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Abstract

Chinese Spell Checking (CSC) aims to de-
tect and correct Chinese spelling errors, which
are mainly caused by phonologically or vi-
sually similarity. Recently, due to the de-
velopment of various pre-trained language
models (PLMs), many CSC methods have
achieved great progress. However, PLMs will
pay more attention to common characters be-
cause of the pre-training settings. Therefore,
there exists a gap between the learned knowl-
edge of PLMs and the essential of CSC task.
To address this issue, we propose an Error-
driven COntrastive Probability Optimization
(ECOPO) framework to refine the knowledge
representation of PLMs for CSC. Particularly,
ECOPO guides the model to avoid predicting
common but improper characters through an
error-driven way. Besides, ECOPO is model-
agnostic so that it can be easily combined with
existing CSC methods to achieve better perfor-
mance. Extensive experiments' and detailed
analysis on three standard benchmarks demon-
strate that ECOPO is simple yet effective.

1 Introduction

Chinese Spell Checking (CSC) aims to detect and
correct spelling errors in Chinese texts (Wu et al.,
2013a). Itis a crucial research field for various NLP
downstream applications, such as Optical Charac-
ter Recognition (OCR) (Afli et al., 2016), search
query correction (Gao et al., 2010) and automatic
essay scoring (Dong and Zhang, 2016). However,
CSC is also a challenging task because it mainly
suffers from confusing characters, such as phono-
logically and visually similar characters (Liu et al.,
2010; Zhang et al., 2020). As illustrated in Fig-
ure 1, “Z(sti, plain)” and “if(si, sue)” are con-
fusing characters for each other due to the shared
pronunciation “su”.

In recent years, pre-trained language models
(PLMs) such as BERT (Devlin et al., 2019) have
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Figure 1: Examples of Chinese spelling errors. Pre-
vious research (Liu et al., 2021) shows that 83% of
errors belong to phonological error and 48% belong
to visual error. We give the characters with their pro-
nunciation and translation. We mark the input confus-
ing/golden confusing/ characters in
red/blue/ The characters in “Candidate”
tences are all predicted by fine-tuned BERT.

sen-

gradually been utilized in the CSC task and be-
came the mainstream solutions (Zhang et al., 2020;
Cheng et al., 2020; Xu et al., 2021). Although
previous works have achieved good performance
in the CSC task, they still have shortcomings to
be improved. We notice that there exists a signifi-
cant gap between the learned knowledge of PLMs
and the essential of CSC task. The CSC task re-
quires model to pay more attention to the confusing
characters because the Chinese spelling errors are
mainly caused by phonologically or visually sim-
ilarity. However, limited by the masking strategy
in pre-training procedure, general PLMs will be
more inclined to common characters which would
express the similar but improper semantic in the
context. This kind of gap makes BERT-like PLMs
be sub-optimal for CSC task (Liu et al., 2021).

Figure 1 presents two running examples of
BERT to better understand the gap mentioned be-



fore. The first phonological example is caused by
the misuse of “Z (si, plain)” and “I¥(sl1, sue)”. An
ideal CSC model should pay attention to the pro-
nunciation information “sit” and output the golden
confusing character “if(sue)” as a correction re-
sult for input confusing character. However, since
BERT is pre-trained with a more general corpus,
it will tend to predict more common but improper
characters such as “%(zhéng, fight)”, “I(méu,
plan)”, “}k(hud, acquire)”. In the second visual
example as well, BERT also ignores the visually
similar information between “ff#(jié, understand)”
and “ff(xie, slack)” and makes wrong correction.

To alleviate this gap, we propose to empower
the PLMs to avoid predicting the above-mentioned
common characters by optimizing the knowledge
representation of PLMs. Intuitively, if we can guide
the model to not make the same mistakes it would
prone to make before, the performance of the model
for the CSC task will be improved. Hence, the mis-
takes that the model has ever made can be utilized
as constraints on the knowledge representation of
the model. In other words, we hope the past mis-
takes that the model may make can be exploited to
further enhance the model itself, this is the meaning
of “the past mistake is the future wisdom”. In our
study, we perform error-driven optimization during
the fine-tuning procedure of PLMs, thus narrow-
ing the gap between the pre-trained knowledge of
PLMs and the goal of CSC.

Motivated by the above intuition, we propose the
Error-driven COntrastive Probability Optimization
(ECOPO), a simple yet effective training frame-
work which aims to refine the knowledge represen-
tation of models for CSC. The ECOPO consists of
two stages: (1) Negative samples selection. Based
on the model’s prediction probability for different
characters, we select the common but improper
characters with high probability as negative sam-
ples. And we directly regard the golden confus-
ing character as positive sample. (2) Contrastive
probability optimization. After obtaining the posi-
tive/negative samples, we train the model by Con-
trastive Probability Optimization (CPO) objective
which aims to optimize the prediction probability
for different characters. Through this optimization
process, we can finally adapt the model to the CSC
task, and improve the model’s performance.

In summary, our contributions are in three folds:
(1) We firstly empirically observe and focus on
the negative impact of the gap between the knowl-

edge of PLMs and the CSC task. (2) We propose
ECOPO, an error-driven optimization framework
for CSC, which can teach the models to grow and
progress with their own past mistakes. (3) We con-
duct extensive experiments and detailed analysis
on three public datasets and achieve state-of-the-art
performance with only a very thin model.

2 Related Work

2.1 Chinese Spell Checking

Chinese Spell Checking (CSC) is a promising task
because of its broad application, such as OCR (Afli
et al., 2016), Search Engine (Martins and Silva,
2004; Gao et al., 2010) and various education sce-
narios (Burstein and Chodorow, 1999; Lonsdale
and Strong-Krause, 2003; Dong and Zhang, 2016).
CSC has attracted more and more researchers, es-
pecially because of the recent rapid development of
the education industry (Yu et al., 2014; Wang et al.,
2018; Zhang et al., 2020; Cheng et al., 2020).
Previous CSC methods can be divided into
three categories: rule-based methods, machine
learning-based methods and deep learning-based
methods. Early works in CSC mainly focus on de-
signing heuristic rules to detect different kinds of er-
rors (Chang et al., 2015; Chu and Lin, 2015). Most
of these methods rely on solid linguistic knowl-
edge and manually designed features, and thus do
not have the generalization performance required
for large-scale application. Next, various tradi-
tional machine learning algorithms, such as Con-
ditional Random Field (CRF) and Hidden Markov
Model (HMM), are applied in CSC task (Wang
and Liao, 2015; Zhang et al., 2015). Then, deep
learning-based models have gradually become the
mainstream of the CSC field in recent years (Wang
et al., 2021; Guo et al., 2021; Zhang et al., 2021).
Wang et al. (2018) utilize a BiLSTM trained
on an automatically generated dataset to convert
CSC to sequence labeling problem. Hong et al.
(2019) propose to generate and curtail the candidate
characters through a BERT-based denoising au-
toencoder. The Soft-Masked BERT model (Zhang
et al., 2020) uses two separate networks for de-
tection and correction. Then SpellGCN (Cheng
et al., 2020) uses GCN (Kipf and Welling, 2017) to
fuse character embedding with similar pronuncia-
tion and shape, explicitly modeling the relationship
between characters. Additionally, REALISE (Xu
et al., 2021) verifies that the multimodal knowledge
can be leveraged to improve CSC performance.
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Figure 2: Overview of ECOPO framework. We select negative samples according to the original prediction prob-
ability of PLMs (e.g, for the position of “fli”, PLMs predicts the Top 5 characters as “58&”, ‘i1, “¥i”, “f&”, and
“f”.), then optimize the PLMs with the contrastive optimization objective and traditional original objective.

2.2 Pre-Trained Language Models

Recently, pre-trained language models (PLMs)
have gained good improvements on various NLP
tasks. The paradigm of fine-tuning PL.Ms for spe-
cific tasks has been widely used. In this paradigm, a
model with fixed architecture is used to predict the
probability of observed text data by pre-training as
a language model. Take the pre-training setting of
BERT (Devlin et al., 2019) as an example, Cui et al.
(2020) use the Wikipedia dump which is general
but not task-sensitive for CSC. Motivated by that
BERT is designed and pre-trained independently
from the CSC task, PLOME (Liu et al., 2021) is
proposed to be a task-specific pre-trained language
model for CSC. But unlike our method, PLOME
designs a confusion set based masking strategy and
introduces various external knowledge.

3 Methodology

In this section, we introduce the proposed ECOPO
in details, as illustrated in Figure 2. ECOPO aims
to refine the knowledge representation of PLMs
to narrow the gap between it and the essential of
CSC task. As mentioned in Section 1, with the
model before our optimization process, we select
the mistakes generated by this model itself to be
the negative samples. Then through the Contrastive
Probability Optimization objective, we maximize
the prediction probability of the model for correct
answers and minimize the prediction probability

of the model for negative samples. In this error-
driven way, the original prediction probability of
the model is refined, improving the performance of
the model on the CSC task. Therefore, the model
will grow and progress after making mistakes again
and again, just as humans do. Note that the pro-
posed ECOPO is a model-agnostic framework, we
can choose different PLMs or CSC models to be
optimized in practice for better performance.

3.1 Observation and Intuition

To present our approach more clearly, we will
firstly describe our observation, then we will give
our explanation of the observation and intuition.
Based on our preliminary experiment of apply-
ing BERT to the SIGHAN13/14/15 datasets, we
notice that out of the total 491 wrong correction
samples, 383 (78%) samples fail due to BERT pre-
dicting common but improper characters. Note that
if a character co-occurs with the character before
or after the error position more than 1000 times
in wiki2019zh?, we regard it as a common charac-
ter. Therefore, the key empirical observation that
ECOPO builds on is that PLMs such as BERT can-
not focus well on the confusing characters that need
to be paid more attention in the CSC task, as illus-
trated in Figure 1. We think that this gap comes
mainly from the general corpus and paradigm used
in the pre-training process of models. Taking the

The general pre-training corpus which is from Wikipedia
dump (as of February 7, 2019) and contains one million pages.



BERT as an example, its pre-training corpus is
mainly from the text in wikipedia, which has a very
low proportion of contexts containing confusing
characters, as verfied in Section 4.7. Addition-
ally, Devlin et al. (2019) randomly choose 15%
of tokens in the entire corpus to be masked by a
fixed token “[MASK]” and then recover them. This
masking-recovering strategy makes the knowledge
acquired by PLMs in pre-training process discon-
tinuous in the CSC task (Liu et al., 2021). Because
the size of confusing characters will be lower in the
15% of characters that are randomly selected.

In fact, there also exists the same challenge when
humans correct spelling errors. When only given
the context of input sentence without seeing the
misspelling, they tend to associate the common
character rather than the confusing character with
the context. Therefore, humans or models would
wrongly predict common characters. Intuitively, if
the model can be optimized with common charac-
ters through an error-driven way, then the model
can certainly be further enhanced, just as humans
get progress from the mistakes they have made.

3.2 Stage 1: Negative Samples Selection

We define the negative samples in CSC as those
common characters that will be incorrectly as-
signed high prediction probability by PLMs before
our optimization process. According to our obser-
vation, negative samples that can form common
collocations with the context tend to be assigned
higher probability than the golden confusing char-
acter, leading the model to make wrong corrections.
Therefore, we use a simple strategy based on the
prediction probability to select the negative sam-
ples which we will utilize in the next stage.

Specifically, we use PLMs such as BERT to
predict the original character for each input token
based on the output of the last transformer layer.
The prediction probability of the i-th token x; in a
sentence X is defined as:

p(yi =j | X) = softmax (Wh; +b)[j], (1)

where p (y; = j | X) means the conditional prob-
ability that the i-th token x; is predicted as the
j-th character in the vocabulary of PLMs, W ¢
Ryocabxhidden and b ¢ R are learnable pa-
rameters, vocab is the size of vocabulary and the
hidden is the size of hidden state, h; € R"Mdden jg
hidden state output of PLMs for the i-th token z;.
Based on the prediction probability, we can se-
lect the negative samples according to the magni-

tude of the probability. The negative samples set
Neg is selected from the candidate set 1" as:

T={t|teV and t#t"}, )

Neg = argmax Z plyi=t"|X), B
T'CT T =K “ 27,

where ¢t~ and ¢t mean the negative and positive
samples, respectively. The negative samples ¢t~ are
selected from those tokens whose prediction proba-
bility is in the Top K of the vocabulary V, and the
best value of K is selected empirically. It is worthy
noted that the training process is supervised in the
CSC task, so we can regard the golden confusing
character as the positive sample ¢ 1.

3.3 Stage 2: Contrastive Probability
Optimization

After obtaining the positive/negative samples and
their corresponding prediction probability, we train
the model by Contrastive Probability Optimization
(CPO) objective which is defined as:

11 &
L’CPOZ—NZK;{P(%:#’X) @

i=1
- (v =t [ X)},

where N is the batch size, K is the selected neg-
ative samples size, ¢, is the k-th negative sam-
ple in Neg. The CPO objective aims to teach the
model to increase the prediction probability for pos-
itive sample (i.e, confusing character) and decrease
the prediction probability for negative samples (i.e,
common characters) by the maximum likelihood
of the difference between the original probability
for positive and negative samples.

To preserve the generalization performance of
the model, we can train both the existing original
objective Loprr and the CPO objective Lopo. The
overall objective is defined as:

L =M Lorr +XLcro, (5)

where \; and A, are weighting factors for two ob-
jectives. We use CrossEntropy loss function as the
Lorgr for BERT in our experiments.

In practice, the training pseudocode of ECOPO
is shown in Appendix A. As described in Equa-
tion 5, we can replace the Loy with other models’
training objectives, so ECOPO is model-agnostic
and it can be easily used in other PLMs or previous
CSC methods to achieve further improvement.



4 [Experiments

In this section, we will introduce the details of
experiments and main results we obtained firstly.
Then we will conduct detailed analysis and discus-
sion to verify the effectiveness of our method.

4.1 Datasets

Training data. We conduct extensive experiments
to investigate the effectiveness of our proposed
ECOPO. Following most previous works (Zhang
et al., 2020; Cheng et al., 2020; Liu et al., 2021;
Xu et al., 2021), we use the same training data
as them, including the training samples from
SIGHANI13 (Wu et al., 2013b), SIGHAN14 (Yu
et al., 2014), SIGHANI1S5 (Tseng et al., 2015) and
the pseudo training samples (size of 271K, we de-
note this part of training samples as Wang271K in
our paper) automatically generated by OCR-based
and ASR-based methods (Wang et al., 2018).

Test data. In order to ensure the fairness of the
experiments, we use the exact same test data as
the baseline methods, from the test datasets of
SIGHAN13, SIGHAN14 and SIGHANI15. Noted
that the text of original SIGHAN datasets is in
the Traditional Chinese, we pre-process these orig-
inal datasets to the Simplified Chinese using the
OpenCC?3. This data conversion procedure has been
widely used in previous works (Wang et al., 2019;
Cheng et al., 2020; Zhang et al., 2020). The de-
tailed statistic of the training/test data we use in our
experiments is presented in Appendix B.

4.2 Baseline Methods

To evaluate the performance of ECOPO better, we
select several advanced strong baseline methods:

e BERT (Devlin et al., 2019): The BERT is
directly fine-tuned on the training data.

* Hybrid (Wang et al., 2018): It casts CSC into
a sequence labeling problem and implements
a supervised model, i.e., BILSTM trained on
an automatically generated dataset.

* FASpell (Hong et al., 2019): This model con-
sists of a denoising autoencoder (DAE) and a
decoder, where the DAE curtails the number
of candidate characters.

» Soft-Masked BERT (Zhang et al., 2020): A
neural architecture consists of a detection net-

3https://github.com/BY Void/OpenCC

work and a correction network, where the de-
tection network can help the correction net-
work to learn the right context.

SpellGCN (Cheng et al., 2020): An end-to-
end model to integrate the confusion set to the
correction model through GCNs.

REALISE (Xu et al., 2021): A multimodal
model which captures and mixes the semantic,
phonetic and graphic information to improve
the performance of CSC. It is the current state-
of-the-art method on SIGHAN13/14 datasets.

* PLOME (Liu et al., 2021): The task-specific
pre-trained masked language model which
jointly learns how to understand language and
correct spell errors. It is the current state-of-
the-art method on SIGHAN1S5 dataset.

4.3 Evaluation Metrics

In terms of evaluation granularity, there are two
levels of metrics, namely character/sentence-level.
Obviously, the sentence-level metric is stricter than
the character-level metric because there may be
multiple wrong characters in a sentence. One sen-
tence sample is considered to be correct only when
all the wrong characters in it are detected and
corrected successfully. Therefore, we report the
sentence-level metrics for evaluation, which are
widely used in previous works (Li et al., 2021;
Huang et al., 2021; Xu et al., 2021).

Specifically, the metrics we report include Accu-
racy, Precision, Recall and F1 score for detection
and correction levels. At the detection level, all
locations of wrong characters in a sentence should
be identical successfully. At the correction level,
the model must not only detect but also correct all
the erroneous characters with the gold standard.

4.4 Experimental Setup

All the source code of our experiments is imple-
mented using Pytorch (Paszke et al., 2019) based on
the Huggingface’s implementation of Transformer
library* (Wolf et al., 2020). The architecture of
the BERT encoder we use in the related models
is same as the BERTg 25 model, which has 12
transformers layers with 12 attention heads and its
hidden state size is 768. We initialize the BERT
encoder with the weights of Chinese BERT-wwm
model (Cui et al., 2020). We train ECOPO with the

*https://github.com/huggingface/transformers



Detection Level

Correction Level

Dataset Method Acc Pre Rec F1 Acc Pre Rec F1

Hybrid (Wang et al., 2018) - 540 693  60.7 |- - - 52.1
FASpell (Hong et al., 2019) 63.1 762 632 691 | 605 731 605 662
SpellGCN (Cheng et al., 2020) - 80.1 744 772 |- 783 727 754
BERT (Devlin et al., 2019) 770 8.0 770 80.8 | 774 830 752 789

SIGHAN13
ECOPO (BERT) 81.77 8727 817" 844" | 8077 86.1"T 80.6T 833"
REALISE (Xu et al., 2021) 82.1 872 8.0 845 | 807 857 80.5 83.0
ECOPO (REALISE) 828" 88.6" 827" 856" | 814" 871" 8137 841"
Hybrid (Wang et al., 2018) - 519 662 582 |- - - 56.1
FASpell (Hong et al., 2019) 700 610 535 570 | 693 594 520 554
SpellGCN (Cheng et al., 2020) - 651 695 672 |- 63.1 672 653
BERT (Devlin et al., 2019) 753 634 688 660 | 742 612 665 638

SIGHAN14
ECOPO (BERT) 7677 658" 69.0"7 674T | 7577 6377 6697 653"
REALISE (Xu et al., 2021) 783 672 715 693 | 773 652 694 672
ECOPO (REALISE) 7897 6827 7217 7017 | 78.0" 664" 7027 682"
Hybrid (Wang et al., 2018) - 56.6 694 623 |- - - 57.1
FASpell (Hong et al., 2019) 742 616 600 635 | 737 666 59.1 626
SpellGCN (Cheng et al., 2020) - 748 807 777 |- 721 777 759
PLOME (Liu et al., 2021) - 714 815 794 |- 753 793 772
Soft-Masked BERT (Zhang et al., 2020) | 79.7 69.8 734 716 | 769 644 677 66.0

SIGHANT1S5 | ECOPO (Soft-Masked BERT) 812" 709" 766" 736" | 7917 6707 7237 69.6"
BERT (Devlin et al., 2019) 824 742 780 761 | 81.0 71.6 753 734
ECOPO (BERT) 8557 79.0" 813" 802" | 844" 76.8" 79.1T 78.0"
REALISE (Xu et al., 2021) 84.1 763 808 785 | 8.5 750 795 712
ECOPO (REALISE) 848" 76.67 8157 79.07 | 8437 7557 804" 779"

Table 1: The performance of ECOPO and all baseline methods. Note that all baseline results are directly from
other published paper, except for the results of Soft-Masked BERT and REALISE which are from our own re-
implementation experiments. ECOPO (model-X) means that we perform ECOPO framework on model-X. We
underline the previous state-of-the-art performance for convenient comparison. “1” indicates that the correspond-
ing baseline method receives a further performance improvement after optimization by ECOPO.

AdamW (Loshchilov and Hutter, 2018) optimizer
for 10 epochs. The training batch size N is set to
64 and the evaluation batch size is set to 50. The
negative samples size K is set to 5 by default. The
weighting factors \j, Ao are both set to 1. The
initial learning rate is set to Se-5. We set the maxi-
mum sentence length to 128. The model is trained
with learning rate warming up and linear decay.

It is worthy noted that the annotation quality
of SIGHANT13 test dataset is relatively poor. As
we have observed and mentioned in (Cheng et al.,
2020; Xu et al., 2021), quite lots of the mixed usage
of auxiliary (such as “[9”, “#1”, and “1§”) don’t
have correct annotations. Therefore, the evaluation
metrics we use may not accurately reflect the real
model performance on SIGHAN13. To alleviate
this problem, there are two main solutions in previ-
ous works. Cheng et al. (2020) propose to continue
fine-tuning well-trained models on the SIGHAN13
training dataset before testing, which we think will
suffer from the over-fitting problem. Therefore, we

follow the post-processing method proposed in (Xu
et al., 2021) and don’t consider all the detected and
corrected mixed auxiliary. This approach does not
compromise the fairness of the evaluation process
and can better reflect the model performance.

4.5 Experimental Results

From Table 1, we can observe that:

1. The ECOPO (BERT) performs better than
BERT on all test sets. At the correction level,
ECOPO (BERT) exceeds BERT by 4.4% F1
on SIGHANI13, 1.5% F1 on SIGHANI14,
and 4.6% F1 on SIGHANI15. Specifically,
ECOPO (BERT) achieves significant improve-
ments on SIGHAN13/SIGHANI15, and out-
performs the previous state-of-the-art models
with a very thin model, while REALISE and
PLOME are two complex models with some
auxiliary modules. Note that ECOPO (BERT)
only consists of a BERT encoder.
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Figure 3: Heat map visualization of probability. The darker the blue, the higher the model’s prediction probability
for a particular character (vertical axis) given the input of samples containing misspelled characters (horizontal
axis). The selected samples are from SIGHAN15, and the original BERT would make wrong corrections for them.

2. From the results on the SIGHAN14 test set,
we can see that the performance improvement
of ECOPO (BERT) based on BERT is not
as large as on the other two test sets, but
still effective. Additionally, due to the model-
agnostic advantage of ECOPO, it can be sim-
ply combined with not only BERT but also
other previous state-of-the-art models such as
REALISE and get further enhancement to ob-
tain better results, which are presented in the
rows of REALISE and ECOPO (REALISE).

3. Considering the impact of external knowledge,
several previous works exploit various addi-
tional information to improve performance.
For example, FASpell and SpellGCN intro-
duce character similarity to CSC, REALISE
and PLOME propose to leverage multimodal
knowledge such as phonetic and graphic infor-
mation. Unlike the aforementioned models,
ECOPO (BERT) achieves competitive perfor-
mance without any additional knowledge and
optimizing only based on the mistakes that the
original BERT itself has made.

4. To verify the expandability of ECOPO, we
choose two other existing models including
Soft-Masked BERT and REALISE to be op-
timized. Practically, we train the combined
model with the joint objective, as described
in Equation 5. From the results of Table 1,
we can see that ECOPO’s improvement is sta-
ble and significant over the three models. In
summary, comparison results of the three mod-
els demonstrate the effectiveness and model-
agnostic characteristic of our method.

4.6 Analysis and Discussion

4.6.1 Visualization of Common/Confusing
Character Probability

The key objective of ECOPO is to optimize the
prediction probability of the PLMs for two differ-
ent kinds of characters, i.e., common characters
which original PLMs would be more inclined and
confusing characters which CSC task should pay
more attention to. Therefore, we visualize the prob-
ability optimization effect of ECOPO in this part
of experiment. Specifically, we ask BERT and
ECOPO (BERT) to predict the character which
should appear at the position of the misspelled
character based on its context. We select the Top-5
characters co-occurring with the context of the mis-
spelled character as the common characters, and 5
confusing characters from the widely used confu-
sion set (Wu et al., 2013b). Note that we ensure
that the common and confusing characters selected
are not duplicated, and the golden confusing char-
acter must be in the selected 5 confusing charac-
ters. Then we visualize the prediction probability
of common/confusing characters as a heat map.

Figure 3 shows the prediction probability distri-
butions of BERT and ECOPO (BERT) for the com-
mon/confusing characters. By comparison, we can
see that BERT would assign higher probability to
common characters than confusing characters, and
ECOPO (BERT) will focus more on confusing char-
acters which are similar to the golden confusing
character. This difference in BERT before and after
ECOPO’s optimization is consistent with our study
motivation and design objective, we can see that
ECOPO does refine the knowledge representation
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Figure 4: The results on SIGHAN1S5 test set, using dif-
ferent values of K in Equation 3 in ECOPO (BERT).

and prediction probability of BERT for different
characters. After ECOPQO’s optimization, BERT is
able to assign higher probability to the confusing
characters that should receive more attention, thus
improving its performance on CSC.

4.6.2 Effects of Negative Samples Size

As different amounts of negative samples can affect
ECOPO’s performance, it is essential to study the
impact of negative samples size K in Equation 3.
Figure 4 illustrates the performance change from
the perspective of detection and correction. We find
that the Recall performance of the model exhibits
incremental increases when more negative samples
are used in the optimization process. This phe-
nomenon is intuitive, as introducing more negative
samples allows the model to focus on more possi-
bilities. Besides, when the value of K reaches a cer-
tain value (e.g., K > 5), the overall performance
of the model (F1 score) does not improve anymore.
This is because ECOPO optimizes the model based
on the probability representation, when the value
of K becomes very large, the predicted probability
of samples becomes so small that they have almost
no effect on the probability optimization of the pos-
itive sample. Therefore, choosing an appropriate
K value is critical to the performance improve-

ment of ECOPO, although ECOPO has significant
improvement based on BERT at all values of K.

4.7 Case Study for Probability Optimization

Input: SHEHERES G NS -
It’s better to think for the good than to
be angry (give up).
BERT: [ > ) ]
ECOPO: [ (give up), . ]
Input: BB NFTMECAIE ORI -
I try to beat the enter (endless) storms.
BERT: [ > > ]
ECOPO: [R(endless), , ]
Table 2: Examples of spelling errors and corre-

sponding output (Top 3 candidates) of original BERT
and ECOPO (BERT). We mark the input confus-
ing/golden confusing/ characters in
red/blue/

Table 2 shows the comparisons between the cor-
rection results of BERT and ECOPO (BERT). In
the first examples, the output of BERT such as “Z.”,
“K> and “FJ” all can form a correct Chinese phrase
with “H”, but they cause a semantic incoherence
for the whole sentence. The statistics of the gen-
eral pre-training corpus wiki2019zh show that “H
. co-occurs 136318 times and “ H %+ co-occurs
119 times, which verifies the intuition about com-
mon/confusing characters described in Section 3.1.
In the second example as well, the output of BERT
can be formed with “%{ " as reasonable phrases.
From the two examples, we can see that ECOPO
does guide the BERT to accurately predict the ideal
confusing characters by the highest probability and
make the right corrections. Such experimental re-
sults are in line with our work’s core motivation.

5 Conclusion

In this paper, we introduce to promote the CSC
task by narrowing the gap between the knowledge
of PLMs and the goal of CSC. We propose the
ECOPO, a simple yet effective training framework
that aims to perform an error-driven optimization
for the PLMs based on their original probability
representation. Extensive experiments and empir-
ical results show the competitive performance of
our method. In the future, we will study how to
automatically measure the quality of negative sam-
ples to further enhance our method. Additionally,
applying our core idea and motivation to kinds of
other tasks will be an interesting direction.
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# vocab_prob : the prediction probability for all characters in vocabulary

# pos_idx : the index of positive sample (golden character) in vocabulary

# K : the selected negative samples amount

# Negative Samples Selection

pos_prob = vocab_prob[pos_idx]

neg_prob = torch.topk(vocab_prob, K)[0]
neg_idx = torch.topk(vocab_prob, K)[1].tolist()

# Contrastive Probability Optimization Objective
loss_list = []
for x in range(0, K):
if neg_idx[x] != pos_idx:
loss_list.append(pos_prob - neg_prob[x])
loss = - torch.stack(loss_list).mean()

Figure 5: Pseudo-code of our practical implementation.

A Pseudo-code of ECOPO

Figure 5 shows the Pytorch-style pseudo-code for
the ECOPO. As described in Section 3, our pro-
posed ECOPO consists of two stages, namely Nega-
tive Samples Selection and Contrastive Probability
Optimization. It is worthy noting that in the pseudo-
code, we only show the process of calculating the
loss of one training sample.

B Datasets Details

Table 3 shows the detailed statistics of our used
datasets. We report the number of sentences in
the datasets (#Sent), the average sentence length
of the datasets (Avg.Length), and the number of
misspellings the datasets contains (#Errors).

Training Data #Sent  Avg. Length  #Errors

SIGHAN13 700 41.8 343
SIGHAN14 3,437 49.6 5,122
SIGHAN15 2,338 31.3 3,037
Wang271K 271,329 42.6 381,962
Total 277,804 42.6 390464
Test Data #Sent  Avg. Length  #Errors
SIGHAN13 1,000 74.3 1,224
SIGHAN14 1,062 50.0 771
SIGHAN15 1,100 30.6 703
Total 3,162 50.9 2,698

Table 3: Statistics of the datasets that we use in exper-
iments. All the training data are merged to train the
models in our experiments. The test sets are used sepa-
rately to evaluate performance.
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