaningful intermediates. We train transformers to
model simple harmonic oscillator (SHO) trajectories and use our developed criteria of intermediates to show that transformers use known
numerical methods to model the SHO.

out-of-distribution test data (0.75 ≤ |w| ≤ 1) in Appendix
Fig. 10, but we focus on investigating intermediates on
in-distribution training data.

Larger models have stronger encodings of intermediates
We find that smaller models often don’t have w encoded,
while larger models encode w linearly, as evidenced by
Fig. 2. We formalize this further by defining max(R̄2) as
the maximum value taken over depth positions of the mean
R2 of w probes taken over context length. In Appendix
Fig. 12, we observe a clear phase transition in encoding
across model size, and also find that max(R̄2) does not
significantly improve if we extend the degree of the Taylor
probes to n > 2. Thus, in the case of linear regression, we
find that models represent w linearly, quadratically, or not
at all.

We attribute the stronger encoding of w in larger models to
the "lottery ticket hypothesis" - larger models have more "lot-
tery tickets" in their increased capacity to find a "winning"
representation of w (21; 22). Interestingly, the intuitive un-
derstanding that larger models have w better encoded leads
us to the counterintuitive conclusion that larger models are
actually more interpretable for our purposes.

Encoding quality is tied to model performance In Ap-
pendix Fig. 13, we find that better performing models gen-
erally have stronger encodings of w. In Fig. 3, we also
find that the improvements in model prediction as a function
of context length, or in-context learning, are correlated to
improvements in w’s encoding, which we would expect if
our models were using w in their computations.

2.4. Key Question: How can we use intermediates to
demonstrate that a transformer is actually using a
method in its computations?

So far we have discovered that models encode w, either lin-
early or nonlinearly, and found relationships between model
size, performance, and encoding strength. But how can we

Figure 2. We plot the R2 of Taylor probes for the intermediate w
within models trained on the task Y = wX . We see that larger
models often have w encoded linearly, while smaller models do
not have w encoded, even for high Taylor probe degree.

Figure 3. We find that the ability of the best performing models
to in-context learn is highly correlated with their encoding of w
(R2(MSE,w). We plot normalized values for the error of the
encoding (1−R2

w) in red and the mean squared error of the model
(MSEM ) in blue.

3



165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

ensure that the model is actually using w in its computations
and the encoding of w is not just a meaningless byproduct
(23)?

Reverse Probing To ensure that w is not encoded in some
insignificant part of the residual stream, we set up probes
going from [w,w2] → HS, as opposed to HS → f(w). In
Fig. 4, we often find that w can explain large amounts of
variance in model hidden states, implying that these hidden
states are dedicated to representing w. We take this as
weak causal evidence that w is being used by the model -
otherwise, it is unclear why a part of the model would be
dedicated to storing w.

Intervening We can also use reverse probes to intervene
on the models’ hidden states and predictably change their
output from w → w′. In Fig. 4 we attempt to make
w′ = 0.5 for all series, and then measure the observed ŵ
from the models’ outputs (ŵ = ŷn/xn). For 4 out of 25
models the intervention worked, providing strong causal
evidence that the model uses its internal representation of w
in computations. For models where we identified a quadratic
representation of w, we see that w = 0.5,−0.5 are both
represented in the observed intervention.

Putting it all together We can generalize our understanding
of intermediates from linear regression to create criteria for
a transformer’s use of a method g in its computations.

Criteria for use of a method g with an associated,
unique intermediate I

1. If a model uses a method g, its hidden states
should encode I (shown in Fig. 2).

2. If a model uses a method g, model perfor-
mance should improve if I is better repre-
sented (shown in Fig. 3).

3. If and only if the model uses g, we expect
some hidden state’s variance to be almost fully
explained by I (shown in Fig. 4).

4. If and only if the model uses g, we can in-
tervene on hidden states to change I → I ′

and predictably change the model output from
g(X, I) → g(X, I ′) (shown in Fig. 4)

The first two criteria for a transformer’s use of g are correla-
tional and the last two are weak and strong causal. Using
these criteria (summarized in Fig. 1), we can now investi-
gate how transformers model more complex systems like
the simple harmonic oscillator.

3. Investigating the Simple Harmonic
Oscillator

We now apply our developed criteria of intermediates to
investigate how transformers represent physics, specifically
the methods they use to model the simple harmonic oscil-
lator (SHO). The simple harmonic oscillator is ubiquitous
in physics, used to describe phenomena as diverse as the
swing of a pendulum, molecular vibrations, the behavior of
AC circuits, and quantum states of trapped particles. Given
a series of position and velocity data of a simple harmonic
oscillator at a sequence of timesteps, we ask

1. Can a transformer successfully predict the posi-
tion/velocity at the SHO’s next timestep?

2. Can we determine what computational method the
transformer is using in this prediction?

3.1. Mathematical and computational setup

The simple harmonic oscillator is governed by the linear
ordinary differential equation (ODE)

ẍ+ 2γẋ+ ω2
0x = 0. (1)

The two physical parameters of this equation are γ, the
damping coefficient, and ω0, the natural frequency of the
system. An intuitive picture for the SHO is a mass on a
spring that is pulled from its equilibrium position by some
amount x0 and let go, as visualized in Fig. 1. ω0 is related to
how fast the system oscillates, and γ is related to how soon
the system decays to equilibrium from the internal resistance
of the spring. We focus on studying how a transformer
models the undamped harmonic oscillator, where γ = 0.
Given some initial starting position (x0), velocity (v0), and
timestep ∆t, the time evolution of the undamped harmonic
oscillator is

xk = x0 cos(kω0∆t) +
v0
ω0

sin(kω0∆t)

vk = v0 cos(kω0∆t)− ω0x0 sin(kω0∆t),
(2)

where v = dx
dt . We generate 5000 timeseries of 65

timesteps for various values of ω0,∆t, x0, and v0, described
in Appendix D. Following the procedure for linear re-
gression, we train transformers of size L = [1, 2, 3, 4, 5]
and H = [2, 4, 8, 16, 32] to predict (xn+1, vn+1) given
{(x0, v0), (x1, v1), ...(xn, vn)}. In Appendix Fig. 15, we
see that our transformers are able to accurately predict the
next timestep in the timeseries of out-of-distribution test
data, and this prediction gets more accurate with context
length (i.e. in-context learning). But how is the transformer
modeling the simple harmonic oscillator internally?

4
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Figure 4. (Left) We plot max(R̄2) of the reverse probe from [w,w2] → HS across all models, and find that the intermediate w can
explain significant amounts of variance in model hidden states. (Right) We intervene using reverse probes to make all models output
w′ = 0.5. This intervention can either fail (16/25), be partially successful nonlinearly (2/25) or linearly (3/25), or be successful (4/25).

3.2. What methods could the transformer use to model
the simple harmonic oscillator?

Human physicists would model the simple harmonic oscil-
lator with the analytical solution to Eq. 1, but it is unlikely
that a transformer would do so. Transformers are numerical
approximators which use statistical patterns in data to make
predictions, and in that spirit, we hypothesize transformers
use numerical methods to model SHOs. There is a rich
literature on numerical methods that approximate solutions
to linear ordinary differential equations (24; 25; 26), and we
highlight three possible methods the transformer could be
using in our theory hub. For notation, we note that Eq. 1
can be written as[

ẋ
v̇

]
=

[
0 1

−ω2
0 −2γ

] [
x
v

]
= A

[
x
v

]
. (3)

Linear Multistep Method Our model could be using a lin-
ear multistep method, which uses values of derivatives from
several previous timesteps to estimate the future timestep.
We describe the kth order linear multistep method in Table
1 with coefficients αj and βj .

Taylor Expansion Method The model could also be using
higher order derivatives from the previous timestep to pre-
dict the next timestep 3. We describe the kth order Taylor
expansion in Table 1.

Matrix Exponential Method While the two methods pre-
sented above are useful approximations for small ∆t, the
matrix exponential uses a 2× 2 matrix to exactly transform
the previous timestep to the next timestep. We describe
it in Table 1. This method is the limk→∞ of the Taylor
expansion method.

In order to use the criteria described in Section 2 to figure
out which method(s) our model is using, we need to de-
fine relevant intermediates for each method g. Similarly

3This is equivalent to the nonlinear single step Runge-Kutta
method for a homogenous linear ODE with constant coefficients

Table 1. Numerical methods for modeling the simple harmonic
oscillator and their intermediates.

Method g(X,I) I

Linear Multistep
[
xn+1

vn+1

]
=

k∑
j=0

(αj + βjA∆t)

[
xn−j

vn−j

]
A∆t

Taylor Expansion
[
xn+1

vn+1

]
=

k∑
j=0

Aj ∆tj

j!

[
xn

vn

]
(A∆t)j

Matrix Exponential
[
xn+1

vn+1

]
= eA∆t

[
xn

vn

]
eA∆t

to linear regression, the intermediates are the coefficients
of the input, but are now 2 × 2 matrices and not a single
value. We summarize our methods and intermediates in our
theory hub in Table 1. Notably, these methods are viable for
any homogeneous linear ordinary differential equation with
constant coefficients, and potentially non linear differential
equations as well (see Appendix C).

3.3. Evaluating methods for the undamped harmonic
oscillator

We apply the four criteria established for linear regression
(Fig. 1) to evaluate if transformers use the methods in Table
1. For the Taylor expansion intermediate, we use j = 3 to
distinguish it from the linear multistep method, although
our results are generally robust to j ≤ 5 (Appendix Fig. 17).
We summarize our evaluations across methods and criteria
in Table 2.

Criterion 1: Is the intermediate encoded? In Fig. 5,
we see that all three intermediates are well encoded in the
model, with the matrix exponential method especially promi-
nent. This provides initial correlational evidence that the
models are learning numerical methods. The magnitude of
encodings are generally smaller than the linear regression
case, which we attribute to the increased difficulty of en-
coding 2 × 2 matrices compared to a single weight value

5
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w. Notably, we only probe for linear encodings given that
w was most often encoded linearly in the linear regression
case study.

Criterion 2: Is the intermediate encoding correlated with
model performance? In Fig. 6, we see that for all three
methods, better performing models generally have stronger
encodings and worse performing models have weaker encod-
ings. This correlation is strongest for the matrix exponential
method. This provides more correlational evidence that our
models are using the described methods.

Criterion 3: Can the intermediates explain the models’
hidden states? In Fig. 7, we reverse probe from the in-
termediates to the models’ hidden states, and find that all
methods explain non trivial variance in model hidden states,
while the matrix exponential method consistently explains
the most variance by a sizable margin. This provides little
weak causal evidence that the models are using the linear
multistep and Taylor expansion methods, and stronger weak
causal evidence that the models are using the matrix expo-
nential method.

Criterion 4: Can we predictably intervene on the the
model? Criterion 4.1 To intervene on the model, we use
the reverse probes from Fig. 7 to generate predicted hidden
states from each intermediate. In Fig. 8, we then insert these
hidden states back into the model and see if the model is still
able to model the SHO. The matrix exponential method has
the most successful interventions by an order of magnitude,
and 18/25 of these intervened models perform better than
guessing. This implies that the information the transformer
uses to model the SHO is stored in the matrix exponential’s
intermediate.

Criterion 4.2 We can also vary ∆t → ∆t′, ω0 → ω′
0, re-

generate intermediates and then hidden states, insert these
modified hidden states into the model, and see if the model
makes predictions as if it "believes" the input SHO data
uses ∆t′, ω′. In Fig. 9, we perform this intervention on
∆t, but our results are robust to intervening on ω0 as well
(Appendix Fig. 18). Even for the model with the best re-
verse probe quality for the linear multistep/Taylor expansion
intermediates (L = 4, H = 4), intervening with the matrix
exponential method is most successful. Combined with
our previous intervention (4.1), we now have strong causal
evidence for the matrix exponential method.

The transformer likely uses the matrix exponential to
model the undamped harmonic oscillator We have corre-
lational evidence that the model is using all three methods
in our theory hub, with little causal evidence for the linear
multistep and Taylor expansion methods, and strong causal
evidence for the matrix exponential method. We suspect the
model is only using the matrix exponential method in its
computations, and the evidence we have for the other two

methods is a byproduct of the use of the matrix exponential.
In Appendix Fig. 19, we give correlational evidence for this
claim by generating synthetic hidden states from eA∆t and
showing that in this synthetic setup, we retrieve values for
criterions 1, 3 for linear multistep and Taylor expansion that
are close to those we observe in Table 2.

Thus, we conclude that the transformer is likely using the
matrix exponential method. This makes sense given the
problem setting - both the linear multistep and Taylor ex-
pansion methods are only accurate for small ∆t, while our
bound of ∆t = U [0, 2π/ω0] violates this assumption for
some timeseries. Still, it is remarkable that transformers
use a known numerical method to model the undamped har-
monic oscillator, and we can provide evidence for its use,
although our experiments do not rule out the possibility of
other methods being used in conjunction with the matrix
exponential.

Criterion Linear
Multistep

Taylor
Expansion

Matrix Ex-
ponential

1 0.66/0.51 0.67/0.25 0.84/0.54
2 0.73/0.44 0.74/0.39 0.89/0.44
3 0.42/0.15 0.53/0.11 0.78/0.16
4 0.44/X 0.44/X 0.72/X

Table 2. We summarize the evaluation of methods and criteria for
the undamped/underdamped models. For each criteria, we list a
single quantity for readability. Criterion 1 is the largest value in
Fig. 5, criterion 2 is the correlation in Fig. 6, criterion 3 is the
largest value in Fig. 7, and criterion 4 is the ratio in the legend of
Fig. 8. The matrix exponential performs best across criteria.

3.4. Extension to the damped harmonic oscillator
(γ ̸= 0)

We want to understand the generality of our finding by
extending our problem space to the damped harmonic os-
cillator, where γ ̸= 0. We leave relevant details about
our procedure to Appendix E, but in Table 2, we find our
intermediate analysis performs much more poorly on the
underdamped case than undamped. We describe possible
explanations in Appendix E, but because of this we temper
our finding from the undamped harmonic oscillator with
caution about its generality.

4. Conclusions
After developing criteria for intermediates in the toy setting
of linear regression, we find that transformers use known
numerical methods for modeling the simple harmonic os-
cillator, specifically the matrix exponential method. We
leave the door open for researchers to better understand the
methods transformers use to model the damped harmonic
oscillator and use the study of intermediates to understand
how transformers model other systems in physics.
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Figure 5. We analyze the intermediates of our undamped harmonic oscillator models, and find all three methods encoded, with the matrix
exponential method best represented. This provides initial correlational evidence for all three methods.

Figure 6. We find that better performing models have intermediates of all methods better encoded, but this correlation is strongest in
magnitude and slope for the matrix exponential method. This is additional correlational evidence for all three methods.

Figure 7. We find that the intermediates from all three methods can explain some variance in model hidden states, but the matrix
exponential method is most consistent and successful by a wide margin.
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Figure 8. For each model and method, we replace the hidden state in Fig. 7 with the reverse probe of the intermediate. We see this
intervention is consistently best performing for the matrix exponential method by an order of magnitude, and 18/25 models perform better
than our baseline of guessing.

Figure 9. We vary the value of ∆t used in the intermediates and
use the reverse probes from Fig. 7 to generate hidden states from
these intermediates. We perform this operation on the model with
the best linear multistep/Taylor expansion (L = 4, H = 4) reverse
probes, and find that the matrix exponential is consistently most
robust to interventions. The baseline is if our model only predicted
the mean of the dataset.

Limitations We analyze relatively small transformers with
only one attention head and no LayerNorm. While we
demonstrate strong results for the undamped harmonic os-
cillator, our results for the underdamped harmonic oscillator
are more mild. We only use noiseless data.
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Supplementary material

A. Related Work
Mechanistic interpretability Mechanistic interpretability
(MI) as a field aims to understand the specific computational
procedures machine learning models use to process inputs
and produce outputs (5; 6; 13; 7; 8; 9; 10; 11; 12). Some MI
work focuses on decoding the purpose of individual neurons
(27) while other work focuses on ensembles of neurons
(11; 12). Our work is aligned with the latter.

Algorithmic behaviors in networks A subset of MI at-
tempts to discover the specific algorithms networks use to
solve tasks by reverse engineering weights. For example,
it has been demonstrated that transformers use the discrete
Fourier transform to model modular addition (13), while
additional work has found competing hypotheses for the
specific algorithm transformers use on this task(14). Instead
of reverse engineering weights, we make use of linear prob-
ing (28) to discover byproducts of algorithms represented
internally by transformers. Studies have found that algo-
rithms in models are potentially an "emergent" behavior that
manifests with size (29; 30), which we also find.

AI & Physics Many works design specialized machine learn-
ing architectures for physics tasks (31; 32; 33; 34; 35), but
less work has been done to see how well transformers per-
form on physical data out of the box. Recently, it was
shown that LLMs can in-context learn physics data (15),
which inspired the research question of this paper: how do
transformers model physics?

B. Additional Results for Linear Regression
In Fig. 10, we find that our transformers are able to
generalize to linear regression test examples with out-of-
distribution data (0.75 ≤ |w| ≤ 1). In Fig. 11, 12 we see
that smaller models do not have w encoded, while larger
models often have w linearly encoded (with some quadratic
encodings as well). In Fig. 13, we see that better perform-
ing models generally have better encodings, while worse
performing models generally have worse encodings. We
plot the relationship between ICL and encoding in Fig. 14.

C. Theory hub generalizes to other systems
We note that the theory hub we summarize in Table 1 is valid
for all differential equations that can be written as ẋ = Ax
if A is a constant matrix. This includes all homogenous
linear differential equations with constant coefficients, and
potentially non linear differential equations as well. Koop-
man operator theory allows nonlinear differential equations
to be modeled as linear differential equations. Here is an
example taken from (36):

Here, we consider an example system with a single
fixed point, given by:

ẋ1 = µx1 (32a)

ẋ2 = λ(x2 − x2
1). (32b)

For λ < µ < 0, the system exhibits a slow attracting
manifold given by x2 = x2

1. It is possible to augment
the state x with the nonlinear measurement g = x2

1,
to define a three-dimensional Koopman invariant sub-
space. In these coordinates, the dynamics become
linear:

d

dt

y1y2
y3

 =

µ 0 0
0 λ −λ
0 0 2µ

y1y2
y3

 for

y1y2
y3

 =

x1

x2

x2
1

 .

(33a)

For this nonlinear system, our theory hub in Table 1 is still
relevant using

A =

µ 0 0
0 λ −λ
0 0 2µ

 ,x =

x1

x2

x2
1

 .

Thus, it is possible that the methods we’ve determined a
transformer uses to model the simple harmonic oscillator
extends to other, more complex systems.

D. Undamped Harmonic Oscillator
Appendices

Data generation for the undamped harmonic oscillator
We generate 5000 sequences of 65 timesteps for various
values of ω0,∆t, x0, and v0. We range ω0 = U [π4 ,

5π
4 ],

∆t = U [0, 2π
ω0

], x0, v0 = U [−1, 1]. The undamped har-
monic oscillator is periodic so using a larger ∆t is not use-
ful. We also generate an out-of-distribution test set with
ω0 = U [0, π

4 ] + U [ 5π4 , 3π
2 ] with the same size as the train-

ing set.

Additional results for undamped harmonic oscillator In
Fig. 15, we see that models are able to learn the undamped
harmonic oscillator in-context, even for values of ω0 out
of the distribution these models were trained on. We also
plot the evolution of encodings for our various methods on
the best performing undamped model in Fig. 16. We find
that our choice of j for the Taylor expansion method has
is mostly irrelevant for j ≤ 5 in Fig. 17. With respect to
criterion 4, in Fig. 18 we show that our intervention results
are robust to which parameter we’re intervening on (∆t, ω0,
or both) for multiple models. We also generate synthetic hid-
den states from the matrix exponential intermediate and find
that the values for criterion 1,3 for the other two methods
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Figure 10. We find that linear regression models are able to generalize to out-of-distribution test data with 0.75 ≤ |w| ≤ 1.

are potentially byproducts of the matrix exponential in Fig.
19, giving additional correlational evidence that the matrix
exponential is the dominant method of the transformer.

E. Investigating the damped harmonic
oscillator (γ > 0)

E.1. Mathematical setup

The damped harmonic oscillator has three well studied
modes: underdamped, overdamped, and critically damped
cases. The underdamped case occurs when γ < ω0, and
represents a spring oscillating before coming to rest. The
overdamped case occurs when γ > ω0, and represents a
spring immediately returning to equilibrium without oscil-
lating. The analytical equations for both cases are

Underdamped (γ < ω0)

xk = e−kγ∆t

(
x0 cos(kω∆t)+

v0 + γx0

ω
sin(kω∆t)

)
vk = e−kγ∆t

(
v0 cos(kω∆t)−(v0 + γx0

ω
γ + ωx0

)
sin(kω∆t)

)

Overdamped (γ > ω0)

xk =
e−kγ∆t

2

(
(x0 +

v0 + γx0

ω
)ekω∆t+

(x0 −
v0 + γx0

ω
)e−kω∆t

)
vk =

e−kγ∆t

2

(
(ω − γ)(x0 +

v0 + γx0

ω
)ekω∆t−

(ω + γ)(x0 −
v0 + γx0

ω
)e−kω∆t

)

where ω =
√
|γ2 − ω2

0 |. Note that the critically damped
case (γ = ω0) is equivalent to limγ→ω−

0
of the underdamped

case and limγ→ω+
0

of the overdamped case. Thus, we focus
our study on the underdamped and overdamped cases, and
visualize sample trajectories of both in Appendix Fig. 20.

E.2. Computational setup for the damped harmonic
oscillator

We use an analogous training setup to the undamped
harmonic oscillator. We generate 5000 sequences of
32 timesteps for various values of ω0, γ,∆t, x0, and v0
for both the underdamped and overdamped cases. For
the underdamped and overdamped case, we range ω0 =
U [0.25π, 1.25π] and ∆t = U [0, 2π

13ω0
]. We use this se-

quence length and bound on ∆t to account for the peri-
odic nature of the damped harmonic oscillator and also to
ensure that the system does not decay to 0 too fast. For
the underdamped case, we take γ = U [0, ω0], and for the
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Figure 11. We plot the R2 of Taylor probes for the intermediate w within models trained on the task Y = wX . We see that larger models
have w encoded, often linearly, with little gain as we move to higher degree Taylor probes, while smaller models do not have w encoded.

overdamped case, γ = U [ω0, 1.5π]. We also generate an
out-of-distribution test set following a similar process but
using ω0 = U [0, 0.25π] + U [1.25π, 1.5π].

In Fig. 20 we find that a transformer trained on under-
damped data is able to generalize to overdamped data with
only in-context examples! This is a surprising discovery,
since a human physicist who is only exposed to under-
damped data would model it with the analytical function
in Section E.1. But this method would not generalize: the
underdamped case uses exponential and trigonometric func-
tions of γ∆t and ω∆t respectively, while the overdamped
case consists solely of exponential functions. We predict
that our “AI Physicist” is able to generalize between under-
damped and overdamped cases because it is using numerical
methods that model the underlying dynamics shared by both
scenarios.

E.3. Criteria are less aligned for the underdamped
harmonic oscillator

We evaluate all methods for the underdamped harmonic
oscillator on our criteria and summarize the evaluations in
Table 2 and show relevant figures for criteria 1, 2, and 3 in
Figures 21, 22, and 23 respectively. While we see moderate
correlational and some causal evidence for our proposed
methods, we note that there is a steep dropoff across criteria
between the undamped and underdamped cases. We identify
a few possible explanations for this discrepancy:

The transformer is using a method outside of the hypoth-
esis space Because the intermediates explain so little of the
hidden states even when combined (Fig. 23), we hypothe-
size that the transformer has discovered a novel numerical
method or is using another known method outside of our pro-
posed hypothesis space. This is more likely for the damped

case because we decrease the range on ∆t to avoid decay,
which makes approximate numerical solutions more accu-
rate. But why would it be doing this for the damped case
and not the undamped case? For our damped experiments,
we decrease the range on ∆t so that the trajectory does not
decay to 0 to quickly, but this also allows for approximate
numerical methods to be more accurate, as demonstrated by
the competitive performance of the linear multistep method
with the matrix exponential method in Table 2. So it is
possible our transformer is relying on another numerical
method outside of our hypothesis space.

Natural decay requires less "understanding" by the
transformer As the context length increases, damping
forces the system to naturally decay to 0, so the transformer
can use less precise methods to predict the next timestep.
In Appendix Fig. 24, we see that the intermediates’ encod-
ings accordingly decay with context length, which possibly
explains the underdamped case’s diminished metrics.

More data for the transformer to encode With a nonzero
damping factor γ, the intermediates we investigate in Table
1 have more non-constant values in their 2× 2 matrices in
the damped/undamped case: the linear multistep method has
3/2 values, the Taylor expansion method has 4/2 values, and
the matrix exponential method has 4/3 unique values. The
increased number of non-constant values could potentially
make it more difficult to properly encode intermediates.

We leave the problem of understanding the damped har-
monic oscillator to future work with intermediates.
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Figure 12. We calculate the mean of the R2 of probes for f(w) across all layers of the transformer and annotate each model with its
highest mean score, max(R̄2). When f(w) is linear (left) and quadratic (middle), we observe a striking phase transition of encoding based
on model size, demarked by the red dashed line. If w is encoded, it is mostly encoded linearly, with the (L,H) = (5, 2), (4, 32), (2, 8)
models showing signs of a quadratic representation of w. We do not see any meaningful gain in encoding when extending the Taylor
probe to degree n > 2 (right). For models where f(w) is well represented, it often happens in an attention layer. This is possibly because
the attention layer aggregates all past estimates of f(w) into an updated estimate.

Figure 13. Better performing models generally have better encodings of w, while worse performing models generally have worse
encodings (other than one outlier in the top right)
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Figure 14. We test the correlation between model performance and the encoding of w on 5 of our 25 models of evenly spaced performance
quality. We plot normalized values for the error of the encoding (1−R2

w) in red and the mean squared error of the model (MSEM ) in blue.
We find that the ability of the best performing models to in-context learn is highly correlated with their encoding of w (R2(MSE,w).

Figure 15. An intuitive picture for a simple harmonic oscillator is a mass oscillating on a spring (left). The trajectory of the SHO can
be fully parameterized by the value of x, v at various timesteps (middle), and we find that models trained to predict undamped SHO
trajectories are able to generalize to out-of-distribution test data with in-context examples (right).
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Figure 16. We visualize the evolution of encodings across all methods with context length for the best performing undamped model.

Figure 17. We find that our choice of j in the intermediate for the Taylor expansion method ((A∆t)j has little effect on our results or
conclusions about the undamped harmonic oscillator (shown for criterion 1).
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Figure 18. Regardless of which quantities we intervene on, our general results are robust for criterion 4 for the undamped harmonic
oscillator. We perform interventions on the models with the best reverse probes for linear multistep/Taylor expansion (L = 4, H = 4) and
matrix exponential (L = 4, H = 8).

Figure 19. We generate synthetic hidden states from the matrix exponential intermediates and find that this naturally results in values for
criterion 1,3 for the linear multistep and Taylor expansion methods that are close to those we observe in Table 2. This is correlational
evidence that the matrix exponential method is potentially solely used by the transformer, and values for the other two methods are
byproducts. These byproducts could arise because eA∆t =

∑
j(A∆t)j/j!
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Figure 20. We generate data for underdamped and overdamped harmonic oscillators following the procedure detailed in Section 3, and
visualize sample curves in the left most plot. From both the analytical equations and the plotted curves, we see that underdamped and
overdamped data follow very different trajectories. Amazingly, on the right most plot we find that transformers trained on underdamped
data generalize to overdamped data! This implies that our transformer is using a similar method to calculate both, otherwise this
generalization would be impossible. We hypothesize that our "AI Physicist" is using one of the numerical methods from the undamped
case. Note, that the "damped" oscillator was trained on equal parts underdamped and overdamped data.

Figure 21. We observe that the intermediates for all three methods are encoded, but less than the undamped case in Fig. 5. The linear
multistep is roughly as prominent as the matrix exponential method, which is also a departure from the undamped case.
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Figure 22. We see that generally, better performing models exhibit stronger encodings of intermediates, while worse performing models
exhibit weaker encodings. These trends are not as strong as the undamped case, shown in Fig. 6. Like criterion 1 in Fig. 21, we see that
the linear multistep method is competitive with the matrix exponential method.

Figure 23. Multiple methods represent nontrivial amounts of variance in the hidden states, but even all methods combined (right) explain
less than a quarter of the variance in the hidden states.
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Figure 24. We see that the encoding strength of intermediates decays across all methods with context length. This similarly matches
the natural decay to 0 of the damped harmonic oscillator, and is one potential explanation for why our methods are not as prominent in
the damped vs undamped cases, for which the encoding quality does not decay with context length (Fig. 24). While this is a general
observation across models, we visualize the L = 4, H = 32 model because it has the strongest encoding of intermediates from Fig. 21.
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Figure 25. We find that our choice of j in the intermediate for the Taylor expansion method ((A∆t)j has a major effect on the encoding
quality, unlike the undamped case visualized in Fig. 17. We see j > 3 is very poorly represented in the transformer, which implies that if
the transformer was using the Taylor expansion for the underdamped spring, it would likely be of order k = 3 or less.
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