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Abstract

Contrastive learning has been a long-standing research
area due to its versatility and importance in learning rep-
resentations. Recent works have shown improved results if
the learned representations are constrained to be on a hy-
persphere. However, this prior geometric constraint is not
fully utilized during training. In this work, we propose mak-
ing use of geodesic distances on the hypersphere to learn
contrasts between representations. Through empirical re-
sults, we show that this contrastive learning approach im-
proves downstream tasks across different contrastive learn-
ing frameworks. We show that having geometric inductive
priors perform even better in contrastive learning if used
along with other correct geometric information.

1. Introduction

Learning good representations of data is a key chal-
lenge in deep learning. Until recent years, training mod-
els with ground truth labels, i.e. supervised learning, was
the most popular process. However, the main problem with
the supervised approach to learning features from labeled
data is the high cost of annotating millions of data sam-
ples. Self-supervised learning techniques have been instru-
mental in significantly accelerating the development of uni-
versally applicable representations for several downstream
tasks. It has gained popularity due to enabling systems to
learn from data without explicit supervision, i.e. avoid-
ing the cost of annotating large-scale datasets. The gen-
eral pipeline of self-supervised learning algorithms consists
of two phases: pretraining on large unlabeled data with
pseudo labels and fine-tuning on labeled data for down-
stream tasks. Self-supervised algorithms have achieved
promising results, and the performance gap with supervised
algorithms in downstream tasks has significantly decreased.
Asano et al. [6] showed that even on only a single image,
self-supervised learning algorithms can surprisingly pro-
duce low-level characteristics that generalize well.
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Contrastive learning, a predominant technique in self-
supervised learning, has notably bolstered performance in
numerous downstream tasks such as classification, object
detection, segmentation, and pose estimation, to name a
few [35]. At its core, contrastive learning is about dif-
ferentiating between similar and dissimilar samples. This
technique leverages the principle of learning by compar-
ison, enabling models to identify patterns and features in
the data by contrasting positive (similar) and negative (dis-
similar) examples. Contrastive learning objectives, such as
the family of InfoNCE losses [16}152], encourage similarity
between representations of transformed versions of a data
point while discouraging that between other data points. Al-
ready classic methods that match or even outperform super-
vised learning methods are SimCLR [16], MoCo vl & v2
[32[18], BYOL [235]], SiImSIAM [17]], and many more.

Within this context, many recent empirical studies,
which include various unsupervised contrastive representa-
tion learning approaches [53} 29} 167} |48l |51} 155/ 134], have
proposed to learn representations with a unit norm con-
straint. This constraint confines the output space to be on
a unit hypersphere. Normalizing vectors has been shown
to lead to more stable representation learning in various
settings [70]. Although achieving state-of-the-art perfor-
mances on a variety of downstream tasks, these methods
seem to not fully exploit the geometric structure of the
representation space. In this work, we propose geomet-
ric contrastive loss, a geometric interpretation to comput-
ing contrasts using geodesic distances. It improves on con-
trastive learning methods where geodesics lengths on the
representation manifold can be computed. We argue that
the geodesic distance is a natural choice to use as a simi-
larity measure in the case of non-Euclidean representation
manifolds with given metrics. In this work, we apply this
idea to hyperspherical representation spaces. We focus on
the latter, although the proposed method is not limited to
hyperspheres.

We summarize the contribution of this work as follows :

1. We propose a geometric contrastive loss that utilizes
geodesic distance on the hypersphere to measure con-
trasts between samples.



2. We empirically demonstrate the benefit of using
geodesic distance in the objective of popular con-
trastive learning frameworks.

3. We validate our approach on both the curated balanced
datasets as well as datasets following long-tail distri-
butions.

4. We demonstrate that our proposed method works in the
low-data domain and gives a comparable performance.

2. Related Work
2.1. Contrastive Learning

Self-supervised representation learning (SSL) from un-
labeled visual data is a quickly evolving field. Recent meth-
ods are based on various forms of comparing embeddings
between transformations of input images. This idea of
making representations of an image agree with each other
under small transformations, for example, the consecutive
two-dimensional versions of a rotating three-dimensional
object, dates back to Becker and Hinton [10]. Current
methods in SSL can be divided into two categories: con-
trastive learning [32| [18} [52] and non-contrastive learning
7,125,114, 173117, 19,124, |68, 133]]. In this work, we focus our
analysis on contrastive learning methods.

Contrastive learning methods employ instance discrimi-
nation to learn representations by forming positive pairs of
images through augmentations and a loss formulation that
maximizes their similarity while simultaneously minimiz-
ing the similarity to other samples, i.e. negative samples.
The contrastive loss was first introduced by Bromley et al.
[12] and then more formally defined in [19,[27]]. Some con-
trastive learning methods have been motivated by the Info-
Max principle [45] which maximizes the mutual informa-
tion between two views of the same image, formed by some
transformations such as cropping or color jittering [[60, [8].
Tschannen et al. [62] shows that in practice, having a tighter
lower bound on mutual information can lead to worse repre-
sentations. Arora et al. [[1] shows some theoretical insights
on the representational capacity of contrastive loss frame-
works with the number of negative pairs, although that is not
consistent with the empirical results of these frameworks
[60}[18]132]]. While the work developed so far aiming at un-
derstanding the behavior of SSL provides insights into its
various aspects, they overlook prior geometric knowledge
of representations lying on a well-known compact mani-
fold, the hypersphere.

For ease of comparison, we focus on two well-known
contrastive learning frameworks: SimCLR [[16] and MoCo
v2 [18] and show that our proposed method improves per-
formances in these frameworks.

SimCLR SimCLR [16]] learns representations by encour-
aging similarity between two augmented views of an image.
Two views are formed by applying a series of transforma-
tions including random resizing, cropping, color jittering,
and random blurring. After encoding each view, SimCLR
uses a projector, often a multi-layer perception (MLP) fol-
lowed by a ReLU activation, to map the initial embeddings
into another space where the contrastive loss is applied to
encourage similarity between the views. Given a minibatch
of N example images, with augmentations, we have 2NV
data points. SimCLR does not sample negative examples:
given a positive pair, the other 2(N — 1) augmented exam-
ples within a minibatch are treated as negative examples.
SimCLR demonstrated that simple end-to-end architectures
with large batch sizes, a higher number of epochs, and a
carefully chosen set of augmentations can perform well.
The number of negative samples available in this approach
is proportional to the batch size as it accumulates negative
samples from the current batch. Since the batch size is lim-
ited by the GPU memory size, the scalability factor with
these methods remains an issue.

MoCo v2 Momentum Contrast (MoCo) [32]] learns vi-
sual representations by building a dynamic dictionary with
a queue and a moving-averaged encoder. MoCo maintains
the dictionary as a queue of data samples: the encoded rep-
resentations of the current mini-batch are enqueued, and
the oldest are removed. The queue decouples the dictio-
nary size from the mini-batch size, allowing it to be large.
Moreover, as the dictionary keys come from the preceding
several mini-batches, a slowly progressing key encoder, is
implemented as a momentum-based moving average of the
query encoder. When SimCLR [16] introduced the use of a
projector and stronger data augmentations, MoCo v2 [18]]
followed by implementing these design improvements to
boost the performance of MoCo.

2.2. Geometry-aware representation learning

SSL is usually composed of the backbone encoder and
the projector. The backbone encoder aims to encode data
into a more compact, lower-dimensional representation.
The manifold hypothesis states that in a high dimensional
space, the data has a low dimensional nonlinear geomet-
ric structure. One way to compute distances that respects
this structure is by using discrete shortest paths on neigh-
borhood graphs [59]. Although, this strategy does not al-
low performing continuous analysis, as for example Rie-
mannian statistics [54]]. Therefore, methods based on latent
variable models have been developed to enable computing
continuous shortest paths.

Generative models provide a way to estimate the prob-
ability density of the given data lying in an ambient space.
While most of the models utilize a latent space Z, the Vari-
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Figure 1: The pipeline for contrastive learning with latent embeddings that are constrained to lie on a (d — 1) dimension
hypersphere (S?~!). We show the embeddings of two different classes and their positive pairs generated by augmentations.
The geodesic distance (depicted by a bold line) on a sphere is different from the straight line aka Euclidean distance (depicted

by a dashed line) on a hypersphere.

ational Auto-Encoder (VAE) also learns a low dimensional
representation of the data [40]. Unfortunately, using straight
lines to compute distances in the latent space is misleading,
and in addition, is not identifiable [2] 30].

Considering the latent space as a Riemannian manifold
allows for encoding domain knowledge through the associ-
ated Riemannian metric, one solution is to compute shortest
paths in Z using a Riemannian metric that is induced by the
generator [61 2]]. This gives a natural and identifiable dis-
tance measure since it is actually computed directly on the
data manifold in X'. However, we need to estimate mean-
ingfully the generator’s uncertainty 2.

Arvanitidis et al. [3] proposed a fast, simple, and ro-
bust algorithm for computing shortest paths and distances
on Riemannian manifolds learned from data. Arvanitidis
et al. considered the ambient space of generative mod-
els, in addition to latent space, as a Riemannian manifold.
Arvanitidis et al. [5]] captures the geometry of a data man-
ifold in the latent space of a generative model using a Rie-
mannian metric that is inversely proportional to a learnable
prior.

2.3. Representation learning with Hyperspheres

Many representation learning approaches normalize
their features such that they lie on a unit sphere [69]
[60]]. In latent variable models for representation
learning like Autoencoders [46] and Variational Autoen-
coders [41]], hyperspherical latent space have been shown to
learn efficiently and outperform Euclidean latent space la-
tent models [55}[63]]. Intuitively, having the features live on
the unit hypersphere leads to several favorable traits. Fixed-
norm vectors improve training stability in modern machine
learning where dot products are ubiquitous [70, [63]. Ad-

ditionally, sufficiently well-clustered features of a class al-
low linear separability with the rest of the feature space,
a common criterion used to evaluate representation qual-
ity. In contrastive learning, normalizing feature vectors is
proven to optimize for alignment and uniformity in the la-
tent representations [66] and these have led to improvement
in downstream tasks as shown in [48] [32].

2.4. Imbalanced Self-Supervised Learning

Since natural data commonly follows long-tailed distri-
butions [56} (67, [49] it is critical to address learning on im-
balanced data instead of curated balanced datasets. Classi-
cal long-tail recognition approaches mainly attempt to am-
plify the impact of tail class samples, either by re-sampling
the data distribution or re-weighting the loss
for each class [20l 39| [38]]. However, in recent works,
Kang et al. [37]], Yang and Xu [71]], Liu et al. [47], Zhong
et al. [[74], Gwilliam and Shrivastava [26]] it is shown that
self-supervised learning generally allows one to learn a
more robust embedding space than a supervised counter-
part.

3. Method

In this section, we discuss the preliminaries and intro-
duce geometric contrastive loss, our proposed approach to
learning contrasts in visual representation learning. We mo-
tivate the use of geodesic distances to learn contrasts on data
manifolds. A template for the contrastive learning pipeline
is shown in Fig. [T}



3.1. Contrastive Loss

The core idea with contrastive loss is to pull positive
pairs closer while pushing negatives apart in the embedding
space, thereby learning similarities and contrasts. The con-
trastive loss for training an encoder f : R™ — S?~! maps
data to [5 normalized feature vectors of dimension d. For
this, we use the Info-NCE loss which leads to learning use-
ful representations from unlabelled data [52} 169,32} 16].

Given a set of inputs x1,...,zxN, a similarity measure
8;; = sim(z;, zj) between learned representations z; =
f(A(z;)) and z; = f(A(x;)), the loss is defined by

N exp(sii/T)
£contr. = Z - log K
s exp(sii/T) + Xiz; €xp(sij/T)

where A(-) is the set of random augmentations applied to
its input, K is a fixed number of negative samples, and the
7 > 0 is the temperature of the Info-NCE loss and has been
found to crucially impact the representation learning [66|
64, 157,143]]. We refer to z; as an anchor, to z; as a positive
example if 7« = j and as a negative example if i # j.

(D

3.2. Geometric Contrastive Loss

In this work, we propose to model the latent space as a
Riemannian manifold. By doing so, we are able to quantify
the notion of contrast between any two points by a distance
that is informed by the Riemannian metric. In fact, from
the Riemannian metric structure stem geometric properties
like curvature, symmetries, and, most importantly for our
method, distances. Formally, let us denote a Riemannian
manifold with M, and the tangent space at a certain location
z € M inwith T, (M). M is equipped with a metric tensor
(inner product) g, : T,(M) x T,(M) — R on the tangent
spaces T, (M) that can be used to quantify the length of
tangent vectors v € T, (M) via ||v|4, := 1/g.(v,v). The

metric tensor allows us to quantify the lengths of curves via

1
L(y) = / 14(8) g0

i.e., as the integral of the tangent vector lengths along the
curve. This introduces a notion of a distance d(zo, z1) be-
tween any two points zp, z; € M, as the length of the short-
est possible path v : [0,1] — M connecting these points,
ie.

d(z0,721) = igf L(y) st.zo=7(0),z1 =~(1). (2)

The length-minimizing curves of (@) are called
geodesics. Figure [2] illustrates the difference between
geodesic and Euclidean distances on a manifold. For many
known manifolds, the distances and geodesics have closed-
form solutions and thus do not need to be found by solv-
ing [@). For example, the distance between any two points
zi,zj € S% on a hypersphere M = S3 is given by

d(z;,zj) = arccos(z] ;). 3)

As a trivial example, the Euclidean space R™ is naturally
equipped with the Euclidean metric g, = id,, which results
in the geodesic distance between two points is simply the
length of the straight line that connects them.

z

/ x

Figure 2: The geodesic (blue) distance vs Euclidean (red)
distance on a toy curved manifold surface.

A vast number of recent unsupervised contrastive repre-
sentation learning methods learn representations with a unit
I> norm constraint [69] |8}, (60, [16]. This results in features
being on the spherically symmetric hypersphere S~ ! C
R™. Given two points z1, zz € S"~!, the spherically sym-
metric hypersphere is equipped with a metric that results in
the geodesic distance d(z1,z2) = arccos({z1, z2)) where
(-,-) is the standard inner product in R™. For represen-
tations constrained on a hypersphere, it is more natural to
consider the geodesic distance as a similarity measure. For
two features z;, z; on the unit sphere, we, therefore, use the
negative geodesic distance between them as the similarity
measure.

sim(z;, z;) = 1 — arccos((z;, z;)) /7 4)

For a different non-Euclidean embedding, the respective
geodesic distance can be considered. In general, though, a
closed form of the geodesic distance is not available.

3.3. Distinction between arccos and cosine similarity

Cosine similarity between two unnormalized vectors
u,v € R%is given by

sim(u,v) = _{wv) Q)
[ull - [l

It gives a similarity measure between two vectors in Eu-
clidean space R? and ranges between -1 and 1. This can be
interpreted as the cosine of the angle between the two vec-
tors in R?. In our method, we take the arccos between two
vectors, the geodesic distance on the unit sphere. The main
difference between these two measures is when two vectors



are close to each other. For small angles, the approximation
of cosine is cos(d) = 1 — 9—22 in contrast to geodesic dis-
tance 6, which makes the model more difficult to learn the
contrast between two similar vectors. We can observe it in

our experiments in Sec.

4. Experimental Setup

In this chapter, we provide details of our experimental
setup. We first introduce datasets in Sec. Sec. 2] de-
scribes the contrastive methods we use as baselines. Finally,
in Sec. .3]and Sec. 4.4 we provide training and evaluation
protocols.

4.1. Datasets

We run experiments on different datasets commonly
used for contrastive learning frameworks. We divide these
datasets into three categories: balanced, long-tail, and low-
diversity datasets. Balanced datasets, as the name suggests,
are multiclass datasets with an equal number of examples
for each class. Long-tail datasets are the datasets that fol-
low a long-tail distribution while the low-diversity datasets
contain classes that are difficult to classify because they be-
long to the same parent class.

Balanced datasets For balanced datasets, we consider the
following well-known datasets CIFAR10, CIFAR100, and
ImageNet100. CIFAR1O [42] is the dataset that consists
of 60000 color images of size 32 x 32 in 10 classes with
6000 images per class. The train/test split is 50000/10000.
CIFAR100 [42] is like CIFARIO dataset, except it has 100
classes containing 600 images each. ImageNet100 [60]
is a subset of the original ImageNet [22] consisting of 100
classes for a total of 12210 images.

Long-tail datasets For long-tailed (LT) datasets we con-
sider LT versions of the above-mentioned datasets for
the experiments: CIFAR10-LT, CIFAR100-LT, and
ImageNet100-LT. Long-tail versions of the datasets
were introduced by Cui et al. [20] and consist of a subset of
the original datasets with an exponential decay in the num-
ber of images per class. The imbalance ratio controls the
uniformity of the dataset and is calculated as the ratio of
the sizes of the biggest and the smallest classes. As a stan-
dard practice, we use an imbalance ratio of 100 if not stated
otherwise [36].

Low-diversity datasets As a low-diversity dataset, we
use the Imagewoof dataset introduced by fastai
Imagewoof is a subset of 10 dog breed classes from
ImageNet[22]. We consider this dataset as a difficult

https://github.com/fastai/imagenette

dataset compared to the other datasets, as all images belong
to the same ancestor in the ImageNet hierarchy, which is the
dog in our case.

4.2. Baselines

We evaluate the effect of using negative geodesic dis-
tance as a similarity measure (or geodesic distance for learn-
ing contrasts) in two standard contrastive methods: Sim-
CLR and MoCo v2. SimCLR and MoCo v2 are self-
supervised learning frameworks to learn representations
from unlabeled data. We set ResNet18 as an encoder back-
bone [31]], the projection head in the pipeline is set up with
an output size of 128, and temperature values in the loss
function are set to 7 = 0.05 for all baselines and datasets.

4.3. Training

For all experiments, we build our setup off of the im-
plementation of the baseline models from the Solo-Learn
library [21]. Our geometric contrastive loss is agnostic to
self-supervised learning frameworks and their related train-
ing components. Therefore we keep the same training set-
tings when making comparisons. It is fair to assume that
larger gains could be expected with further hyperparameter
tuning in on our experiments, but for the current work, we
just show the improvement for the pre-set hyperparameters.

We use the same experimental setup for pairs
CIFAR10/CIFAR100 and ImageNet100/Imagewoof
datasets, so we will refer to them as CIFAR and Imagenet
datasets. We train CIFAR and Imagenet for 1000 and
400 epochs. For the experiments with long-tail versions of
the datasets, we reduce the number of epochs. We keep it
to 250 epochs for CIFAR10-LT/CIFAR100-LT and 100
epochs for ImageNet 100-LT. We train with a batch size
of 512. As for the learning rate, we utilize linear warm-
up for 10 epochs which is followed by a cosine annealing
schedule.

SimCLR: we follow Chen et al. [16] to choose hyperpa-
rameters and use the LARS optimizer [[72] for all SimCLR
experiments with a weight decay of le-4, LARS coefficient
of 0.4/0.3 for CIFAR and Imagenet datasets.

MoCo v2: we use an SGD optimizer for all MoCo v2
experiments with a weight decay of le-4. We use a dictio-
nary of size 4096 for CIFAR10, CIFAR100, Imagewoof
and 8192 for ImageNet100.

4.4. Evaluation

We use linear classification as well as the k nearest
neighbors (kNN) to assess the features learned through
the contrastive framework. For kNN, we compute [2-
normalized distances between samples from the train set
and the test set. For each test image, we assign it to the
majority class among the top-k closest train images. We re-
port accuracy for kNN with k = 1 (kNN@1) and £ = 10



Table 1: Effect of geometric contrastive loss (GCL) on balanced datasets. Comparison of top-1 accuracy of SimCLR
vs SimCLR + GCL and MoCo v2 vs MoCo v2 + GCL on CIFAR10, CIFAR100, and ImageNet100 with kNN@]1,

kNN @10, and linear probe (LP).

CIFAR-10 CIFAR-100 ImageNet-100
Method kNN@] kNN@10 LP | kNN@]l kNN@l10 LP |kNN@l kNN@10 LP
SimCLR 80.03 83.55 86.57 | 47.14 45.04 58.76 | 58.70 64.40 74.05
SimCLR + GCL 87.50 89.61 90.53 | 57.39 62.27 63.92 | 73.35 76.75 80.05
MoCo v2 79.25 82.95 86.68 | 48.59 54.01 61.53 | 55.75 63.20 74.80
MoCo v2 + GCL | 89.70 91.67 92.55 | 6147 65.70 68.61 | 75.25 78.90 83.15

Table 2: Effect of geometric contrastive loss (GCL) on long-tail datasets. Comparison of top-1 accuracy of SimCLR vs
SimCLR + GCL and MoCo v2 vs MoCo v2 + GCL on CIFAR10-LT, CIFAR100-LT, and ImageNet100-LT with kNN@1,

kNN @10, and linear probe (LP).

CIFAR-10-LT CIFAR-100-LT ImageNet-100-LT
Method kNN@1 | kNN@10 | LP | kNN@I | kNN@10 | LP | kNN@1 | kNN@10 | LP
SimCLR 45.17 45.04 | 5848 | 1523 16.74 | 2655 | 108 1225 | 2545
SimCLR + GCL | 52.76 51.28 | 59.67 | 19.52 19.46 | 2857 | 15.1 1835 | 33.05
MoCo v2 46.64 4569 | 56.53 | 176 19.11 | 2746 | 1220 13.90 | 26.00
MoCo v2 +GCL | 50.51 49.22 | 58.07 | 20.58 20.97 | 2887 | 12.85 1455 | 26.45

(kKNN@10) as well. Compared to linear probing, kNN di-
rectly evaluates the learned embedding since it relies on the
learned metric and local structure of the space. We eval-
uate the linear separability and generalization of the space
with linear probing. We train a linear classifier on top of the
frozen pre-trained model. Linear evaluation is done simply
by appending a linear layer at the end of the frozen back-
bone encoder. A linear classifier is trained for 100 epochs
with an initial learning rate of 10.0 multiplied by 0.1 at the
60th and 80th epochs.

5. Results
5.1. Results on balanced data

In Table [T] we present the efficacy of geometric con-
trastive loss for SiImCLR and MoCo v2. We find that both
frameworks benefit from a negative geodesic distance as a
similarity measure and we observe consistent improvements
in all evaluation metrics for CIFAR10, CIFAR100, and
ImageNet100, i.e. the local structure of the embedding
space (kNN) and the global structure (linear probe) are both
improved.

The improvement is more noticeable as the difficulty
of the task increases. For example, SimCLR linear probe
performance increases by 7.47%, 10.25%, and 14.65% for
CIFAR10,CIFARI1O00, ImageNet100. Similarly, MoCo
v2 improves by 10.45%, 12.88%, and 19.5% respectively.

5.2. Results on long-tail data

In Table 2] we present the effect of using geomet-
ric contrastive loss in contrastive learning frameworks on
the datasets with a long-tail distribution. We can ob-
serve consistent improvements over the baselines, Sim-
CLR and MoCo v2, for CIFAR10-LT, CIFAR100-LT,
ImageNet100-LT datasets, and evaluation metrics
(KNN@1, kNN@10, LP).

5.3. Qualitative analysis of similarity

In addition to the well-known evaluation metrics, we
show how the geodesic distances compare with cosine sim-
ilarities in learning contrasts for positive and negative pairs.
To do so, for each example in the test set of CIFAR100
dataset, we measure and save the distances between posi-
tive examples, i.e. its two augmentations, and between neg-
ative examples, i.e. the anchor and another random exam-
ple. Then, we plot the histogram of measured distances be-
tween positive and negative examples. For both methods,
we measure the distances they were trained on and normal-
ize geodesic distance to have values between -1 and 1 to
compare it with standard cosine similarity. In Figure [3| we
show the results through a distance plot. We can observe
that in both figures the distribution of positive (in blue) and
negative examples (in red) are well separated. The main
difference is that the method utilizing geodesic distance is
more sensitive to differences between positive examples.
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Figure 3: The histogram of distances of positive (in blue)
and negative (in red) examples CIFAR100 dataset for sim-
CLR (top) and simCLR + geodesic distance (bottom).

5.4. Results on low-diversity datasets

In Table [3| we present the performance of SimCLR and
MoCo v2 with the geometric contrastive loss on the low-
diversity dataset, the dataset of images with the same an-
cestor class in the ImageNet hierarchy. We see that utilizing
negative geodesic distance boosts performance in this sce-
nario too.

5.5. On the data efficiency of Geometric Contrastive
Loss

Figure [] shows the linear classifier accuracy of Sim-
CLR and MoCo v2 trained on different fractions of the
CIFAR100 training set, namely 40%, 60%, and 80%. We
see that geometric contrastive loss outperforms the baseline
in these scenarios. Additionally, we note that the difference
is increasing with a larger training dataset size.

Table 3: Effect of geometric contrastive loss (GCL). Com-
parison of SimCLR with SimCLR + GCL and MoCo v2
with MoCo v2 + GCL on Imagewoof dataset with evalua-
tion metric KNN@ I, kNN @ 10, and linear probe (LP).

Imagewoof
Method kNN@1 | kNN@10 | LP
SimCLR 60.91 68.16 | 75.01
SimCLR+GCL | 70.81 74.55 | 78.26
MoCo v2 60.45 6727 | 75.52
MoCo v2+GCL | 63.76 71.16 | 76.38

-®- SimCLR
—&— SimCLR+GCL

linear accuracy

0.4 05 06 07 08 0.9 10
% of training dataset

=@=- MoCowZ
—&— MoCo v2+GCL

linear accuracy

04 05 06 o7 08 oa 10
% of training dataset

Figure 4: Efficacy of geometric contrastive loss (GCL) on
SimCLR and MoCo v2 trained on different fractions of
CIFAR100 dataset.

6. Conclusion

In this paper, we introduce a new perspective on the
classical contrastive learning framework drawing inspira-
tion from the recent success of hyperspherical embeddings
and their applications in various representation learning do-
mains. We propose a simple, yet effective geometric con-
trastive loss that utilizes a similarity measure based on the
geodesic distance of the representation manifold. By eval-
uating our method on different datasets, we demonstrate its
promising performance in a range of downstream tasks. We
further demonstrate how this simple change in the similarity
measure used in the contrastive objective distributes the dis-



tances between positive and negative pairs. The simplicity
of the proposed method makes it model-agnostic and can be
used in other contrastive learning frameworks beyond Sim-
CLR and MoCo v2. Notably, our approach is applicable to
any representation manifold as long as geodesic distances
can be computed efficiently. As a potential future research
direction, this method could be combined with Riemannian
metric learning methods such as [44] 11}, 23]], to learn the
metric and utilize geodesic distances computed using the
learned metric.
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