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ABSTRACT

Self-play alignment has emerged as an effective approach for fine-tuning large lan-
guage models (LLMs), formulating preference optimization as a two-player game.
However, the regularization with respect to the reference policy, which is crucial
for mitigating over-optimization, has been insufficiently investigated in self-play
alignment. To study the impact of different regularization strategies, we propose
Regularized Self-Play Policy Optimization (RSPO), a novel framework that
unifies prior methods and enables simple plug-and-play regularizers, meanwhile
preserving convergence to Nash equilibrium of the corresponding regularized game.
We observe that RSPO with appropriate regularizers can substantially improve the
length-controlled win rate (LCWR) on AlpacaEval-2 across a range of base models,
while also achieving consistently superior performance on Arena-Hard, MT-Bench,
ArmoRM, and response diversity. In particular, RSPO improves unregularized
self-play baseline (SPPO) on AlpacaEval-2 LCWR from 28.5% to 35.4% with base
model Mistral-7B, from 38.77% to 43.66% with LLaMA-8B, and from 50.54% to
51.83% with Gemma-2B. Combining simplicity, convergence guarantees, and sig-
nificant empirical gains, RSPO offers a strong foundation for exploring regularized
self-play in language model alignment.

1 INTRODUCTION

Self-play is a line of work conducting iterative self-competition of models, which has been demon-
strated as an effective approach for improving AI systems (Goodfellow et al., 2020; Wang et al., 2022),
particularly in strategic decision-making problems (Silver et al., 2016; Heinrich & Silver, 2016; Pinto
et al., 2017; Brown & Sandholm, 2018). In the human alignment of LLMs, self-play recently started
to be used and has shown superior empirical performance than other iterative Reinforcement Learning
from Human Feedback (RLHF) methods on popular benchmarks (Dubois et al., 2024; Jiang et al.,
2024; Wu et al., 2024; Rosset et al., 2024). By formulating the preference optimization problem as a
two-player game, self-play alignment methods seek to identify a Nash Equilibrium (NE) of the game
in which utility is determined by a general preference model (Azar et al., 2024; Munos et al., 2023;
Calandriello et al., 2024). This NE is regarded as the most aligned LLM policy achieved without
Bradley-Terry (BT) reward modeling (David, 1963), which has shown under-performance compared
to general preference modeling (Ye et al., 2024).

Despite the significant empirical improvements achieved through self-play, the impact of regu-
larization to the reference policy—commonly used in RLHF to mitigate over-optimization—has
received insufficient investigation in self-play alignment. Most existing self-play methods completely
lack explicit regularization (Wu et al., 2024; Rosset et al., 2024; Swamy et al., 2024; Wang et al.,
2024b; Gao et al., 2024). In practice, unregularized self-play is also susceptible to over-optimization,
particularly when the preference model is inaccurate or misspecified. Although a few recent self-play
approaches like Nash-MD (Munos et al., 2023) incorporate reverse KL divergence as a regularization
penalty (Calandriello et al., 2024; Wang et al., 2024b; Zhang et al., 2024b), it remains unclear
whether reverse KL is optimal for alignment, and the broader impact of alternative regularization
strategies in self-play remains insufficiently explored. Moreover, the extension of current approaches
to general forms of regularization is challenging, as their training protocols are intrinsically reliant
on the reverse KL divergence for regularization Munos et al. (2023) (see Figure 1).
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Figure 1: RSPO is flexible for general regularization. The estimation of Nash-MD policy update
direction ∂πP(π ≻ πµt ) requires samples from geometric mixture policy πµt . Such update approach
is only compatible with reverse KL divergence for regularization.

In this work, we introduce a novel framework to flexibly incorporate diverse regularization methods
into self-play alignment, termed Regularized Self-Play Policy Optimization (RSPO):

• RSPO offers a simple way to apply general regularization strategies in self-play by directly adding
the regularization term to our proposed unified self-play loss function, while maintaining last-
iterate convergence to NE of the corresponding regularized preference optimization game. Unlike
Nash-MD, which requires a specialized sampling process limited to Reverse-KL regularization, our
method follows the standard sampling procedure in RLHF, making it both simpler and more general.

• RSPO with tuned regularizers demonstrates substantial improvements over the unregularized self-
play alignment method (SPPO (Wu et al., 2024)). In particular, it increases the length-controlled
win rate on AlpacaEval-2.0 from 28.5% to 35.4% with Mistral-7B, from 38.77% to 43.66% with
LLaMA-8B, and from 50.54% to 51.83% with Gemma-2B. RSPO also achieves consistently
superior performance on other benchmarks, including Arena-Hard-v0.1, MT-Bench, self-BLEU
diversity (Zhu et al., 2018), and ArmoRM across multiple reward dimensions such as instruction
following, truthfulness, honesty, and helpfulness.

• Empirical analysis reveals distinct effects of different regularizations. On both Mistral-7B-Instrct
and LLaMA-8B-Instruct stronger forward KL regularization reduces the response length, whereas
reverse KL regularization significantly improves the raw win rate. Mistral-7B-Instrct with
combined forward and reverse KL regularization achieves the most improvement. In addition,
RSPO also demonstrate parameter-efficiency when comparing with SPPO trained with stronger
preference model, indicating the comprehensive effectiveness of our method in self-play alignment.

2 PRELIMINARIES

We denote a prompt as x, a response as y, and a LLM policy as π(y|x), where π(·|x) ∈ ∆Y . We
denote the set of all prompts as X , and the set of all responses as Y = {y0, y1, · · · }. We use ∆Y
to denote the probability simplex over the responses given a specific prompt. We parametrize the
LLM policy π as πθ. The reference policy is an LLM denoted as µ ∈ ∆X

Y . For notational brevity, we
remove the dependence of policy π and loss functions on the prompt x throughout the paper.

2.1 GAME-THEORETIC PREFERENCE OPTIMIZATION

We study the preference optimization problem in an online setting by formulating it as a two-player
max-min game, as studied in previous self-play works (Wu et al., 2024). The players are two LLMs
whose strategies are LLM policies, denoted as max-player π and min-player π′. The utility of the
max-player is expressed as the preference of itself over the min-player:

u(π;π′) = P(π ≻ π′)
def
= Ey∼π,y′∼π′ [P(y ≻ y′)], (1)

where u : ∆X
Y ×∆X

Y → R is linear in π and π′; P : X × Y × Y → [0, 1] is a general preference
model that quantifies the preference of y over y′ given a prompt. We extend the notation P(y ≻
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π′) = Ey′∼π′ [P(y ≻ y′)]. The objective is finding a NE policy π∗ of the preference model:

(π∗, π∗) = argmax
π

min
π′

P(π ≻ π′). (2)

Therefore, an NE strategy π∗ is an LLM that can generate the most preferred responses in expectation,
thus achieving human alignment based on the preference model. Most existing self-play alignment
methods aim to solve this NE following Algorithm 1 (Wu et al., 2024; Rosset et al., 2024; Swamy
et al., 2024; Wang et al., 2024b).

2.2 PREFERENCE OPTIMIZATION VIA MULTIPLICATIVE WEIGHTS UPDATE

An effective self-play method to solve the preference optimization game in Equation (2) is Self-Play
Policy Optimization (SPPO) (Wu et al., 2024). SPPO derives its loss function from the iterative
no-regret learning algorithm, Multiplicative Weights Update (MWU) (Freund & Schapire, 1997).
Specifically in a game setting, denote learning rate as η, and normalization constant Z(πt). In any
iteration t, the policy update ∀y ∈ Y is πt+1(y) = πt(y) · exp

(
ηEy′∼πt [u(y; y

′)]
)
/Z(πt), where

u(y; y′) is the utility function defined in Equation equation 1, with y treated as a pure strategy.

The practical loss function of SPPO for policy update is then derived according to MWU:

LSPPO(θ) = Ey∼πt

[
log

πθ(y)

πt(y)
−
(
ηP(y ≻ πt)− logZ(πt)

)]2
. (3)

SPPO converges to the NE of the preference optimization game in Equation (2). However, after
running multiple iterations, the deviation of the policy πθ from µ can be large. Such deviation
is particularly problematic when the preference model is only accurate at evaluating responses
sampled from the reference policy (Munos et al., 2023). Furthermore, in aligning LLMs in practice,
the preference model is typically a surrogate P̂, such as PairRM (Jiang et al., 2023b), which may
be misspecified at some out-of-distribution responses and inaccurate due to estimation error or
limited model expressiveness (PairRM is only a 0.4B model), causing over-optimization problem.
Regularizing the policy optimization to a reference SFT model, which is typically trained on
high-quality data (Ouyang et al., 2022), can mitigate the problem. We provide a synthetic example
in Appendix D.1 to demonstrate this problem.

2.3 REGULARIZED PREFERENCE OPTIMIZATION GAME WITH REFERENCE POLICY

To address the regularization in self-play, we adopt the objective in Nash Learning from Human
Feedback (Munos et al., 2023), and extend the KL divergence regularization to a general regulariza-
tion function, to penalize the deviation from the reference policy. We define a convex regularization
function R : ∆X

Y × ∆X
Y → (−∞,∞), where R(π, µ) measures the distance between π and the

reference model µ, such as KL divergence DKL(π∥µ). Denote regularization temperature as τ , the
objective becomes to optimize a regularized preference model by solving the NE (π∗, π∗) of the
regularized game, where the utility of max player is still u(π;π′) = P(π ≻ π′):

argmax
π

min
π′

P(π ≻ π′)− τR(π, µ) + τR(π′, µ). (4)

We provide proof of the existence and uniqueness of this NE in Appendix A.1. A few recent methods
leverage Mirror Descent (MD), which is also in a self-play manner, to find a regularized NE in
Equation (4) with last-iterate policy (Munos et al., 2023; Calandriello et al., 2024; Zhang et al., 2024b).

However, these MD-based methods are only compatible with the reverse KL divergence regularizer,
and are non-trivial to extend to general divergence. For instance, Nash-MD1 addresses the reverse
KL regularization of π and µ requiring responses generated from a geometric mixture policy
πµt (y) ∝ πt(y)

1−ητµ(y)ητ (Munos et al., 2023), which is inherently compatible only with reverse
KL divergence:

πt+1 = argmin
π

−ηEπ[∇πu(πt;π
µ
t )] +DKL(π∥πµt ). (5)

Therefore, while the LLMs optimized via existing self-play methods exhibit empirical improvement,
they all have limited regularization of π and µ. The potential benefits of alternative regularization,
such as adopting other f -divergences than reverse KL, remain unexplored.

1Throughout the paper, regularization specifically refers to the deviation of π from µ, rather than from πt.
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3 REGULARIZED SELF-PLAY POLICY OPTIMIZATION

We propose a framework for regularized self-play alignment, namely Regularized Self-Play Policy
Optimization (RSPO). RSPO is simple and flexible for regularization, and provably convergent
to Nash Equilibrium. The loss function of RSPO LRSPO is defined as the sum of a mean-squared
self-play loss and a weighted regularization term:

LRSPO(θ;G,B,R)
def
= Ey∼πt

[
log

πθ(y)

πt(y)
− η
(
G(y, πt, µ)−B(πt, µ)

)]2
+λR(πθ, µ) , (6)

where G(y, πt, µ), B(πt, µ), and R(πθ, µ) are configurable components. First, G : Y × ∆X
Y ×

∆X
Y → (−∞,∞) defines the update direction of πθ, which can be set as the gradient of a utility

function to guide the policy update towards increasing the utility. Second, the baseline function
B : ∆X

Y ×∆X
Y → (−∞,∞) is for variance-reduction of G, similar to the baseline in REINFORCE

(Williams, 1992). Lastly, R : ∆X
Y ×∆X

Y → R is the regularization function. The coefficient λ is the
regularization temperature. The first Mean Square Error term in Equation (6) can be interpreted as a
self-play loss of conducting exponentiated gradient descent (Beck & Teboulle, 2003).

RSPO is a modular framework offering a simple way to introduce regularization into self-play
alignment with only an additional term in the loss. RSPO offers the simplicity and flexibility to
incorporate various regularization methods into self-play-based preference optimization methods.
Additionally, we show in Section 3.1 that RSPO can generalize existing unregularized self-play
methods without external regularization R. Thus, regularizing existing methods requires no change
to their original loss functions or hyperparameters, but simply adding an external plug-and-play
regularization to their loss function and tuning the temperature λ.

In practice, we set baseline function B = 1
2 following Nash-MD and SPPO, and the update direction

G to be the gradient of the preference against πt, ∀y ∈ Y:
G(y, πt, µ) = ∂π(y)P(π ≻ πt) = P(y ≻ πt). (7)

We execute Algorithm 1 by applying the following RSPO loss with any regularization R of interests:
LRSPO

(
θ;G = P(y ≻ πt), B = 1

2 , R
)
. (8)

In theory, B helps minimize the variance of G the most when B = Ey∼πt
[G(y, πt, µ)]. But in

preference optimization, due to the typically small minibatch size, the estimation error of the mean of
G could be large, leading to additional estimation error of the loss. Thus, we also set the baseline
value for variance reduction to be a constant 1

2 , the mean value of G when the algorithm converged.
For the implementation of various divergence-based regularization, refer to Appendix C.3.

In the following sections, we first illustrate the generalizable formulation of RSPO, so that it can
be implemented without modifying the existing self-play component. We then establish theoretical
convergence guarantees for RSPO grounded in Mirror Descent theory.

3.1 GENERALIZING EXISTING SELF-PLAY METHODS

In this section, we show how RSPO generalize existing self-play methods, which showcase (1)
implementing RSPO requires only one additional term to existing self-play loss functions; (2) the
limitation of existing regularized methods. First, the unregularized self-play method SPPO (Wu et al.,
2024) has a loss function defined in Equation (3) equivalent to RSPO without external regularization:

LSPPO(θ) = LRSPO

(
θ;G = P(y ≻ πt), B =

1

2
, R = 0

)
. (9)

According to Equation (8) and Equation (9), LRSPO = LSPPO + λR(πθ, µ), i.e. the implementation of
RSPO is equivalent to directly add the regularization R to the loss function of SPPO (Equation (3)).
This implies that the additional regularization term becomes plug-and-play, requiring minimal changes
to existing training pipeline.

In addition, existing regularized methods can be generalized by LRSPO (derivations in Appendix A.2):

∇θLNash-MD(θ) =∇θLRSPO
(
θ;G = P(y ≻ πµt ), B =

1

2
, R = DKL(πθ∥µ)

)
(10)

=∇θLRSPO

(
θ;G = P(y ≻ πµt )− τ log

πt(y)

µ(y)
, B =

1

2
, R = 0

)
. (11)
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Equation (10) verifies our summarization shown in Figure 1. The convergence guarantee of Nash-MD
(Munos et al., 2023, Lemma 2) requires the policy updated with Equation (5), which is specifically
designed for reverse KL regularization, as other R can not be merged with DKL(π∥µ) to a regulariza-
tion w.r.t. geometric mixture πµt . Additionally, Equation (11) demonstrates that RSPO enables to
even add extra regularization to existing regularized self-play methods.

3.2 THEORETICAL GUARANTEES

In this section, we examine the theoretical properties of RSPO, with a particular emphasis on its
convergence guarantee. We adopt Mirror Descent (MD) as the foundational framework, given its
well-established last-iterate convergence to the NE.

We build upon Magnetic Mirror Descent (MMD) (Sokota et al., 2022), a specialized variant of MD
that guarantees convergence to a reverse-KL-regularized NE. To generalize beyond reverse-KL regu-
larization, we introduce Generalized Magnetic Mirror Descent (GMMD), which can accommodate
a broader class of regularization techniques. By demonstrating that optimizing the RSPO loss is
equivalent to performing reinforcement learning (RL) within the GMMD framework, we establish a
formal connection between RSPO and GMMD. This connection ensures the last-iterate convergence
of RSPO to the NE of the corresponding regularized game.

Tabular GMMD. Denote the utility function of the game as U , define G as the element of the vector
of partial derivatives of U w.r.t. policy:

G(y;π′)
def
= ∂π(y)U(π;π′), ∂πU(π;π′) = (G(y0;π′), · · · , G(y|Y|;π′))⊤ ∈ R|Y| (12)

Then in iteration t, GMMD updates policy as
πt+1 = argmin

π
−ηEπ[G(y;πt)] +Bψ(π;πt) + τR(π, µ), (13)

where τ is regularization temperature, R is a general regularization function, serving as a “magnet”
to attract π to µ during policy updating. Bψ is the Bregman Divergence generated by a convex
potential function ψ (Bregman, 1967).

Notably, the vanilla Magnetic Mirror Descent limits R to be the same regularization method of
π and πt, i.e., R = Bψ (Sokota et al., 2022, Section 3.2); whereas in this paper we aim at a
general regularizer of π and µ, which could be different from Bψ, and study the effects of different
regularization methods.
Proposition 3.1 (Last-iterate Convergence). If R(·, µ) is 1-strongly convex relative to ψ, η ≤ τ ,
and U is linear, then policy updated by GMMD in Equation (13) has last-iterate convergence to the
following regularized NE maxπminπ′ U(π;π′)− τR(π, µ) + τR(π′, µ).

Proposition 3.1 is a direct application of Theorem 3.4 by Sokota et al. (2022), which guarantees the
last-iterate convergence of GMMD to the NE of a regularized game (Proof in Appendix A.3).

Deep RL Implementation of GMMD. To adapt GMMD to preference optimization problems, RL
techniques are commonly employed as practical implementations, as for many MD update (Tomar
et al., 2020; Munos et al., 2023; Wang et al., 2024b). Define the loss function of conducting GMMD
in preference optimization as

LGMMD(θ)
def
= −ηEπθ

[
G(y;πt)

]
+DKL(πθ||πt) + τR(πθ, µ). (14)

Here, we set the Bregman divergence to Reverse KL in preference optimization as in previous works
(Munos et al., 2023; Zhang et al., 2024b). The gradient estimation of LGMMD(θ) for policy updates is
required since the expectation in the first term is dependent on πθ. Following Policy Gradient (PG)
theorem (Sutton et al., 1999), the PG of GMMD is equal to ∇θLRSPO(θ) up to multiplying a constant:

∇θLGMMD(θ) = Ey∼πθ

[
∇θ log πθ(y)

(
− ηG(y;πt) + log

πθ(y)

πt(y)
+B

)]
+ τ∇θR(πθ, µ), (15)

where B is a baseline function to reduce the variance as in REINFORCE (Williams, 1992). We
set B independent to θ so that adding B does not affect the value of Equation (14), due to
Ey∼πθ

[∇θ log πθ(y) · ηB] = ηB∇θEy∼πθ
[1] = 0.

Due to the equivalence between RSPO and GMMD, we provide the convergence guarantee for
our practical implementation of RSPO (Equation (13)), to the Nash equilibrium of the regularized
preference optimization game as follows (Proof in Appendix A.4).
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Corollary 3.2. Self-play following Algorithm 1 with the RSPO loss function in Equation (8) and
regularizer R satisfying the assumption in Proposition 3.1, has last-iterate convergence to the NE of
the regularized preference optimization game, as described in Equation (4).

RSPO guarantees NE convergence while allowing flexible regularization strategies, making it a
robust extension of self-play optimization. In summary, the proposed RSPO framework provides
a generalized approach that simplifies the incorporation of regularization into existing self-play
methods while maintaining theoretical soundness.

4 EXPERIMENTS

In this section, we answer the following important questions of regularization in the self-play
alignment of Large Language Models (LLMs) by testing on various popular benchmarks:

• Q1: Does regularization improve the performance of self-play alignment (Sec. 4.1)?

• Q2: Which regularization method is the most effective in self-play alignment (Sec. 4.2)?

• Q3: What additional advantages can be obtained by regularization in self-play (Sec. 4.3)?

Experiment Setup. We evaluate our methods mainly on benchmarks AlpacaEval (Dubois et al.,
2024), Arena-Hard (Li et al., 2024), and MT-Bench (Zheng et al., 2023), and test the response
generation diversity and quality via self-BLEU (Zhu et al., 2018) and ArmoRM (Wang et al.,
2024a), respectively. We follow the experiment setup of SPPO and Snorkel-Mistral-PairRM-DPO
(Snorkel) (Tran et al., 2023) to examine our regularization methods, where Snorkel is based on
iterative DPO and has achieved strong performance on AlpacaEval. We conduct experiments on base
model Mistral-7B-Instruct-v0.2, LLaMA3-8B-Instruct, and Gemma2-2B-IT. Since iterative self-play
methods require no response data for training, we only use the prompts of the Ultrafeedback dataset
(Cui et al., 2023), whose size is ∼ 60K. Following SPPO and Snorkel, we split the prompts into three
subsets and use only one subset per iteration to prevent over-fitting. To understand the later-iterate
performance of self-play, in section 4.1, we also train on the single fold of the prompts iteratively.
We use a 0.4B response-pair-wise preference model PairRM (Jiang et al., 2023b), evaluated as
comparable to 10× larger reward/preference models (Cui et al., 2023).

Implementations and Baselines. The implementation of self-play methods follows Algorithm 1. In
each iteration, given response-pair-wise preference from PairRM and K = 5 number of response
samples from the current policy, we estimate the policies’ preference P(π ≻ πt) and regularization
via Monte-Carlo estimation to compute the loss function. We replicate SPPO with the default hyper-
parameters and extend it to 9 iterations. We implement RSPO as described in Corollary 3.2. The
implementation of regularizations in RSPO is demonstrated in Appendix C.3 using the K samples.
We report some of the baseline results from the previous papers, including SPPO, Snorkel (Mistral-
PairRM-DPO) (Tran et al., 2023), Mistral-7B (Instruct-v0.2) (Jiang et al., 2023a), iterative DPO by
Wu et al. (2024), and SimPO Meng et al. (2024). Since the SPPO paper only provides results across
3 iterations (Wu et al., 2024), we replicate SPPO as an important baseline to study the performance
across more than 3 iterations.

4.1 EFFECTIVENESS OF REGULARIZATION

In this section, we assess the effectiveness of regularization by comparing the performance of
unregularized and regularized self-play methods. We first examine the over-optimization issue
inherent in practical self-play alignment by extending the execution of SPPO to Iteration 5. As
depicted in Figure 2 (left), a decline in performance appears during the later iterations of SPPO. We
hypothesize that this behavior arises from the practical challenges associated with over-optimization.

We then present comprehensive results across three widely used benchmarks (Table 1). RSPO with
forward and reverse KL regularization, consistently outperforms the unregularized baseline (SPPO)2,
and iterative DPO in iteration 3, and the strong offline method SimPO across all benchmarks, with
a clear performance margin. These results underscore the importance of incorporating regularization

2We report our replicated testing of the published SPPO Iter3 model (link) on Arena-Hard benchmark. Thus,
it is different from the result presented in the original paper of SPPO (Wu et al., 2024).
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Figure 2: Left: Length-controlled win rate (LCWR) across iterations of: SPPO, SPPO trained on a
subset of the data: SPPO (subset), and reverse-KL regularized RSPO: RSPO (Rev. KL). SPPO starts
to degrade from iteration 3 due to overoptimization, RSPO with reverse KL regularization mitigates it.
Right: SPPO compared to RSPO with various regularization methods. IS-For.+Rev. regularization in
RSPO perform the best. The results are obtained by training on base model Mistral-7B-Instruct.

Table 1: Comparisons on three popular benchmarks of baselines, and our strongest model. RSPO
with Importance-Sampling-based Forward KL (λ1 = 0.1) + Reverse KL (λ2 = 0.5) divergence as
regularization outperforms baselines on all benchmarks with a clear margin.

Methods
(Base Model: Mistral-7B-Instruct)

AlpacaEval-2
LCWR (%)

Arena-Hard
Auto-v0.1 MT-Bench

Mistral-7B-Instruct (Jiang et al., 2023a) 17.1 12.6 7.51
Snorkel (Iterative DPO) (Tran et al., 2023) 26.4 20.7 7.58

SPPO Iter3 (Wu et al., 2024) 28.5 19.2 7.59
SimPO (Meng et al., 2024) 32.1 21.0 7.60

RSPO (IS-For.+Rev.) Iter3 35.4 22.9 7.75

into self-play alignment. We hypothesize that the effectiveness of regularization arises from the
continued utility of the reference policy during optimization, which provides stable guidance and
helps mitigate inaccuracies or misspecifications in the general preference model (PairRM).

Model AlpacaEval 2.0
LC Win Rate Win Rate Avg. Len

Mistral-7B 17.11 14.72 1676
Snorkel 26.39 30.22 2736
SimPO 32.1 34.8 2193

DPO Iter1 23.81 20.44 1723
DPO Iter2 24.23 24.46 2028
DPO Iter3 22.30 23.39 2189

SPPO Iter1 24.79 23.51 1855
SPPO Iter2 26.89 27.62 2019
SPPO Iter3 28.53 31.02 2163

SPPO(3) ≤ 9 29.17 29.75 2051

RSPO Iter1 23.16 21.06 1763
RSPO Iter2 27.91 27.38 1992
RSPO Iter3 35.44 38.31 2286

Table 2: AlpacaEval LCWR of iterative meth-
ods. RSPO with IS-For.+Rev. regularization
shows fast improvement over iterations.

In Table 2, we further contrast the performance
dynamics across iterations of SPPO, other it-
erative methods, and RSPO (For.+Rev.), regu-
larized by the linear combination of Forward
KL and Reverse KL divergence with temper-
atures of 0.1 and 0.5, respectively. The com-
parative results reveal that regularization sig-
nificantly improve iterative alignment methods.
To rule out the possibility of insufficient itera-
tions affecting performance, we report the best
result among nine iterations of our replicated
SPPO in Table 2, denoted as "SPPO(3) ≤ 9",
where (3) represents that the strongest model is
SPPO-Iter3. SPPO(3) ≤ 9 consistently under-
performs the RSPO. This observation empha-
sizes that extended training under the unregular-
ized framework fails to match the performance
gains achieved through regularization, thereby
affirming again the critical role of regulariza-
tion, and the policy update guidance provided
by reference µ in self-play methodologies.

We conduct a comprehensive evaluation of regularization effectiveness across multiple base models
and examine scalability to larger preference models, as illustrated in Figure 3. Following the
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LLaMA-8B-GPM

Gemma-2B

LLaMA-8B

Mistral-7B

44.7

51.8

43.7

35.4

44.26

50.5

38.8

28.5

+0.44

+1.30

+4.90

+6.90

AlpacaEval-2.0 LCWR (%)

SPPO
RSPO (Ours)

Figure 3: Performance on different base mod-
els and stronger general preference model.
The best regularization for Mistral-7B is IS-
For.+Rev. and Rev. KL for the rest. LLaMA-
8B-GPM represents conducting training on base
model LLaMA-8B and preference model GPM-
8B (Zhang et al., 2024a).
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Figure 4: Impact of different regularizations:
also an ablation study on regularization temper-
ature λ of RSPO conducted on Mistral-7B. We
evaluate how the average response length and
raw WR are affected by the stronger regulariza-
tion. Higher temperature of forward KL leads
to shorter response length.

methodology established with Mistral-7B, we identify optimal regularization and hyperparameter
for additional base architectures. Our experimental results demonstrate that RSPO consistently
outperforms SPPO across all evaluated base models, establishing the robustness of our approach. We
also evaluate performance of RSPO trained on a stronger preference model (PM) called GPM-8B
(Zhang et al., 2024a). While the performance improvement with the larger preference model is modest
(0.44), RSPO demonstrates a significant advantage in parameter efficiency. Notably, RSPO achieves
comparable performance to SPPO while utilizing substantially fewer parameters. Specifically, RSPO-
LLaMA-8B paired with pairRM-0.5B requires only 8.5B total parameters, achieving performance
similar to SPPO-LLaMA-GPM, which utilizes 16B total parameters. This represents a 47% reduction
in model size while maintaining competitive performance, highlighting the parameter efficiency.

4.2 IMPACT OF DIFFERENT REGULARIZATIONS

We then study the effect of applying different regularization R in RSPO. To obtain a well-regularized
self-play, the tuning of regularization temperature λ is necessary. An ablation study of the regulariza-
tion temperature of different methods is shown in Figure 4. According to the figure, the response
length increases along with the temperature in reverse KL divergence and Chi-square divergence
regularized RSPO. However, both the length and win rate are decreased with stronger regularization
via Forward KL divergence, implemented using importance sampling. We attribute the decreasing
win rate to the violation of relative convexity assumption (A.1), and the length reduction to the
intrinsic mass-averaging property of forward-KL divergence divergence when used for regularization.

In particular, the raw win rate analysis highlights reverse KL divergence as a crucial factor in
enhancing self-play performance. We attribute the observed effect to the inherent mode-seeking
behavior of reverse KL divergence. Given that forward KL divergence tends to reduce response
length while reverse KL divergence yields significant improvements, we adopt a linear combination
of both. This approach is designed to balance their complementary effects, ultimately optimizing
for a higher LCWR (RSPO (IS-For. + Rev.) in Figure 2 (Right). The hyperparameters are provided
in Table 5. Training on other base model also shows similar pattern: forward KL reduce length and
reverse KL improve performance (See Table 10 and 11)

4.3 RESPONSE DIVERSITY AND OTHER ASPECTS

We demonstrate additional advantages introduced by regularization on Mistral-7B (see also Table
12). Here we demonstrate the diversity of the response cause by regularization. We first provide
a motivating example with synthetic data in Appendix D.2, which shows that the unregularized
self-play may converge to a collapsed response when multiple equally good responses exist. On the
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contrary, RSPO with maximum entropy regularization has multi-modal distribution for generation.
For LLMs, we investigate the diversity of generations by estimating the variability of the responses.
We use the Self-BLEU (Zhu et al., 2018) score, where a lower score implies higher response diversity.
We take the first 200 tokens of each of the 16 generated responses using the prompts of AlpacaEval.

Regularization Iteration AlpacaEval 2.0 Dataset
LCWR ↑ Self-BLEU ↓

×
1 24.79 0.751
2 26.89 0.754
3 28.53 0.758

IS-Forward KL
+ Reverse KL

1 23.16 0.747
2 27.91 0.743
3 35.44 0.714

Reverse KL
1 25.52 0.747
2 32.26 0.730
3 34.21 0.691

χ2
1 26.7 0.745
2 28.78 0.740
3 29.97 0.739

Table 3: Response diversity of SPPO and
RSPO evaluated with Self-BLEU score. Reg-
ularization except forward KL improves the
diversity.

The trend of Self-BLEU scores presented in Table 3
(Right) show that applying RSPO with Reverse KL
increases response diversity the most, as well as the
LCWRs of AlpacaEval 2.0. Although reverse KL
regularization is typically associated with reduced
diversity, it can, counterintuitively, enhance diversity
when the high-probability region of the reference pol-
icy µ contains multiple modes—a scenario commonly
arising when µ is pretrained on a diverse dataset. In
such cases, the sampling-regularized optimization
process with reverse KL can also induce additional
modes in the learned policy distribution, thereby pro-
moting greater diversity in responses. In contrast,
IS-Forward KL yields slightly lower diversity, as its
importance sampling–based implementation neces-
sitates hard clipping for numerical stability. Com-
pared to reverse KL, the χ2 divergence functions as a
stronger regularizer (Huang et al., 2024), promoting
diversity, albeit at a slower rate.

5 RELATED WORK

Offline RLHF with general divergence for regularization. The use of general divergence-based reg-
ularization has been explored in the context of offline alignment. f -DPO (Wang et al., 2023) extends
Direct Preference Optimization (Rafailov et al., 2024) from reverse KL regularization to a broader
class of f -divergences, but primarily demonstrates benefits in generation diversity. The specific effects
of individual divergences—and their performance on widely-used benchmarks such as AlpacaE-
val—remain unexamined. χPO (Huang et al., 2024) emphasizes the theoretical importance of χ2

divergence for uncertainty quantification. However, the role of regularization in online iterative pref-
erence optimization, particularly its empirical impact on standard benchmarks, has yet to be studied.

Self-Play Alignment We emphasize the distinction between our self-play approach and contrastive
self-play methods including Direct Nash Optimization (DNO) (Rosset et al., 2024) and Iterative Nash
Policy Optimization (INPO) (Zhang et al., 2024b). These methods conduct policy optimization with
a loss objective necessary but not sufficient for Mirror Descent (MD) update (Beck & Teboulle, 2003).
This objective is constructed via winner-loser response comparisons similar to Direct Preference
Optimization (DPO) and Identity Preference Optimization (IPO) (Azar et al., 2024). Optimizing
such contrastive loss can lead to only an increase in the relative likelihood gap without necessarily
enhancing the absolute probability of the preferred response (Pal et al., 2024). In contrast, our method
estimates the payoff and directly approximates the MD update by converting it to an equivalent
reinforcement learning problem, thereby circumventing the limitations of contrastive approaches.

6 CONCLUSION

In this paper, we study the regularization in self-play by proposing a framework, namely Regularized
Self-Play Policy Optimization (RSPO). Based on RSPO, we can apply different regularization
functions for policy updates by adding the regularization term to the loss functions of existing self-
play alignment methods, which we prove is still guaranteed to converge to the NE of the regularized
preference optimization game. In the empirical assessments, RSPO with tuned regularizers achieve
significant improvement over the base model and unregularized self-play method, SPPO. RSPO
significantly improve the performance across various base models, and shows additional parameter-
efficiency. We also empirically show that regularization promotes various response quality including
diversity. These findings underscore the critical role of regularization as a fundamental component in
optimizing self-play alignment.
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7 ETHICS AND REPRODUCIBILITY STATEMENT

This work raises no question or concern regarding the Code of Ethics. As for reproducibility of
our results, we provide details of implementations in Section 4 Implementations and Baselines, and
Appendix C.3. We have provided Hyperparameters of each regularization methods in Table 5. All the
theoretical results are proved in Appendix A.
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A PROOFS

In this section, we provide detailed assumptions, derivations and proofs of propositions.
Assumption A.1 (Relative Convexity of R w.r.t. entropy function). We assume the regularization
functionR of policy π is a 1-strongly convex relative to entropy function. In other words, ∀π, π′ ∈ ∆X

Y ,
and ψ(π) = ⟨π, log π⟩, we have

⟨∂πR(π)− ∂πR(π
′), π − π′⟩ ≥ ⟨∂πψ(π)− ∂πψ(π

′), π − π′⟩. (16)
Assumption A.1 constrains the class of regularization terms R under which theoretical convergence
guarantees can be established. Nonetheless, a broad family of divergences still satisfies this as-
sumption, allowing RSPO to retain convergence properties in a wide range of settings. Among
the divergences used in our experiments—including linear combinations—only the forward KL
divergence violates this assumption. Interestingly, however, forward KL regularization is empirically
observed to reduce response length. To leverage this desirable property while preserving theoretical
validity, we propose a linear combination of forward and reverse KL divergences, enabling effec-
tive length-controlled generation without sacrificing convergence guarantees, and obtains the best
generation quality empirically.

A.1 PROOF OF THE EXISTENCE OF REGULARIZED NASH EQUILIBRIUM

Proposition A.2. Nash Equilibrium in the regularized game in Equation (4) exists, and it is unique.

Proof. We prove the existence of in this section, largely following the idea of proving the existence
of KL regularized Nash Equilibrium by Munos et al. (2023).

Since the utility u(π, π′) is linear in π and π′, and the regularization function is assumed to be
convex (Assumption A.1), the regularized preference is concave in π and convex in π′. Therefore,
the existence and the uniqueness of a regularized Nash Equilibrium in Equation (4) can be directly
derived from the minimax theorem (Sion, 1958).

A.2 PROOF OF EQUIVALENCE BETWEEN MD AND RSPO

Proposition A.3. Nash-MD and Online Mirror Descent (Munos et al., 2023, Section 6) can be seen
as instances of Regularized Self-Play Policy Optimization (RSPO) (Equation (6)).

Proof. In this section, we first provide derivations of how Nash-MD is equivalent to RSPO:

∇θLNash-MD = ∇θLRSPO
(
θ;G = P(y ≻ πµt ), B =

1

2
, R = DKL(πθ∥µ)

)
(17)

On one hand, Nash-MD practical loss (Munos et al., 2023, Section 7) is defined as
∇θLNash-MD(θ) (18)

=Ey∼πθ,
y′∼πµ

t

[
∇θ log πθ(y)

(
P(y ≻ πµt )−

1

2
− τ log

πθ(y)

µ(y)

)]
(19)

=Ey∼πθ,
y′∼πµ

t

[
∇θ log πθ(y)

(
P(y ≻ πµt )−

1

2
− τ log

πθ(y)

µ(y)
+ 2τ log

πt(y)

µ(y)

)]
(20)

=Ey∼πθ,
y′∼πµ

t

[
∇θ log πθ(y)

(
P(y ≻ πµt )−

1

2
− 2τ log

πθ(y)

πt(y)
+ τ log

πθ(y)

µ(y)

)]
(21)

=Ey∼πθ,
y′∼πµ

t

[
∇θ log πθ(y)

(
P(y ≻ πµt )−

1

2
− 2τ log

πθ(y)

πt(y)

)]
+ τ∇θEy∼πθ,

y′∼πµ
t

[
log

πθ(y)

µ(y)

]
(22)

=Ey∼πθ,
y′∼πµ

t

[
∇θ log πθ(y)

(
P(y ≻ πµt )−

1

2
− 2τ log

πθ(y)

πt(y)

)]
+ τ∇θDKL(πθ∥µ) (23)

=2τ2Ey∼πθ,
y′∼πµ

t

[
∇θ

(
log

πθ(y)

πt(y)
− 1

2τ

(
P(y ≻ πµt )−

1

2

))2]
+ τ∇θDKL(πθ∥µ) (24)

=2τ2∇θEy∼πt,
y′∼πµ

t

[
log

πθ(y)

πt(y)
− 1

2τ

(
P(y ≻ πµt )−

1

2

)]2
+ τ∇θDKL(πθ∥µ). (25)
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Equation (19) is the definition of Nash-MD policy gradient. Equation (20) holds because the additional
term satisfies that Ey∼πθ,

y′∼πµ
t

[
∇θ log πθ(y)

(
log πt(y)

µ(y)

)]
= ∇θEy∼πθ,

y′∼πµ
t

[
log πt(y)

µ(y)

]
= ∇θ log

πt(y)
µ(y) = 0.

Equation (23) holds due to the definition of reverse KL divergence. Equation (24) is derived by
computing the integral of log πθ(y)

(
P(y ≻ πµt )− 1

2 − 2τ log πθ(y)
πt(y)

)
.

On the other hand, we show that Nash-MD and OMD can also be generalized by RSPO without
external regularization, such that we can add additional regularization to existing regularized self-play
methods. Nash-MD practical loss (Munos et al., 2023, Section 7) is defined as

∇θLNash-MD(θ) = Ey∼πθ,
y′∼πµ

t

[
∇θ log πθ(y)

(
P(y ≻ y′)− 1

2
− τ log

πθ(y)

µ(y)

)]
(26)

= Ey∼πθ,
y′∼πµ

t

[
∇θ log πθ(y)

(
P(y ≻ y′)− 1

2
− τ log

πθ(y)

πt(y)
− τ log

πt(y)

µ(y)

)]
(27)

= Ey∼πθ

[
∇θ log πθ(y)

(
P(y ≻ πµt )−

1

2
− τ log

πθ(y)

πt(y)
− τ log

πt(y)

µ(y)

)]
(28)

= Ey∼πt

[
∇θ log πθ(y)

(
P(y ≻ πµt )−

1

2
− τ log

πθ(y)

πt(y)
− τ log

πt(y)

µ(y)

)]
(29)

= ∇θEy∼πt

[
τ log

πθ(y)

πt(y)
−
(
P(y ≻ πµt )− τ log

πt(y)

µ(y)
− 1

2

)]2
/2 (30)

= τ2∇θEy∼πt

[
log

πθ(y)

πt(y)
− 1

τ

(
P(y ≻ πµt )− τ log

πt(y)

µ(y)
− 1

2

)]2
/2. (31)

Equation (26) is the definition of practical Nash-MD loss (Munos et al., 2023, Section 7). Equa-
tion (27) holds by adding an subtracting the same element log πt(y). Equation (28) holds due to
Ey′∼πµ

t
[P(y ≻ y′)] = P(y ≻ πµt ). The learning rate η is originally omitted in the paper (Munos

et al., 2023). Here Nash-MD is generalized by LRSPO with η = 1
τ and R = 0.

OMD is to execute argmaxπ ηEy∼π
[
P(y ≻ πt)− τ log πt(y)

µ(y)

]
− KL(π, πt). Therefore, the loss

function of the OMD update satisfies

∇θLOMD(θ) = −∇θηEy∼πθ

[
P(y ≻ πt)− τ log

πt(y)

µ(y)

]
+DKL(πθ, πt) (32)

= −∇θηEy∼πθ

[
P(y ≻ πt)− τ log

πt(y)

µ(y)
− log

πθ
πt

]
(33)

= ηEy∼πθ

[
−∇θ log πθ

(
P(y ≻ πt)− τ log

πt(y)

µ(y)
− log

πθ
πt

)]
(34)

=
η

2
· Ey∼πθ

[
∇θ

(
P(y ≻ πt)− τ log

πt(y)

µ(y)
− log

πθ(y)

πt(y)

)2]
(35)

=
η

2
· Ey∼πt

[
∇θ log

πθ(y)

πt(y)
−
(
P(y ≻ πt)− τ log

πt(y)

µ(y)

)]2
. (36)

Equation (32) holds because the OMD update is equivalent to descending negative gradient of the
feedback ηEy∼π

[
P(y ≻ πt)− τ log πt(y)

µ(y)

]
−KL(π, πt). Equation (33) holds due to the definition of

DKL. Equation (34) holds by conducting differentiation on multiplication. The remaining equations
hold due to simple algebra. Therefore, OMD can also be generalized by RSPO with G = P(y ≻
πt)− τ log πt(y)

µ(y) and without external regularization.

A.3 PROOF OF PROPOSITION 3.1

Proposition 3.1. If R(·, µ) is 1-strongly convex relative to ψ (Assumption A.1), policy updated
by GMMD in Equation (13) has last-iterate convergence to the following Nash Equilibrium of a
regularized game:

max
π

min
π′

U(π;π′)− τR(π, µ) + τR(π′, µ). (37)
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Proof. According to Equation (13), GMMD is equivalent to the Algorithm 3.1 in Sokota et al. (2022):

zt+1 = argmin
z∈Z

η (⟨F (zt), z⟩+ αg(z)) +Bψ(z; zt), (38)

where in our setting, z = π is the LLM policy, F (zt) = −∂πU(π;πt) is the vector of negative partial
derivatives of preference w.r.t. each component of π, α = τ , g(z) is the regularizer R(π), and we set
ψ(z) = z log z to convert the Bregman divergence Bψ to KL divergence. Here U(π;πt) is treated
as a function of vector form of π, i.e., [π0 π1 · · · π|Y|], thus the gradient is a vector gradient where
∂πU(π;πt) = [∂U/∂π0 ∂U/∂π1 · · · ∂U/∂π|Y|].

We then show that in our setting the following assumptions are satisfied. F satisfies that for µ > 0
and any z, z′, ⟨F (z)−F (z′), z−z′⟩ = 0 since U is linear in π, and F (z)−F (z′) = −∂πU(π;πt)+
∂πU(π′;πt) = 0. Therefore, F is Monotone and L-smooth. According to Assumption A.1, g is
1-strongly convex relative to ψ, i.e., g(z) ≥ g(z′) + g′(z)

ψ′(z) (ψ(z)− ψ(z′)).

Given the assumptions above, according to the Theorem 3.4. in Sokota et al. (2022), the update rule
defined in Equation (38) has a last-iterate convergence guarantee to a policy π∗, which is the solution
to the variational inequality problem VI(∆X

Y , F + α∂g), i.e., π∗ satisfies

⟨∂π
(
− U(π;π∗) + τR(π, µ)

)
|π=π∗ , π − π∗⟩ ≥ 0, ∀π ∈ ∆X

Y

⇔ ⟨∂π
(
− U(π;π∗) + τR(π, µ)− τR(π∗, µ)

)
|π=π∗ , π − π∗⟩ ≥ 0, ∀π ∈ ∆X

Y . (39)

Equation (39) indicates that moving from π∗ towards any direction π − π∗ can not increase the value
of the objective preference model U(π;π∗)− τR(π, µ) + τR(π∗, µ) at the point of π = π∗, given
the opponent is π∗. Therefore, by symmetry, π∗ is the Nash Equilibrium of the regularized preference
model:

max
π

min
π′

U(π;π′)− τR(π, µ) + τR(π′, µ). (40)

A.4 PROOF OF COROLLARY 3.2

Proof. We prove that RSPO in Equation (8) is equivalent to GMMD up to multiplying a constant
to the gradient, leading to a regularized Nash Equilibrium. We follow SPPO to replace the samples
y ∼ πθ with y ∼ πt directly since they are equivalent while computing the loss before updating, and
rewrite the loss equivalent to GMMD:

∇θLGMMD(θ) = ∇θ

(
1

2
Ey∼πt

[
− ηG(y;πt) + log

πθ(y)

πt(y)
+ηB

]2
+ τR(πθ, µ)

)
=

1

2
∇θLRSPO(θ).

(41)

Therefore, according to Equation (41), RSPO is the RL implementation of GMMD, since gradients
of losses are equivalent up to multiplying a constant. Then we can derive the convergence gaurantee
of RSPO.

∇θLRSPO(θ;G = P(y ≻ πt), B =
1

2
) (42)

= ∇θ

(
Ey∼πt

[
log

πθ(y)

πt(y)
− η
(
P(y ≻ πt)−

1

2

)]2
+ λR(πθ, µ)

)
(43)

= ∇θ

(
⟨πt, ,

(
− η∂πP(π ≻ πt) + log

πθ
πt

+B
)2⟩+ λR(πθ, µ)

)
(44)

= 2
(
∇θEy∼πt

[
(
− ηG(y, πt) + log

πθ(y)

πt(y)
+B

)2
] · 1

2
+ τ∇θR(πθ, µ)

)
(45)

= 2∇θLGMMD(θ). (46)

Equation (43) holds due to definition. Equation (44) holds by treating policy as a vector and rewrite
the expectation in vector product form, and ∇πP(π ≻ πt) |π=πt |π=πt= [P(y0 ≻ πt) P(y1 ≻
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πt) · · · P(y|Y| ≻ πt)]
T , where y0, y1, · · · , yY represent all possible values of y. Equation (45)

holds by rewriting the form of dot product as expectation. Equation (46) holds due to the equivalent
loss form of GMMD in Equation (41).

Thus, according to Proposition 3.1, updating following Algorithm 1 with the above loss function has
last-iterate convergence to the Nash Equilibrium of the regularized preference optimization game in
Equation (4) by setting u(π;π′) = P(π ≻ π′).

A.5 PROOF OF PROPOSITION C.1

Proof. π is parametrized by θ, ∇θDKL(π||µ) = Eπθ
[∇θ log πθ(y)− logµ(y)]2/2. This is because

∇θDKL(π||µ) = ∇θ

∑
y

πθ(y) · (log πθ(y)− logµ(y)) (47)

=
∑
y

∇θπθ(y) · (log πθ(y)− logµ(y)) +
∑
y

∇θπθ(y)

=
∑
y

πθ(y)
∇θπθ(y)

πθ(y)
· (log πθ(y)− logµ(y)) +∇θ

∑
y

πθ(y)

= Eπθ
[(log πθ(y)− logµ(y)) · ∇θ(log πθ(y)− logµ(y))]

= Eπθ
[∇θ(log πθ(y)− logµ(y))2]/2. (48)

The first equation holds because of the definition of KL divergence. The second equation holds due
to applying the product rule of differentiation. The third equation holds due to simple algebra, and
the second term will then vanish because of the sum of the probabilities. The fourth equation holds
because of simple algebra.

A.6 PROOF OF PROPOSITION C.2

Proof. π is parametrized by θ, then ∇θDKL(µ||π) = Eµ[∇θ
µ(y)
πθ(y)

] because

∇θDKL(µ||π) = ∇θ

∑
y

µ(y) · (logµ(y)− log πθ(y)) (49)

= −
∑
y

µ(y)∇θ log πθ(y) = −
∑
y

πθ(y)
µ(y)

πθ(y)
∇θ log πθ(y)

= −Eπθ

[
µ(y)∇θ log πθ(y)

πθ(y)

]
= −Eπθ

[
µ(y)∇θπθ(y)

πθ(y)2

]
= Eπθ

[
∇θ

µ(y)

πθ(y)

]
. (50)

The first three equations hold due to the definition of forward KL divergence and simple algebra.
The fourth equation comes from rewriting the forward KL following the first three equations. The
fifth equation holds by taking the derivative of log πθ. The sixth equation holds since ∇θπθ(y)

πθ(y)2
=

∇θ
−1
πθ(y)

.

A.7 PROOF OF PROPOSITION C.3

Proof. π is parametrized by θ, ∇θDχ2(πθ(y)||µ(y)) = Eπθ

[
∇θπθ(y)
µ(y)

]
since

Dχ2(πθ(y)||µ(y)) =
1

2

∑
y

(
πθ(y)

µ(y)
− 1

)2

µ(y) =
1

2

∑
y

πθ(y)
2 − 2πθ(y)µ(y) + µ(y)2

µ(y)

=
1

2

∑
y

πθ(y)
2

µ(y)
+ C(µ) =

1

2
Eπθ(y)

[
πθ(y)

µ(y)

]
+ C, (51)

where C(µ) is independent to θ. The first two equations hold according to the definition of Chi-
squared divergence. The third equation holds by separating the terms only related to µ and the term
related to πθ. The fourth equation holds by rewriting the summation as the expectation.
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B ADDITIONAL RELATED WORK

Preference Optimization. Large Language Models (LLMs) recently have obtained remarkable
capabilities to accomplish a range of tasks (Jiang et al., 2023a; Dubey et al., 2024; DeepSeek-AI
et al., 2025), generating more desirable and helpful content following the user’s intention. One
of the most important methods to align LLMs with human intentions is Reinforcement Learning
from Human Feedback (RLHF), maximizing a preference-based reward penalized by a reverse KL
regularization term of the LLM policy and a reference model (Christiano et al., 2017; Ouyang et al.,
2022; Rafailov et al., 2024; Azar et al., 2024; Xiong et al., 2024). Since the reference model usually
provides safer guidance for policy optimization (Munos et al., 2023), this regularization is crucial in
RLHF to prevent over-optimization, which has been extensively studied and extended beyond KL
divergence (Wang et al., 2023; Go et al., 2023; Huang et al., 2024). In this work, we instead study the
regularization problems in self-play alignment.

RLHF with General Preference Optimization (Self-Play Alignment). Azar et al. (2024) introduced
the first approach for optimizing LLM policy via general preference models. Nash-MD (Munos
et al., 2023) pioneered the application of self-play to general preference optimization by framing it
as a two-player game. Subsequent methods have either focused on learning the NE of the original
unregularized game (e.g. (Swamy et al., 2024; Wu et al., 2024; Rosset et al., 2024; Wang et al.,
2024b)) or the NE of a reverse-KL-regularized preference optimization game (e.g. (Munos et al.,
2023; Calandriello et al., 2024; Zhang et al., 2024b)). In contrast, our work explores a broader class
of divergence-based regularization techniques for self-play alignment.

Notably, our RSPO can generalize existing self-play methods. Unregularized self-play methods
following the preference-based MWU can all be generalized by LRSPO without external regularization,
and thus can be regularized by simply adding regularization term to the loss functions. Based on
the same exponential update rule as in SPPO, SPO (Swamy et al., 2024) is equivalent to updating
policy with the loss in Equation (9). Magnetic Policy Optimization (Wang et al., 2024b), despite
incorporating regularization in the policy update, periodically updates µ = πt. Consequently, it
inherently follows MWU while incorporating multiple policy updates within each iteration, following

Online iterative RLHF. Iterative alignment method incorporates a reliable reward or preference
model—including self-play—functions as a self-improving framework by iteratively generating new
data using models and optimizing policies based on this data (Schulman et al., 2017; Ouyang et al.,
2022; Bai et al., 2022; Touvron et al., 2023; Dong et al., 2024). Moreover, extending powerful offline
methods such as DPO to iterative frameworks has led to significant performance gains (Xu et al.,
2023; Liu et al., 2023; Tran et al., 2023; Dong et al., 2024; Calandriello et al., 2024; Pang et al., 2024;
Xiong et al., 2024; Guo et al., 2024; Tajwar et al., 2024; Cen et al., 2024; Xie et al., 2024). In contrast,
our work investigates general preference optimization through self-play from a game-theoretic
perspective, shifting the objective from conventional RL optimization to the computation of NE.

C ADDITIONAL DETAILS

In this section, we provide additional details of this paper, including the algorithm descriptions
of self-play alignment methods, a summarizing table for generalizing existing methods, and our
implementation of regularizations.

C.1 SELF-PLAY ALIGNMENT ALGORITHM

Algorithm 1 shows the overall self-play alignment process. Note that we are sampling K responses
per each prompt and obtain pair-wise preferences amongst them for training.
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Algorithm 1 Self-Play Alignment

Input: LLM πθ, preference model P, number of iterations T , reference policy µ, loss function for
policy update conditioned on utility function U : L(θ;U), sample size K.
Initialize: π0 = µ.
for t ∈ [T ] do

Sample prompts and responses: x ∼ X , y1:K ∼ πt
Get pair-wise preferences uij = P(yi ≻ yj), ∀i, j ∈ [K]
Update policy parameters θ = argminθ L(θ;U), U = [uij ] ∈ RK×K

πt+1 = πθ
end for
Output: Last-iterate policy πT .

Specifically, the policy is first initialized as π0 = µ. Then in each iteration t, the opponent is set to be
the last-iterate policy πt (the reason why it is called self-play), and the responses are sampled from
πt (Line 4). The pairwise preferences of the sampled responses are collected using the preference
model P (Line 5). The policy parameters are updated by minimizing a specified loss function L(θ;P)
based on preferences over responses (Line 6). The loss function L(θ;P) is dependent on the inherent
online learning method. The main difference between these methods is the choice of loss function
L(θ;P) applied to the policy update.

C.2 GENERALIZING EXISTING METHODS

Table 4 shows how the existing methods of self-play alignment can be generalized without external
regularization. The algorithms introduced below share the same loss structure as in Equation (6),
while their differences present in the update direction G, baseline B and the preference model.

Loss Update Direction (G) Baseline (B) Preference Model

LSPPO (Wu et al., 2024) P(y ≻ πt) 0.5 P(y ≻ y′)

LOMD (Munos et al., 2023) P(y ≻ πt)− τ log πt(y)
µ(y) Est. Pτ (y ≻ y′)

LNash-MD (Munos et al., 2023) Pµ(y ≻ πt)− τ log πt(y)
µ(y) 0.5 Pτ (y ≻ y′)

Table 4: Self-play losses LRSPO generalizes different self-play policy optimization methods. Pµ(y ≻
πt) = P(y ≻ πµt ), π

µ
t is the geometric mixture of πt and µ. We abbreviate the estimated baseline

that reduce the variance of G the most as est.. Pτ (y ≻ y′) = P(y ≻ y′)− τ log πθ(y)
µ(y) + τ log π′(y′)

µ(y′)

is the regularized preference model.

C.3 IMPLEMENTATION OF REGULARIZATION

In practice, accurately estimating the gradient of the regularizer is essential, as many commonly
used divergence measures are defined as expectations over πθ. The estimation of divergences has
been extensively studied and widely applied in various domains (Rubenstein et al., 2019). For
completeness, in this section, we introduce the regularization methods investigated in this study,
including Reverse KL, Forward KL, and Chi-Square Divergence.

We begin by deriving the estimation of the Reverse KL divergence based on the following proposition.

Proposition C.1. Reverse KL divergence satisfies:

∇θDKL(πθ||µ) = Ey∼πθ
[∇θ(log πθ(y)− logµ(y))2]. (52)

According to Proposition C.1, we can estimate the divergence with Ey∼πθ
[(log πθ(y)− logµ(y))2].

We employ two distinct approaches to estimate the forward KL divergence. The first method utilizes
importance sampling, referred to as IS-For. KL, and is derived based on the following proposition.
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Proposition C.2. The gradient of forward KL divergence satisfies that

∇θDKL(µ||πθ) = Ey∼πθ
[∇θµ(y)/πθ(y)]. (53)

Therefore, we can estimate the forward KL divergence by leveraging the expectation
Ey∼πθ

[µ(y)/πθ(y)] to estimate the forward KL. Notably, to mitigate the risk of gradient explo-
sion, we apply gradient clipping with a maximum value of 10.

The second method for forward KL is a direct estimation ofDKL(µ||πθ). To achieve this, we resample
responses from the reference policy µ using the same prompts from the training dataset, constructing
a reference dataset. The KL divergence is then estimated directly based on its definition by uniformly
drawing samples from this reference dataset. A key advantage of this approach is that it eliminates
the need for importance sampling, as each policy update iteration only requires samples from πt.

Similarly, we estimate the Chi-Square divergence using Ey∼πθ
[πθ(y)/µ(y)], based on the following

proposition. Due to the presence of the ratio term, Chi-Square divergence estimation also necessitates
gradient clipping to prevent instability, for which we set a clip value of 10.
Proposition C.3. Chi-Square divergence has gradient

∇θDχ2(πθ||µ) = Ey∼πθ
[∇θπθ(y)/µ(y)] . (54)

We also explore the linear combination of different regularization functions to leverage their comple-
mentary effects, as in offline RLHF (Huang et al., 2024). The previously established propositions for
estimating divergences can still be used in the combined regularization method.

Apart from the flexibility and simplicity of applying different regularization methods, RSPO can
generalize existing self-play methods, including the unregularized ones, which enables regulariz-
ing off-the-shelf self-play methods in practice with no change on their original loss functions or
hyperparameters, directly adding an external regularization term to their loss functions.

We then provide the hyperparameters of regularization temperature for each regularizer in our
experiments:

Divergence Parameter(s)
Reverse KL (Rev. KL) λ = 0.5
Forward K (For. KL) λ = 1.0
Chi-Squared (χ2) λ = 0.1
Importance-Sampling Forward KL (IS-For.) λ = 0.1
Forward and Reverse KL (IS-For.+Rev. KL) λ1 = 0.1, λ2 = 0.5

Table 5: Divergences and their corresponding λ parameters.

D ADDITIONAL EXPERIMENTS

In this section, we provide additional experiments, including two synthetic motivating examples and
additional results on language tasks.

D.1 REGULARIZATION IN GAME SOLVING

The regularization in the preference model is not used in all game-theoretic self-play methods. Here
we investigate the necessity of regularization and offer a motivating example in Figure 5, a saddle
point solving problem minxmaxy

α
2 x

2 + (x− 1)(y − 1)− α
2 y

2. There exists a reference point as
the initial values of x and y. We assume that both reference point and the Nash Equilibrium (NE) of
the surrogate preference model (Surrogate NE) are close to the original NE but on different sides of
the original NE.

Typically, the surrogate preference/reward models are not positively related to the reference policy.
Thus, it is a reasonable abstracted example of NLHF by treating the reference point as reference
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Figure 5: Motivating Example: 20 iterations of MWU and regularized MWU with the same learning
rate to solve saddle point problem maxyminy′ f(y, y

′, α), where f(y, y′;α) = α
2 y

′2 + (y′ − 1)(y−
1) − α

2 y
2, first introduced in (Sokota et al., 2022). We assume that we only have access to a

misspecified (surrogate) preference f(y, y′;α = 1), while the ground truth human preference is
f(y, y′;α = 2).

policy and surrogate NE as the optimal policy obtained by optimizing the surrogate preference/reward.
The results of the 20 iterations self-play MWU with an early stopping show that regularization can be
used to prevent reward over-optimization (reaching surrogate NE). A well-tuned regularization leads
to faster convergence to the unknown original NE. Thus, regularization can be effective in preventing
over-optimization in self-play.

D.2 DIVERSITY ON 2D EXAMPLE

We offer an analysis of our method compared to unregularized self-play (SPPO) on a 2D example in
Figure 6. The area with a darker color is assigned a higher reward value. We use the preference defined
by the L2 norm between two actions. We also set the reference policy to be uniform. According to
the figure, the unregularized method tends to converge to a single point on the manifold of the large
reward. While regularized methods have diverse sampled actions.
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Figure 6: Samples in a 2D example of different iterations of SPPO (top) and RSPO (bottom) with
external forward KL regularization to a uniform random reference policy. SPPO added simple
external regularization that can generate multi-modal policies.

D.3 MORE RESULTS ON ALPACAEVAL-2.0 AND PAIRRM

In Figure 7 and Table 6, we present further results of RSPO evaluated using AlpacaEval. As presented
in Figure 7, mixed regularization of the forward and reverse KL resulted in the best performance,
while its average response length did not exceed that of reverse KL-only regularization. When
compared to various other well-known baselines including GPT-4 and Claude, RSPO-trained model
initialized from Mistral-7B shows notable performance, outperforming GPT-4 0314 and LLaMA
3 70B Instruct in LCWR. When response lengths are ignored, our RSPO-trained 7B model even
outperforms Claude 3 Opus.
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Figure 7: Win rates and the average length of SPPO and RSPO with different regularization methods.
From left to right, regularization methods: Reverse KL, Forward KL, Chi-Squared, Importance-
Sampling Forward KL, Importance-Sampling Forward, and Reverse KL linear combination.

Table 6: Left: AlpacaEval-2.0 performance of RSPO with different regularization temperatures.
Right: AlpacaEval-2.0 performance comparison with popular models. Our model, Mistral-7B-
RSPO Iter3, outperforms GPT-4 0314 and LLaMA 3 70B Instruct in LCWR. When only win rate is
considered, our model even outperforms Claude 3 Opus.

Regularization Temperature Iter LCWR (%) WR (%) Length
forward: 0.1 reverse: 0.5 1 23.16 21.06 1763
forward: 0.1 reverse: 0.5 2 27.91 27.38 1992
forward: 0.1 reverse: 0.5 3 35.44 38.31 2286
forward: 0.01 reverse: 0.5 1 24.63 22.57 1793
forward: 0.01 reverse: 0.5 2 28.21 28.56 2006
forward: 0.01 reverse: 0.5 3 32.24 36.77 2411

Model AlpacaEval 2.0
LC. Win Rate Win Rate

GPT-4 Turbo 50.0 50.0
Claude 3 Opus 40.5 29.1
Mistral-7B-RSPO Iter3 35.44 38.31
GPT-4 0314 35.3 22.1
LLaMA 3 70B Instruct 34.4 33.2
GPT-4 0613 30.2 15.8
Mistral Medium 28.6 21.9
Mistral-7B-SPPO Iter3 28.5 31.0

Table 7: Left: SPPO replication Iteration-wise LCWR, WR, and Length results. Overoptimization
exists according to the results. Right: Pairwise win rate of RSPO on Ultrafeedback validation set
rated by pairRM. RSPO has higher win rates against all the baselines.

Iter LCWR (%) WR (%) Length
1 26.36 24.04 1802
2 28.38 27.43 1909
3 29.17 29.75 2051
4 28.45 30.20 2257
5 27.93 30.11 2301
6 28.03 30.99 2435
7 25.46 28.25 2471
8 22.94 28.26 2691
9 24.47 28.57 3402

Methods RSPO (IS-For.+Rev.) Iter3 Win Rate

Snorkel (Iterative-DPO) 0.55
SPPO Iter3 0.57
SimPO 0.50

Table 8: RSPO on LLaMA3-8B-Instruct: Comparison of SPPO and RSPO iterations on AlpacaEval
LCWR and Avg. Len.

Base: LLaMA3-8B-Instruct AlpacaEval LCWR Avg. Len
SPPO-Iter1 31.73 1962
SPPO-Iter2 35.15 2021
SPPO-Iter3 38.77 2066
RSPO (Rev. KL, 0.5)-Iter1 31.04 2100
RSPO (Rev. KL, 0.5)-Iter2 35.89 2289
RSPO (Rev. KL, 0.5)-Iter3 43.66 2504

E OTHERS

In this section, we provide other details including compute resources, societal impacts and limitations.
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Table 9: RSPO on Gemma-2-2B-IT: Comparison of SPPO and RSPO iterations on AlpacaEval
LCWR and Avg. Len for Gemma-2-2B-IT.

Base: Gemma-2-2B-IT AlpacaEval LCWR Avg. Len
SPPO-Iter1 43.68 2191
SPPO-Iter2 49.24 2372
SPPO-Iter3 50.54 2471
RSPO (Rev. KL, 0.1)-Iter1 41.87 2213
RSPO (Rev. KL, 0.1)-Iter2 48.94 2337
RSPO (Rev. KL, 0.1)-Iter3 51.83 2443

Table 10: Regularization Effect of RSPO on LLaMA3-8B-Instruct: Forward KL regularization
effect on AlpacaEval LCWR and Avg. Len. Increasing the strength of For. KL regularization only
brings slight reduction in average length.

Method AlpacaEval LCWR Avg. Len
SPPO-Iter1 31.73 1962
SPPO-Iter2 35.15 2021
SPPO-Iter3 38.77 2066
RSPO (IS-For. KL, 0.01, clip 10)-Iter1 30.87 1939
RSPO (IS-For. KL, 0.01, clip 10)-Iter2 33.58 1962
RSPO (IS-For. KL, 0.01, clip 10)-Iter3 36.80 1998
RSPO (IS-For. KL, 0.1, clip 10)-Iter1 26.72 1920
RSPO (IS-For. KL, 0.1, clip 10)-Iter2 32.22 1973
RSPO (IS-For. KL, 0.1, clip 10)-Iter3 36.64 1948

Table 11: Regularization Effect of RSPO on LLaMA3-8B-Instruct: Due to only slight length
reduction in length as shown in Table 10, the combination regularization of For. and Rev. KL shows
less improvement compared to only regularized with Rev. KL. However, the performance is still
superior compared to SPPO.

Method AlpacaEval LCWR Avg. Len
SPPO-Iter1 31.73 1962
SPPO-Iter2 35.15 2021
SPPO-Iter3 38.77 2066
RSPO (Rev. KL, 0.5)-Iter1 31.04 2100
RSPO (Rev. KL, 0.5)-Iter2 35.89 2289
RSPO (Rev. KL, 0.5)-Iter3 43.66 2504
RSPO (IS-For. + Rev. KL)-Iter1 30.89 2100
RSPO (IS-For. + Rev. KL)-Iter2 34.94 2308
RSPO (IS-For. + Rev. KL)-Iter3 41.84 2465

E.1 COMPUTE RESOURCES

We conduct experiments on 8×A100 80GB for training and single A100 80GB for evaluation.

E.2 SOCIETAL IMPACTS

This study introduces a novel framework for fine-tuning large language models through self-play,
incorporating regularization toward a reference model. Ethical considerations may emerge if the
reference model exhibits harmful behaviors, or if the preference model used for policy updates
inadvertently assigns higher ratings to harmful outputs. However, drawing on prior research, we find
no evidence that the proposed approach poses direct negative societal impacts.
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Table 12: ArmoRM Evaluation. Evaluation of diverse response quality aspects on Ultrafeedback
validation set using ArmoRM Wang et al. (2024a). The combined application of forward and reverse
KL regularization leads to superior performance compared to either form of regularization applied
independently.

Methods Overall Score Instruction Following Truthfulness Honesty Helpfulness
Snorkel 0.706 0.781 0.796 0.821 0.760
SPPO 0.716 0.798 0.812 0.836 0.771

RSPO (χ2, λ = 0.1) 0.713 0.793 0.805 0.827 0.769
RSPO (Rev. λ = 0.5) 0.718 0.798 0.805 0.831 0.773
RSPO (Rev. λ = 1) 0.715 0.798 0.807 0.826 0.769
RSPO (For. λ = 0.1) 0.711 0.795 0.809 0.824 0.760
RSPO (For. λ = 0.5) 0.713 0.793 0.815 0.826 0.749
RSPO (For.+Rev.) 0.719 0.805 0.816 0.833 0.768

E.3 LIMITATIONS

A theoretical limitation lies in the nature of the regularization termR which is required to be relatively
convex with respect to entropy (Assumption A.1). Both reverse KL divergence and χ2 divergence
satisfy this property, whereas forward KL divergence does not. This discrepancy is evident in
performance metrics such as raw win rates. Interestingly, forward KL has a beneficial side effect of
reducing response length. To leverage the length reduction and reconcile the decreasing win rate,
we adopt a linear combination of forward and reverse KL divergences—an approach that not only
satisfies the relative convexity condition but also exploits the complementary strengths of each to
achieve improved control over response length while maintaining theoretical soundness.
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