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Abstract001

Reliable multi-image geological reasoning is002
essential for automating expert tasks in remote-003
sensing mineral exploration, yet remains chal-004
lenging for multimodal large language models005
(MLLMs) due to the need for locating target006
areas, accurate cross-image referencing, and007
consistency over long reasoning chains. We008
propose STA-CoT, a Structured Target-centric009
Agentic Chain-of-Thought framework that or-010
chestrates planning, execution, and verification011
agents to decompose, ground, and iteratively re-012
fine reasoning steps over geological and hyper-013
spectral image sets. By aligning each reasoning014
step to specific image target areas and enforcing015
consistency through agentic verification and016
majority voting, STA-CoT robustly mitigates017
tool errors, long-chain inconsistencies, and er-018
ror propagation. We rigorously evaluate STA-019
CoT on MineBench, a dedicated benchmark for020
multi-image mineral exploration, demonstrat-021
ing substantial improvements over existing mul-022
timodal chain-of-thought and agentic baselines.023
Our results establish STA-CoT as a reliable024
and robust solution for consistent multi-image025
geological reasoning, advancing automated sci-026
entific discovery in mineral exploration.027

1 Introduction028

Multi-image geological reasoning is the task of029

synthesizing and interpreting geological evidence030

from multiple remote-sensing images of a region031

to produce a cross-image rationale over targeted032

areas in the region (Alzubaidi et al., 2021). Among033

its most impactful applications is mineral explo-034

ration (Yousefi et al., 2019), where experts integrate035

geological and hyperspectral imagery to identify036

and assess economically valuable mineral deposits.037

The ability to automate mineral exploration holds038

tremendous significance, as it accelerates resource039

discovery essential for global technological infras-040

tructure and sustainability (Sabins, 1999). A do-041

main expert may spend hours manually correlat-042
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Figure 1: Three types of errors in visual-based augmentation
approaches in multi-image geological reasoning.

ing structured faults, alteration zones, and spectral 043

signatures across several images to narrow down 044

large survey regions into a small set of promising 045

candidates – demonstrating how automation can 046

drastically reduce the number of regions requiring 047

costly field investigation (Shirmard et al., 2022). 048

The performance of multi-image geological rea- 049

soning fundamentally relies on a model’s ability to 050

reason across both spatial and spectral modalities- 051

integrating diverse geological cues distributed 052

among multiple images over one region into a co- 053

herent, evidence-based conclusion. This motivates 054

the adoption of multimodal large language mod- 055

els (MLLMs), which unify visual and textual in- 056

puts, as well as the multimodal chain-of-thought 057

(MCoT) framework that decomposes complex vi- 058

sual reasoning into interpretable, step-by-step ratio- 059

nales (Wang et al., 2025a). Recent advances have 060

further strengthened these reasoning frameworks 061

by introducing prompt-based MCoT (Fei et al., 062

2024; Zhang et al., 2024), structured planning (Wei 063

et al., 2024; Wang et al., 2025b), tool-augmented 064

decision-making (Tang et al.; Wu et al., 2024), and 065

mechanisms for consistency (Zhou et al., 2024) and 066

verification (Yan et al., 2025). Such techniques en- 067
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able MLLMs to not only elaborate their reasoning068

processes but also actively validate and refine their069

intermediate outputs, leading to accurate answers.070

However, these techniques cannot be directly071

applied to multi-image geological reasoning, as,072

besides proper geological knowledge, the task073

uniquely demands (i) accurate interesting target074

location within each image, (ii) maintenance of a075

long and complex reasoning chain, and (iii) precise076

cross-image referencing that exceeds the typical077

capabilities of existing approaches. In our pilot078

experiments, when we adopt MCoT methods with079

tool-augmentation and vanilla consistency & ver-080

ification for this task, we observed three primary081

categories of failure as in Figure 1: tool output082

errors, long-chain inconsistencies, and error prop-083

agation. These errors arise precisely because this084

task amplifies the risk of faulty target location by085

tools due to a lack of domain knowledge, increases086

the chance for intermediate mistakes to accumulate087

and propagate along extended reasoning chains,088

and makes it difficult to maintain consistent refer-089

ences and logic across multiple images – ultimately090

undermining the reliability of the conclusions.091

Motivated by these challenges, we seek to enable092

reliable and domain-adapted multi-image reason-093

ing for geological exploration. To this end, we094

present Structured Target-centric Agentic Chain-of-095

Thought, STA-CoT, a novel framework designed096

to deliver consistent and accurate multi-image geo-097

logical reasoning. It orchestrates specialized agen-098

tic modules within a structured chain-of-thought099

paradigm, explicitly aligning reasoning steps with100

domain knowledge, visual targets, and cross-image101

dependencies. By structuring the reasoning pro-102

cess around targeted regions and incorporating103

agent-based planning, execution, and verification,104

STA-CoT mitigates the unique complexities of ge-105

ological multi-image tasks. Specifically, it coor-106

dinates three closely integrated agents: a Planner107

that retrieves relevant geological knowledge and108

decomposes the complex multimodal task into a109

sequence of manageable sub-tasks; an Executor110

that performs these sub-tasks by invoking special-111

ized tools and integrates outputs via a rule-based112

controller to ensure accurate visual alignment; and113

a Verifier that continuously monitors intermedi-114

ate reasoning steps, triggering a stepwise refine-115

ment process to direct the Executor to revise faulty116

outputs, thereby preventing error propagation and117

maintaining causal stability throughout the chain.118

As such, STA-CoT grounds each reasoning step119

to specific image regions and systematically tracks 120

cross-image relationships through structured agen- 121

tic planning. Consistency is maintained by continu- 122

ally verifying intermediate outputs, while a major- 123

ity voting mechanism further reduces long-chain 124

inconsistencies, yielding stable and reliable con- 125

clusions in complex multi-image geological rea- 126

soning. To rigorously evaluate our approach, we 127

leverage MineBench, a dedicated benchmark de- 128

signed for multi-image mineral exploration tasks, 129

which integrates both geological and hyperspectral 130

remote-sensing data to emulate real-world explo- 131

ration scenarios (Yu et al., 2024). Empirical results 132

demonstrate that STA-CoT achieves state-of-the- 133

art performance, substantially outperforming prior 134

MCoT, multi-agent, and tool-augmented MLLM 135

baselines. These affirm the framework’s effective- 136

ness in delivering reliable and consistent geological 137

reasoning across complex multi-image contexts. 138

2 Related Work 139

Multimodal Chain-of-Thought. Multimodal 140

Chain-of-Thought (MCoT) (Zhang et al., 2023) 141

reasoning frameworks have rapidly advanced from 142

early prompt-based works that generate stepwise 143

textual rationales grounded in visual content (Fei 144

et al., 2024; Zhang et al., 2024) to sophisticated 145

paradigms like retrieved-augmented, structured and 146

tool-augmented multimodal reasoning. Retrieval- 147

Augmented Generation (RAG) injects external or 148

domain-specific knowledge to inform inferences in 149

complex scenarios (Dong et al., 2024; Pan et al., 150

2024). And, structured and planning-based rea- 151

soning approaches (Gao et al., 2024; Hu et al., 152

2024), such as Graph-of-Thought (GoT) (Besta 153

et al., 2024) and Compositional CoT (CCoT) (Mi- 154

tra et al., 2024), explicitly model the dependen- 155

cies and relationships between reasoning steps, of- 156

ten leveraging graph-based or compositional rep- 157

resentations to capture intricate cross-modal in- 158

teractions. Meanwhile, agentic tool-augmented 159

and Chain-of-Action (CoA) methods, including 160

KAM-CoT (Mondal et al., 2024), MM-Verify (Sun 161

et al., 2025), and Det-CoT(Wu et al., 2024), ex- 162

tend MCoT by integrating external tools (e.g., vi- 163

sual annotators, object detection, and recognition) 164

to enable interactive perception and iterative re- 165

finement of visual evidence. Despite these ad- 166

vances, most existing paradigms are evaluated on 167

single-image or short-context tasks, lack robust 168

mechanisms for explicitly tracking cross-image 169
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references. In contrast, STA-CoT is designed to170

tackle the unique challenges of multi-image geolog-171

ical reasoning, where retrieved-augmented domain-172

contextual planning, accurate alignment and ref-173

erencing of targeted regions across images, and174

structured management of long and error-prone175

reasoning chains are indispensable for consistent176

decision making.177

Consistency and Verification. Maintaining logi-178

cal consistency is particularly challenging in safety-179

critical or scientific domains like mineral explo-180

ration, where errors at intermediate reasoning steps181

can undermine overall trustworthiness (Havrilla182

and Iyer, 2024). Existing approaches to consis-183

tency in reasoning generally operate at the chain or184

output level, employing strategies such as majority185

vote (Tan et al., 2024; Zelikman et al., 2022) and186

post-hoc verification (Sun et al., 2025; Yan et al.,187

2025). While these methods can improve the plau-188

sibility of final predictions by selecting among al-189

ternative reasoning chains, they offer limited mech-190

anisms for diagnosing and repairing errors within191

the reasoning process itself (Zhou et al., 2024).192

Such coarse-grained consistency enforcement is193

often insufficient in domains where interpretability194

and reliability at every reasoning step are required.195

In contrast, our STA-CoT framework addresses this196

critical gap by introducing an agent-driven, itera-197

tive refinement mechanism that enables stepwise198

error detection and targeted repair, thus supporting199

robust and trustworthy multimodal reasoning.200

Mineral Exploration. Mineral exploration ex-201

emplifies multi-image geological reasoning, requir-202

ing the integration of geological and hyperspectral203

evidence from multiple remote-sensing images to204

identify mineralization patterns and predict deposit205

locations (Sabins, 1999; Zuo et al., 2021). Un-206

like standard multimodal tasks, models must accu-207

rately detect and correlate key geological features208

across images, mirroring expert geoscientists’ ap-209

proach of synthesizing spatial and spectral cues210

for reliable decisions. Although agentic MLLMs211

have advanced scientific reasoning in fields such212

as mathematics (Deng et al., 2024), medicine (Kim213

et al., 2024; Li et al., 2024), and geoscience (Liu214

et al., 2024; Xu et al., 2024), few frameworks (Yu215

et al., 2024) address the specific challenge of cross-216

image reasoning essential to mineral exploration.217

This motivates our STA-CoT framework, which ex-218

plicitly structures agentic reasoning around multi-219

image evidence to achieve consistent and robust220

mineral prospectivity assessments. In contrast to 221

MineAgent, which primarily established modular 222

pipelines and benchmarks, this work presents a 223

structured agentic chain-of-thought framework that 224

directly tackles cross-image consistency and tar- 225

geted geological reasoning. 226

3 Methodology 227

To enable automated mineral exploration with 228

remote-sensing imagery, we formally define the 229

reasoning objective as follows. 230

Task Formulation. Given a mineral-exploring 231

query Q (e.g., ‘Given the following remote-sensing 232

images, can deposits be detected? Answer: A. Yes 233

B. No.’) and a set of remote-sensing images I 234

representing a targeted region, the objective is to 235

determine the presence or absence of deposits: 236

Afinal ∼M(I, Q; θM ) (1) 237

where M denotes a multimodal large language 238

model parameterized by θM , and Afinal ∈ {A,B} 239

is the final predicted answer. 240

To address the complexity of multi-image geo- 241

logical reasoning – requiring integration of spatial 242

and spectral evidence, cross-image referencing, and 243

logical consistency – we adopt an agentic reason- 244

ing framework, as inspired by prior works (Yan 245

et al., 2025; Li et al., 2024; Kim et al., 2024; Sun 246

et al., 2025). Within this framework, the model not 247

only produces a final answer but also outputs an 248

interpretable reasoning chain: 249

R = (r(1), . . . , r(N)) (2) 250

where each step r(i) consists of a structured sub- 251

task and its corresponding multimodal observation 252

over N steps. Furthermore, STA-CoT explicitly 253

orchestrates structured domain-informed planning 254

(§3.1), target-centric visual execution (§3.2), and 255

agent-driven consistency verification (§3.3) to han- 256

dle geological reasoning tasks as below. Please see 257

Figure 2 for an illustration. 258

3.1 Structured Domain-informed Planning 259

Effective multi-image geological reasoning de- 260

mands not only general visual understanding but 261

also the ability to decompose complex queries into 262

domain-specific, actionable steps. To this end, 263

STA-CoT incorporates a domain-informed planner 264

(Mp), which systematically translates each mineral 265
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Figure 2: Our Structured Target-centric Agentic Chain-of-Thought (STA-CoT) framework for multi-image geological reasoning,
which consists of a Planner (Mp), an Executor (Me), and a Verifier (Mv).

exploration query Q into a structured sequence of266

plan segments S = (s(1), . . . , s(N)).267

This planner operates by leveraging a domain268

knowledge base (Kdomain), encapsulating key geo-269

logical concepts, and a curated visual toolkit (Tset)270

tailored to mineral exploration. The toolkit pro-271

vides specialized operations, such as (i) targeting272

alteration zones (box maker color mode), (ii) iden-273

tifying salient geological structures (box maker fea-274

ture region), (iii) exploring spatial relationships275

across images (spatial relationship explorer), and276

(iv) integrating evidence for decision-making, as277

detailed in Appendix C.4.278

By orchestrating these components, Mp gener-279

ates visually grounded, executable plans that break280

down the task into sub-steps, each aligned with281

relevant image area and geological priors:282

S ∼Mp(Q, I,Kdomain, Tset; θp) (3)283

where θp are the model parameters. This structured,284

domain-informed planning forms the foundation285

for accurate multi-image geological reasoning.286

3.2 Target-centric Visual-grounded Execution287

To faithfully realize each step of the structured288

reasoning plan, STA-CoT employs a model-based289

executor (Me) that transforms abstract plans into290

concrete multimodal actions. Unlike generic execu-291

tion, our executor explicitly aligns every sub-task292

with precise target areas across the input images,293

ensuring that each operation is spatially grounded294

and contextually relevant.295

For each plan segment s(i), the executor iden- 296

tifies the corresponding target area within the se- 297

lected imagery I(i)sel , then invokes the most appro- 298

priate visual tool t(i)sel as specified by the planner. 299

This process yields a rich observation ob(i) = 300

(o
(i)
txt , o

(i)
vis), consisting of both a textual rationale 301

(o(i)txt ) and a visual outcome (o(i)vis), such as an anno- 302

tated or segmented image. 303

Crucially, our execution is target-centric – all ac- 304

tions and tool invocations are explicitly conditioned 305

on the spatial context of geological interest, which 306

is vital for accurate cross-image reasoning. More- 307

over, the process is visual-grounded – ensuring that 308

each step produces verifiable visual evidence. 309

To safeguard the fidelity of each execution, Me 310

incorporates an internal rule-based controller Frule, 311

which checks the alignment between described re- 312

gions and visual outputs, automatically flagging 313

and correcting inconsistencies (see Appendix C.3). 314

This mechanism, together with optional agentic 315

feedback [f
(k)
ext ], promotes error-resistant execution: 316

ob(i) = (o
(i)
txt , o

(i)
vis) ∼Me(s

(i), [f
(k)
ext ]; θe) (4) 317

where θe denotes executor parameters. 318

By explicitly grounding each reasoning step in 319

both targeted spatial context and visual evidence, 320

the STA-CoT executor ensures that multi-image 321

geological reasoning is interpretable, traceable, and 322

resilient to cascading errors. 323
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3.3 Agentic Consistency-driven Verification324

Long-chain multi-image geological reasoning is325

uniquely prone to error propagation and logical326

inconsistency, as minor mistakes in intermediate327

steps can accumulate and distort the final conclu-328

sion. Traditional output-level consistency mecha-329

nisms are insufficient for safety-critical scientific330

domains, where stepwise interpretability and re-331

liability are paramount. Therefore, STA-CoT in-332

troduces an agentic verifier to proactively monitor,333

validate, and iteratively repair the reasoning pro-334

cess, ensuring robust and trustworthy outcomes.335

Verifier Basic. The verifier (Mv) serves as a336

critical agent in STA-CoT, tasked with examining337

the entire reasoning chain R = (r(1), . . . , r(N)),338

where each node r(i) = (s(i), ob(i)) links a planned339

segment and its multimodal observation. Mv con-340

ducts fine-grained checks at both node and chain341

levels—validating logical soundness, factual cor-342

rectness, and semantic alignment between textual343

and visual components (e.g., between o
(i)
txt and o

(i)
vis).344

On detecting flaws, the verifier generates targeted345

corrective feedback Fcorr for self-repair. The for-346

mal output of the verifier is:347

(isValid, Ap, Fcorr) ∼Mv(R,Q; θv) (5)348

where isValid flags chain validity, Ap is the candi-349

date answer, and Fcorr lists corrective guidance.350

Progressive Reasoning Chain Construction.351

STA-CoT utilizes a memory cache Mcache as a352

shared workspace initialized with the query Q and353

input images I, continuously enriched with inter-354

mediate results. The planner Mp generates a struc-355

tured sequence of plan segments S(N), while the356

executor Me performs each s(i), producing multi-357

modal observations ob(i). Each resulting reasoning358

node r(i) = (s(i), ob(i)) is appended to the chain:359

R(i) ← R(i−1) ⊕ r(i) (6)360

This progressive execution and cache updating en-361

sure every step leverages the latest context, facili-362

tating coherent and context-aware reasoning.363

Adaptive Stepwise Chain Refinement. After364

constructing R(N), the verifier Mv checks validity365

as per Eq. 5. If isValid = true, Ap is accepted366

as the final answer Afinal. If isValid = false, Mv367

identifies m erroneous nodes in R(N), indexed by368

{x1, . . . , xm}, and issues targeted revision guid-369

ance f
(xp)
corr for each. These nodes are then re-370

executed by the executor Me using the feedback,371

generating revised observations ob(xp)
re , and updat- 372

ing the chain as follows: 373

r
(xp)
re ← (s(xp), ob

(xp)
re ) (7) 374

The refined chain R
(N)
re is re-validated by Mv, and 375

this loop continues until validation succeeds or a 376

maximum number of iterations is reached. 377

Fallback Global Majority Vote. If the chain 378

fails to pass verification after K rounds, STA-CoT 379

employs a majority voting mechanism. For each 380

round r ∈ [1,K], a candidate answer A(r)
p is ex- 381

tracted from the refined chain R
(N),r
re . The final 382

answer is then determined as: 383

Afinal ← majority-vote
(
A(1)

p , . . . , A(K)
p

)
(8) 384

This approach ensures robust decision-making by 385

aggregating the most consistent answer across mul- 386

tiple correction attempts. 387

By integrating fine-grained, agentic verification 388

with iterative repair and robust fallback voting, 389

STA-CoT delivers consistent, interpretable, and 390

scientifically trustworthy multi-image geological 391

reasoning, as detailed in Algorithm A. 392

4 Experiment 393

Implementation Details. We evaluate STA- 394

CoT1 on the MineBench dataset (Yu et al., 2024), 395

which is a recently proposed geological reasoning 396

task focused on multi-image mineral deposit iden- 397

tification. Following (Yu et al., 2024), we report 398

three evaluation metrics: F1 score for the positive 399

class (Pos.F1), macro-averaged F1 (Avg.F1), and 400

Matthews Correlation Coefficient (MCC) (Chicco 401

and Jurman, 2020). STA-CoT consists of three core 402

roles: the planner, executor, and verifier, where the 403

planner is instantiated with the Gemini-2.0 (Team 404

et al., 2024), as high-quality planning is essential 405

for guiding the execution and verification of com- 406

plex multi-image tasks. The executor and verifier 407

roles are realized using a diverse set of MLLMs, 408

including proprietary models such as GPT-4o (Ope- 409

nAI, 2024) and Gemini-2.0, and the open-source 410

Qwen-2.5-7B (Bai et al., 2025). The detailed ex- 411

periment setting and prompts for three modules are 412

provided in Appendix C.1 and C.4. 413

1Our anonymous code is available at https://anonymous.
4open.science/r/STA-CoT/.
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Model Method
Metrics

Pos.F1 Avg.F1 MCC

GPT-4o

MCoT 34.81 57.19 26.07
RAG 35.92 58.32 27.46
Tool-augmented 26.01 33.38 17.66
MineAgent 61.20 77.19 56.30
STA-CoT 63.10 78.62 58.03

Gemini-2.0

MCoT 37.50 66.10 40.45
RAG 41.12 67.75 39.51
Tool-augmented 37.50 55.16 33.97
MineAgent 60.18 78.06 59.62
STA-CoT 66.67 80.75 62.12

Table 1: Performance comparison of different MCoT meth-
ods on the MineBench benchmark.

4.1 Main Result414

In Table 1, we evaluate STA-CoT against four415

representative baselines as identified in Sec-416

tion 2: standard MCoT, RAG, Tool-augmented,417

and MineAgent (structured and planning-based rea-418

soning) methods. The tool-augmented baseline is419

implemented using our target-centric tools without420

additional verification or refinement steps. RAG421

yields only marginal improvement over standard422

MCoT, while tool-augmented baseline degrades423

performance due to the injection of noisy or un-424

validated relational information in the absence of425

verification. MineAgent achieves substantial gains426

over unimodal and less structured baselines. STA-427

CoT achieves the highest scores across all eval-428

uation metrics, surpassing MineAgent by +1.4%429

Avg.F1 on GPT-4o and +2.6% Avg.F1 on Gemini-430

2.0. These results underscore the importance of431

structured planning and consistent reasoning.432

4.2 Necessity of Each Module433

STA-CoT explicitly modularizes Planner, Executor,434

and Verifier. To validate the complementary roles435

of these modules, we first conduct ablation studies436

to measure the contributions of each component.437

This analysis identifies how each component ad-438

dresses key challenges such as evidence integration,439

error suppression, and logical consistency.440

As shown in Table 2, removing domain knowl-441

edge by disabling Kdomain in the Planner leads to442

a noticeable, but relatively moderate, reduction in443

performance. This suggests that explicit domain444

adaptation is necessary for well-structured and con-445

textually relevant plans, yet the Planner’s impact is446

less critical as MLLMs have been equipped with447

fair geological knowledge. In contrast, ablating the448

Method Pos.F1 Avg.F1 MCC

w/o Planner 52.05 72.79 45.59
w/o Executor 10.39 52.20 22.04
w/o Verifier 37.50 55.16 33.97
STA-CoT 66.67 80.75 62.12

Table 2: Ablation Study using Gemini-2.0.
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Figure 3: Performance for different back-end model combi-
nations of Executor and Verifier (Avg.F1).

Executor, thus eliminating multimodal evidence ex- 449

traction, results in a substantial drop, highlighting 450

the Executor’s essential role in providing visual 451

grounding. Similarly, disabling the Verifier causes 452

a marked Avg.F1 decline, underscoring its pivotal 453

function in maintaining logical reliability and sup- 454

pressing error propagation. 455

These results confirm that while all three mod- 456

ules contribute to overall reasoning performance, 457

the Executor and Verifier are particularly indispens- 458

able and complementary. 459

4.3 Efficient Executor-Verifier Tradeoff 460

As it’s verified that our Executor and Verifier play 461

dominant roles in the above ablation study, we fur- 462

ther investigate how their assignment and capacity 463

trade-offs impact overall performance and system 464

efficiency. The Executor is invoked at every reason- 465

ing step for stepwise multimodal evidence extrac- 466

tion, making it a candidate for lightweight model 467

deployment to reduce computational cost. In con- 468

trast, the Verifier operates only at the chain level, 469

enforcing global consistency and error correction, 470

and thus can be allocated higher-capacity models 471

without incurring significant resource overhead. 472

Empirical results in Figure 3 validate this de- 473

sign: increasing either module’s capacity improves 474

performance, but upgrading the Verifier yields a 475

more pronounced gain than upgrading the Execu- 476

tor. Notably, pairing a strong Verifier with a weaker 477

Executor achieves significantly higher Avg.F1 than 478
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(a)  w/o vs. w/ Target-centric Visual Guidance. (b) w/o vs. w/ Graph-based Spatial Reasoning. 

Enhancement

Executor

Planner

Executor

M1_Area1

M2_Area1

M3_Area1

M2_Area1

Figure 4: Comparison of Qwen-2.5-7b performance with and without visual-grounded enhancements within Executor: (a)
visual guidance in the box maker tool; (b) graph-based guidance in the spatial relationship explorer.

Figure 5: Impact of visual-grounded enhancements on Pos.F1
scores for Qwen-2.5-7b and Gemini-2.0.

the reverse, illustrating that robust chain-level ver-479

ification can effectively compensate for upstream480

limitations in evidence extraction. These findings481

provide a practical insight into STA-CoT: in real-482

world deployments, prioritizing resources for the483

Verifier while using efficient models for execution484

can deliver strong reasoning performance with min-485

imal computational cost.486

4.4 Executor: Enhancing Visual-grounding487

Motivated by the core challenges of multi-image488

geological reasoning, particularly the need for ac-489

curate target identification and precise cross-image490

referencing, we evaluate the effectiveness of visual-491

grounded augmentation within the Executor.492

Visual Guidance Enhances Target Accuracy.493

To address the challenge of accurate localization494

within each geological image, we integrate visual495

guidance into the box maker tool, providing curated496

annotation examples and domain-specific prompts.497

As shown in Figure 4(a), removing visual guidance 498

leads the Executor to produce noisy or erroneous 499

annotations, which yields a significant improve- 500

ment in Pos.F1 scores (Figure 5), confirming its 501

critical role in accurate geological information. 502

Graph-based Reasoning Improves Cross-image 503

Consistency. To effectively maintain precise 504

cross-image referencing, another critical challenge, 505

we incorporate symbolic graph-based relational 506

reasoning into the spatial relationship explorer 507

tool (see Appendix C.2). The graph-based aug- 508

mentation explicitly encodes relational information 509

across multiple images, facilitating the continu- 510

ity and consistency that MLLMs alone struggle to 511

achieve (Figure 4(b)). Removing this mechanism 512

results in a sharp performance decline (Figure 5), 513

emphasizing that graph-based reasoning is essen- 514

tial for capturing complex spatial dependencies. 515

Essential for Weaker MLLMs. These visual- 516

grounded mechanisms are particularly beneficial 517

for smaller models such as Qwen-2.5-7B, substan- 518

tially improving their baseline accuracy. Larger 519

models, such as Gemini-2.0, also benefit from struc- 520

tured visual and relational guidance, further con- 521

firming the general applicability and necessity of 522

these enhancements across models. 523

4.5 Verifier: Enhancing Chain Consistency 524

through Stepwise and Global Correction 525

Given the complexity of long-chain geological rea- 526

soning, we evaluate two key consistency mecha- 527

nisms integrated within Verifier: stepwise refine- 528

ment and global majority voting ( Fig. 6). Both 529
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Figure 6: Comparison of consistency mechanisms. (a) Ma-
jority vote, (b) Stepwise refinement, (c) STA-CoT.

Method Pos.F1 Avg.F1 MCC

w/o refinement 51.30 68.81 49.31
w/o majority vote 35.05 64.74 36.73
STA-CoT (full) 66.67 80.75 62.12

Table 3: Ablation results for stepwise refinement and global
majority vote mechanisms on Gemini-2.0.

mechanisms individually and in combination con-530

tribute to improved reasoning reliability and accu-531

racy, as reported in Table 3.532

Global Majority Voting Stabilizes Outputs.533

Employing global majority voting without refine-534

ment partially stabilizes outputs by aggregating535

multiple independent answers from a reasoning536

path. However, early errors often persist and prop-537

agate throughout the chain, resulting in only mod-538

erate performance. This indicates that majority539

voting alone is insufficient to resolve correlated or540

persistent errors.541

Stepwise Refinement Repairs Local Errors.542

Applying stepwise refinement without global vot-543

ing effectively addresses some local errors within544

individual reasoning chains. However, this ap-545

proach struggles with global inconsistencies across546

chains, which significantly reduces overall perfor-547

mance. Such unresolved inconsistencies highlight548

the necessity of global consensus mechanisms to549

achieve reliable reasoning.550

STA-CoT achieves the best overall performance,551

confirming that the combination of adaptive local552

repair and global consensus enhances stability and553

interoperability of the geological reasoning.554

4.6 Cross-images Deposit Localization555

While STA-CoT primarily addresses classification-556

style reasoning, practical mineral exploration re-557

quires accurate localization of deposits that typi-558

cally exhibit spatial continuity and extend across559

M2_Area2

M2_Area2

M1_Area1

overlay

overlay

(a) Spatial graph (b) Deposit localization 

Figure 7: Deposit localization and area estimation. (a) Spatial
graph illustrating candidate regions (red) and detected spatial
relationships (blue). (b) Predicted high-potential regions are
shown in red, while purple markers indicate ground-truth
deposit locations.

multiple images. This necessitates cross-image 560

reasoning to integrate fragmented evidence into 561

spatially coherent mineralization zones. 562

To meet this need, we augment STA-CoT with a 563

post-hoc localization module (Appendix C.4) that 564

leverages the spatial graph constructed during exe- 565

cution, where nodes denote candidate regions and 566

edges capture spatial relationships (e.g., overlap, 567

adjacency), providing a structured basis for cross- 568

image evidence aggregation. Then, the localiza- 569

tion module refines candidate regions by iteratively 570

merging spatially connected areas, emphasizing 571

consistency across images and filtering out isolated 572

or low-confidence predictions. 573

As shown in Figure 7, this approach enables 574

spatially precise predictions closely aligned with 575

ground truth. Empirically, it achieves a recall 576

of 76.71% while reducing the explored area by 577

64.76%, demonstrating that structured cross-image 578

reasoning is essential for accurate and efficient de- 579

posit localization in real-world geological tasks. 580

5 Conclusion 581

We proposed STA-CoT, a structured agentic rea- 582

soning framework for consistent multi-image ge- 583

ological reasoning in mineral exploration. STA- 584

CoT integrates domain-informed planning, target- 585

centric execution, and iterative verification to ad- 586

dress cross-image dependencies and long-chain in- 587

consistencies. Evaluated on the MineBench bench- 588

mark, STA-CoT outperforms prior methods in both 589

accuracy and consistency, particularly excelling in 590

visual-grounded execution and stepwise error cor- 591

rection. Our results demonstrate the framework’s 592

robustness, efficiency, and practical value for au- 593

tomating expert-level geological reasoning using 594

remote-sensing data. 595
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Limitations596

One limitation of our current framework is the597

increased computational overhead introduced by598

multi-step execution and iterative refinement,599

which may result in higher inference latency and600

resource usage. Future work will explore optimiza-601

tion strategies to enhance computational efficiency602

while preserving reasoning robustness.603

Additionally, the toolkit design is tailored to604

domain-specific characteristics, and the scalability605

of STA-CoT to larger-scale or cross-domain multi-606

image reasoning tasks remains to be systematically607

validated. We plan to systematically evaluate and608

adapt our approach for broader application scenar-609

ios in future research.610
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A STA-CoT786

Algorithm 1 Reasoning Chain Construction
1: procedure BUILDCHAIN(Q, I,Kdomain, Tset)
2: R(N) ← ∅; Mcache ← Initial(Q, I)

3: S(N) ←Mp(Q, I,Kdomain, Tset) ▷ Eq.3
4: for i = 1 to N do
5: s(i) ∈ S; ob(i) ←Me(s

(i)) ▷ Eq.4
6: r(i) ← (s(i), ob(i)) ▷ Form the reasoning node
7: R(i) ← R(i−1) ⊕R(i) ▷ Eq.6
8: Mcache ← Update(r(i))
9: end for

10: return R(N)

11: end procedure

Algorithm 2 Adaptive Stepwise Chain Refinement
Require: Question Q, Image I, Domain Knowledge Kdomain,

Toolset Tset

Ensure: Final Answer Afinal

Step 1: Reasoning Chain Construction
1: Acandidate ← ∅
2: R(N) ← BUILDCHAIN(Q, I,Kdomain, Tset)

Step 2: Adaptive Stepwise Chain Refinement.
3: for r = 1 to K do
4: (isV alid,A

(r)
p , Fcorr)←Mv(R

(N), Q)) ▷ Eq.5
5: Add A

(r)
p to Acandidates

6: if isV alid then
7: return A

(r)
p ▷ Return validated answer

8: end if
9: for x = 1 to m do

10: ob
(xp)
re ←Me(s

(xp), f
(xp)
corr ) ▷ Eq.4

11: r
(xp)
re ← (s(xp), ob

(xp)
re ) ▷ Eq. 7

12: Mcache ← Update(Mcache, r
(xp)
re )

13: end for
14: R

(N),r
re ← Rprefix ⊕ r

(x1)
re ⊕ · · · ⊕ r

(xm)
re ▷ Rebuild

15: end for
Step 3: Fallback Global Majority Vote

16: if Acandidates ̸= ∅ then
17: return MAJORITYVOTE(Acandidates) ▷ Eq.8
18: else
19: return "Failed" ▷ All attempts failed
20: end if

B Case study787

We present a detailed case study (Figure 6) to illus-788

trate how STA-CoT effectively manages long, com-789

plex, and error-prone reasoning chains, addressing790

key challenges such as error propagation and global791

inconsistencies. Specifically, we highlight the co-792

ordinated roles of the rule-based controller and ver-793

ifier in ensuring consistent multi-image geological794

reasoning. Initially, the reasoning process begins 795

with Step 1, where the rule-based controller iden- 796

tifies a location mismatch error—discrepancy be- 797

tween the textual description and visual annotation. 798

This detection immediately triggers a retry of Step 799

1, effectively preventing early-stage errors from 800

propagating. Subsequent reasoning progresses un- 801

til completion, at which point the verifier evaluates 802

the entire chain and identifies two critical errors: 803

• Step 2 error: Incorrectly interpreting a 804

grayscale image (M2) as containing colored, 805

high-potential mineralization zones. 806

• Step 5 error: Faulty spatial relationship anal- 807

ysis derived directly from the incorrect Step 2 808

assessment. 809

These errors cause an initial validity check to fail 810

(Valid Flag=0), necessitating targeted refinement. 811

In the refinement phase, STA-CoT triggers the 812

refinement executor to address these specific errors: 813

• Step 2 Retry: Correctly recognizes image 814

M2 as grayscale, accurately concluding no 815

potential mineralization. 816

• Step 5 Retry: Revises spatial relationship 817

analysis based on the corrected Step 2 out- 818

come, recognizing insufficient spatial evi- 819

dence to support a deposit. 820

Upon reevaluation, the verifier confirms that all 821

prior errors have been successfully resolved (Valid 822

Flag=1), and STA-CoT reaches a stable, consis- 823

tent conclusion: No deposit present. This case 824

exemplifies the robustness and reliability of STA- 825

CoT, demonstrating how structured verification and 826

targeted refinement effectively prevent error accu- 827

mulation and ensure globally consistent reasoning 828

outcomes. 829

C More Configuration Details 830

C.1 Expriment Setting 831

We evaluate a diverse set of open-source and 832

closed-source multimodal large language models 833

(MLLMs) on the MineBench dataset. For Qwen- 834

VL-2.5-7B2, we utilize official pretrained check- 835

points and perform all local inference on two 836

NVIDIA L40 GPUs (48GB each). For closed- 837

source models such as GPT-4o-2024-08-06 and 838

Gemini-2.0-Flash and Gemini-2.0-flash-thinking- 839

exp-01-21, inference is conducted through their re- 840

spective public APIs. When interacting with these 841

2https://huggingface.co/Qwen/Qwen2.
5-VL-7B-Instruct
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Step2: ... shows a large, dense area 
with saturated colors, indicating 
high potential....

Step1: ...shows  in the central and 
bottom-right areas. 

Step1_Retry: ...shows distinct 
textural differences in the central 
and bottom-right areas. ...

Step5: ... M2_area1 is spatially 
associated with the M1, M3, and 
M4, indicating a coherent pattern 
that suggests the presence of a 
potential copper deposit.....

M2_Area1

Step6: ... strong evidence of M1, which is a 
critical feature for  deposits. Additionally, there 
is a spatial relationship across image, supporting 
the presence, answer is Yes ...

M3_Area1

M4_Area1

M1_Area2

Final answer: No,  Valid Flag: 0,  error_steps: 
{index: 2, reason: M2 is a grayscale image with no colored regions},
{index: 5, reason: Step 5 is based on the incorrect identification of M2 in Step 2; as 
a result, the assessment of spatial relationships is inaccurate.} Verifier

Step2_Retry: ...the image is 
grayscale, indicating no areas of 
potential.....

Step5_Retry: ...the spatial graph remains 
incomplete and is missing essential features 
needed to establish the presence of a deposit...

...

Final answer:No,  Valid Flag: 1,  No error_steps Verifier

Ruler controller: described as 
bottom-right but box in bottom-left

Progressive Reasoning 

Chain Construction

Adaptive Stepwise 

Chain Refinement

<m1>

<m1>

<m2>

<m2>

Figure 8: Visualization of qualitative example showcasing how our STA-CoT framework achieves successful, consistent
multi-image geological reasoning.

APIs, the allocation of computational resources,842

memory, and execution time is fully managed by843

the service providers (OpenAI and Gemini). It is844

important to note that the Gemini series may be sub-845

ject to automatic updates or model replacements846

by the provider, which can result in variations in847

performance over time. Specifically, Gemini-2.0848

refers to the version released in February 2025. To849

ensure stability and comparability across all model850

outputs, we set the temperature to 0.05.851

C.2 Spatial Graph Construction852

To enable robust cross-image spatial reasoning, we853

construct a spatial graph that captures the geomet-854

ric and relational structure among all candidate855

regions identified from multiple remote sensing im-856

ages. The process begins by aggregating all bound-857

ing boxes (region proposals) extracted from each858

image. Each box is uniquely indexed and normal-859

ized to the respective image’s coordinate system to860

ensure consistent comparison.861

For every pair of images, we systematically ana-862

lyze the relationships between all box pairs across863

the image set. Two primary spatial relationships864

are considered: overlap and proximity. Overlap865

relationships are established when the Intersection-866

over-Union (IoU) between two boxes from differ-867

ent images exceeds a predefined threshold, with the868

overlap degree used as a confidence score. If no869

overlap exists but the boxes are sufficiently close,870

we instead establish a proximity relationship, anno-871

tating the edge with a proximity-based confidence 872

score. All spatial relationships are also tagged 873

with their relative spatial direction (e.g., left, right, 874

above, below, overlaps). 875

These detected relationships are used to con- 876

struct a directed spatial graph, where each node 877

corresponds to a candidate box, and edges encode 878

the type and confidence of spatial relationships 879

between regions from different images. This multi- 880

image spatial graph is then aggregated and ana- 881

lyzed to identify connected components, groups of 882

spatially coherent regions that may reflect geologi- 883

cally significant mineralization patterns spanning 884

multiple images. 885

This spatial graph underpins subsequent post- 886

hoc localization, area estimation, and multi-image 887

geological reasoning steps, providing a structured 888

and interpretable foundation. 889

C.3 Rule-Based Output Validation and 890

Iterative Feedback 891

This appendix details our rule-based controller for 892

automatic output validation and feedback-driven 893

correction in the annotation process. The controller 894

performs real-time checks on tool-generated bound- 895

ing boxes and associated descriptions, immediately 896

identifying common errors and issuing targeted 897

prompts to guide annotation revision. Below, we 898

summarize the primary error types and representa- 899

tive feedback provided by the system. 900
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Region Size Errors. Marking excessively large901

regions can reduce specificity, while marking re-902

gions that are too small may capture irrelevant903

noise. Our controller automatically flags boxes that904

fall outside the acceptable size range and generates905

immediate feedback such as:906

Feedback
1. Too large: avoid marking a large region. Please
focus on specific features.
2. Too small: avoid marking small isolated spots and
areas that are not clear evidence.

907

Overlapping or Redundant Regions Highly908

overlapping boxes are typically redundant and can909

hinder downstream analysis. The controller detects910

significant overlap (greater than 50%) and issues911

prompts such as:912

Feedback
Some of your marked regions overlap significantly.
Please remove redundant boxes and ensure each box
covers a distinct, important feature.

913

Location-Description Mismatch To ensure in-914

terpretability and support spatial reasoning tasks,915

we cross-validate each box’s coordinates with its916

textual description. If mismatches or coordinate917

system confusions are detected, the controller pro-918

vides clear guidance, including a schematic refer-919

ence of the coordinate system:920

Feedback
There is confusion between ’left’ and ’right’. In our
coordinate system, x=0 corresponds to the LEFT edge
and x=1 to the RIGHT edge of the image. Please
double-check that your spatial description (e.g., “top-
left”) matches the actual box position in [ymin, xmin,
ymax, xmax] format. Reference:

(0,0) ----> (0,1)
| |
v v

(1,0) ----> (1,1)
921

Excessive Total Area or Region Count To pre-922

vent loss of focus and annotation noise, the con-923

troller enforces limits on both total marked area924

and region count. When these limits are exceeded,925

the system provides feedback such as:926

Feedback
You have marked too many regions or the total area
covered is excessive. Please limit your annotation to
at most five regions and ensure the combined area
covers less than 70% of the image.

927

Iterative Feedback and Correction For each928

detected error, the STA-CoT generates feedback929

that evolves over multiple correction rounds. Ini- 930

tial feedback is general and constructive, while 931

repeated violations elicit increasingly detailed, op- 932

erational guidance. On the final attempt, feedback 933

includes explicit instructions and a coordinate sys- 934

tem reference to resolve any remaining ambiguities, 935

as following: 936

Feedback
This is your final attempt. Please ensure:
1. All regions are appropriately sized (neither too
large nor too small).
2. Location descriptions match actual box coordinates
([ymin, xmin, ymax, xmax], with (0,0) at the top-left).
3. If no salient features are present, you may leave the
coordinates empty and state this in your description.
Reference:

(0,0) ----> (0,1)
| |
v v

(1,0) ----> (1,1)
937

This error-driven, feedback-enhanced controller 938

forms the backbone of our automated annota- 939

tion quality assurance, ensuring robust, inter- 940

pretable, and high-quality region outputs for vision- 941

grounded Executor. 942

C.4 Detailed Prompt Construction for 943

STA-CoT 944

We provide detailed prompts for each module and 945

the toolkit of STA-CoT. 946
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Planner
You are an expert in remote sensing and task planning. Your task is to analyze the following question and create a
detailed, logically ordered plan.

Provided Information

• Question: [The analysis question]

• Domain Knowledge Base: [Relevant context, if any]

• Available Tools: [List of suggested tools]

Task Guidelines

1. Task Decomposition:

• Break down the analysis into clear, sequential steps.
• Each step should be self-contained and focused.
• Steps should follow a logical progression.
• Include clear expected outcomes.

2. Resource Selection:

• Choose ONLY the most relevant images for each step.
• Explain why each image is needed.

3. Tool Selection:

• Only include tools when visual analysis is necessary.
• Each tool must have a clear purpose.
• Explain why each tool is needed.

Result Format
[

{
"Step": "Step number and name",
"Thought": "Why this step is necessary and what it provides",
"Action": [

{
"Suggested Tool": "Tool name (if needed)",
"Action": "Specific action and why this tool is needed"

}
],
"Resources": ["List of specific images needed for this step"]

}
]

947
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Executor
You are a remote sensing expert specializing in mineral exploration. Your task is to execute a specific analysis step using
the provided images and tools.

Provided Information

• Current Step: [Description of current subtask]

• Previous Analysis: [Prior step outputs, if any]

• Available Tools: [List of suggested tools]

Task Guidelines

1. Image Assessment:

• Carefully examine the provided image(s).
• Identify features or patterns relevant to the subtask.
• If no clear features are found, answer “No” without using tools.
• If features are found, proceed with tool usage.

2. Tool Selection and Usage:

• Use tools ONLY if necessary for the current step.
• Return the tool parameters.

3. Evidence Collection:

• Document all visual evidence found.
• Explain how the evidence supports or contradicts the analysis.
• If using multiple images, explain the relationships between them.

Result Format
[

{
"Step": "Current step number and description",
"Tools": [

{
"Name": "Tool name",
"Purpose": "Specific reason for using this tool",
"Parameters": "The parameters of tool"

}
],
"Result": {

"Sub_Inference": "Yes|No",
"Explanation": "Detailed findings and evidence",
"Global_Inference": "end|Unknown"

}
}

]

Result Format Guidelines

• Sub_Inference: “Yes” only with strong and clear visual evidence, otherwise “No”.

• Explanation: Clearly connect evidence to conclusions.

• Global_Inference: “end” if concluding, “Unknown” if continuing.
948
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Verifier
You are an expert evaluator tasked with assessing the correctness, coherence, and sufficiency of a multi-step reasoning
process that uses visual tools to answer geoscientific questions.

Provided Information

• Question: [Task question]

• Reasoning Process: [Prior knowledge/reasoning steps]

• Available Tools: [List of visual tools]

Evaluation Criteria

1. Reasoning Structure & Validity

• Is the reasoning logically structured and complete?
• Are all necessary steps present, without major gaps or unsupported claims?
• Minor flaws are acceptable only if they do not undermine the overall conclusion.

2. Tool Usage & Interpretation

• Were the appropriate tools selected and applied correctly?
• Are tool outputs interpreted accurately and relevant to the final conclusion?
• Tool use is optional only if direct visual analysis clearly provides visual evidence.

3. Answer Justification

• Conclude yes only if all CRITICAL features are clearly supported and SECONDARY features are present.
• Conclude no if any CRITICAL feature lacks evidence, contradictions or tool errors undermine CRITICAL

claims, or a CRITICAL feature is missing at any step.

Valid Flag

• Score 1 (Valid Reasoning): Logically sound, accurate, well-supported; appropriate tool usage; final answer
matches tool outputs.

• Score 0 (Flawed Reasoning): Missing/incorrect CRITICAL evidence; tool misuse; misinterpretation; contradic-
tions; unsupported CRITICAL features.

Efficiency Rule

• If a decisive flaw is found (e.g., unsupported CRITICAL feature): Skip remaining steps; score as 0 with
justification.

Apply efficiency logic to minimize unnecessary re-analysis once a conclusive flaw is identified.

Result Format

[
{

"evaluation": {
"score": "1 or 0",
"assessment": {

"final_answer": "yes or no",
"main_reasoning": "Summary of key reasoning steps and supporting evidence",
"tool_evaluation": "Evaluation of tool usage and interpretation",
"reasoning_evaluation": "Assessment of logical structure , completeness , and integration of

tool outputs"
},
"feedback": {

"issues": "List of reasoning flaws if score is 0 (e.g., missing steps , tool misuse ,
misinterpretation , contradictions)",

"error_steps": [
{ "index": 1, "reason": "Misinterpretation of tool output" },
{ "index": 2, "reason": "Incorrectly highlighted area in tool output" }

]
}

}
}

]

949

16



Tool Definitions
Available tools are defined as follows:

{
"box_maker_color_mode": {

"description": "Identify and highlight continuous color regions based on visual color
distribution. Focus exclusively on color regions aligned with the color bar , ignoring the
grayscale background.",

"parameters": {
"Coordinates": "List of bounding box coordinates in normalized form: [[ymin , xmin , ymax , xmax],

...]",
"Image Resource": "List of image filenames used for color analysis",
"Description": "Explain the significance of each marked region and describe its position (e.g.,

'top -left corner shows a large , dense yellow -orange patch indicating high potential '). If
none are found , provide reasoning",

"Location": "List of approximate locations corresponding to each coordinate set (e.g., ['top -
left ', 'center -right ', 'bottom -center ', ...]) to verify coordinates match described
positions"

}
},

"box_maker_feature_region": {
"description": "Mark geologically or structurally significant regions , including patterns ,

textures , or anomalies related to geological formations , structural features , or mineral
deposits.",

"parameters": {
"Coordinates": "List of bounding box coordinates in normalized form: [[ymin , xmin , ymax , xmax],

...]",
"Image Resource": "List of image filenames used for analysis",
"Description": "Explain each marked region 's geological significance and position. If none are

found , provide reasoning.",
"Location": "List of approximate locations corresponding to each coordinate set (e.g., ['top -

left ', 'center -right ', 'bottom -center ', ...]) to verify coordinates match described
positions"

}
},

"spatial_relationship_explorer": {
"description": "Analyze the spatial relationships between marked regions in the provided images.

Step 1: Marking verification (label each as 'CORRECT ' or 'INCORRECT '). Step 2: Analyze
spatial relationships among correctly marked regions.",

"parameters": {
"Image Resource": "List of image filenames used",
"marking_accuracy_verification": "A list labeling each region as 'CORRECT ' or 'INCORRECT ', with

reasoning",
"spatial_relationships": "List of spatial relationships identified among correctly marked

regions , including type , description , and justification"
}

},

"decision_making": {
"description": "Determine the final answer by evaluating both the color -based potential of marked

areas and their spatial relationships , with emphasis on whether critical areas show at
least moderate potential.",

"parameters": {
"Image Resource": "List of image filenames used",
"critical_areas_assessment": "Whether all critical areas show at least moderate potential and

are clearly visible",
"relationship_validity": "Whether spatial relationships between critical areas are accurate and

visually supported"
}

}
}

950
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Localization Tool
You are a professional geological spatial analysis expert specializing in analyzing mineral alteration zones using image
information and spatial relationships. Please help determine the most appropriate parameter settings for running the
geological relationship analysis algorithm.

Optimization Goals:
1. High Recall: Ensure all truly important geological areas are captured in the prediction (minimize false negatives).

2. High Area Reduction: Minimize the total predicted area while maintaining high recall (maximize efficiency).

Algorithm Core Parameters:

• Centrality metric weights:
– degree_centrality_weight [RANGE: 1.0–3.0, DEFAULT: 1.0] – Measures how many direct connections an

alteration zone has to other zones.
– betweenness_centrality_weight [RANGE: 1.0–3.0, DEFAULT: 1.0] – Identifies zones that serve as bridges

between different geological features.

• Chain-related weights:
– chain_presence_weight [RANGE: 1.0–3.0, DEFAULT: 1.0] – Emphasizes intersection zones where

multiple geological processes overlap.

• Area type weights (determine from dialogue):
– Silicification Zone [RANGE: 1.0–2.0, DEFAULT: 1.0]
– Propylitic Alteration [RANGE: 1.0–2.0, DEFAULT: 1.0]
– Hydrothermal Alteration [RANGE: 1.0–2.0, DEFAULT: 1.0]
– False Color Composition [RANGE: 1.0–2.0, DEFAULT: 1.0]

(Different alteration types have varying associations with mineral deposits.)

• Boundary parameters:
– important_areas_count [RANGE: 3–7, INTEGER] – Controls how many high-priority areas the algorithm

will focus on.
– hop2_expansion_height [RANGE: 1.0–1.5] – Vertical expansion multiplier for hop2 level, to capture

peripheral mineralization.
– hop2_expansion_width [RANGE: 1.0–1.5] – Horizontal expansion multiplier for hop2 level, to capture

peripheral mineralization.
Note: Minerals typically have radiation zones extending beyond their central concentrations. These expansion parameters
are crucial to avoid missing peripheral mineralization at the edges of alteration zones and to capture transitional
boundaries where valuable deposits may exist.

Resutl Format:

{
"degree_centrality_weight": "float , range 1.0-3.0, default 1.0",
"betweenness_centrality_weight": "float , range 1.0-3.0, default 1.0",
"chain_presence_weight": "float , range 1.0-3.0, default 1.0",
"area_type_weights": {

"Silicification Zone": "float , range 1.0-2.0, default 1.0",
"Propylitic Alteration": "float , range 1.0-2.0, default 1.0",
"Hydrothermal Alteration": "float , range 1.0-2.0, default 1.0",
"False Color Composition": "float , range 1.0-2.0, default 1.0"

},
"important_areas_count": "integer , range 3-7",
"hop2_expansion_height": "float , range 1.0 -1.5",
"hop2_expansion_width": "float , range 1.0 -1.5"

}

951
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