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Abstract

Simulated tempering is a widely used strategy for sampling from multimodal
distributions. In this paper, we consider simulated tempering combined with an
arbitrary local Markov chain Monte Carlo sampler and present a new decomposition
theorem that provides a lower bound on the restricted spectral gap of the algorithm
for sampling from mixture distributions. By working with the restricted spectral
gap, the applicability of our results is extended to broader settings such as when the
usual spectral gap is difficult to bound or becomes degenerate. We demonstrate the
application of our theoretical results by analyzing simulated tempering combined
with random walk Metropolis–Hastings for sampling from mixtures of Gaussian
distributions. Our complexity bound scales polynomially with the separation
between modes, logarithmically with 1/ε, where ε denotes the target accuracy in
total variation distance, and exponentially with the dimension d.

1 Introduction

Efficient sampling from complex distributions is a foundational problem with numerous applications
across various fields, including computational statistics [Robert et al., 1999, Liu and Liu, 2001, Brooks
et al., 2011, Owen, 2013], Bayesian inference [Gelman et al., 2013], statistical physics [Newman and
Barkema, 1999, Landau and Binder, 2021], and finance [Dagpunar, 2007]. These distributions are
often multimodal, reflecting underlying heterogeneity in the data. Sampling from such distributions
presents challenges closely related to those encountered in non-convex optimization, where objective
functions with multiple local minima require methods capable of effectively exploring the solution
space. While discretizations of Langevin dynamics (for a comprehensive overview, see Chewi
[2024]) excel in log-concave settings where gradients reliably guide the sampler toward a single
mode, they tend to be less effective in multimodal landscapes, which require strategies capable of
navigating between separated modes. The assumption of dissipativity, which limits the growth rate
of the potential, has been widely used in previous works to establish better convergence rates for
Langevin Monte Carlo (LMC) in such settings [Raginsky et al., 2017, Durmus and Moulines, 2017,
Erdogdu et al., 2018, Erdogdu and Hosseinzadeh, 2021, Mou et al., 2022, Mousavi-Hosseini et al.,
2023]. More recently, Balasubramanian et al. [2022] characterized the performance of averaged LMC
for target densities that are only Hölder continuous, without relying on functional inequalities or
curvature-based assumptions; they measured the convergence rate using the weaker Fisher information
metric.

For distributions that deviate significantly from log-concavity and exhibit numerous deep modes,
additional techniques are often required to ensure efficient sampling. A comprehensive discussion of
the fundamental challenges in sampling from multimodal distributions, as well as an overview of
major types of Markov chain Monte Carlo (MCMC) algorithms designed for this purpose—including
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parallel tempering, mode jumping, and Wang–Landau methods—can be found in Łatuszyński
et al. [2025]. The recent work of Koehler et al. [2024] addresses the problem of sampling from
a multimodal distribution by initializing the sampler using a small number of stationary samples.
They show that, under the assumption of a k-th order spectral gap, the chain efficiently yields an
ε-accurate sample in total variation (TV) distance with Õ(k/ε2) samples, and they further extend the
result to scenarios where the score (i.e., the drift term of LMC) is estimated. Lee and Santana-Gijzen
[2024] studied the sequential Monte Carlo (SMC) method [Liu and Chen, 1998, Del Moral et al.,
2006, Chopin et al., 2020, Syed et al., 2024] and derived the complexity result for mixture target
distributions. Additionally, denoising-diffusion-based samplers have been proposed for sampling from
non-log-concave targets without relying on isoperimetric inequalities [Huang et al., 2023, 2024, He
et al., 2024b]. These methods reverse the Ornstein–Uhlenbeck process and require estimating score
functions (i.e., gradients of the log-density) via importance sampling, which becomes particularly
challenging in high-dimensional settings.

A widely used strategy for tackling multimodality is annealing or tempering, which leverages a
sequence of distributions to gradually explore complex landscapes. Guo et al. [2024] provided a
non-asymptotic analysis of annealed Langevin Monte Carlo [Neal, 2001], highlighting its provable
benefits for non-log-concave sampling. They demonstrated that a simple annealed Langevin Monte
Carlo algorithm achieves ε2 accuracy in Kullback-Leibler divergence with an oracle complexity
of Õ

(
d/ε6

)
. Chehab et al. [2024] develops a comprehensive theoretical framework for tempered

Langevin dynamics, providing convergence guarantees in Kullback-Leibler divergence across a
variety of tempering schedules. Simulated tempering [Marinari and Parisi, 1992] has also been
introduced as a method to promote transitions between modes. By dynamically adjusting the
“temperature" of the distribution, simulated tempering effectively smooths the energy landscape,
allowing the sampler to escape local modes and traverse between high-probability regions. The
sampler gradually returns to the original distribution as the temperature decreases. A version of
simulated tempering was also used in Koehler et al. [2022] to sample from multimodal Ising models.
Parallel tempering [Swendsen and Wang, 1986] shares a similar mechanism with simulated tempering,
but runs multiple chains in parallel at different temperatures, allowing exchanges between them to
improve mixing. Zheng [2003] established that the spectral gap of simulated tempering chain is
bounded below by a multiple of the spectral gap of parallel tempering chain and a bound depending
on the overlap between distributions at adjacent temperatures. Woodard et al. [2009] provided a
lower bound on the spectral gap for a simulated tempering chain using the state space decomposition
technique [Madras and Randall, 2002]. This method analyzes the probability flow by dividing the
state space into subsets and studying transitions within and between them. However, determining an
optimal partition into subsets often requires complex spectral partitioning arguments, and estimating
the spectral gap through conductance methods can introduce a squared-factor loss due to Cheeger’s
inequality.

An alternative approach is to decompose the Markov chain directly rather than the state space,
particularly when the target distribution is a mixture distribution or closely resembles one. This
method can yield potentially tighter spectral gap bounds by separately analyzing two types of
chains: local chains that efficiently explore each mixture component at every temperature level and a
projected chain that governs transitions between different components and temperature levels. This
decomposition technique was introduced in Ge et al. [2018] as a framework for bounding the spectral
gap of the simulated tempering chain combined with LMC for mixtures of strongly log-concave
distributions that are translates of each other. They established that the runtime required to reach
an ε TV distance from the target distribution depends polynomially on the dimension d, the mode
separation D, and the inverse accuracy 1/ε.

We introduce a new Markov chain decomposition theorem for discrete-time chains, in contrast to
the continuous-time framework adopted by Ge et al. [2018]. Since spectral gap bounds of discrete-
Markov chains (e.g. Metropolis–Hastings algorithms) over unbounded Euclidean spaces is often
difficult to obtain, we propose to directly decompose the restricted spectral gap [Atchadé, 2021],
which, roughly speaking, can be thought of as the spectral gap of the Markov chain restricted to a
subset of the state space. Geometric tools such as the path methods developed by Yuen [2000] can be
used to lower bound the restricted spectral gap. Intuitively, if each local chain mixes fast in a large
subset of the space, where the target distribution concentrates, and the projected chain also mixes
well, then the overall simulated tempering chain should converge fast. The projected chain can be
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constructed in many ways. We present a construction which differs substantially from that of Ge et al.
[2018]; it arises naturally from the structure of the algorithm and significantly simplifies the proof.

The remainder of the paper is organized as follows. In Section 2, we present our decomposition
theorem. In Section 3, we apply this theorem to analyze the simulated tempering combined with
the random walk Metropolis–Hastings (STMH) algorithm for sampling from mixtures of Gaussian
distributions. In Section 4, we empirically validate our convergence guarantee for the STMH
algorithm by sampling from a two-dimensional Gaussian mixture. Finally, Section 5 summarizes
our key contributions and highlights promising directions for future research. Detailed proofs are
provided in the appendix.

2 A New Decomposition Theorem

2.1 Notation and Definitions

We begin by introducing the necessary notation that will be used throughout the paper. We adopt
the convention that uppercase letters denote probability distributions (or transition kernels) and the
corresponding lowercase letters their densities (or transition densities). For example, P will be used
to denote the probability distribution with density p. We use L2(Ω,Π) to denote the space of all
real-valued functions defined on Ω that are square-integrable with respect to a measure Π.
Definition 1 (Restricted Spectral Gap). Let K be a Markov transition kernel with state space Ω
and stationary probability measure Π. Let Ω0 ⊆ Ω be measurable such that Π(Ω0) > 0. The
Ω0-restricted spectral gap of K, denoted by SpecGapΩ0(K), is defined as

SpecGapΩ0(K) = inf
g∈L2(Ω,Π)

EΩ0(g, g; Π,K)

VarΠ,Ω0(g)
,

where

EΩ0(g, g; Π,K) =
1

2

∫
Ω0

∫
Ω0

[
g(ω′)− g(ω)

]2
Π(dω)K(ω,dω′),

VarΠ,Ω0(g) =
1

2

∫
Ω0

∫
Ω0

[
g(ω′)− g(ω)

]2
Π(dω)Π(dω′).

We will refer to EΩ0(g, g; Π,K) as the Ω0-restricted Dirichlet form and omit Π,K when they are
clear from the context. When Ω0 = Ω, SpecGapΩ0(K) is known as the spectral gap of K, and
we simply write SpecGap(K) = SpecGapΩ(K), E(g, g) = EΩ(g, g) and VarΠ(g) = VarΠ,Ω0

(g).
Note that VarΠ(g) equals the variance of g(ω) with ω ∼ Π. Intuitively, the spectral gap quantifies
how rapidly a Markov chain mixes: a larger gap corresponds to faster convergence to stationarity
distribution. The restricted spectral gap generalizes this idea by measuring the rate of mixing in a
subset Ω0 of the state space.

Simulated tempering can be viewed as a bivariate Markov chain. The key idea is to augment the
state space with a temperature index that allows the chain to move between a family of distributions,
ranging from the target distribution (low temperature) to flattened versions (high temperature). At
higher temperatures the landscape is smoother, enabling easier transitions between modes, while
samples from the target are obtained by collecting states only at the lowest temperature. Formally, it
is defined as follows.
Definition 2 (Simulated Tempering Markov Chain). Let L ≥ 2 be an integer and [L] = {1, 2, . . . , L}.
Let λ ∈ (0, 1) and (ri)i∈[L] be constants such that ri > 0 for each i, and

∑L
i=1 ri = 1. Let Mi, for

each i ∈ [L], be the transition kernel of a Markov chain with state space X and stationary density pi.
The simulated tempering Markov chain has state space [L]×X . Denote its transition kernel by

M = M
(
(pi)

L
i=1, (ri)

L
i=1, (Mi)

L
i=1, λ

)
,

which has density

m((i, x), (i′, x′)) =

{
(1− λ)mi(x, x

′), if i = i′, x ̸= x′,

λ
2a((i, x), (i

′, x)), if i′ = i± 1, x = x′,

where

a((i, x), (i′, x)) = min

{
ri′pi′(x)

ripi(x)
, 1

}
. (1)

3



In words, the simulated tempering Markov chain evolves as follows. Given current state (i, x), we
sample u ∼ Bernoulli(λ). If u = 0, draw x′ from Mi(x, ·) and move to (i, x′). If u = 1, propose
i′ = i± 1, each with equal probability 1/2, and accept the proposal with probability a((i, x), (i′, x))
(if i′ /∈ [L], the proposal is always rejected). It is easy to check that the stationary distribution P of
the simulated tempering Markov chain M has density given by

p(i, x) = ripi(x).

2.2 Decomposition of the Simulated Tempering Markov chain

Consider the simulated tempering Markov chain given in Definition 2. Let X 0 ⊂ X be a measurable
subset of X , and our goal is to derive a decomposition theorem for the spectral gap of M restricted to
[L]×X 0. We assume that the distributions (Pi)i∈[L] satisfies the following assumption.

Assumption 1. For each i ∈ [L], the stationary density pi can be expressed as a mixture of n
component densities:

pi(x) =

n∑
j=1

w(i,j)p(i,j)(x),

where w(i,j) ≥ 0 for each j ∈ [n] and
∑n

j=1 w(i,j) = 1.

For simplicity, in Assumption 1 we assume that each stationary density pi can be expressed as
a mixture of simpler component densities, an assumption also made in Ge et al. [2018]. Under
Assumption 1, we can introduce a latent variable J so that given I = i, J = j, X is drawn
from the component distribution P(i,j). The density of the target distribution is augmented to
p(i, j, x) = riw(i,j)p(i,j)(x). The overall strategy of our decomposition is similar to Theorem 6.3 of
Ge et al. [2018] in that we directly decompose the Dirichlet form of M into the Dirichlet forms of
Markov chains (M(i,j))i∈[L],j∈[n], where M(i,j) has stationary distribution P(i,j). We assume that
these chains are chosen such that the following assumption is satisfied.

Assumption 2. Let Ei,X 0 denote the X 0-restricted Dirichlet form of Mi. For each i ∈ [L], j ∈ [n],
let E(i,j),X 0 be the X 0-restricted Dirichlet form of a Markov chain M(i,j) on X with stationary
density p(i,j). For each i and any gi ∈ L2(X , Pi),

n∑
j=1

w(i,j)E(i,j),X 0(gi, gi) ≤ C1Ei,X 0(gi, gi), (2)

where C1 > 0 is some constant. Further, each M(i,j) satisfies the following inequality with some
constant C2 > 0:

VarP(i,j),X 0(gi) ≤ C2E(i,j),X 0(gi, gi). (3)

Assumption 2 assumes a lower bound on the mixing rate of the local chains M(i,j), each targeting a
single component p(i,j). Efficient mixing within each component is essential, as poor local mixing
can limit global exploration and slow the overall convergence of the simulated tempering chain.

Remark 1. In Ge et al. [2018], each Mi is a continuous-time Langevin diffusion with stationary
distribution Pi. In this case, condition (2) can be easily satisfied by letting M(i,j) be the Langevin
diffusion having stationary distribution P(i,j), since

Ei(gi, gi) =
∫
∥∇gi∥2pi dx =

∫
∥∇gi∥2

n∑
j=1

w(i,j)p(i,j) dx =

n∑
j=1

w(i,j)E(i,j)(gi, gi),

which yields Equation (2) with C1 = 1. However, in our setting each Mi is a discrete-time Markov
chain (e.g. a Metropolis–Hastings algorithm), and finding Markov chains M(i,j) satisfying (2) may
not be trivial.

Remark 2. Condition (3) implies that the X 0-restricted spectral gap of M(i,j) is at least C−1
2 . In

contrast, Ge et al. [2018] requires each “local chain” to have a positive spectral gap. By weakening
this condition, we can develop a decomposition theorem that is particularly useful in settings where
the usual spectral gap is difficult to bound over the entire state space.
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Loosely speaking, condition (2) allows us to view the dynamics of Mi as governed by the hidden
variable J . Conditional on J = j, the behavior of Mi can be approximated by M(i,j). The constant
C2 in (3) measures the convergence rate of each M(i,j) on X 0. To bound the convergence rate of the
simulated tempering Markov chain M , we need one more assumption characterizing the transitions
between any (i, j) and (i′, j′). To this end, we construct a projected chain as follows.
Definition 3. Let M be the simulated tempering Markov chain given in Definition 2 and Assumption 1
hold. Define

a((i, j, x), (i′, j′, x)) = min

{
ri′w(i′,j′)p(i′,j′)(x)

riw(i,j)p(i,j)(x)
, 1

}
, pi(j|x) =

w(i,j)p(i,j)(x)

pi(x)
.

Define the projected chain with transition matrix M on [L]× [n] by

M((i, j), (i′, j′)) =


(1− λ)

∫
X 0

p(i,j)(x)

P(i,j)(X 0)
pi(j

′|x)dx, if i = i′, j ̸= j′,

λ
2

∫
X 0

p(i,j)(x)

P(i,j)(X 0)
a((i, j, x), (i′, j, x))dx, if i′ = i± 1, j = j′,

1−
∑

(k,l)̸=(i,j) M((i, j), (k, l)), if (i′, j′) = (i, j).

It is easy to prove that M is indeed a transition rate matrix (i.e., all entries are non-negative and each
row sums to one.) By checking the detailed balance condition, one obtains the following result.
Lemma 1. The stationary distribution of M is given by

P (i, j) =
riw(i,j)P(i,j)(X 0)

P ([L]×X 0)
.

Proof. See Appendix B.

Assumption 3. Let E be the Dirichlet form of M . Then, for any g : [L]× [n]→ R, M satisfies the
following inequality for some constant C3 > 0:

VarP (g) ≤ C3E(g, g). (4)

Assumption 3 assumes a lower bound on the mixing rate of the projected chain. Intuitively, if the
components are well-separated, transitions between them becomes rare, resulting in slow mixing of
the projected chain and, consequently, slow overall convergence of the simulated tempering chain.
Conversely, when components are closer and transitions are more likely, the chain mixes more rapidly.
Remark 3. Our construction of the projected chain M is significantly different from that in Ge et al.
[2018]. In particular, Ge et al. [2018] defined the transition between j, j′ by

M((i, j), (i, j′)) ∝
w(i,j′)

χ2
max(p(i,j)∥p(i,j′))

where χ2
max(P∥Q) := max{χ2(P∥Q), χ2(Q∥P )} for two distributions P and Q. In Lemmas 4

and 5 in Appendix B, we show how to bound the Dirichlet form of our projected chain M , denoted by
E . Compared to the approach of Ge et al. [2018], our argument for bounding E is more straightforward
and yields simpler and equally tight bound on the Poincaré constant of the simulated tempering chain
in the decomposition theorem.

We are now ready to state our main decomposition theorem, which relates the restricted spectral gap
of M to SpecGapX 0(M(i,j)) for i ∈ [L], j ∈ [n] and SpecGap(M). Roughly speaking, this result
guarantees that the restricted spectral gap of M is Ω((C1C2C3)

−1).
Theorem 1. Consider the simulated tempering Markov chain M given in Definition 2. Suppose
Assumptions 1, 2 and 3 hold, and define

θ = P ([L]×X 0), ϕ = min
i,j

P(i,j)(X 0).

Then, we have SpecGap[L]×X 0(M) ≥ C−1
M where

CM = max

{
3θC3,

θC1C2

ϕ(1− λ)
((2 + λ)C3 + 1)

}
E[L]×X 0(g, g). (5)
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Proof. See Appendix B.

When X 0 = X , we obtain a bound on the spectral gap of M, which is similar in spirit to the
continuous-time decomposition theorem of Ge et al. [2018], though the two results are not directly
comparable due the discrete-time setting and our construction of M .
Corollary 1. Consider the simulated tempering Markov chain M given in Definition 2. Suppose
Assumptions 1, 2 and 3 hold with X 0 = X . Then, SpecGap(M) ≥ C−1

M where CM is given by (5).

Proof. This immediately follows from Theorem 1.

2.3 Mixing Time Bounds

Given two probability distributions Π1 and Π2 with densities π1 and π2, we define their total variation
distance by ∥Π1 − Π2∥tv =

∫
|π1(x) − π2(x)|dx, which takes values in [0, 2]. In addition to

Assumptions 1 to 3, we need to further require that M is both reversible and lazy, where “lazy”
means that M((i, x), {(i, x)}) ≥ 1/2 for any (i, x) ∈ [L]× X . Both conditions are very mild and
commonly used in the sampling literature. Then, if M has a positive spectral gap, M converges
exponentially fast to its stationary distribution P in TV distance [Montenegro et al., 2006]. It was
shown in Atchadé [2021] that a positive restricted spectral gap can also be used to obtain an upper
bound on the mixing time. The following lemma follows from the result of Atchadé [2021], where
we also characterize the exponential convergence rate at each temperature level.
Lemma 2. Assume that the simulated tempering Markov chain M , defined in Definition 2, is
reversible and lazy, with stationary distribution P . Let P 0 denote the initial distribution, and suppose
that P 0 is absolutely continuous with respect to P . Define f0 by

P 0(i,dx) = f0(i, x)P (i,dx).

Let PN denote the distribution of the chain after N steps, and for each temperature level i ∈ [L],
define the conditional distribution PN

i (dx) ∝ PN (i,dx). Fix ε ∈ (0, 1). Suppose that there exist
constants B > 1,∞ ≥ q > 2 and a measurable set X 0 ⊂ X such that

1. ∥f0∥Lq(P ) ≤ B, where ∥ · ∥Lq(P ) denotes the Lq-norm w.r.t. P ,

2. P ([L]×X 0) ≥ 1− ( ε2

20B2 )
q/(q−2),

3. SpecGap[L]×X 0(M) ≥ C−1
M .

Then, for N ≥ CM log(2B2/ε2), we have

∥PN − P∥tv ≤ ε, and ∥PN
i − Pi∥tv ≤

3ε

2mink∈[L] rk
for all i ∈ [L]. (6)

Proof. See Appendix B.

The constant CM controls the rate of convergence of the simulated tempering chain to its stationary
distribution in total variation distance; larger values of CM correspond to slower convergence.

3 Analysis of the Simulated Tempering Metropolis—Hastings Algorithm for
Multivariate Gaussian Mixtures

Let function f : Rd → R be defined by

f(x) = − log

{
n∑

i=1

wie
− 1

2 (x−µi)
⊤Σ−1(x−µi)

}
, (7)

where µi ∈ Rd for each i, Σ ∈ Rd×d is a positive definite matrix, and wi > 0 for each i such
that

∑n
i=1 wi = 1. We want to sample from a probability distribution P ∗ with probability density

function p∗(x) ∝ e−f(x). The target density p∗ corresponds to a mixture of n Gaussian components,
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where each component has mean µi, weight wi, and shared covariance matrix Σ. We assume that we
do not have access to the individual means (µi)

n
i=1 and weights (wi)

n
i=1, but we can evaluate f(x) at

any point x ∈ Rd; the problem would become trivial if (µi, wi)
n
i=1 are known.

We illustrate the use of our decomposition theorem by analyzing the sampling complexity of the
simulated tempering Metropolis–Hastings (STMH) algorithm for target distribution P ∗.
Definition 4 (STMH). Given a target probability density p∗(x) ∝ exp(−f(x)), let

M∗ = M
(
(p∗i )

L
i=1, (ri)

L
i=1, (M

∗
i )

L
i=1, λ

)
,

denote the simulated tempering Markov chain defined in Definition 2. Here,

p∗i (x) ∝ exp(−βif(x)), (8)

where 0 < β1 < · · · < βL = 1 is a sequence of inverse temperatures. The transition kernel M∗
i is

that of the Metropolis–Hastings algorithm targeting p∗i with a symmetric Gaussian proposal density
q(x, y) = N (y;x, ηI), where η > 0 is the step size. The constants ri are set proportional to Zi/Ẑi,
where Zi is the (unknown) normalizing constant of p∗i , and Ẑi is its estimate. Specifically, we set

ri =
Zi/Ẑi∑L

k=1 Zk/Ẑk

so that
∑L

i=1 ri = 1.

We define ri ∝ Zi/Ẑi because the true normalizing constants Zi (also known as partition functions,
where Z is viewed as a function of the temperature index i) are typically unknown in practice. When
implementing the STMH algorithm, the acceptance probability in Equation (1) is given by

a
(
(i, x), (i′, x)

)
= min

{
Ẑi exp(−βi′f(x))

Ẑi′ exp(−βif(x))
, 1

}
.

This choice ensures that the acceptance probability depends only on the estimated normalizing
constants Ẑi and not the true values Zi, thereby making the algorithm implementable even when
Zi are unknown. Since acceptance probability depends only on the ratio Ẑi/Ẑi′ , it is sufficient to
estimate the normalizing constants up to a common multiplicative factor. We set Ẑ1 = 1 and estimate
the other normalizing constants using the inductive strategy considered by Ge et al. [2018]: for
ℓ = 1, . . . , L− 1, we run STMH using ℓ inverse temperatures β1 < · · · < βℓ and use the samples
at temperature level ℓ to compute the estimate Ẑℓ+1. This estimation procedure is summarized
in Algorithm 2 in Appendix A. After obtaining all estimates (Ẑi)i∈[L], we run STMH using all L
temperature levels, and the samples collected at the L-th temperature level can be used to approximate
the original target density p∗(x) ∝ e−f(x). Algorithm 1 in Appendix A summarizes the STMH
algorithm given in Definition 4, assuming all partition functions are known.

The following theorem provides a mixing time bound for the STMH algorithm targeting the distribu-
tion P ∗. Directly applying the spectral gap decomposition in Corollary 1 is very challenging, since
it remains unclear how to effectively bound the spectral gap of the Metropolis–Hastings chain over
an unbounded domain. In contrast, such bounds are more tractable within bounded regions [Yuen,
2000]. This motivates the use of the decomposition of restricted spectral gap given in Theorem 1.
Theorem 2. Let f(x) be defined as in Equation (7), and define

D := max

{
max
k∈[n]

∥µk∥,
√
γmin

}
, wmin := min

1≤j≤n
wj , κ :=

γmax

γmin
,

where γmax and γmin denote the largest and smallest eigenvalues of the covariance matrix Σ, re-
spectively. Then, assuming d is fixed, STMH algorithm can be used to generate a sample from a
distribution that is within ε total variation distance of the target distribution P ∗, in time

poly

(
1

wmin
, D, κ

)
· log3

(
1

ε

)
.

Proof. See Appendix C, where a precise version of the time complexity bound is also provided.
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Remark 4. The parameter D captures the spread and separation of the Gaussian mixture components
since maxi ̸=j ∥µi − µj∥ ≤ 2D by the triangle inequality.
Remark 5. The time complexity in Theorem 2 is polynomial in the separation parameter D, log-
arithmic in the inverse accuracy 1/ε, and exponential in the dimension d. In fixed-dimensional
settings—where d is constant—this result provides high-accuracy guarantees, showing that STMH is
particularly effective for sampling from such mixture distributions. For comparison, the proximal
sampler incurs a time complexity with exponential dependence on D, since the log-Sobolev constant
and Poincaré constant for a Gaussian mixture distribution decays exponentially in D; see Schlichting
[2019]. To further illustrate the scaling behavior of the proximal sampler, consider a mixture of
two Gaussians with identical covariance matrices and means located at (−m/2, . . . ,−m/2) and
(m/2, . . . ,m/2), respectively. In this case, the separation becomes D = m

√
d, which implies that

the complexity of the proximal sampler scales exponentially in both m and d. The simulated temper-
ing Langevin Monte Carlo (STLMC) algorithm of Ge et al. [2018] admits an upper bound that scales
polynomially with D, d, and 1/ε. In contrast, the upper bound we obtain for STMH exhibits only a
logarithmic dependence on 1/ε, representing a state-of-the-art theoretical guarantee among existing
known upper bounds. Table 1 summarizes the theoretical complexity of STMH in comparison with
several other sampling algorithms. It can be seen that no algorithm dominates STMH in terms of
the complexity dependence on D and 1/ε. Our upper bound on the time complexity of STMH has
exponential dependence on d, which is likely due to the use of the random walk Metropolis–Hastings
(RWMH) sampler for each local chain Mi. We conjecture that by replacing it with proximal sam-
pler [Chen et al., 2022, He et al., 2024a] or Metropolis-adjusted Langevin algorithm [Wu et al., 2022],
the resulting simulated tempering algorithm may achieve a better complexity dependence on d.
Remark 6. Theorem 2 establishes convergence guarantees for STMH when sampling from a mixture
of Gaussians with a shared covariance matrix. This result can be naturally extended to target
distributions that are sufficiently close to such mixtures, following an approach similar to that of Ge
et al. [2018]. In such cases, the time complexity would additionally depend on closeness between
the actual distribution and the Gaussian mixture approximation. We also anticipate that similar
techniques can be adapted to handle mixtures of log-concave distributions that are translates to
each other, or more broadly, distributions that are well-approximated by such mixtures. However,
as demonstrated by Ge et al. [2018], some seemingly mild violations of the assumptions, such as
component covariance matrices differing by a constant factor, can lead to exponential time complexity
for any reasonable algorithm with similar guarantees.

Algorithm d D 1/ε

STLMC [Ge et al., 2018] poly poly poly
LMC [Vempala and Wibisono, 2019] d exp(D2)2 1/ε2

Annealed LMC [Guo et al., 2024] poly poly poly
Proximal Sampler [Fan et al., 2023] d1/2 exp(D2) log(1/ε)

LMC (data-initialized) [Koehler et al., 2024] poly exp(D2)2 1/ε2

STMH exp poly log2(1/ε)

Table 1: Dependence of time complexity on d, D and ε for sampling from densities of the form in (7).

The proof of Theorem 2 is divided into several steps. In order to apply the decomposition arguments
developed in Section 2, we first define an approximate STMH chain that satisfies Assumption 1.
Definition 5 (Approximate STMH). Let

M̃ = M
(
(p̃i)

L
i=1, (ri)

L
i=1, (M̃i)

L
i=1, λ

)
,

denote the simulated tempering Markov chain defined in Definition 2, where

p̃i(x) ∝
n∑

j=1

wj exp

{
−βi

2
(x− µj)

⊤Σ−1(x− µj)

}
, (9)

and transition kernel M̃i is that of the Metropolis–Hastings algorithm targeting p̃i, with a symmetric
Gaussian proposal density q(x, y) = N (y;x, ηI) where step size η > 0. The weights (ri)Li=1 and λ
are the same as in Definition 4.
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The stationary densities p̃i in Definition 5 are mixtures of Gaussian densities; denote the component
distributions by P̃(i,j). This enables us to apply Theorem 1. It is important to note that this
approximate STMH sampler cannot be implemented in practice, as it requires knowledge of the
component distributions, which is typically unavailable. We show that, for some X 0 ⊂ Rd, the
X 0-restricted spectral gap of the STMH chain constructed in Definition 4 is comparable to that of the
approximate STMH chain given in Definition 5 (see Lemma 9 in Appendix C.1). This comparison
result is a discrete-time extension of the argument used in Ge et al. [2018], which suggests that
adjusting the temperature is roughly equivalent to modifying the variance of a Gaussian distribution.
As a result, it suffices to obtain a lower bound on the X 0-restricted spectral gap for the approximate
STMH chain. Note that since βL = 1, pL = p̃L = p∗.

Next, we apply Theorem 1 to derive a lower bound on the X 0-restricted spectral gap of the approx-
imate STMH chain. This involves three steps. First, we verify inequality (2) in Appendix C.2.1
by comparing the transition density of the chain M̃(i,j) with that of M̃i. Second, we need to com-
pute the X 0-restricted spectral gap of the “local chain” M̃(i,j), which we define as the random
walk Metropolis–Hastings algorithm targeting P̃(i,j), the Gaussian distribution with mean µj and
covariance matrix β−1

i Σ. It is well known that for strongly log-concave target distributions, the
Metropolis–Hastings algorithm should mix fast [Johndrow and Smith, 2018]. To explicitly compute
the bound, we apply the path method on continuous spaces proposed by [Yuen, 2000], which is
detailed in Appendix C.2.2. Finally, the projected chain captures transitions between mixture com-
ponents and temperature levels. Intuitively, it should mix fast because (i) if β1 is sufficiently small,
the component distributions P̃(1,1), . . . , P̃(1,n) overlap significantly, and (ii) if βi/βi−1 is not too big,
then P̃(i,j) and P̃(i−1,j) also share substantial overlap. To compute a lower bound on the spectral gap
for the projected chain, we apply the well-known canonical path method [Levin and Peres, 2017]; see
Appendix C.2.4.

To conclude the proof, we derive error bounds on the estimated partition functions in Appendix C.4.3.

4 Simulation Study

To numerically investigate the complexity of the STMH algorithm, we perform a simulation study
with target distribution being a symmetric two-dimensional Gaussian mixture distribution, whose
density is given by

p∗(x) =
1

2
N
(
x;− D

2
√
2
· 12, I2

)
+

1

2
N
(
x;

D

2
√
2
· 12, I2

)
,

where I2 is the 2 × 2 identity matrix and 12 = (1, 1)⊤. The parameter D controls the separation
between the two components. We vary the parameter D to explore how increasing the separation
between the modes affects the convergence behavior of the algorithm. For each value of D, we run
the STMH algorithm with the parameters specified in Appendix C.4.1 and initialized at (10, 10).
To assess convergence, we monitor how quickly the empirical mean of the samples, denoted by µ̂,
approaches the true mean of the target distribution, (0, 0). If the chain has not yet mixed, it tends
to spend more time near one mode, resulting in an empirical mean that deviates from the target
mean. Moreover, according to Nishiyama [2022], when the empirical and target distribution have
the same covariance matrix, we can lower bound their TV distance by ∥µ̂∥2/(C + ∥µ̂∥2) for some
constant C > 0, which is a monotone increasing function of ∥µ̂∥2. This justifies the use of ∥µ̂∥ as
a measure of convergence. To reduce variability, we repeat the simulation 20, 000 times for each
fixed D and average the empirical means over all runs. To provide a benchmark, we also run the
baseline Metropolis–Hastings (MH) algorithm under the same setup and compare its convergence
behavior with that of STMH. All simulations were performed on a standard consumer-grade CPU
with parallelization and completed within approximately six hours.

In the left panel of Figure 1, we plot the number of steps required for the empirical mean to fall below
0.1 for both STMH and the baseline MH algorithm. The error bars are obtained by computing the
95% coverage interval of the empirical mean at each step, and then determining the corresponding
number of steps needed for the lower and upper bounds of the interval to cross the 0.1 threshold.
The results show that this number grows approximately linearly with D2 for STMH, consistent
with the theoretical bound in Theorem 2. In contrast, for the baseline MH algorithm the number of
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steps increases exponentially with D2, reflecting its slower convergence, which is consistent with
the well-known behavior of MH. To analyze how the mixing time depends on the threshold ε, we
fix D = 30 and plot how ∥µ̂∥ varies with the number of steps N in the right panel of Figure 1.
For STMH, the results show an approximately linear relationship between the number of steps and
log2

(
1/∥µ̂∥

)
, consistent with the theoretical bound in Theorem 2. In contrast, for the baseline MH

algorithm the relationship is closer to logarithmic, implying a polynomial dependence of the mixing
time on 1/ε, which aligns with the well-known limitations of MH in achieving high accuracy. The
error bars represent 95% coverage intervals of the empirical mean, with the delta method applied
to obtain the corresponding intervals for log2

(
1/∥µ̂∥

)
. Overall, these simulations demonstrate that

STMH provides more efficient sampling from this Gaussian mixture distribution compared to MH.

Figure 1: Left: number of steps until ∥µ̂∥ < 0.1 versus D2. Right: log2 (1/∥µ̂∥) versus the number
of steps N for D = 30.

5 Concluding Remarks

Simulated tempering addresses the challenge of sampling from multimodal distributions. In this
work, we develop a general theoretical framework for analyzing simulated tempering and demonstrate
its effectiveness through a detailed analysis of simulated tempering combined with the Metropo-
lis–Hastings algorithm for sampling from Gaussian mixtures. Our framework can be used to analyze
simulated tempering combined with other local MCMC samplers, such as the Metropolis-adjusted
Langevin algorithm (MALA) and proximal algorithms, but verifying Assumptions 2 and 3 and
computing the constants C1, C2, C3 in these settings may be more involved. In particular, since it
has been shown in the literature that the dimensional dependence of the complexity of MALA for
log-concave target distributions is Θ̃(

√
d) [Chewi et al., 2021, Wu et al., 2022], it would be interesting

to investigate if the complexity of simulated tempering combined with MALA has a similar polyno-
mial dependence on d, improving on the exponential dependence in our result. Another promising
direction for future work is to generalize our techniques to a broader class of target distributions
beyond Gaussian mixtures. The argument of Ge et al. [2018] can be used to extend our result to target
distributions that are “sufficiently close” to Gaussian mixtures. Finally, while this work primarily
focuses on establishing lower bounds on the spectral gap, an interesting direction for future work
is to investigate the tightness of these bounds by also deriving upper bounds on the spectral gap for
simulated tempering Markov chains.
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to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
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sented.
Guidelines:

• The answer NA means that the paper does not include experiments.
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error rates).
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societal impacts of the work performed?

Answer: [NA]
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multimodal distributions. While the work is not tied to a specific application or deployment,
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impacts at this stage.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper does not release any models or datasets that pose a risk of misuse or
require safeguards.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: The paper does not use any external assets such as third-party code, datasets,
or pretrained models.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: This paper does not introduce or release any new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This paper does not involve human subjects or crowdsourcing.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This paper does not involve human subjects or crowdsourcing.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The research does not use LLMs as part of its core methods.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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Appendices

A Simulated Tempering Metropolis–Hastings algorithm

Algorithm 1 Simulated Tempering Metropolis–Hastings Algorithm

1: Input: function f , inverse temperatures β1, . . . , βℓ, partition function estimates Ẑ1, . . . , Ẑℓ,
number of steps N , step size η, rate λ, initial covariance matrix Σ0.

2: Sample x0 ∼ N (0,Σ0)
3: i← 1, x← x0, n← 0
4: while n < N do
5: Sample u ∼ Bernoulli(λ).
6: if u = 0 then
7: Propose x′ ∼ N (x, ηI)
8: Sample v ∼ Uniform(0, 1)

9: if v < min
{
1, e−βif(x′)

e−βif(x)

}
then

10: x← x′

11: end if
12: else
13: Propose i′ = i± 1, each with probability 1/2
14: if 1 ≤ i′ ≤ ℓ then
15: Sample v ∼ Uniform(0, 1)

16: if v < min
{
1, e−β

i′f(x)/Ẑi′

e−βif(x)/Ẑi

}
then

17: i← i′

18: end if
19: end if
20: end if
21: n← n+ 1
22: end while
23: Output: Sample (x, i) collected at the N th step.

Algorithm 2 Partition Function Estimation

Input: function f , inverse temperature sequence β1 < · · · < βL and number of samples s.
Ẑ1 ← 1
for ℓ = 1 to L do

Repeat Algorithm 1 until s samples (xj)
s
j=1 are obtained at temperature level ℓ.

Ẑℓ+1 ← (Ẑℓ/s)
∑s

j=1 e
(−βℓ+1+βℓ)f(xj)

end for

Remark 7. Algorithm 1 is always run for a fixed number of steps N and returns the sample obtained
at the final step. In Algorithm 2, if this sample is not from the desired temperature level, Algorithm 1
is simply re-run for another N steps.
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B Proofs for Section 2

B.1 Proof of Lemma 1

Proof. Clearly,
∑

i,j P (i, j) = 1. Hence, it only remains to check the detailed balance condition

P ((i, j))M((i, j), (i′, j′)) = P ((i′, j′))M((i′, j′), (i, j))

for two types of moves. First, let i be fixed and consider j ̸= j′. Then,

riw(i,j)P(i,j)(X 0)M((i, j), (i, j′)) = ri(1− λ)

∫
X 0

w(i,j)p(i,j)(x)
w(i,j′)p(i,j′)(x)

pi(x)
dx,

which is clearly symmetric with respect to j and j′. Similarly, if j is fixed and i′ = i± 1 (assuming
both i, i′ ∈ [L]), we have

riw(i,j)P(i,j)(X 0)M((i, j), (i′, j)) =
λ

2

∫
X 0

riw(i,j)p(i,j)(x)a((i, j, x), (i
′, j, x))dx

=
λ

2

∫
X 0

min
{
riw(i,j)p(i,j)(x), ri′w(i′,j)p(i′,j)(x)

}
dx,

which is symmetric with respect to i and i′.

B.2 Proof of Theorem 1

We first prove an auxiliary lemma on the Dirichlet form of the simulated tempering Markov chain.
Lemma 3. The [L]×X 0-restricted Dirichlet form E[L]×X 0 of the simulated tempering Markov chain
M , defined in Definition 2, can be expressed by

E[L]×X 0(g, g) = (1− λ)

L∑
i=1

ri Ei,X 0(gi, gi) + λ EIX 0(g, g),

where Ei,X 0 is the X 0-restricted Dirichlet form of the Markov chain Mi, g ∈ L2([L]×X , P ) with
gi(x) = g(i, x) for each i ∈ [L] and

EIX 0(g, g) =
1

4

∑
i,i′∈[L] : i′=i±1

∫
X 0

(
g(i, x)− g(i′, x)

)2
ri pi(x) a

(
(i, x), (i′, x)

)
dx.

Proof. Since the stationary density of M is p(i, x) = ripi(x) and either x or i is fixed in each
simulated tempering iteration, the restricted Dirichlet form E[L]×X 0(g, g) can be expressed by

E[L]×X 0(g, g) =
1

2

L∑
i=1

∫
X 0

∫
X 0

(
g(i, x)− g(i, y)

)2
ri pi(x)M

(
(i, x), (i,dy)

)
dx

+
1

2

∑
i,i′∈[L] : i′=i±1

∫
X 0

(
g(i, x)− g(i′, x)

)2
ri pi(x)M

(
(i, x), (i′, x)

)
dx.

(10)

Since M
(
(i, x), (i,dy)

)
= (1− λ)Mi(x, dy) and Mi has stationary density pi,

1

2

L∑
i=1

∫
X 0

∫
X 0

(
g(i, x)− g(i, y)

)2
ri pi(x)M

(
(i, x), (i,dy)

)
dx

=
1− λ

2

L∑
i=1

ri

∫
X 0

∫
X 0

(
gi(x)− gi(y)

)2
pi(x)Mi

(
x, dy

)
dx = (1− λ)

L∑
i=1

ri Ei,X 0

(
gi, gi

)
.

For the second term on the right-hand side of (10), note that

M
(
(i, x), (i′, x)

)
=

λ

2
a((i, x), (i′, x)),

where the acceptance probability function a is given by (1). A straightforward calculation then
concludes the proof of the lemma.
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Next, we prove two key lemmas about the Dirichlet form E of the Markov chain M constructed in
Definition 3. Let θ = P ([L]×X 0). Recall that under Assumption 1, we can augment the stationary
density to

p(i, j, x) = riw(i,j)p(i,j)(x).

We still denote the corresponding probability measure by P . Let P0 denote the conditional probability
measure given X ∈ X 0, whose density is given by

p0(i, j, x) =
riw(i,j)p(i,j)(x)

θ
.

The Dirichlet form E can be expressed by

E(g, g) = EJ(g, g) + EI(g, g),

where

EJ(g, g) = 1

2θ

L∑
i=1

n∑
j,j′=1

(g(i, j)− g(i, j′))2 riw(i,j)P(i,j)(X 0)M((i, j), (i, j′)),

EI(g, g) = 1

2θ

n∑
j=1

∑
i,i′∈[L] : i′=i±1

(g(i, j)− g(i′, j))2 riw(i,j)P(i,j)(X 0)M((i, j), (i′, j)).

Lemma 4. Suppose Assumption 1 holds. For any g ∈ L2([L] × X , P ), define gi : X → R by
gi(x) = g(i, x), and define g : [L]× [n]→ R by

g(i, j) =

∫
X 0

g(i, x)
p(i,j)(x)

P(i,j)(X 0)
dx.

Then,

EJ(g, g) ≤ 2(1− λ)

θ

L∑
i=1

n∑
j=1

riw(i,j)

P(i,j)(X 0)
VarP(i,j),X 0(gi).

Proof. For every x ∈ X , i ∈ [L] and every pair j, j′ ∈ [n], the following inequality holds(
g(i, j)− g(i, j′)

)2 ≤ 2
[(
g(i, j)− g(i, x)

)2
+
(
g(i, j′)− g(i, x)

)2]
.

Hence, using the expression for M((i, j), (i, j′)), we get

EJ(g, g) = 1− λ

2θ

L∑
i=1

n∑
j,j′=1

(g(i, j)− g(i, j′))2riw(i,j)

∫
X 0

p(i,j)(x)pi(j
′|x) dx

≤ (1− λ)

L∑
i=1

n∑
j,j′=1

riw(i,j)

∫
X 0

[(
g(i, j)− g(i, x)

)2
+
(
g(i, j′)− g(i, x)

)2] p(i,j)(x)
θ

pi(j
′|x) dx

= (1− λ)EP̃

[(
g(I, J)− g(I,X)

)2
+
(
g(I, J ′)− g(I,X)

)2]
, (11)

where P̃ denotes the joint probability measure of (I, J, J ′, X) with density

p̃(i, j, j′, x) =
riw(i,j)p(i,j)(x)

θ
pi(j

′|x) =
riw(i,j)w(i,j′)p(i,j)(x)p(i,j′)(x)

θ pi(x)
,

for i ∈ [L], j, j′ ∈ [n], x ∈ X 0. Hence, under P̃ , the joint distribution of (I, J,X) and that of
(I, J ′, X) are both given by P0, and thus

EP̃

[(
g(I, J)− g(I,X)

)2
+
(
g(I, J ′)− g(I,X)

)2]
= 2EP0

[(
g(I, J)− g(I,X)

)2]
. (12)
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Since g(i, j) = EP0 [g(I,X) | I = i, J = j], we find that

EP0

[(
g(I, J)− g(I,X)

)2]
= EP0

[VarP0
(g(I,X) | I, J)]

=

L∑
i=1

n∑
j=1

riw(i,j)P(i,j)(X 0)

θ
VarP0

(g(I,X) | I = i, J = j)

=

L∑
i=1

n∑
j=1

riw(i,j)

θ P(i,j)(X 0)
VarP(i,j),X 0(gi), (13)

where in the last step we have used

VarP0
(g(I,X) | I = i, J = j) =

1

2

∫
X 0×X 0

[g(i, x)− g(i, y)]2
p(i,j)(x)

P(i,j)(X 0)

p(i,j)(y)

P(i,j)(X 0)
dxdy.

The claim then follows from (11), (12) and (13).

Lemma 5. Consider the setting of Lemma 4. We also have

EI(g, g)≤ 3λ

θ

L∑
i=1

n∑
j=1

riw(i,j)

P(i,j)(X 0)
VarP(i,j),X 0(gi) +

3λ

θ
EIX 0(g, g).

Proof. For every x ∈ X , every pair i, i′ ∈ [L], and each j ∈ [n],(
g(i, j)− g(i′, j)

)2 ≤ 3
[(
g(i, j)− g(i, x)

)2
+
(
g(i, x)− g(i′, x)

)2
+
(
g(i′, j)− g(i′, x)

)2]
.

Then, using the definition of M((i, j), (i′, j)) for i′ = i± 1, we get

EI(g, g) = λ

4θ

∑
i,i′∈[L] : i′=i±1

n∑
j=1

(g(i, j)− g(i′, j))2riw(i,j)

∫
X 0

p(i,j)(x)a((i, j, x), (i
′, j, x))dx

≤ 3λ

2
EP̃

[(
g(I, J)− g(I,X)

)2
+
(
g(I,X)− g(I ′, X)

)2
+
(
g(I ′, J)− g(I ′, X)

)2]
,

where P̃ is the probability measure of (I, I ′, J,X) with density

p̃(i, i′, j, x) =


riw(i,j)p(i,j)(x) a

(
(i, j, x), (i′, j, x)

)
2θ

, if i′ = i± 1,

1− p̃(i, i+ 1, j, x)− p̃(i, i− 1, j, x), if i′ = i,

0, otherwise.

That is, we first draw I, J,X ∼ P0 and then update I ′ by proposing I ′ = I±1 with equal probability
and accept it with probability a((i, j, x), (i′, j, x)). Since the update for I ′ given I, J,X is reversible
with respect to P0, we also have (I ′, J,X) ∼ P0. Hence,

EP̃

[(
g(I, J)− g(I,X)

)2]
= EP̃

[(
g(I ′, J)− g(I ′, X)

)2]
= EP0

[(
g(I, J)− g(I,X)

)2]
which has been characterized in (13). Finally,

EP̃

[(
g(I,X)− g(I ′, X)

)2]
=

1

2θ

∑
i,i′∈[L] : i′=i±1

n∑
j=1

∫
X 0

(g(i, x)− g(i′, x))2riw(i,j)p(i,j)(x)a((i, j, x), (i
′, j, x))dx

=
1

2θ

∑
i,i′∈[L] : i′=i±1

n∑
j=1

∫
X 0

(g(i, x)− g(i′, x))2 min
{
riw(i,j)p(i,j)(x), ri′w(i′,j)p(i′,j)(x)

}
dx

≤ 1

2θ

∑
i,i′∈[L] : i′=i±1

∫
X 0

(g(i, x)− g(i′, x))2 min {ripi(x), ri′pi′(x)} dx

=
2

θ
EIX 0(g, g),
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where EIX 0(g, g) is defined in Lemma 3. Note that in the inequality above, we have used that∑
j min{aj , bj} ≤ min{

∑
j aj ,

∑
j bj} for two non-negative sequences aj , bj .

Proof of Theorem 1. Fix an arbitrary g ∈ L2([L] × X , P ). Define, for each i, gi : X → R by
gi(x) = g(i, x), and g : [L]× [n]→ R by

g(i, j) =

∫
X 0

g(i, x)
p(i,j)(x)

P(i,j)(X 0)
dx.

Note that g(i, j) is the conditional expectation of g(I,X) given I = i and J = j under the joint
probability measure P0, and P (i, j) is the marginal probability of I = i, J = j under P0. Hence, by
the law of total variance, Assumption 3 and Equation 13, we find that

VarP0(g) = VarP (g) +

L∑
i=1

n∑
j=1

P (i, j)VarP0(g(I,X) | I = i, J = j)

≤ C3E(g, g) +
L∑

i=1

n∑
j=1

riw(i,j)

θP(i,j)(X 0)
VarP(i,j),X 0(gi).

Using P(i,j)(X 0) ≥ ϕ and Assumption 2,

L∑
i=1

n∑
j=1

riw(i,j)

θP(i,j)(X 0)
VarP(i,j),X 0(gi) ≤

C2

θϕ

L∑
i=1

ri

n∑
j=1

w(i,j)E(i,j),X 0(gi, gi) ≤
C1C2

θϕ

L∑
i=1

riEi,X 0(gi, gi).

Recall that E(g, g) = EJ(g, g) + EI(g, g). By Lemma 4,

EJ(g, g) ≤ 2(1− λ)

θ

L∑
i=1

n∑
j=1

riw(i,j)

P(i,j)(X 0)
VarP(i,j),X 0(gi) ≤

2(1− λ)C1C2

θϕ

L∑
i=1

riEi,X 0(gi, gi).

By Lemma 5,

EI(g, g)≤ 3λ

θ

L∑
i=1

n∑
j=1

riw(i,j)

P(i,j)(X 0)
VarP(i,j),X 0(gi) +

3λ

θ
EIX 0(g, g)

≤ 3λC1C2

θϕ

L∑
i=1

riEi,X 0(gi, gi) +
3λ

θ
EIX 0(g, g)

Hence,

1

θ2
VarP,[L]×X 0(g) = VarP0

(g) ≤ 3λC3

θ
EIX 0(g, g) +

C1C2 [(2 + λ)C3 + 1]

θϕ

L∑
i=1

riEi,X 0(gi, gi).

Comparing with Lemma 3, we obtain the Poincaré inequality for M

VarP,[L]×X 0(g)≤ max

{
3θC3,

θC1C2

ϕ(1− λ)
((2 + λ)C3 + 1)

}
E[L]×X 0(g, g)

which concludes the proof of the theorem.

B.3 Proof for the Mixing Times

We first recall the mixing time bound given in Atchadé et al. [2011] using restricted spectral gaps.

Lemma 6 (Atchadé et al. [2011]). Let K be a lazy, reversible Markov transition kernel on a state
space Ω, with stationary distribution Π. Suppose the initial distribution Π0 is absolutely continuous
with respect to Π, and define

f0(ω)Π(dω) = Π0(dω).
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Assume there exist constants B > 1 and q > 2 such that ∥f0∥Lq(Π) ≤ B, where ∥ · ∥Lq(Π) denotes
the Lq-norm with respect to Π. Let ε ∈ (0, 1). Further, suppose there exists a measurable subset
Ω0 ⊆ Ω such that

Π(Ω0) ≥ 1−
( ε

20B2

)q/(q−2)

.

Then, for

N ≥ 1

SpecGapΩ0(K)
log

(
2B2

ε2

)
,

the total variation distance between the distribution of the Markov chain K after N steps and its
stationary distribution Π is at most ε.

Proof of Lemma 2. The first part of Equation (6) follows directly from Lemma 6. To prove the second
part of (6), we first note that the TV distance between PN and P admits the following lower bound

∥PN − P∥tv =

L∑
i=1

∫ ∣∣PN (i,dx)− P (i,dx)
∣∣ ≥ ∫ ∣∣pN (i, x)− ripi(x)

∣∣dx, for all i ∈ [L].

For each i ∈ [L], let ri,N = PN (i,X ). The TV distance between PN
i and Pi is bounded by

∥PN
i − Pi∥tv =

∥∥∥r−1
i,NPN (i, ·) − Pi

∥∥∥
tv
=

∫ ∣∣∣r−1
i,NpN (i, x) − pi(x)

∣∣∣ dx
≤
∫ ∣∣∣r−1

i,NpN (i, x) − r−1
i pN (i, x)

∣∣∣ dx+

∫ ∣∣r−1
i pN (i, x) − pi(x)

∣∣dx
≤
∫ ∣∣∣r−1

i,NpN (i, x) − r−1
i pN (i, x)

∣∣∣ dx+ r−1
i ∥P

N − P∥tv,

where the first inequality follows from the triangle inequality. For the first term in the last expression,
using ri,N = PN (i,X ) we get∫ ∣∣∣r−1

i,NpN (i, x) − r−1
i pN (i, x)

∣∣∣dx = r−1
i |ri − ri,N | ≤

r−1
i

2
∥PN − P∥tv,

where in the last step we use ri = P (A) and ri,N = PN (A) with A = {i} × X .

Combining the above two displayed inequalities and using the first part of Equation (6), we get

∥PN
i − Pi∥tv ≤

3

2ri
ε ≤ 3

2mink∈[L] rk
ε.

This completes the proof.
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C Appendix for Section 3

C.1 Comparison of STMH chain with approximate STMH chain

To compare the STMH chain defined in Definition 4 with the approximate STMH chain in Definition 5,
it suffices to compare the stationary density p∗i with p̃i and transition kernel M∗

i with M̃i. For the
former, we use Lemma 7.3 of Ge et al. [2018], which shows that varying the temperature is roughly
the same as changing the variance of a Gaussian distribution. For the latter, we derive a bound in
Lemma 8.
Lemma 7 (Lemma 7.3 of Ge et al. [2018]). Let 0 < β ≤ 1, and suppose w1, . . . , wn > 0 are weights
such that

∑n
i=1 wi = 1. Define the density functions

π(x) ∝

(
n∑

i=1

wiπi(x)

)β

and π̃(x) ∝
n∑

i=1

wiπ
β
i (x),

where π1, . . . , πn are component densities. Then,

wmin · π̃(x) ≤ π(x) ≤ 1

wmin
· π̃(x),

where wmin := min1≤i≤n wi.

Lemma 8. For each i ∈ [L], let M∗
i be the transition kernel defined in Definition 4, with transition

density m∗
i . Also, let M̃i be the transition kernel defined in Definition 5, with transition density m̃i.

Assume that wmin := min1≤j≤m wj > 0. Then, for all x ̸= y ∈ Rd, the following inequality holds

m̃i(x, y) ≤
1

w2
min

m∗
i (x, y).

Proof. Let q denote the symmetric Gaussian proposal density used in the Metropolis–Hastings
algorithms M∗

i and M̃i. Then, for x ̸= y, the transition densities are given by

m∗
i (x, y) = q(x, y)α∗

i (x, y), m̃i(x, y) = q(x, y) α̃i(x, y),

where

α∗
i (x, y) = min

{
1,

p∗i (y)

p∗i (x)

}
, α̃i(x, y) = min

{
1,

p̃i(y)

p̃i(x)

}
.

Using Lemma 7, we have

p̃i(y) ≤
1

wmin
p∗i (y) and p̃i(x) ≥ wmin p

∗
i (x),

which gives
p̃i(y)

p̃i(x)
≤ 1

w2
min

· p
∗
i (y)

p∗i (x)
.

Hence,

m̃i(x, y) ≤
1

w2
min

q(x, y)α∗
i (x, y) =

1

w2
min

m∗
i (x, y),

which completes the proof.

From now on, we assume that X 0 ⊆ Rd is a measurable subset. Our next result, Lemma 9, shows
that it suffices to obtain a lower bound on the [L]× X 0-restricted spectral gap of the approximate
STMH chain in order to derive a corresponding bound for the STMH chain.

Lemma 9. Let M∗ be the STMH chain defined in Definition 4, and let M̃ be the approximate STMH
chain defined in Definition 5. Assume that the mixture weights satisfy wmin := min1≤j≤n wj > 0.
Then, the [L]×X 0-restricted spectral gaps of M∗ and M̃ satisfy the inequality

SpecGap[L]×X 0(M̃) ≤ 1

w5
min

SpecGap[L]×X 0(M∗).
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Proof. Let p∗ and p̃ denote the stationary densities of the Markov chains M∗ and M̃ , respectively.
Then, for all i ∈ [L] and x ∈ Rd, we have

p∗(i, x) = rip
∗
i (x) and p̃(i, x) = rip̃i(x).

By Lemma 7, we have
wmin p̃i(x) ≤ p∗i (x) ≤ w−1

min p̃i(x) (14)

for every (i, x), and the same inequality holds for p∗(i, x) and p̃(i, x) since the weights (ri)Li=1 are the
same for P ∗ and P̃ . Let E∗[L]×X 0 , Ẽ[L]×X 0 denote the [L]×X 0-restricted Dirichlet forms associated

with M∗ and M̃ respectively. Fix a function g ∈ L2([L]×X , p̃) and define gi(x) := g(i, x) for each
(i, x). By Definition 1, it suffices to show that

VarP∗,[L]×X 0(g) ≤ 1

w2
min

VarP̃ ,[L]×X 0(g), and E∗[L]×X 0(g, g) ≤
1

w3
min

Ẽ[L]×X 0(g, g).

For the first inequality, it follows from (14) that

VarP∗,[L]×X 0(g) ≤ 1

2w2
min

L∑
i=1

L∑
j=1

∫
X 0

∫
X 0

(g(i, x)− g(j, y))
2
p̃(i, x) p̃(j, y) dx dy

=
1

w2
min

VarP̃ ,[L]×X 0(g).

By Lemma 3, we have

Ẽ[L]×X 0(g, g) = (1− λ)

L∑
i=1

ri Ẽi,X 0(gi, gi) + λ ẼIX 0(g, g), (15)

and E∗[L]×X 0 can be decomposed analogously. We will bound the two terms on the right-hand side of
Equation (15) separately. For the first term, we apply Lemmas 7 and 8 to get

Ẽi,X 0(gi, gi) =
1

2

∫
X 0

∫
X 0

(
gi(x)− gi(y)

)2
p̃i(x) M̃i(x, dy) dx

≤ 1

2w3
min

∫
X 0

∫
X 0

(
gi(x)− gi(y)

)2
pi(x)Mi(x, dy) dx

=
1

w3
min

E∗i,X 0(gi, gi).

For the second term, we apply Lemma 7 to get

ẼIX 0(g, g) =
1

4

∑
i,i′∈[L] : i′=i±1

∫
X 0

(
gi(x)− gi′(x)

)2
min {rip̃i(x), ri′ p̃i′(x)} dx

≤ 1

4wmin

∑
i,i′∈[L] : i′=i±1

∫
X 0

(
gi(x)− gi′(x)

)2
min {ripi(x), ri′pi′(x)} dx

=
1

wmin
E∗,IX 0 (g, g).

Combining both bounds, we obtain that E∗[L]×X 0(g, g) ≤ w−3
minẼ[L]×X 0(g, g), which concludes the

proof.

C.2 Restricted Spectral Gap of the Approximate STMH Chain

We begin by introducing some notation. For each i ∈ [L] and j ∈ [n], define the j-th component of
the density p̃i as

p̃(i,j)(x) ∝ exp

{
−βi

2
(x− µj)

⊤Σ−1(x− µj)

}
, (16)
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so that p̃i is a weighted mixture of the p̃(i,j)’s:

p̃i(x) ∝
n∑

j=1

wj p̃(i,j)(x).

Let M̃(i,j) denote the Metropolis–Hastings transition kernel targeting p̃(i,j), with a symmetric
Gaussian proposal density q(x, y) = N (y;x, ηI), where η > 0 is the step size. We set

X 0 :=
{
x ∈ Rd : ∥x∥ ≤ R

}
,

where R > 0 is a fixed radius. To obtain a lower bound on the [L]×X 0-restricted spectral gap of the
approximate STMH chain, we invoke Theorem 1. Assumption 1 holds by our construction of P̃ . The
following lemmas verify the other two assumptions required for this theorem.

C.2.1 Validation of Condition (2) in Assumption 2

Lemma 10. For each i ∈ [L], let p̃i be the density defined in Equation (9), and let gi ∈ L2(X , p̃i).
Then the following inequality holds

n∑
j=1

wj Ẽ(i,j),X 0(gi, gi), ≤ Ẽi,X 0(gi, gi) ∀i ∈ [L],

where Ẽ(i,j),X 0 denotes the X 0-restricted Dirichlet form of the kernel M̃(i,j), and Ẽi,X 0 denotes the
X 0-restricted Dirichlet form of the kernel M̃i, as defined in Definition 5.

In particular, for the approximate STMH chain M̃ defined in Definition 5, condition (2) holds with
constant C1 = 1.

Proof. For any nonnegative real sequences {aj} and {bj}, we have the inequality

min
{∑

j aj ,
∑

j bj

}
≥
∑

j min {aj , bj} . Applying this to p̃i =
∑n

j=1 wj p̃(i,j), we obtain

min {p̃i(x), p̃i(z)} ≥
n∑

j=1

wj min
{
p̃(i,j)(x), p̃(i,j)(z)

}
, (17)

for all x, z ∈ Rd and i ∈ [L]. Let q denote the symmetric Gaussian proposal density associated with
the Metropolis–Hastings algorithms M̃i and M̃(i,j). Then, applying Equation (17), we obtain

Ẽi,X 0(gi, gi) =
1

2

∫
X 0

∫
X 0

(gi(x)− gi(z))
2
q(x, z)min {p̃i(x), p̃i(z)} dx dz

≥ 1

2

∫
X 0

∫
X 0

(gi(x)− gi(z))
2
q(x, z)

n∑
j=1

wj min
{
p̃(i,j)(x), p̃(i,j)(z)

}
dx dz

=

n∑
j=1

wj Ẽ(i,j),X 0(gi, gi).

This completes the proof of the Lemma.

C.2.2 Validation of Condition (3) in Assumption 2

We lower bound the X 0-restricted spectral gap of each Metropolis–Hastings chain M̃(i,j) using the
path method of Yuen [2000] in the following lemma.

Lemma 11. Let 0 < η ≤ R2. For each i ∈ [L] and j ∈ [n], the Markov chain M̃(i,j) admits the
following lower bound on its X 0-restricted spectral gap

SpecGapX 0

(
M̃(i,j)

)
≥ γ

d/2
minη

3/2

13Rd+3
.
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In particular, for the approximate STMH chain M̃ defined in Definition 5, condition (3) holds with
constant

C2 =
13Rd+3

γ
d/2
min

.

Proof. We use the linear path method described in Section 2 of Yuen [2000]. This approach also
extends to the restricted spectral gap setting; see, for example, Atchadé [2021] and Chang and Zhou
[2024] where the canonical path method has been adapted to the restricted spectral gap in discrete
spaces. For each pair (x, y) ∈ X 0 × X 0, we construct a linear path connecting x to y, with all
intermediate points lying in X 0. Fix a step size δ > 0, and define the number of steps along the path
by

bxy :=

⌈
∥x− y∥

δ

⌉
.

The path is then given by
γxy =

(
γ(0)
xy , . . . , γ

(bxy)
xy

)
,

where

γ(i)
xy :=

(bxy − i)x+ iy

bxy
, for 0 ≤ i ≤ bxy.

Let Γ := {γxy : (x, y) ∈ X 0 ×X 0} denote the collection of all such paths, and let E denote the set
of all edges that appear in at least one path γxy ∈ Γ. The capacity of an edge (u, v) ∈ E is given by

T(i,j)(u, v) := p̃(i,j)(u) m̃(i,j)(u, v) = p̃(i,j)(u) q(u, v)min

{
1,

p̃(i,j)(v)

p̃(i,j)(u)

}
,

where m̃(i,j) denotes the transition density corresponding to the kernel M̃(i,j), and q(u, v) is the
Gaussian proposal density associated with kernel M̃(i,j). As shown in Section 2 of Yuen [2000], the
set of paths Γ satisfies the regularity conditions and, for any (u, v) ∈ γxy, the associated Jacobian
satisfies Jx,y(u, v) = bdxy (see [Yuen, 2000, page 5] for details). Then, by Theorem 2.1 and Corollary
2.4 in Yuen [2000], we have

SpecGapX 0

(
M̃(i,j)

)
≥ 1

A
(18)

where

A = ess sup
(u,v)∈E

 1

T(i,j)(u, v)

∑
γxy∋(u,v)

|γxy| p̃(i,j)(x) p̃(i,j)(y) bdxy

 ,

and |γxy| denotes the length of the path γxy. Since p̃(i,j) is log-concave, for any (u, v) ∈ γxy, we
have

min
{
p̃(i,j)(x), p̃(i,j)(y)

}
≤ min

{
p̃(i,j)(u), p̃(i,j)(v)

}
.

Hence, T(i,j)(u, v) ≥ q(u, v)min{p̃(i,j)(x), p̃(i,j)(y)}, and we can upper bound A as

A ≤ bd+1 · ess sup
(u,v)∈E

q(u, v)−1
∑

γx,y∋(u,v)

p̃(i,j)(zx,y)

 , (19)

where b := max(x,y)∈X 0×X 0 bx,y and zx,y is defined as

zx,y :=

{
x, if max{p̃(i,j)(x), p̃(i,j)(y)} = p̃(i,j)(x),

y, otherwise.

Note that

p̃(i,j)(zx,y) ≤
β
d/2
i

(2πγmin)d/2
,

and the proposal density q(u, v) is given by

q(u, v) =
1

(2πη)d/2
exp

(
−∥v − u∥2

2η

)
.
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Substituting this into Equation (19), we obtain

A ≤ β
d/2
i ηd/2bd+3

γ
d/2
min

· ess sup
(u,v)∈E

{
exp

(
∥v − u∥2

2η

)}
,

where we have also used that an edge (u, v) belongs to at most b2 paths in Γ. Choose step size
δ =
√
5η, which yields

b ≤
⌈ 2R√

5η

⌉
≤ R
√
η
.

Since βi ≤ 1, we obtain that

A ≤ β
d/2
i Rd+3

γ
d/2
minη

3/2
e2.5 ≤ 13Rd+3

γ
d/2
minη

3/2
.

From Equation (18), we get

SpecGapX 0

(
M̃(i,j)

)
≥ 1

A
≥ γ

d/2
minη

3/2

13Rd+3
,

which concludes the proof.

C.2.3 Auxiliary Lemmas

To verify Assumption 3 and compute the constant C3 in condition (4), we will need several lemmas.
The proof of Lemma 12 is omitted.
Lemma 12 (Canonical Paths Bound). Let S be a finite state space, and let K be the transition kernel
of a reversible Markov chain on S with stationary distribution Π and Dirichlet form E . For each pair
of distinct states x, y ∈ S, let γxy denote a path from x to y consisting of valid transitions under K,
i.e.,

x = x0 → x1 → x2 → · · · → xn−1 → xn = y.

Let Γ = {γxy : x, y ∈ S, x ̸= y} be the collection of such paths for all distinct pairs (x, y). The
edge congestion associated with Γ is defined as

ρe(Γ) = max
u,v∈S

K(u,v)>0

1

Π(u)K(u, v)

∑
(u,v)∈γxy

γxy∈Γ

Π(x)Π(y)|γxy|,

where |γxy| denotes the length of the path γxy. Then, for any function g : S → R, the following
Poincaré inequality holds

VarΠ(g) ≤ ρe(Γ) E(g, g).
Lemma 13. Let Π, Π̃ be two probability distributions (absolutely continuous with respect to each
other) with density function π, π̃ respectively. Then,∫

min {π(x), π̃(x)} dx = 1− 1

2
∥Π− Π̃∥tv ≥ 1−

√
1

2
KL(Π | Π̃).

Lemma 14. Let |Σ| denote the determinant of a matrix Σ. The Kullback-Leiber divergence between
two d-dimensional Gaussian distributions with equal means is given by

KL (N(µ,Σ1) |N(µ,Σ2)) =
1

2

{
log
|Σ2|
|Σ1|

− d+ tr(Σ−1
2 Σ1)

}
.

Lemma 15. Let D := max
{
maxk∈[n] ∥µk∥,

√
γmin

}
. For each i ∈ [L], j ∈ [n], define

p̃i(j |x) :=
wj p̃(i,j)(x)

n∑
k=1

wk p̃(i,k)(x)
for all x ∈ Rd,

where p̃(i,j)(x) denotes the density defined in Equation (16). Then, for all i ∈ [L], j ∈ [n], and
x ∈ Rd, the following inequalities hold

p̃(i,j)(x) ≥
(

βi

2πγmax

)d/2

exp

(
− βi

2γmin
(∥x∥+D)2

)
, (20)

p̃i(j |x) ≥ wj exp

(
− βi

γmin
(∥x∥+D)2

)
. (21)
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Proof. To prove Equation (20), we write

p̃(i,j)(x) ≥
(

βi

2πγmax

)d/2

exp

(
−βi

2
(x− µj)

⊤Σ−1(x− µj)

)
,

where the inequality follows from the bound |Σ| ≤ γd
max. Next, we use the inequality

∥(x− µj)
⊤Σ−1(x− µj)∥ ≤

1

γmin
∥x− µj∥2 ≤

1

γmin
(∥x∥+ ∥µj∥)2 ≤

1

γmin
(∥x∥+D)2

to obtain

p̃(i,j)(x) ≥
(

βi

2πγmax

)d/2

exp

(
− βi

2γmin
(∥x∥+D)2

)
.

This establishes Equation (20). To prove Equation (21), we define the function J̃ : Rd → [n] by

J̃(x) := arg max
k∈[n]

p̃(i,k)(x).

It follows that for every k ∈ [n],
p̃(i,k)(x) ≤ p̃(i,J̃(x))(x),

and therefore,
n∑

k=1

wk p̃(i,k)(x) ≤
n∑

k=1

wk p̃(i,J̃(x))(x) = p̃(i,J̃(x))(x).

Substituting this upper bound into the definition of p̃i(j |x), we get

p̃i(j |x) ≥
wj p̃(i,j)(x)

p̃(i,J̃(x))(x)
. (22)

To simplify the ratio of Gaussian densities on the right-hand side, we expand the expression explicitly
as

p̃(i,j)(x)

p̃(i,J̃(x))(x)
= exp

{
−βi(µJ̃(x) − µj)

⊤Σ−1x− βi

2

(
µ⊤
j Σ

−1µj − µ⊤
J̃(x)

Σ−1µJ̃(x)

)}
.

By definition of D, we have ∥µJ̃(x) − µj∥ ≤ 2D. Using the Cauchy–Schwarz inequality, we obtain

∥(µJ̃(x) − µj)
⊤Σ−1x∥ ≤ ∥µJ̃(x) − µj∥ · ∥Σ−1x∥ ≤ 2D

γmin
∥x∥,

and similarly,∥∥∥µ⊤
j Σ

−1µj − µ⊤
J̃(x)

Σ−1µJ̃(x)

∥∥∥ ≤ 1

γmin

(
∥µj∥2 + ∥µJ̃(x)∥

2
)
≤ 2D2

γmin
.

Putting these together, we get

p̃(i,j)(x)

p̃(i,J̃(x))(x)
≥ exp

(
− βi

γmin
(2D∥x∥+D2)

)
≥ exp

(
− βi

γmin
(∥x∥+D)2

)
. (23)

Equations (22) and (23) together prove Equation (21). This completes the proof.

C.2.4 Validation of Condition (4) in Assumption 3

Let M̂ denote the projected chain associated with the approximate STMH chain M̃ . We next establish
a lower bound on the spectral gap of M̂ using the canonical paths method. Recall that we define
X 0 =

{
x ∈ Rd : ∥x∥ ≤ R

}
.

Lemma 16. Let M̃ denote the approximate STMH chain defined in Definition 5. Define the following
parameters

D := max

{
max
k∈[n]

∥µk∥,
√
γmin

}
, r :=

mini∈[L] ri

maxi∈[L] ri
.

Suppose the following conditions hold
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(i) Let R ≥
√
dD be such that P(i,j)(X 0) ≥ 3/4 for all i ∈ [L] and j ∈ [n],

(ii) β1 = Θ
(
γmin/D

2
)

and β1 ≤ 1,

(iii) βi+1/βi ≤ 1 + 1/
√
d for all i ∈ [L− 1].

Let M̂ be the projected chain defined in Definition 3 associated with M̃ . Under these conditions, M̂
satisfies the spectral gap bound

SpecGap(M̂) ≥ 3min{(1− λ), λ} r2

64L2κd/2 exp(cd)
,

where c > 0 is a fixed constant. In particular, for the approximate STMH chain M̃ , condition (4)
holds with constant

C3 =
64L2κd/2 exp(cd)

3min{(1− λ), λ} r2
.

Proof. We construct the canonical paths as follows. Fix two arbitrary states x = (i, j), y = (i′, j′) ∈
[L]× [n] with i ≤ i′.

(a) If j = j′, let γxy be (i, j)→ (i+ 1, j)→ . . .→ (i′, j).

(b) If j ̸= j′, let γxy be (i, j)→ (i− 1, j)→ . . .→ (1, j)→ (1, j′)→ (2, j′)→ . . .→ (i′, j′).

Define γyx as the reverse of γxy. Let Γ denote the collection of such paths over all distinct pairs
(x, y). Let i ∈ [L], j ∈ [n], and i′ = i± 1 ∈ [L]. From the definition of M̂ , we have

M̂((i, j), (i′, j)) =
λ

2

∫
X 0

p̃(i,j)(x)

P̃(i,j)(X 0)
· ã
(
(i, j, x), (i′, j, x)

)
dx,

where the acceptance probability is given by

ã
(
(i, j, x), (i′, j, x)

)
= min

{
ri′ p̃(i′,j)(x)

ri p̃(i,j)(x)
, 1

}
.

Hence, the probability of transitioning from state (i, j) to (i− 1, j) under the projected chain M̂ is
given by

M̂((i, j), (i− 1, j)) =
λ

2P̃(i,j)(X 0)

∫
X 0

min

{
ri−1

ri
p̃(i−1,j)(x), p̃(i,j)(x)

}
dx,

for all i ∈ {2, . . . , L} and j ∈ [n]. Since ri−1/ri ≥ r by definition and P̃(i,j)(X 0) ≤ 1, we have

M̂((i, j), (i− 1, j)) ≥ λr

2

∫
X 0

min
{
p̃(i−1,j)(x), p̃(i,j)(x)

}
dx. (24)

By Lemma 13 and Lemma 14,∫
Rd

min
{
p̃(i−1,j)(x), p̃(i,j)(x)

}
dx ≥ 1−

√
1

2
KL(P̃(i,j) | P̃(i−1,j))

≥ 1−
√
d

2

√
f

(
βi

βi−1

)
, where f(x) = x− 1− log x.

For x ≥ 1, we have f(x) ≤ (x− 1)2/2. Hence, if βi/βi−1 − 1 = 1/
√
d, then∫

Rd

min
{
p̃(i−1,j)(x), p̃(i,j)(x)

}
dx ≥ 1

2
.

Condition (i) implies ∫
X 0

min
{
p̃(i−1,j)(x), p̃(i,j)(x)

}
dx ≥ 1

4
.
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Substituting the above bound in Equation (24), we obtain

M̂((i, j), (i− 1, j)) ≥ λr

8
.

Similarly, we can derive the bound

M̂((i, j), (i+ 1, j)) ≥ λr

8
, for all i ∈ [L− 1], j ∈ [n].

Next, we derive a lower bound on the transition probability from (1, j) to (1, j′) in the projected
chain M̂ , which is given by

M̂((1, j), (1, j′)) = (1− λ)

∫
X 0

p̃(1,j)(x)

P̃(1,j)(X 0)
· p̃1(j′ |x) dx, j, j′ ∈ [n].

By applying Lemma 15 and noting that P̃(1,j)(X 0) ≤ 1, we obtain

M̂((1, j), (1, j′)) ≥ (1− λ)wj′

(
β1

2πγmax

)d/2 ∫
X 0

exp

(
− 2β1

γmin
(∥x∥+D)2

)
dx.

By condition (ii), there exist fixed constants c1, c2 > 0 such that

c1
γmin

D2
< β1 < c2

γmin

D2
.

Let XD :=
{
x = (x1, . . . , xd) ∈ Rd : |xi| ≤ D for all i ∈ [d]

}
⊆ X 0. Then for any x ∈ XD, we

have ∥x∥+D ≤ 2
√
dD, which implies

exp

(
− 2β1

γmin
(∥x∥+D)2

)
≥ exp

(
−8β1dD

2

γmin

)
≥ exp(−8c2d).

Therefore, we obtain the following lower bound

M̂((1, j), (1, j′)) ≥ (1− λ)wj′(c1)
d/2

(
γmin

2πγmaxD2

)d/2

exp(−8c2d) ·Vol(XD),

where Vol(XD) denotes the volume of the cube XD. Substituting Vol(XD) = (2D)d, we get

M̂((1, j), (1, j′)) ≥ (1− λ)wj′(c1)
d/2

(
γmin

2πγmaxD2

)d/2

exp(−8c2d) · (2D)d

≥ (1− λ)wj′ · κ−d/2 · exp(−cd), (25)
where c > 0 is a fixed constant.

Let γxy be a path between any two vertices x, y ∈ [L]× [n]. Then, |γxy| ≤ 2L. We now derive an
upper bound on the edge congestion ρe(Γ) defined in Lemma 12. Let z, w ∈ [L]× [n].

(a) Let z = (i, j) and w = (i−1, j). Then the edge (z, w) is used only by paths between vertices
x and y such that one lies in the set S := {i, . . . , L}× {j}, and the other in Sc. Therefore, its
contribution to the edge congestion is bounded by∑

(x,y)∈Γ:((i,j),(i−1,j))∈γxy
|γxy| P̂ (x) P̂ (y)

P̂ ((i, j)) M̂((i, j), (i− 1, j))
≤ (2L) P̂ (S) P̂ (Sc)

P̂ ((i, j)) M̂((i, j), (i− 1, j))
,

where

P̂ ((ℓ, k)) = rℓwk

P̃(ℓ,k)(X 0)

P̃ ([L]×X 0)
, ℓ ∈ [L], k ∈ [n]

denotes the stationary distribution of the projected chain M̂ . We have the following bounds

P̂ (S)

P̂ ((i, j))
=

P̂ ({i, . . . , L} × {j})
P̂ ((i, j))

≤ 4L

3r
, P̂ (Sc) ≤ 1, M̂((i, j), (i− 1, j)) ≥ λr

8
,

where the first bound follows from condition (i). Combining these, we conclude∑
(x,y)∈Γ:((i,j),(i−1,j))∈γxy

|γxy| P̂ (x) P̂ (y)

P̂ ((i, j)) M̂((i, j), (i− 1, j))
≤ 64L2

3λr2
.

Similarly, we obtain the same bound for z = (i, j) and w = (i+ 1, j).
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(b) Let z = (1, j) and w = (1, j′). Then the edge (z, w) is used only by paths between vertices x
and y such that one of them lies in the set [L]×{j} and the other in [L]×{j′}. Therefore, its
contribution to edge congestion is bounded by∑

(x,y)∈Γ:((1,j),(1,j′))∈γxy
|γx,y| P̂ (x) P̂ (y)

P̂ ((1, j)) M̂((1, j), (1, j′))
≤ (2L) P̂ ([L]× {j}) P̂ ([L]× {j′})

P̂ ((1, j)) M̂((1, j), (1, j′))
.

We now bound each term on the right-hand side. By condition (i), we have

P̂ ([L]× {j}) ≤ 4L

3r
P̂ ((1, j)), P̂ ([L]× {j′}) ≤ 4wj′

3
,

and from Equation (25), we have

M̂((1, j), (1, j′)) ≥ (1− λ)wj′ · κ−d/2 · exp(−cd).

Combining these, we obtain∑
(x,y):((1,j),(1,j′))∈γxy

|γxy| P̂ (x) P̂ (y)

P̂ ((1, j)) M̂((1, j), (1, j′))
≤ 32L2κd/2 exp(cd)

9(1− λ)r
.

Let λ ∈ (0, 1) be a fixed constant. Thus, the edge congestion associated with Γ is bounded by

ρe(Γ) ≤
64L2κd/2 exp(cd)

3min{(1− λ), λ} r2
.

From Lemma 12, projected chain M̂ satisfies the Poincaré inequality

VarP̂ (ĝ) ≤
64L2κd/2 exp(cd)

3min{(1− λ), λ} r2
Ê(ĝ, ĝ), ∀ ĝ : [L]× [n]→ R,

where Ê denotes the Dirichlet form associated with the projected chain M̂ . This completes the proof
of the lemma.

C.2.5 Restricted Spectral Gap Bound

We now invoke Theorem 1 to bound the [L]×X 0-restricted spectral gap of the approximate STMH
chain M̃ , as formalized in the next lemma.

Lemma 17. Let M̃ denote the approximate STMH chain, as defined in Definition 5, with λ being a
fixed constant. Under the same conditions as in Lemma 16, the [L]×X 0-restricted spectral gap of
M̃ admits the following lower bound

SpecGap[L]×X 0(M̃) ≥ Ω

(
γ
d/2
minr

2η3/2

Rd+3L2κd/2 exp(cd)

)
,

where c > 0 is a fixed constant.

Proof. For the approximate STMH chain M̃ , Assumption 2 is satisfied with constants C1 = 1 and

C2 =
13Rd+3

γ
d/2
minη

3/2
.

Additionally, Assumption 3 holds with

C3 =
64L2κd/2 exp(cd)

3min{(1− λ), λ} r2
,

where c > 0 is a fixed constant. Since λ is treated as fixed, combining these with Theorem 1
completes the proof of the lemma.
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C.3 Restricted Spectral Gap of the STMH chain

We now establish a lower bound on the [L]×X 0-restricted spectral gap of the STMH chain M∗, as
formalized in next lemma.

Lemma 18. Let M∗ be the STMH chain, as defined in Definition 4, with λ being a fixed constant.
Under the same conditions as in Lemma 16, the [L]×X 0-restricted spectral gap of M∗ admits the
lower bound

SpecGap[L]×X 0(M∗) ≥ Ω

(
w5

minγ
d/2
minr

2η3/2

Rd+3L2κd/2 exp(cd)

)
,

where c > 0 is a fixed constant.

Proof. This follows directly from Lemma 9 and Lemma 17.

C.4 Estimation of Partition Functions

C.4.1 Assumptions on the Parameters

We now describe how to choose the algorithm parameters—number of temperature levels L, inverse
temperature sequence (βi)

L
i=1, temperature-swap rate λ, proposal step size η, initial covariance matrix

Σ0, number of iterations N—so that the STMH algorithm achieves the asserted time complexity.
Recall that κ = γmax/γmin.

L = Θ

[
κ
{
D2 + logw−1

min + d (1 + log κ)
}
log

(
D2

γmin

)
+ 1

]
, (26)

β1 = Θ
(γmin

D2

)
,
βi+1

βi
≤ min

{
1 +

1√
d
,

γmin

D2 + 2γmaxdν

}
for i ∈ [L− 1], (27)

where ν = 1 + log κ+
2

d
log

(
2

wmin

)
,

R = D +
√
dκD2 +

√
2κD2 log

(
20 e6L2κd

w2
minε

)
, (28)

N ≥ C ′L4Rdκd/2 exp(c′d)

γ
d/2
minw

5
min

log

(
L2κd

ε2w2
min

)
, for some fixed constants c′, C ′ > 0, (29)

Σ0 = σ2
0I, where σ2

0 = Θ

(
γmin

β1

)
, (30)

λ is any fixed constant, (31)

η ≥ R2. (32)

C.4.2 Auxiliary Lemmas

Lemma 19. Let L > 0 be an integer. Assume the partition–function estimates Ẑ1, . . . , ẐL satisfy

Ẑi/Zi

Ẑ1/Z1

∈
[
(1− 1

L )
i−1, (1 + 1

L )
i−1
]
, for all i ∈ [L]. (33)

Define

ri :=
Zi/Ẑi

L∑
k=1

Zk/Ẑk

, for all i ∈ [L].

Then,
e−2

L
≤ ri ≤

e2

L
, for all i ∈ [L]. (34)
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Moreover,

r :=
mini∈[L] ri

maxi∈[L] ri
≥ e−4.

Proof. For each i ∈ [L], define bi := Zi/Ẑi, and denote their sum by S,

S :=

L∑
k=1

bk.

Then ri = bi/S. From Equation (33) we have, for every i ∈ [L],

(1 + 1
L )

−(i−1) ≤ bi
b1
≤ (1− 1

L )
−(i−1), (35)

which gives
L b1 (1 +

1
L )

−(L−1) ≤ S ≤ L b1 (1− 1
L )

−(L−1). (36)

Combining Equations (35) with (36), we get

ri =
bi
S
≥ b1(L+ 1)−(L−1)

L b1 (L− 1)−(L−1)
=

1

L

(L− 1

L+ 1

)L−1

,

and

ri ≤
b1(L− 1)−(L−1)

L b1 (L+ 1)−(L−1)
=

1

L

(L+ 1

L− 1

)L−1

.

Define

CL :=
(L+ 1

L− 1

)L−1

.

Taking logarithms and using log(1 + x) ≤ x for all x > −1, we obtain

logCL = (L− 1) log
(
1 + 2

L−1

)
≤ (L− 1)

(
2

L−1

)
≤ 2,

so CL ≤ e2. Likewise C−1
L ≥ e−2. Therefore

e−2

L
≤ ri ≤

e2

L
, for all i ∈ [L],

establishing (34). This further implies that r ≥ e−4, completing the proof of the lemma.

Lemma 20. Let L > 0 be an integer, and suppose β1 and σ0 satisfy Equation (27) and Equation (30),
respectively. Then the initial density is given by

p0(1, ·) = N
(
0, σ2

0I
)
, p0(i, ·) = 0 for all i ∈ [L] \ {1},

with the corresponding distribution denoted by P 0. The stationary density of the STMH chain M∗,
as defined in Definition 4, is

p(i, x) = ri p
∗
i (x), i ∈ [L], x ∈ Rd,

where (ri)
L
i=1 are defined in Lemma 19, and the component densities (p∗i )i∈[L] are given in Equa-

tion (8). Let P denote the corresponding stationary distribution. Define f0 := dP 0/dP . Then,

∥f0∥2L2(P ) ≤
c1 exp(c2d)Lκd/2

wmin
,

for some fixed constants c1, c2 > 0.

Proof. The L2-norm of f0 is given by

∥f0∥2L2(P ) =

L∑
i=1

∫
p(i, x) |f0(i, x)|2 dx =

1

r1

∫
(p0(1, x))2

p∗1(x)
dx, (37)
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where the second equality follows from the fact that P 0 is supported only on i = 1. By Lemma 7, for
all x ∈ Rd, we have

p∗1(x) ≥ wmin p̃1(x) = wmin

n∑
j=1

wj p̃(1,j)(x). (38)

where p̃1 is defined in Equation (9) and p̃(1,j) is defined in Equation (16). Substituting (38) into (37),
we obtain

∥f0∥2L2(P ) ≤
1

r1wmin

∫
(p0(1, x))2∑n

j=1 wj p̃(1,j)(x)
dx.

Using the convexity of the χ2-divergence, we further bound this as

∥f0∥2L2(P ) ≤
1

r1wmin

n∑
j=1

wj

∫
(p0(1, x))2

p̃(1,j)(x)
dx. (39)

For each j ∈ [n], the density p̃(1,j)(x) can be lower bounded as

p̃(1,j)(x) ≥
(

β1

2πγmax

)d/2

exp

(
− β1

2γmin
∥x− µj∥2

)
. (40)

Since p0(1, ·) ∼ N (0, σ2
0I), we have

(p0(1, x))2 =

(
1

2πσ2
0

)d

exp

(
− 1

σ2
0

∥x∥2
)
.

From Equation (30), we have fixed constants 0 < s1, s2 < 2 such that

s1
γmin

β1
≤ σ2

0 ≤ s2
γmin

β1
.

This gives

(p0(1, x))2 ≤
(

β1

2πs1γmin

)d

exp

(
− β1

s2γmin
∥x∥2

)
. (41)

Substituting Equations (40) and (41) into Equation (39), we obtain

∥f0∥2L2(P )

≤ κd/2

sd1 r1wmin

n∑
j=1

wj

(
β1

2πγmin

)d/2

exp

(
β1

(2− s2)γmin
∥µj∥2

)∫
exp

(
−β1(2− s2)

2γmins2

∥∥∥∥x+
s2 µj

2− s2

∥∥∥∥2
)

dx

=
κd/2 s

d/2
2

sd1 (2− s2)d/2 r1wmin

n∑
j=1

wj exp

(
β1

(2− s2)γmin
∥µj∥2

)
.

From Equation (27), we have a fixed constant s3 > 0 such that β1 ≤ s3γmin/D
2. Substituting this,

we get

∥f0∥2L2(P ) ≤
κd/2 s

d/2
2

sd1 (2− s2)d/2 r1wmin
exp

(
s3

2− s2

)
.

By Lemma 19, we have r1 ≥ 1/(e2L). Substituting this into the above bound on ∥f0∥2L2(P ) proves
the lemma.

Lemma 21. Let X follow the d-dimensional Gaussian distribution with mean µ and covariance
matrix Σ. Denote the largest eigenvalue of Σ by ∥Σ∥. Then,

P
(
∥X∥ ≤ ∥µ∥+

√
d∥Σ∥+

√
2∥Σ∥ log(1/ε)

)
≥ ε.
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Proof. Using the standard concentration inequality for Lipschitz functions of Gaussian random
vectors, we get

P (∥X − µ∥ ≥ E(∥X − µ∥) + t) ≤ e−t2/2∥Σ∥.

Since E(∥X − µ∥) ≤
√

d∥Σ∥, we get

P
(
∥X − µ∥ ≥

√
d∥Σ∥+ t

)
≤ e−t2/2∥Σ∥.

Letting t =
√

2γmax log(1/ε) and applying triangle inequality, we get the asserted bound.

Lemma 22. Suppose 1 ≤ ℓ ≤ L, and let Algorithm 1 be run with the potential function f(x)
defined in Equation (7), inverse temperatures β1 < · · · < βℓ, and using the parameters specified
in Equations (27), (28), (29), (30), (31) and (32). Assume that the partition function estimates
Ẑ1, . . . , Ẑℓ satisfy Equation (33). Let PN denote the distribution obtained after running Algorithm 1
for N steps, and let P denote its stationary distribution. Then the total variation distance between P
and PN satisfies

∥P − PN∥tv ≤ ε.

Proof. Under the assumptions of the lemma, and by Lemmas 18 and 19, the [ℓ] × X 0-restricted
spectral gap of M∗ satisfies

SpecGap[ℓ]×X 0(M∗) ≥ Ω

(
w5

min γ
d/2
min

Rd ℓ4 κd/2 exp(cd)

)
,

where c > 0 is a fixed constant. Moreover, from Lemma 20, ∥f0∥2L2(P ) is bounded above by B,
where

B =
c1 exp(c2d)ℓκ

d/2

wmin
,

and c1, c2 > 0 are fixed constants. Applying Lemma 6 with the above parameters yields the desired
total variation bound.

Lemma 23. Assume the same conditions and notations as in Lemma 22. Let P ∗
ℓ denote the marginal

stationary distribution at temperature level ℓ, with density p∗ℓ (x) ∝ exp(−βℓf(x)), and let PN
ℓ

denote the marginal distribution at level ℓ after running Algorithm 1 for N steps, with density
pNℓ (x) ∝ PN (ℓ, x). Then the total variation distance between P ∗

ℓ and PN
ℓ is bounded by

∥P ∗
ℓ − PN

ℓ ∥tv ≤
3e2ℓ

2
ε.

Proof. By Lemma 19, we have mini∈[ℓ] ri ≥ 1/(e2ℓ). The proof now follows directly from Lem-
mas 2 and 22.

In the following lemma, we analyze how many times Algorithm 1 must be re-run, with a fixed number
of steps N , in order to obtain a sample from the desired temperature level.

Lemma 24. Suppose the partition function estimates Ẑ1, . . . , Ẑℓ satisfy Equation (33). Let IN ∈ [ℓ]
denote the temperature index of the state returned after running Algorithm 1 for N steps. Suppose
the algorithm is run independently T times, each for N steps. Then, for any fixed temperature level
k ∈ [ℓ], if

T ≥ e2ℓ log
(
1
α

)
, α ∈ (0, 1),

the probability that at least one of the T runs returns a sample from level k satisfies

P
(
∃ t ∈ [T ] such that I(t)N = k

)
≥ 1− α,

where I
(t)
N is the temperature level returned in the t-th run.
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Proof. Let k ∈ [ℓ]. From Lemma 19, we have

P(IN ̸= k) = 1− P(IN = k) ≤ 1− 1

e2 ℓ
.

Hence,

P
(
̸ ∃ t ∈ [T ] such that I(t)N = k

)
≤
(
1− 1

e2 ℓ

)T ≤ exp
(
− T

e2 ℓ

)
.

Setting this upper bound no larger than δ, and solving for T , completes the proof of the lemma.

Assuming the partition function estimates satisfy Equation (33), we have shown that the algorithm
reaches total variation distance at most ε within the time complexity specified in Equation (29).
We now show that partition function estimates satisfy Equation (33). By combining these two
components, we establish the overall time complexity for the complete algorithm.
Lemma 25. Let δ ∈ (0, 1) and 1 ≤ ℓ ≤ L. Suppose the parameters satisfy Equations (26), (27), (28),
(30), (31), and (32), and assume that the partition function estimates Ẑ1, . . . , Ẑℓ satisfy Equation (33).
Let s = L2 log(1/δ). Collect s samples from Algorithm 1, denoted by (xj)

s
j=1. Define the next

partition function estimate Ẑℓ+1 as

Ẑℓ+1 := r Ẑℓ, where r :=
1

s

s∑
j=1

exp
(
−(βℓ+1 − βℓ)f(xj)

)
.

Then, with probability at least 1− δ, the estimate Ẑℓ+1 also satisfies Equation (33). In particular,∣∣∣∣∣ Ẑℓ+1/Zℓ+1

Ẑ1/Z1

∣∣∣∣∣ ∈
[(

1− 1

L

)ℓ

,

(
1 +

1

L

)ℓ
]
.

The proof of Lemma 25 requires the following results.
Lemma 26 (Lemma 9.1 of Ge et al. [2018]). Suppose that P1 and P2 are probability measures on Ω
with density functions (with respect to a reference measure)

p1(x) =
g1(x)

Z1
, and p2(x) =

g2(x)

Z2
.

Suppose P̃1 is a measure such that ∥P̃1 − P1∥tv < c/2C2, and g2(x)/g1(x) ∈ [0, C] for all x ∈ Ω.
Given n samples x1, . . . , xn from P̃1, define the random variable

r =
1

n

n∑
i=1

g2(xi)

g1(xi)
.

Let

r = Ex∼P1

g2(x)

g1(x)
=

Z2

Z1
.

and suppose r ≥ 1/C. Then with probability at least 1− e−nc2/(2C4),∣∣∣∣rr − 1

∣∣∣∣ ≤ c.

Lemma 27 (Lemma G.16 of Ge et al. [2018]). Suppose that f(x) = − log
[∑n

i=1 wi e
−fi(x)

]
,

where fi(x) = f0(x − µi), and f0 : Rd → R is a κ-strongly convex and K-smooth function. For
any a > 0, let Pa denote the probability measure with density pa(x) ∝ e−af(x). Let Za be the
corresponding normalization constant, given by Za =

∫
Rd e

−af(x) dx. Suppose that ∥µi∥ ≤ D for
all i ∈ [n], and let α, β > 0. Let

A = D +
1√
ακ

(
√
d+

√
d log

(
K

κ

)
+ 2 log

(
2

wmin

))
.

If α < β, then

min
x∈Rd

pα(x)

pβ(x)
≥ Zβ

Zα
and

Zβ

Zα
∈
[
1

2
e−

1
2 (β−α)KA2

, 1

]
.
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Proof of Lemma 25. By Equation (27) and Lemma 27, we have

exp(−βℓ+1f(x))

exp(−βℓf(x))
= exp (−(βℓ+1 − βℓ)f(x)) ∈ [0, 1/(2 e)]

for all ℓ ∈ [L− 1]. Moreover, by substituting ε = 4/(3ℓL) into Lemma 23, we obtain

∥P ∗
ℓ − P Ñ

ℓ ∥tv ≤
2e2

L
,

when

Ñ ≥ C ′L4Rdκd/2 exp(c′d)

γ
d/2
minw

5
min

log

(
L4κd

w2
min

)
,

where C ′, c′ > 0 are fixed constants. Next, by applying Lemma 26 with constants C = 1/2e and
c = 1/L, we obtain the following bound∣∣∣∣∣ Ẑℓ+1/Zℓ+1

Ẑℓ/Zℓ

∣∣∣∣∣ ∈
[
1− 1

L
, 1 +

1

L

]
.

The lemma then follows by induction on ℓ.

C.4.3 Proof of Theorem 2

Proof of Theorem 2. Let L denote the number of temperature levels defined in Equation (26). By
applying Lemma 25 inductively with δ = ε/(4L), we obtain that, with probability at least 1− ε/4,
the following bound holds

Ẑℓ

Zℓ
∈

[(
1− 1

L

)ℓ−1

,

(
1 +

1

L

)ℓ−1
]
· Ẑ1

Z1
for all ℓ ∈ [L].

To ensure this guarantee, it suffices to generate s = L2 log (4L/ε) samples from each temperature
level i ∈ [L], resulting in a total of sL = L3 log (4L/ε) samples from Algorithm 1. Applying
Lemma 24 with α = ε/(4L4 log(4L/ε)), we obtain that, with probability at least 1− ε/4, we obtain
s samples from each temperature level i ∈ [L] by running Algorithm 1 for N steps (as defined in
Equation (29)) and repeating this process independently T times, where

T = sL · e2L log

(
1

α

)
= e2L4 log

(
4L

ε

)
log

(
4L4

ε
log

(
4L

ε

))
.

Hence, the total time complexity for getting partition function estimates is

Tpartition = T ·N =
C ′ L8Rdκd/2 exp(c′d)

γ
d/2
minw

5
min

log3
(

Lκ

εwmin

)
,

where c′, C ′ > 0 are fixed constants. By applying Lemma 23 and Lemma 24, we conclude that, with
probability at least 1− ε/4, Algorithm 1 produces a sample from a distribution that is within total
variation distance ε/4 of the target distribution P ∗ in time Tsampling, where

Tsampling = e2 L log

(
4

ε

)
C ′′L4Rdκd/2 exp(c′′d)

γ
d/2
minw

5
min

log

(
L2κd

ε2w2
min

)
=

C ′L5Rdκd/2 exp(c′d)

γ
d/2
minw

5
min

log2
(

Lκ

εwmin

)
,

where c′, C ′, c′′, C ′′ > 0 are fixed constants. The overall time complexity T consists of two
components: the time to get partition function estimates, and the time to generate sample from the
target distribution

T = Tpartition + Tsampling.

This completes the proof of the theorem.

41


	Introduction
	A New Decomposition Theorem
	Notation and Definitions
	Decomposition of the Simulated Tempering Markov chain
	Mixing Time Bounds

	 Analysis of the Simulated Tempering Metropolis–-Hastings Algorithm for Multivariate Gaussian Mixtures
	Simulation Study
	Concluding Remarks
	Acknowledgments
	Supplementary Material
	Simulated Tempering Metropolis–Hastings algorithm
	Proofs for Section 2
	Proof of Lemma 1
	Proof of Theorem 1
	Proof for the Mixing Times

	Appendix for Section 3
	Comparison of STMH chain with approximate STMH chain
	Restricted Spectral Gap of the Approximate STMH Chain
	Validation of Condition (2) in Assumption 2 
	Validation of Condition (3) in Assumption 2 
	Auxiliary Lemmas
	Validation of Condition (4) in Assumption 3 
	Restricted Spectral Gap Bound

	Restricted Spectral Gap of the STMH chain
	Estimation of Partition Functions
	Assumptions on the Parameters
	Auxiliary Lemmas
	Proof of Theorem 2



