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Abstract

Chinese Spell Checking (CSC) aims to de-001
tect and correct Chinese spelling errors, which002
are mainly caused by phonologically or vi-003
sually similarity. Recently, due to the de-004
velopment of various pre-trained language005
models (PLMs), many CSC methods have006
achieved great progress. However, PLMs will007
pay more attention to common characters be-008
cause of the pre-training settings. Therefore,009
there exists a gap between the learned knowl-010
edge of PLMs and the essential of CSC task.011
To address this issue, we propose an Error-012
driven COntrastive Probability Optimization013
(ECOPO) framework to refine the knowledge014
representation of PLMs for CSC. Particularly,015
ECOPO guides the model to avoid predicting016
common but improper characters through an017
error-driven way. Besides, ECOPO is model-018
agnostic so that it can be easily combined with019
existing CSC methods to achieve better perfor-020
mance. Extensive experiments1 and detailed021
analysis on three standard benchmarks demon-022
strate that ECOPO is simple yet effective.023

1 Introduction024

Chinese Spell Checking (CSC) aims to detect and025

correct spelling errors in Chinese texts (Wu et al.,026

2013a). It is a crucial research field for various NLP027

downstream applications, such as Optical Charac-028

ter Recognition (OCR) (Afli et al., 2016), search029

query correction (Gao et al., 2010) and automatic030

essay scoring (Dong and Zhang, 2016). However,031

CSC is also a challenging task because it mainly032

suffers from confusing characters, such as phono-033

logically and visually similar characters (Liu et al.,034

2010; Zhang et al., 2020). As illustrated in Fig-035

ure 1, “素(sù, plain)” and “诉(sù, sue)” are con-036

fusing characters for each other due to the shared037

pronunciation “sù”.038

In recent years, pre-trained language models039

(PLMs) such as BERT (Devlin et al., 2019) have040

1The source code will be available for reproducibility.

Phono-

logical

83%

Input 希望您帮我素 (plain) 取公平。
s ù

Correct 希望您帮我诉 (sue) 取公平。
s ù

Candidate 1 希望您帮我争 (fight) 取公平。
zhēng

Candidate 2 希望您帮我谋 (plan) 取公平。
móu

Candidate 3 希望您帮我获 (acquire) 取公平。
h u ò

Translation Hope you help me to sue and get justice.

Visual

48%


Input 我们为这个目标努力不解 (understand) 。 
j i ě

Correct 我们为这个目标努力不懈 (slack) 。 
x i è

Candidate 1 我们为这个目标努力不休 (rest) 。
x i ū

Candidate 2 我们为这个目标努力不断 (break) 。
duàn

Candidate 3 我们为这个目标努力不停 (stop) 。
t í n g

Translation We fight for this goal without slack.

Figure 1: Examples of Chinese spelling errors. Pre-
vious research (Liu et al., 2021) shows that 83% of
errors belong to phonological error and 48% belong
to visual error. We give the characters with their pro-
nunciation and translation. We mark the input confus-
ing/golden confusing/common candidate characters in
red/blue/orange. The characters in “Candidate” sen-
tences are all predicted by fine-tuned BERT.

gradually been utilized in the CSC task and be- 041

came the mainstream solutions (Zhang et al., 2020; 042

Cheng et al., 2020; Xu et al., 2021). Although 043

previous works have achieved good performance 044

in the CSC task, they still have shortcomings to 045

be improved. We notice that there exists a signifi- 046

cant gap between the learned knowledge of PLMs 047

and the essential of CSC task. The CSC task re- 048

quires model to pay more attention to the confusing 049

characters because the Chinese spelling errors are 050

mainly caused by phonologically or visually sim- 051

ilarity. However, limited by the masking strategy 052

in pre-training procedure, general PLMs will be 053

more inclined to common characters which would 054

express the similar but improper semantic in the 055

context. This kind of gap makes BERT-like PLMs 056

be sub-optimal for CSC task (Liu et al., 2021). 057

Figure 1 presents two running examples of 058

BERT to better understand the gap mentioned be- 059
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fore. The first phonological example is caused by060

the misuse of “素(sù, plain)” and “诉(sù, sue)”. An061

ideal CSC model should pay attention to the pro-062

nunciation information “sù” and output the golden063

confusing character “诉(sue)” as a correction re-064

sult for input confusing character. However, since065

BERT is pre-trained with a more general corpus,066

it will tend to predict more common but improper067

characters such as “争(zhēng, fight)”, “谋(móu,068

plan)”, “获(huò, acquire)”. In the second visual069

example as well, BERT also ignores the visually070

similar information between “解(jiě, understand)”071

and “懈(xiè, slack)” and makes wrong correction.072

To alleviate this gap, we propose to empower073

the PLMs to avoid predicting the above-mentioned074

common characters by optimizing the knowledge075

representation of PLMs. Intuitively, if we can guide076

the model to not make the same mistakes it would077

prone to make before, the performance of the model078

for the CSC task will be improved. Hence, the mis-079

takes that the model has ever made can be utilized080

as constraints on the knowledge representation of081

the model. In other words, we hope the past mis-082

takes that the model may make can be exploited to083

further enhance the model itself, this is the meaning084

of “the past mistake is the future wisdom”. In our085

study, we perform error-driven optimization during086

the fine-tuning procedure of PLMs, thus narrow-087

ing the gap between the pre-trained knowledge of088

PLMs and the goal of CSC.089

Motivated by the above intuition, we propose the090

Error-driven COntrastive Probability Optimization091

(ECOPO), a simple yet effective training frame-092

work which aims to refine the knowledge represen-093

tation of models for CSC. The ECOPO consists of094

two stages: (1) Negative samples selection. Based095

on the model’s prediction probability for different096

characters, we select the common but improper097

characters with high probability as negative sam-098

ples. And we directly regard the golden confus-099

ing character as positive sample. (2) Contrastive100

probability optimization. After obtaining the posi-101

tive/negative samples, we train the model by Con-102

trastive Probability Optimization (CPO) objective103

which aims to optimize the prediction probability104

for different characters. Through this optimization105

process, we can finally adapt the model to the CSC106

task, and improve the model’s performance.107

In summary, our contributions are in three folds:108

(1) We firstly empirically observe and focus on109

the negative impact of the gap between the knowl-110

edge of PLMs and the CSC task. (2) We propose 111

ECOPO, an error-driven optimization framework 112

for CSC, which can teach the models to grow and 113

progress with their own past mistakes. (3) We con- 114

duct extensive experiments and detailed analysis 115

on three public datasets and achieve state-of-the-art 116

performance with only a very thin model. 117

2 Related Work 118

2.1 Chinese Spell Checking 119

Chinese Spell Checking (CSC) is a promising task 120

because of its broad application, such as OCR (Afli 121

et al., 2016), Search Engine (Martins and Silva, 122

2004; Gao et al., 2010) and various education sce- 123

narios (Burstein and Chodorow, 1999; Lonsdale 124

and Strong-Krause, 2003; Dong and Zhang, 2016). 125

CSC has attracted more and more researchers, es- 126

pecially because of the recent rapid development of 127

the education industry (Yu et al., 2014; Wang et al., 128

2018; Zhang et al., 2020; Cheng et al., 2020). 129

Previous CSC methods can be divided into 130

three categories: rule-based methods, machine 131

learning-based methods and deep learning-based 132

methods. Early works in CSC mainly focus on de- 133

signing heuristic rules to detect different kinds of er- 134

rors (Chang et al., 2015; Chu and Lin, 2015). Most 135

of these methods rely on solid linguistic knowl- 136

edge and manually designed features, and thus do 137

not have the generalization performance required 138

for large-scale application. Next, various tradi- 139

tional machine learning algorithms, such as Con- 140

ditional Random Field (CRF) and Hidden Markov 141

Model (HMM), are applied in CSC task (Wang 142

and Liao, 2015; Zhang et al., 2015). Then, deep 143

learning-based models have gradually become the 144

mainstream of the CSC field in recent years (Wang 145

et al., 2021; Guo et al., 2021; Zhang et al., 2021). 146

Wang et al. (2018) utilize a BiLSTM trained 147

on an automatically generated dataset to convert 148

CSC to sequence labeling problem. Hong et al. 149

(2019) propose to generate and curtail the candidate 150

characters through a BERT-based denoising au- 151

toencoder. The Soft-Masked BERT model (Zhang 152

et al., 2020) uses two separate networks for de- 153

tection and correction. Then SpellGCN (Cheng 154

et al., 2020) uses GCN (Kipf and Welling, 2017) to 155

fuse character embedding with similar pronuncia- 156

tion and shape, explicitly modeling the relationship 157

between characters. Additionally, REALISE (Xu 158

et al., 2021) verifies that the multimodal knowledge 159

can be leveraged to improve CSC performance. 160
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… 经过磨练才能让自己

更加拙 (clumsy) 壮 …
zhuō

… 

…不经一番寒辙(rut)骨，
z h é

焉得梅花扑鼻香…

Input

… 

Input Sentences with  
Corresponding Correct Characters

茁 
zhuó

(strong) 

… 

Correct

… 

彻 
c h è

(bite) 

… through the grind to make 
ourselves clumsy (strong) …

… if not for the bone-rutting (biting) 
winter cold ,  

how can the plum blossom and its 
fragrance assail the nostrils? …

N

PLMs such as BERT

Classification layer 强

Prediction 
Probability  

ℒCPO
∂ℒCPO

∂θ
∂ℒCPO

∂θ

Back 
Propagation

ℒORI
∂ℒORI

∂θ
∂ℒORI

∂θ

Back 
Propagation

壮

粗

健

雄

瘦

寒

打

冬

冷

… 

… 
茁

… 
彻

… … 

Neg

Pos

Existing 
Original 

Objective

Contrastive 
Optimization 

Objective

Top   K

Figure 2: Overview of ECOPO framework. We select negative samples according to the original prediction prob-
ability of PLMs (e.g, for the position of “拙”, PLMs predicts the Top 5 characters as “强”, “壮”, “粗”, “健”, and
“雄”.), then optimize the PLMs with the contrastive optimization objective and traditional original objective.

2.2 Pre-Trained Language Models161

Recently, pre-trained language models (PLMs)162

have gained good improvements on various NLP163

tasks. The paradigm of fine-tuning PLMs for spe-164

cific tasks has been widely used. In this paradigm, a165

model with fixed architecture is used to predict the166

probability of observed text data by pre-training as167

a language model. Take the pre-training setting of168

BERT (Devlin et al., 2019) as an example, Cui et al.169

(2020) use the Wikipedia dump which is general170

but not task-sensitive for CSC. Motivated by that171

BERT is designed and pre-trained independently172

from the CSC task, PLOME (Liu et al., 2021) is173

proposed to be a task-specific pre-trained language174

model for CSC. But unlike our method, PLOME175

designs a confusion set based masking strategy and176

introduces various external knowledge.177

3 Methodology178

In this section, we introduce the proposed ECOPO179

in details, as illustrated in Figure 2. ECOPO aims180

to refine the knowledge representation of PLMs181

to narrow the gap between it and the essential of182

CSC task. As mentioned in Section 1, with the183

model before our optimization process, we select184

the mistakes generated by this model itself to be185

the negative samples. Then through the Contrastive186

Probability Optimization objective, we maximize187

the prediction probability of the model for correct188

answers and minimize the prediction probability189

of the model for negative samples. In this error- 190

driven way, the original prediction probability of 191

the model is refined, improving the performance of 192

the model on the CSC task. Therefore, the model 193

will grow and progress after making mistakes again 194

and again, just as humans do. Note that the pro- 195

posed ECOPO is a model-agnostic framework, we 196

can choose different PLMs or CSC models to be 197

optimized in practice for better performance. 198

3.1 Observation and Intuition 199

To present our approach more clearly, we will 200

firstly describe our observation, then we will give 201

our explanation of the observation and intuition. 202

Based on our preliminary experiment of apply- 203

ing BERT to the SIGHAN13/14/15 datasets, we 204

notice that out of the total 491 wrong correction 205

samples, 383 (78%) samples fail due to BERT pre- 206

dicting common but improper characters. Note that 207

if a character co-occurs with the character before 208

or after the error position more than 1000 times 209

in wiki2019zh2, we regard it as a common charac- 210

ter. Therefore, the key empirical observation that 211

ECOPO builds on is that PLMs such as BERT can- 212

not focus well on the confusing characters that need 213

to be paid more attention in the CSC task, as illus- 214

trated in Figure 1. We think that this gap comes 215

mainly from the general corpus and paradigm used 216

in the pre-training process of models. Taking the 217

2The general pre-training corpus which is from Wikipedia
dump (as of February 7, 2019) and contains one million pages.
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BERT as an example, its pre-training corpus is218

mainly from the text in wikipedia, which has a very219

low proportion of contexts containing confusing220

characters, as verfied in Section 4.7. Addition-221

ally, Devlin et al. (2019) randomly choose 15%222

of tokens in the entire corpus to be masked by a223

fixed token “[MASK]” and then recover them. This224

masking-recovering strategy makes the knowledge225

acquired by PLMs in pre-training process discon-226

tinuous in the CSC task (Liu et al., 2021). Because227

the size of confusing characters will be lower in the228

15% of characters that are randomly selected.229

In fact, there also exists the same challenge when230

humans correct spelling errors. When only given231

the context of input sentence without seeing the232

misspelling, they tend to associate the common233

character rather than the confusing character with234

the context. Therefore, humans or models would235

wrongly predict common characters. Intuitively, if236

the model can be optimized with common charac-237

ters through an error-driven way, then the model238

can certainly be further enhanced, just as humans239

get progress from the mistakes they have made.240

3.2 Stage 1: Negative Samples Selection241

We define the negative samples in CSC as those242

common characters that will be incorrectly as-243

signed high prediction probability by PLMs before244

our optimization process. According to our obser-245

vation, negative samples that can form common246

collocations with the context tend to be assigned247

higher probability than the golden confusing char-248

acter, leading the model to make wrong corrections.249

Therefore, we use a simple strategy based on the250

prediction probability to select the negative sam-251

ples which we will utilize in the next stage.252

Specifically, we use PLMs such as BERT to253

predict the original character for each input token254

based on the output of the last transformer layer.255

The prediction probability of the i-th token xi in a256

sentence X is defined as:257

p (yi = j | X) = softmax (Whi + b) [j], (1)258

where p (yi = j | X) means the conditional prob-259

ability that the i-th token xi is predicted as the260

j-th character in the vocabulary of PLMs, W ∈261

Rvocab×hidden and b ∈ Rvocab are learnable pa-262

rameters, vocab is the size of vocabulary and the263

hidden is the size of hidden state, hi ∈ Rhidden is264

hidden state output of PLMs for the i-th token xi.265

Based on the prediction probability, we can se-266

lect the negative samples according to the magni-267

tude of the probability. The negative samples set 268

Neg is selected from the candidate set T as: 269

T = {t | t ∈ V and t 6= t+}, (2) 270

271

Neg = argmax
T ′⊂T,|T ′|=K

∑
t−∈T ′

p
(
yi = t− | X

)
, (3) 272

where t− and t+ mean the negative and positive 273

samples, respectively. The negative samples t− are 274

selected from those tokens whose prediction proba- 275

bility is in the Top K of the vocabulary V , and the 276

best value of K is selected empirically. It is worthy 277

noted that the training process is supervised in the 278

CSC task, so we can regard the golden confusing 279

character as the positive sample t+. 280

3.3 Stage 2: Contrastive Probability 281

Optimization 282

After obtaining the positive/negative samples and 283

their corresponding prediction probability, we train 284

the model by Contrastive Probability Optimization 285

(CPO) objective which is defined as: 286

LCPO = − 1

N

N∑
i=1

1

K

K∑
k=1

{p
(
yi = t+ | X

)
−p
(
yi = t−k | X

)
},

(4) 287

where N is the batch size, K is the selected neg- 288

ative samples size, t−k is the k-th negative sam- 289

ple in Neg. The CPO objective aims to teach the 290

model to increase the prediction probability for pos- 291

itive sample (i.e, confusing character) and decrease 292

the prediction probability for negative samples (i.e, 293

common characters) by the maximum likelihood 294

of the difference between the original probability 295

for positive and negative samples. 296

To preserve the generalization performance of 297

the model, we can train both the existing original 298

objective LORI and the CPO objective LCPO. The 299

overall objective is defined as: 300

L = λ1LORI + λ2LCPO, (5) 301

where λ1 and λ2 are weighting factors for two ob- 302

jectives. We use CrossEntropy loss function as the 303

LORI for BERT in our experiments. 304

In practice, the training pseudocode of ECOPO 305

is shown in Appendix A. As described in Equa- 306

tion 5, we can replace the LORI with other models’ 307

training objectives, so ECOPO is model-agnostic 308

and it can be easily used in other PLMs or previous 309

CSC methods to achieve further improvement. 310
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4 Experiments311

In this section, we will introduce the details of312

experiments and main results we obtained firstly.313

Then we will conduct detailed analysis and discus-314

sion to verify the effectiveness of our method.315

4.1 Datasets316

Training data. We conduct extensive experiments317

to investigate the effectiveness of our proposed318

ECOPO. Following most previous works (Zhang319

et al., 2020; Cheng et al., 2020; Liu et al., 2021;320

Xu et al., 2021), we use the same training data321

as them, including the training samples from322

SIGHAN13 (Wu et al., 2013b), SIGHAN14 (Yu323

et al., 2014), SIGHAN15 (Tseng et al., 2015) and324

the pseudo training samples (size of 271K, we de-325

note this part of training samples as Wang271K in326

our paper) automatically generated by OCR-based327

and ASR-based methods (Wang et al., 2018).328

Test data. In order to ensure the fairness of the329

experiments, we use the exact same test data as330

the baseline methods, from the test datasets of331

SIGHAN13, SIGHAN14 and SIGHAN15. Noted332

that the text of original SIGHAN datasets is in333

the Traditional Chinese, we pre-process these orig-334

inal datasets to the Simplified Chinese using the335

OpenCC3. This data conversion procedure has been336

widely used in previous works (Wang et al., 2019;337

Cheng et al., 2020; Zhang et al., 2020). The de-338

tailed statistic of the training/test data we use in our339

experiments is presented in Appendix B.340

4.2 Baseline Methods341

To evaluate the performance of ECOPO better, we342

select several advanced strong baseline methods:343

• BERT (Devlin et al., 2019): The BERT is344

directly fine-tuned on the training data.345

• Hybrid (Wang et al., 2018): It casts CSC into346

a sequence labeling problem and implements347

a supervised model, i.e., BiLSTM trained on348

an automatically generated dataset.349

• FASpell (Hong et al., 2019): This model con-350

sists of a denoising autoencoder (DAE) and a351

decoder, where the DAE curtails the number352

of candidate characters.353

• Soft-Masked BERT (Zhang et al., 2020): A354

neural architecture consists of a detection net-355

3https://github.com/BYVoid/OpenCC

work and a correction network, where the de- 356

tection network can help the correction net- 357

work to learn the right context. 358

• SpellGCN (Cheng et al., 2020): An end-to- 359

end model to integrate the confusion set to the 360

correction model through GCNs. 361

• REALISE (Xu et al., 2021): A multimodal 362

model which captures and mixes the semantic, 363

phonetic and graphic information to improve 364

the performance of CSC. It is the current state- 365

of-the-art method on SIGHAN13/14 datasets. 366

• PLOME (Liu et al., 2021): The task-specific 367

pre-trained masked language model which 368

jointly learns how to understand language and 369

correct spell errors. It is the current state-of- 370

the-art method on SIGHAN15 dataset. 371

4.3 Evaluation Metrics 372

In terms of evaluation granularity, there are two 373

levels of metrics, namely character/sentence-level. 374

Obviously, the sentence-level metric is stricter than 375

the character-level metric because there may be 376

multiple wrong characters in a sentence. One sen- 377

tence sample is considered to be correct only when 378

all the wrong characters in it are detected and 379

corrected successfully. Therefore, we report the 380

sentence-level metrics for evaluation, which are 381

widely used in previous works (Li et al., 2021; 382

Huang et al., 2021; Xu et al., 2021). 383

Specifically, the metrics we report include Accu- 384

racy, Precision, Recall and F1 score for detection 385

and correction levels. At the detection level, all 386

locations of wrong characters in a sentence should 387

be identical successfully. At the correction level, 388

the model must not only detect but also correct all 389

the erroneous characters with the gold standard. 390

4.4 Experimental Setup 391

All the source code of our experiments is imple- 392

mented using Pytorch (Paszke et al., 2019) based on 393

the Huggingface’s implementation of Transformer 394

library4 (Wolf et al., 2020). The architecture of 395

the BERT encoder we use in the related models 396

is same as the BERTBASE model, which has 12 397

transformers layers with 12 attention heads and its 398

hidden state size is 768. We initialize the BERT 399

encoder with the weights of Chinese BERT-wwm 400

model (Cui et al., 2020). We train ECOPO with the 401

4https://github.com/huggingface/transformers
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Dataset Method Detection Level Correction Level
Acc Pre Rec F1 Acc Pre Rec F1

SIGHAN13

Hybrid (Wang et al., 2018) - 54.0 69.3 60.7 - - - 52.1
FASpell (Hong et al., 2019) 63.1 76.2 63.2 69.1 60.5 73.1 60.5 66.2
SpellGCN (Cheng et al., 2020) - 80.1 74.4 77.2 - 78.3 72.7 75.4

BERT (Devlin et al., 2019) 77.0 85.0 77.0 80.8 77.4 83.0 75.2 78.9
ECOPO (BERT) 81.7↑ 87.2↑ 81.7↑ 84.4↑ 80.7↑ 86.1↑ 80.6↑ 83.3↑

REALISE (Xu et al., 2021) 82.1 87.2 82.0 84.5 80.7 85.7 80.5 83.0
ECOPO (REALISE) 82.8↑ 88.6↑ 82.7↑ 85.6↑ 81.4↑ 87.1↑ 81.3↑ 84.1↑

SIGHAN14

Hybrid (Wang et al., 2018) - 51.9 66.2 58.2 - - - 56.1
FASpell (Hong et al., 2019) 70.0 61.0 53.5 57.0 69.3 59.4 52.0 55.4
SpellGCN (Cheng et al., 2020) - 65.1 69.5 67.2 - 63.1 67.2 65.3

BERT (Devlin et al., 2019) 75.3 63.4 68.8 66.0 74.2 61.2 66.5 63.8
ECOPO (BERT) 76.7↑ 65.8↑ 69.0↑ 67.4↑ 75.7↑ 63.7↑ 66.9↑ 65.3↑

REALISE (Xu et al., 2021) 78.3 67.2 71.5 69.3 77.3 65.2 69.4 67.2
ECOPO (REALISE) 78.9↑ 68.2↑ 72.1↑ 70.1↑ 78.0↑ 66.4↑ 70.2↑ 68.2↑

SIGHAN15

Hybrid (Wang et al., 2018) - 56.6 69.4 62.3 - - - 57.1
FASpell (Hong et al., 2019) 74.2 67.6 60.0 63.5 73.7 66.6 59.1 62.6
SpellGCN (Cheng et al., 2020) - 74.8 80.7 77.7 - 72.1 77.7 75.9
PLOME (Liu et al., 2021) - 77.4 81.5 79.4 - 75.3 79.3 77.2

Soft-Masked BERT (Zhang et al., 2020) 79.7 69.8 73.4 71.6 76.9 64.4 67.7 66.0
ECOPO (Soft-Masked BERT) 81.2↑ 70.9↑ 76.6↑ 73.6↑ 79.1↑ 67.0↑ 72.3↑ 69.6↑

BERT (Devlin et al., 2019) 82.4 74.2 78.0 76.1 81.0 71.6 75.3 73.4
ECOPO (BERT) 85.5↑ 79.0↑ 81.3↑ 80.2↑ 84.4↑ 76.8↑ 79.1↑ 78.0↑

REALISE (Xu et al., 2021) 84.1 76.3 80.8 78.5 83.5 75.0 79.5 77.2
ECOPO (REALISE) 84.8↑ 76.6↑ 81.5↑ 79.0↑ 84.3↑ 75.5↑ 80.4↑ 77.9↑

Table 1: The performance of ECOPO and all baseline methods. Note that all baseline results are directly from
other published paper, except for the results of Soft-Masked BERT and REALISE which are from our own re-
implementation experiments. ECOPO (model-X) means that we perform ECOPO framework on model-X. We
underline the previous state-of-the-art performance for convenient comparison. “↑” indicates that the correspond-
ing baseline method receives a further performance improvement after optimization by ECOPO.

AdamW (Loshchilov and Hutter, 2018) optimizer402

for 10 epochs. The training batch size N is set to403

64 and the evaluation batch size is set to 50. The404

negative samples size K is set to 5 by default. The405

weighting factors λ1, λ2 are both set to 1. The406

initial learning rate is set to 5e-5. We set the maxi-407

mum sentence length to 128. The model is trained408

with learning rate warming up and linear decay.409

It is worthy noted that the annotation quality410

of SIGHAN13 test dataset is relatively poor. As411

we have observed and mentioned in (Cheng et al.,412

2020; Xu et al., 2021), quite lots of the mixed usage413

of auxiliary (such as “的”, “地”, and “得”) don’t414

have correct annotations. Therefore, the evaluation415

metrics we use may not accurately reflect the real416

model performance on SIGHAN13. To alleviate417

this problem, there are two main solutions in previ-418

ous works. Cheng et al. (2020) propose to continue419

fine-tuning well-trained models on the SIGHAN13420

training dataset before testing, which we think will421

suffer from the over-fitting problem. Therefore, we422

follow the post-processing method proposed in (Xu 423

et al., 2021) and don’t consider all the detected and 424

corrected mixed auxiliary. This approach does not 425

compromise the fairness of the evaluation process 426

and can better reflect the model performance. 427

4.5 Experimental Results 428

From Table 1, we can observe that: 429

1. The ECOPO (BERT) performs better than 430

BERT on all test sets. At the correction level, 431

ECOPO (BERT) exceeds BERT by 4.4% F1 432

on SIGHAN13, 1.5% F1 on SIGHAN14, 433

and 4.6% F1 on SIGHAN15. Specifically, 434

ECOPO (BERT) achieves significant improve- 435

ments on SIGHAN13/SIGHAN15, and out- 436

performs the previous state-of-the-art models 437

with a very thin model, while REALISE and 438

PLOME are two complex models with some 439

auxiliary modules. Note that ECOPO (BERT) 440

only consists of a BERT encoder. 441
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BERT ECOPO (BERT)

Confusing

Common

Samples

Confusing

Common

Samples

Figure 3: Heat map visualization of probability. The darker the blue, the higher the model’s prediction probability
for a particular character (vertical axis) given the input of samples containing misspelled characters (horizontal
axis). The selected samples are from SIGHAN15, and the original BERT would make wrong corrections for them.

2. From the results on the SIGHAN14 test set,442

we can see that the performance improvement443

of ECOPO (BERT) based on BERT is not444

as large as on the other two test sets, but445

still effective. Additionally, due to the model-446

agnostic advantage of ECOPO, it can be sim-447

ply combined with not only BERT but also448

other previous state-of-the-art models such as449

REALISE and get further enhancement to ob-450

tain better results, which are presented in the451

rows of REALISE and ECOPO (REALISE).452

3. Considering the impact of external knowledge,453

several previous works exploit various addi-454

tional information to improve performance.455

For example, FASpell and SpellGCN intro-456

duce character similarity to CSC, REALISE457

and PLOME propose to leverage multimodal458

knowledge such as phonetic and graphic infor-459

mation. Unlike the aforementioned models,460

ECOPO (BERT) achieves competitive perfor-461

mance without any additional knowledge and462

optimizing only based on the mistakes that the463

original BERT itself has made.464

4. To verify the expandability of ECOPO, we465

choose two other existing models including466

Soft-Masked BERT and REALISE to be op-467

timized. Practically, we train the combined468

model with the joint objective, as described469

in Equation 5. From the results of Table 1,470

we can see that ECOPO’s improvement is sta-471

ble and significant over the three models. In472

summary, comparison results of the three mod-473

els demonstrate the effectiveness and model-474

agnostic characteristic of our method.475

4.6 Analysis and Discussion 476

4.6.1 Visualization of Common/Confusing 477

Character Probability 478

The key objective of ECOPO is to optimize the 479

prediction probability of the PLMs for two differ- 480

ent kinds of characters, i.e., common characters 481

which original PLMs would be more inclined and 482

confusing characters which CSC task should pay 483

more attention to. Therefore, we visualize the prob- 484

ability optimization effect of ECOPO in this part 485

of experiment. Specifically, we ask BERT and 486

ECOPO (BERT) to predict the character which 487

should appear at the position of the misspelled 488

character based on its context. We select the Top-5 489

characters co-occurring with the context of the mis- 490

spelled character as the common characters, and 5 491

confusing characters from the widely used confu- 492

sion set (Wu et al., 2013b). Note that we ensure 493

that the common and confusing characters selected 494

are not duplicated, and the golden confusing char- 495

acter must be in the selected 5 confusing charac- 496

ters. Then we visualize the prediction probability 497

of common/confusing characters as a heat map. 498

Figure 3 shows the prediction probability distri- 499

butions of BERT and ECOPO (BERT) for the com- 500

mon/confusing characters. By comparison, we can 501

see that BERT would assign higher probability to 502

common characters than confusing characters, and 503

ECOPO (BERT) will focus more on confusing char- 504

acters which are similar to the golden confusing 505

character. This difference in BERT before and after 506

ECOPO’s optimization is consistent with our study 507

motivation and design objective, we can see that 508

ECOPO does refine the knowledge representation 509
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表格 1

K Acc Pre Rec F1

BERT 82.4 74.2 78.0 76.1

K = 1 83.9 76.1 80.6 78.3

K = 3 84.5 77.0 81.1 79.0

K = 5 85.5 79.0 81.3 80.2

K = 7 84.9 78.9 81.4 80.1

K = 10 84.6 77.4 81.5 79.4

70.0

75.0

80.0

85.0

90.0

BERT K = 1 K = 3 K = 5 K = 7 K = 10

Acc Pre Rec F1

79.4
80.180.2

79.0
78.3

76.1

81.581.481.381.180.6

78.0
77.4

78.979.0

77.0
76.1

74.2

84.684.9
85.5

84.5
83.9

82.4

84.684.9
85.5

84.5
83.9

82.4

(a) Detection Performance

表格 1

K Acc Pre Rec F1

BERT 81.0 71.6 75.3 73.4

K = 1 83.1 74.7 78.4 76.5

K = 3 83.5 75.1 79.1 77.0

K = 5 84.4 76.8 79.1 78.0

K = 7 84.0 76.0 79.3 77.6

K = 10 83.6 75.4 79.5 77.4

70.0

75.0

80.0

85.0

90.0

BERT K = 1 K = 3 K = 5 K = 7 K = 10

Acc Pre Rec F1

77.477.678.0
77.076.5

73.4

79.579.379.179.1
78.4

75.3 75.4
76.0

76.8

75.174.7

71.6

83.684.084.4
83.583.1

81.0

83.684.084.4
83.583.1

81.0

(b) Correction Performance

Figure 4: The results on SIGHAN15 test set, using dif-
ferent values of K in Equation 3 in ECOPO (BERT).

and prediction probability of BERT for different510

characters. After ECOPO’s optimization, BERT is511

able to assign higher probability to the confusing512

characters that should receive more attention, thus513

improving its performance on CSC.514

4.6.2 Effects of Negative Samples Size515

As different amounts of negative samples can affect516

ECOPO’s performance, it is essential to study the517

impact of negative samples size K in Equation 3.518

Figure 4 illustrates the performance change from519

the perspective of detection and correction. We find520

that the Recall performance of the model exhibits521

incremental increases when more negative samples522

are used in the optimization process. This phe-523

nomenon is intuitive, as introducing more negative524

samples allows the model to focus on more possi-525

bilities. Besides, when the value ofK reaches a cer-526

tain value (e.g., K > 5), the overall performance527

of the model (F1 score) does not improve anymore.528

This is because ECOPO optimizes the model based529

on the probability representation, when the value530

of K becomes very large, the predicted probability531

of samples becomes so small that they have almost532

no effect on the probability optimization of the pos-533

itive sample. Therefore, choosing an appropriate534

K value is critical to the performance improve-535

ment of ECOPO, although ECOPO has significant 536

improvement based on BERT at all values of K. 537

4.7 Case Study for Probability Optimization 538

Input: 与其自暴自气 (弃)不如往好处想。
It’s better to think for the good than to
be angry (give up).

BERT: [己(own),大(big),利(benefit)]
ECOPO: [弃(give up),尊(respect),强(strong)]

Input: 我努力打败数不进 (尽)的风雨。
I try to beat the enter (endless) storms.

BERT: [起(raise),上(up),得(get)]
ECOPO: [尽(endless),得(get),完(end)]

Table 2: Examples of spelling errors and corre-
sponding output (Top 3 candidates) of original BERT
and ECOPO (BERT). We mark the input confus-
ing/golden confusing/wrong correction characters in
red/blue/orange.

Table 2 shows the comparisons between the cor- 539

rection results of BERT and ECOPO (BERT). In 540

the first examples, the output of BERT such as “己”, 541

“大” and “利” all can form a correct Chinese phrase 542

with “自”, but they cause a semantic incoherence 543

for the whole sentence. The statistics of the gen- 544

eral pre-training corpus wiki2019zh show that “自 545

己” co-occurs 136318 times and “自弃” co-occurs 546

119 times, which verifies the intuition about com- 547

mon/confusing characters described in Section 3.1. 548

In the second example as well, the output of BERT 549

can be formed with “数不” as reasonable phrases. 550

From the two examples, we can see that ECOPO 551

does guide the BERT to accurately predict the ideal 552

confusing characters by the highest probability and 553

make the right corrections. Such experimental re- 554

sults are in line with our work’s core motivation. 555

5 Conclusion 556

In this paper, we introduce to promote the CSC 557

task by narrowing the gap between the knowledge 558

of PLMs and the goal of CSC. We propose the 559

ECOPO, a simple yet effective training framework 560

that aims to perform an error-driven optimization 561

for the PLMs based on their original probability 562

representation. Extensive experiments and empir- 563

ical results show the competitive performance of 564

our method. In the future, we will study how to 565

automatically measure the quality of negative sam- 566

ples to further enhance our method. Additionally, 567

applying our core idea and motivation to kinds of 568

other tasks will be an interesting direction. 569
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# vocab_prob : the prediction probability for all characters in vocabulary 
# pos_idx     : the index of positive sample (golden character) in vocabulary 
# K            : the selected negative samples amount 
 
# Negative Samples Selection 
pos_prob = vocab_prob[pos_idx] 
neg_prob = torch.topk(vocab_prob, K)[0] 
neg_idx = torch.topk(vocab_prob, K)[1].tolist() 
 
# Contrastive Probability Optimization Objective 
loss_list = [] 
for x in range(0, K): 
    if neg_idx[x] != pos_idx: 
        loss_list.append(pos_prob - neg_prob[x]) 
loss = - torch.stack(loss_list).mean() 
 

Figure 5: Pseudo-code of our practical implementation.

A Pseudo-code of ECOPO790

Figure 5 shows the Pytorch-style pseudo-code for791

the ECOPO. As described in Section 3, our pro-792

posed ECOPO consists of two stages, namely Nega-793

tive Samples Selection and Contrastive Probability794

Optimization. It is worthy noting that in the pseudo-795

code, we only show the process of calculating the796

loss of one training sample.797

B Datasets Details798

Table 3 shows the detailed statistics of our used799

datasets. We report the number of sentences in800

the datasets (#Sent), the average sentence length801

of the datasets (Avg.Length), and the number of802

misspellings the datasets contains (#Errors).803

Training Data #Sent Avg. Length #Errors
SIGHAN13 700 41.8 343
SIGHAN14 3,437 49.6 5,122
SIGHAN15 2,338 31.3 3,037
Wang271K 271,329 42.6 381,962
Total 277,804 42.6 390464
Test Data #Sent Avg. Length #Errors
SIGHAN13 1,000 74.3 1,224
SIGHAN14 1,062 50.0 771
SIGHAN15 1,100 30.6 703
Total 3,162 50.9 2,698

Table 3: Statistics of the datasets that we use in exper-
iments. All the training data are merged to train the
models in our experiments. The test sets are used sepa-
rately to evaluate performance.
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