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Abstract

Studies continually find that message-passing graph convolutional networks suffer from the over-
smoothing issue. Basically, the issue of over-smoothing refers to the phenomenon that the learned
embeddings for all nodes can become very similar to one another and therefore are uninforma-
tive after repeatedly applying message passing iterations. Intuitively, we can expect the generated
embeddings become smooth asymptotically layerwisely, that is each layer of graph convolution gen-
erates a smoothed version of embeddings as compared to that generated by the previous layer. Based
on this intuition, we propose RandAlign, a stochastic regularization method for graph convolutional
networks. The idea of RandAlign is to randomly align the learned embedding for each node with that
generated by the previous layer using random interpolation in each graph convolution layer. Through
alignment, the smoothness of the generated embeddings is explicitly reduced. To better maintain the
benefit yielded by the graph convolution, in the alignment step we introduce to first scale the embed-
ding of the previous layer to the same norm as the generated embedding and then perform random
interpolation for aligning the generated embedding. RndAlign is a parameter-free method and can
be directly applied without introducing additional trainable weights or hyper-parameters. We exper-
imentally evaluate RandAlign on different graph domain tasks on seven benchmark datasets. The
experimental results show that RandAlign is a generic method that improves the generalization per-
formance of various graph convolutional network models and also improves the numerical stability
of optimization, advancing the state of the art performance for graph representation learning.

1 Introduction

Graph-structured data are very commonly seen in the real world (Hamilton, 2020; Feng et al., 2020). Social networks,
protein and drug structures, 3D meshes and citation networks—all of these types of data can be represented using
graphs. It is of considerable significance to design and develop models that are able to learn and generalize from this
kind of data. The past years have seen a surge in studies on representation learning on graph-structured data, including
techniques for deep graph embedding, graph causal inference and generalizations of convolutional neural networks
to non-Euclidean data (Hamilton, 2020). These advances have produced new state of the art results in a wide variety
of domains, including recommender systems, drug discovery, 2D and 3D computer vision, and question answering
systems (Sun et al., 2020; Chen et al., 2022b; Guo et al., 2021; Huang et al., 2020; Deng et al., 2022).

Unlike images and natural languages, which essentially have a grid or sequence structure, graph-structured data have
an underlying structure in non-Euclidean spaces. It is a complicated task to develop models that can generalize over
general graphs. Early attempts (Gori et al., 2005; Scarselli et al., 2008) on graph representation learning primarily use a
recursive neural network which iteratively updates node states and exchanges information until these node states reach
a stable equilibrium. Recent years have seen the popularity of graph convolutional networks for graph-structured data.
Graph convolutional networks are derived as a generalization of convolutions to non-Euclidean data (Bruna et al.,
2014). The fundamental feature of graph convolutional networks is that it utilizes a message passing paradigm in
which messages are exchanged between nodes and updated using neural networks (Gilmer et al., 2017).

This paradigm of message passing is basically a differentiable variant of belief propagation (Dai et al., 2016). During
each message-passing iteration, the representation for each node is updated according to the information aggregated
from the node’s neighborhood. This local feature-aggregation behaviour is analogous to that of the convolutional
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kernels in convolutional neural networks, which aggregates feature information from spatially-defined patches in an
image. Message passing is the core of current graph convolutional networks, but it also has major drawbacks. Theoret-
ically, the power of message-passing graph convolutional networks is inherently bounded by the Weisfeiler-Lehman
isomorphism test (Xu et al., 2019; Morris et al., 2019). Empirically, studies have continually found that message-
passing graph neural networks suffer from the problem of over-smoothing, and this issue of over-smoothing can be
viewed as a consequence of the neighborhood aggregation operation (Hamilton, 2020).

The problem of over-smoothing is that after a number of message passing iterations, the representations for all the
nodes in the graph can become very similar to one another. This is problematical because node-specific information
becomes lost when we add more graph convolutional layers to the model. This makes it difficult to capture long-term
dependencies in the graph using deeper layers. Due to the over-smoothing issue, basic graph convolutional network
models such as GCN (Kipf & Welling, 2016) and GAT (Veličković et al., 2018) are restricted to a small number of
layers, e.g., 2 to 4 (Zhao & Akoglu, 2020). Further increasing the number of layers will lead to significantly reduced
generalization performance. This is different from convolutional neural networks, the performance of which can
be considerably improved by using very deep layers. Study also shows that the issue of over-smoothing can cause
overfitting or underfitting for different graph domain tasks (Zhang et al., 2022).

Increasing efforts have been devoted to understanding and addressing the over-smoothing problem over the past years.
From the graph signal processing view, applying message passing in a basic graph convolutional network is analogous
to applying a low-pass convolutional filter, which produces a smoothed version of the input signal (Zhu & Koniusz,
2020). Li et al. (Li et al., 2018) showed that graph convolution is a special form of Laplacian smoothing (Taubin, 1995)
and proved that repeatedly applying Laplacian smoothing can lead to node representations becoming indistinguishable
from each other. Zhao et al. (Zhao & Akoglu, 2020) proposed a normalization layer named PariNorm that ensures the
total pairwise feature distance remains unchanged across layers to prevent node features from converging to similar
values. Zhang et al. (Zhang et al., 2022) introduced to stochastically scale features and gradients (SSFG) during
training. This method explicitly breaks the norms of generated embeddings becoming over-smoothed for alleviating
over-smoothing.

As introduced above, the learned embeddings for all nodes become very similar to one another when over-smoothing
occurs. When it comes to becoming very similar to one another, we can understand it from two respects: (1) These
embeddings have a small cosine similarity between one and another; (2) The norms of these embeddings are close
to each other. The SSFG method (Zhang et al., 2022) is effective through addressing the norms of node embeddings
converging to the same value with regard to the second respect. However, the issue of node embeddings having a
small cosine similarity between one and another is explicitly addressed by the SSFG method. As aforementioned,
the over-smoothing problem comes after repeatedly message passing iterations. Intuitively, we can expect the learned
embeddings for the nodes become smoothed layerwisely or asymptotically layerwisely. That is, each message passing
iteration produces a smoothed version of the input embeddings. In this paper we first show, through an example,
the intuition that each layer of graph convolution can make the generated node embeddings closer to each other than
the input embeddings. Based on this intuition, we propose RandAlign, a stochastic regularization method for graph
convolutional networks. The idea of RandAlign is to randomly align the generated embedding for each node with that
generated by the previous layer. Because the embeddings generated by the previous layer are less close to each other,
the problem of over-smoothing with regard to the first respect is explicitly reduced through alignment.

In alignment, we sample a factor from the standard uniform distribution and then align the generated embedding for
each node with that generated by the previous layer using convex combination. Therefore our RandAlign method does
not introduce additional trainable parameters or hyper-parameters. It can be applied to current message-passing graph
convolutional networks in plug and play manner. We show through experiments that RandAlign is a generic method
that improves the generalization performance of a variety of graph convolutional networks including GCN (Kipf &
Welling, 2017), GAT (Veličković et al., 2018), GatedGCN (Bresson & Laurent, 2017), SAN (Kreuzer et al., 2021) and
GPS (Rampasek et al., 2022). We also show that RandAlign is effective on seven popular datasets on different graph
domain tasks, including graph classification and node classification, advancing the state of the art results for graph
representation learning on these datasets.

The main contributions of this paper can be summarized as follows:

• We propose a stochastic regularization method named RandAlign for graph convolutional networks. Ran-
dAlign randomly aligns the learned embedding for each node with that learned by the previous layer using
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random interpolation. This explicitly reduces the smoothness of the generated embeddings. Moreover, we
introduce to first scale the embedding of the previous layer to the same norm as the generated embedding and
then perform random interpolation for aligning the generated embedding. This scaling step helps to maintain
the benefit yielded by graph convolution in the aligned embeddings.

• RandAlign is a parameter-free method which does not introduce additional trainable parameters or hyper-
parameters. It can be directly applied to current graph convolutional networks without increasing the model
complexity and the parameter tuning procedure.

• We demonstrate that RandAlign is a generic method that consistently improves the generalization perfor-
mance of various graph convolutional network models, advancing the state of the art results on different
graph domain tasks on seven popular benchmark datasets. We also show that RandAlign helps to improve
the numerical stability of optimization.

2 Related Work

2.1 Graph Convolutional Networks

The first-generation graph neural work models were developed by Gori et al. (Gori et al., 2005) and Scarselli et
al. (Scarselli et al., 2008). These models generalize recursive neural networks for general graph-structured data.
Motivated by the success of convolutional neural networks for Euclidean data, recent years have seen increasing
studies on graph convolutional networks which generalize Euclidean convolutions to the non-Euclidean graph domain.
Current graph convolutional networks can be categorized into spectral approaches and spatial approaches (Wu et al.,
2020).

The spectral approaches are based on spectral graph theory. The key idea in these approaches is that they construct
graph convolutions via an extension of the Fourier transform to graphs, and a full model is defined by stacking multiple
graph convolutional layers. For example, Bruna et al. (Bruna et al., 2014) proposed to construct graph convolutions
based on the eigendecomposition of the graph Laplacian. Following on Bruna’s work, Defferrard et al. (Defferrard
et al., 2016) introduced to construct convolutions based on the Chebyshev expansion of the graph Laplacian. This
approach eliminates the process for graph Laplacian decomposition and results in spatially localized filters. Kipf
and Welling (Kipf & Welling, 2017) simplified the previous methods by introducing the popular GCN architecture,
wherein the filters are defined on the 1-hop neighbourhood as well as the node itself.

Unlike the spectral approaches, the spatial approaches directly define convolutions on the graph and generate node
embeddings nodes by aggregating information from a local neighbourhood. Monti et al. (Monti et al., 2017) proposed
a mixture model network, referred to as MoNet, which is a spatial approach that generalizes convolutional neural
network architectures to graphs and manifolds. Velickovic et al. (Veličković et al., 2018) introduced to integrate the
self-attention mechanism which assigns an attention weight or importance value to each neighbour in local feature
aggregation into graph convolutional network models. Bresson et al. (Bresson & Laurent, 2017) proposed residual
gated graph convnets, integrating edge gates, residual connections (He et al., 2016) and batch normalization (Ioffe &
Szegedy, 2015) into the graph convolutional neural network model. Balcilar et al. (Balcilar et al., 2021) demonstrated
that both spectral and spatial graph convolutional networks are essentially message passing neural networks that use a
form of message passing for node embedding generation.

2.2 The Over-smoothing Problem

Over-smoothing is a common issue with current graph convolutional neural networks. Intuitively, this phenomenon
of over-smoothing occurs when the information aggregated from the local neighbours starts to dominate the updated
node embeddings. Therefore, a straightforward way to reduce over-smoothing is to use feature concatenations or skip
connections (Hamilton, 2020), which are commonly used in computer vision to build deep convolutional network
architectures. Feature concatenations and skip connections can preserve information learned by previous graph convo-
lutional layers. Inspired by the gating methods used to improve recurrent neural networks, researchers also proposed
gated updates in aggregating information from local neighbours (Li et al., 2015; Bresson & Laurent, 2017). These
gated updates are very effective in building deep graph convolutional network architectures, e.g., 10 or more layers.
Zhao et al. (Zhao & Akoglu, 2020) proposed the PairNorm method to tackle oversmoothing by ensuring the total
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pairwise feature distance across layers to be constant. Zhang et al. (Zhang et al., 2022) proposed a stochastical reg-
ularization method called SSFG that randomly scales features and gradients in the training procedure. Empirically,
SSFG can help to address both the overfitting issue and the underfitting issue for different graph domain tasks. Chen
et al. (Chen et al., 2022c) proposed a graph convolution operation, referred to as graph implicit nonlinear diffusion,
that can implicitly have access to infinite hops of neighbours while adaptively aggregating features with nonlinear
diffusion to alleviate the over-smoothing problem.

3 Methodology

In this section, we begin by introducing the notations and the message passing framework. Then we introduce the
over-smoothing issue with graph convolutional networks. Finally we describe the proposed RandAlign method for
regularizing graph convolutional networks through reducing the over-smoothing problem.

3.1 Preliminaries

Formally, a graph G = (V, E) can be defined by a set of nodes, or called vertices, V and a set of edges E between
these nodes. An edge going from node u ∈ V to node v ∈ V is denoted as (u, v). Conveniently, the graph G can be
represented using an adjacent matrix A ∈ R|V |×|V |, in which Au,v = 1 if (u, v) ∈ E or Au,v = 0 otherwise. The
degree matrix of G is a diagonal matrix and is denoted as D ∈ R|V |×|V |, in which Dii =

∑
j Aij . The node-level

feature or attribute associated with u ∈ V is denoted as xu. The graph Laplacian is defined as L = D −A, and the
symmetric normalized Laplacian is defined as Asym = In−D−1/2AD−1/2, where In is a |V | × |V | identity matrix.

Message passing is at the core of current graph convolutional networks. In the message passing paradigm, nodes
aggregated message from neighbours and updated their embeddings according to the aggregated information in an
iterative manner. This message passing update can be expressed as follows (Hamilton, 2020):

h(k)
u = f (k)

(
h(k−1)

u , agg(k)({h(k−1)
v ,∀v ∈ N (u)})

)
, (1)

where f and agg are neural networks, and N (u) is the set of u’s neighbouring nodes. The superscripts are used for
distinguishing the embeddings and functions at different iterations. During each message-passing iteration, a hidden
representation h(k)

u for each node u ∈ V is updated according to the message aggregated from v’s neighbouring nodes.
The embeddings at k = 0 are initialized to the node-level features, i.e., h(0)

u = xu,∀u ∈ V . After k iterations of
message passing, every node embedding contains information about its k-hop neighborhood.

3.2 The Over-smoothing Problem

While message passing is at the heart of current graph convolutional networks, this paradigm also has major bottle-
necks. Studies continually show that over-smoothing is a common issue with current message-passing graph con-
volutional networks. The intuitive idea of over-smoothing is that after repeatedly applying message passing, the
representations for all nodes in the graph can become very similar to one another, therefore node-specific features
become lost. Due to this issue, it is impossible to build deeper models to capture the longer-term dependencies in the
graph.

From the perspective of graph signal processing, the graph convolution of the GCN model (Kipf & Welling, 2016)
can be seen as a special form of Laplacian smoothing (Li et al., 2018) that basically updates the embedding for a node
using the weighted average of the node’s itself and its neighbour embeddings. But after applying too many rounds of
Laplacian smoothing, the representations for all nodes will become indistinguishable from each other.

Formally, the issue of over-smoothing can be described through defining the influence of each node’s input feature on
the final layer embedding of all the other nodes in the graph. For any pair of node u and node v, the influence of node u
on node v in a graph convolutional network model can be quantified by examining the magnitude of the corresponding
Jacobian matrix (Xu et al., 2018) as follows:

IK(u, v) = 1⊤

(
∂h(K)

v

∂h(0)
u

)
1, (2)
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where 1 is a vector of ones. IK(u, v), which is the sum of the entries in the Jacobian matrix ∂h(K)
v

∂h(0)
u

, is a measure of
how much the initial embedding of node u influences the final embedding of node v. Given the above definition of
influence, Xu et al. (Xu et al., 2018) prove the following theorem:

Theorem 1. For any graph convolutional network model which uses a self-loop update approach and an aggregation
function of the following form:

agg({hv,∀v ∈ N (u) ∪ {u}}) = 1
gn(|N (u) ∪ {u}|)

∑
v∈N (u)∪{u}

hv, (3)

where gn a normalization function, we have the following:

IK(u, v) ∝ pG,K(u|v), (4)

where pG,K(u|v) denotes the probability of visiting node v on a length of K random walk starting from node u.

Theorem 1 states that when we are using a K-layer graph convolutional network model, the influence of node u on
node v is proportional to the probability of reaching node v on a K-step random walk starting from node u. The
consequence of this is that as K → ∞ the influence of every node approaches the stationary distribution of random
walks over the graph, therefore the information from local neighborhood is lost. Theorem 1 applies directly to the
models that use a self-loop update approach, but the result can also be generalized asymptotically for the models that
use the basic message passing update in Equation 1.

3.3 Proposed Method: RandAlign Regularization

Over-smoothing is a common issue in message-passing graph convolutional networks. This issue occurs when the
generated node embeddings become over-smoothed and therefore uninformative after repeatedly applying message
passing iterations. This is problematic because information from local neighbourhood becomes lost when more layers
of message passing are added to the model. Due to the over-smoothing issue, it is difficult to stack deeper graph
convolutional layers to capture long-term dependencies of the graph.

When the problem of over-smoothing occurs, the embeddings of all nodes become very similar to one another (Hamil-
ton, 2020). Studies (Cai & Wang, 2020; Oono & Suzuki, 2019) show that successive iteration of message passing lead
to node embeddings converging to the same eigenspace, which implies that the cosine similarity between one another
may approach each other. The SSFG method (Zhang et al., 2022) stochastically scales the norms of the learned em-
beddings at each layer to improve the generalization performance of graph neural networks. This method does not
explicitly address the issue of the cosine similarities converging to the similar value.

Figure 1: An illustrative example for understanding the over-smoothing issue. We consider a two node fully connected
graph and use a GAT model that layerwisely learn embeddings using the equation h(k)

i =
∑

v∈N (u) αu,vh(k−1)
v ,

wherein αu,v > 0 and
∑

v∈N (u) αu,v = 1. We have simplified the model by removing the non-linearity and learnable
parameter matrix. We show that the learned embeddings layerwisely become smoothed than the previous layer due to
the convex combination of neighbourhood features.
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As discussed above, the issue of over-smoothing occurs after applying too many layers of message passing. Intuitively,
we can expect the learned embeddings for all nodes in the graph become smoothed layerwisely or asymptotically
layerwisely. Based on this intuition, we propose RandAlign which randomly aligns the learned embedding for each
node with that generated by the previous layer for regularizing graph convolutional networks. Here, we first show an
example to demonstrate the intuition that each layer of graph convolution produces a smoothed version of the input.
Consider we have a two node fully connected graph and use the GAT model (Veličković et al., 2018) to generate node
embeddings (see Figure 1). The GAT model updates the embedding for node u at the k-th layer of message passing
using a weighted sum of information from its neighbours as follows:

h(k)
u =

∑
v∈N (u)

α(k)
u,vW(k)h(k−1)

v , (5)

where α
(k)
u,v is the attention weight on neighbour v ∈ N (u) when aggregating information at node u, and W(k) is a

learnable weight matrix. Note that we have simplified the model by removing the non-linearity as compared to the
original GAT (Veličković et al., 2018). The attention weight α

(k)
u,v is defined using the softmax function as follows:

α(k)
u,v =

exp
(

a(k)⊤ [W(k)h(k−1)
u ∥W(k)h(k−1)

v

])
∑

v′∈N (u) exp
(

a(k)⊤
[
W(k)h(k−1)

u ∥W(k)h(k−1)
v′

]) , (6)

where a(k) is learnable vector, and ∥ denotes the concatenation operator. With the softmax function, the attention
weights are normalized to 1, i.e.,

∑
v αu,v = 1. Therefore, the learned embedding h(k)

u is essentially a convex
combination of the information from u’s neighbours. As shown in Figure 1, h(k+1)

1 and h(k+1)
2 are on the dash line

between h(k)
1 and h(k)

2 , and h(k+2)
1 and h(k+2)

2 are on the dash line between h(k+1)
1 and h(k+1)

2 . Thus, each layer of
the message passing makes the generated embeddings more smoothed than those generated by the previous layer. As
more message passing iterations are applied, the learned embeddings become indistinguishable from each other and
thus the information from local neighbours become lost.

When the embeddings become smoothed, the average cosine similarity between one and another is reduced compared
to that of the embedddings generated by the previous layer. As shown in Figure 1, the cosine between h(k+1)

1 and
h(k+1)

2 is small as compared to the cosine between h(k)
1 and h(k)

2 , and the cosine between h(k+2)
1 and h(k+2)

2 is small
as compared to the cosine between h(k+1)

1 and h(k+1)
2 . To reduce the smoothness of the generated embeddings, we

randomly align the generated embedding for each node with that generated by the previous layer. Specifically, in each
layer we first apply the message passing in Equation (1) to generate an intermediate embedding for each node u ∈ V :

h(k)
u = BN

(
f (k)

(
h(k−1)

u , agg(k)({h(k−1)
v ,∀v ∈ N (u)})

))
, (7)

where BN denotes a batch normalization layer. Then we align h(k)
u with h(k−1)

u using random interpolation. To better
maintain the benefit yielded by message passing in the aligned embedding, we first rescale h(k−1)

u to have the same
norm as h(k)

u , then we apply a random interpolation between the two embeddings. Finally, the embedding for node
u ∈ V is updated with the residual connection (He et al., 2016) as follows:

h(k)
u = h(k−1)

u + align(h(k−1)
u , h(k)

u )

= h(k−1)
u + λ

h(k−1)
u

∥h(k−1)
u ∥

∥h(k)
u ∥+ (1− λ)h(k)

u ,
(8)

where align is a function for aligning h(k)
u with h(k−1)

u , and λ ∼ U(0, 1) is sampled from the standard uniform
distribution. By this way, we can keep the representation ability yielded by message passing while reducing the
smoothness in the aligned embeddings. Because the expected value of λ is 0.5, i.e., E[λ] = 0.5, at test time λ is set
to a fixed value of 0.5. Algorithm 1 shows the embedding generation algorithm with the message-passing framework
and our RandAlign regularization method.
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Algorithm 1 The embedding generation process with the message-passing framework and our RandAlign regulariza-
tion method.
Input: Graph G = (V, E); number of graph convolutional layers K; input node features {xv,∀u ∈ V }
Output: Node embeddings h(K)

u for all u ∈ V

1: h(0)
u ← xu,∀u ∈ V

2: for k = 1, ..., K do
3: for u ∈ V do
4: h(k)

u = BN
(

f (k)
(

h(k−1)
u , agg(k)({h(k−1)

v ,∀v ∈ N (u)})
))

// generate an intermediate embedding for u

using a general message passing model (see Equation (7)).
5: end for
6: for v ∈ V do
7: if model.training == True then
8: λ ∼ U(0, 1)
9: else

10: λ = 0.5
11: end if
12: h(k)

u = h(k−1)
u + λ · h(k−1)

u

∥h(k−1)
u ∥

· ∥h(k)
u ∥+ (1− λ) ·h(k)

u // update the embedding for u as sum of the aligned
embedding and the input node embedding (see Equation (8)).

13: end for
14: end for

The proposed RandAlign method is straightforward to understand. By aligning the learned embeddings with those
generated by the previous layer, the smoothness of these learned embeddings is explicitly reduced, therefore the over-
all model performance is improved. Because the embeddings before alignment are learned using the basic message-
passing framework, our RandAlign is a general method that can be applied in different message passing graph convolu-
tional network models to alleviate the over-smoothing problem. Moreover, our RandAlign method does not introduce
additional hyper-parameters or trainable weights, it can be directly applied in a plug and play manner and without the
time-consuming hyper-parameter tuning procedure.

4 Experiments

4.1 Datasets and Setup

Datasets. The proposed RandAlign method is evaluated on four graph domain tasks: graph classification, node
classification, multi-label graph classification and binary graph classification. The experiments are conducted on
seven benchmark datasets, which are briefly introduced as follows.

• MNIST and CIFAR10 (Dwivedi et al., 2020) are two datasets for superpixel graph classification. The
original images in MNIST (LeCun et al., 1998) and CIFAR10 (Krizhevsky et al., 2009) are converted to
superpixel graphs using the SLIC technique (Achanta et al., 2012). Each superpixel represents a small region
of homogeneous intensity in the original image.

• PascalVOC-SP (Dwivedi et al., 2022) is also a dataset for superpixel graph classification. There are 11,355
graphs with a total of 5.4 million nodes in PascalVOC-SP. Each superpixel graph corresponds to an image in
Pascal VOC 2011. The superpixel graphs in PascalVOC-SP are much large compared to those in MNIST and
CIFAR10 (Dwivedi et al., 2020).

• PATTERN and CLUSTER (Dwivedi et al., 2020). The two datasets are used for inductive node classifica-
tion. The graphs in the two datasets are generated using the stochastic block model (Abbe, 2017). PATTERN
is used for evaluating the model for recognizing specific predetermined subgraphs, and CLUSTER is used
for identifying community clusters in the semi-supervised setting.

• Peptides-func (Dwivedi et al., 2022) is a dataset of peptides molecular graphs. The nodes in the graphs
represent heavy (non-hydrogen) atoms of the peptides, and the edges represent the bonds between these
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Table 1: Results for superpixel graph classification on MNIST and CIFAR10. We show that our RandAlign consis-
tently improves the performance of the base graph convolutional network models. Residual connection and batch
normalization, which are simple strategies that can help to alleviate over-smoothing, are applied to the GCN and GAT
base models.

Model
MNIST

Mode 4 layers 8 layers 12 layers 16 layers

GCN
Training

97.196±0.223 99.211±0.421 99.862±0.043 99.697±0.029
GCN + RandAlign 88.311±0.262 92.450±0.170 94.283±0.192 95.505±0.154
GCN 90.705±0.218 90.847±0.078 91.263±0.216 91.147±0.185
GCN + RandAlign Test 90.305±0.140 92.688±0.046 93.470±0.035 94.051±0.052
GAT

Training
99.994±0.008 100.00±0.000 100.00±0.000 100.00±0.000

GAT + RandAlign 96.853±0.236 98.492±0.294 99.146±0.104 99.189±0.158
GAT 95.535±0.205 96.065±0.093 96.288±0.049 96.526±0.041
GAT + RandAlign Test 96.513±0.075 97.250±0.049 97.505±0.029 97.553±0.034
GatedGCN

Training
100.00±0.000 100.00±0.000 100.00±0.000 100.00±0.000

GatedGCN + RandAlign 99.713±0.094 99.933±0.048 99.849±0.020 99.813±0.023
GatedGCN 97.340±0.143 97.950±0.023 98.108±0.021 98.132±0.022
GatedGCN + RandAlign Test 98.120±0.076 98.463±0.079 98.494±0.054 98.552±0.023

Model
CIFAR10

Mode 4 layers 8 layers 12 layers 16 layers

GCN
Training

69.523±1.948 77.546±0.813 81.073±1.224 84.279±0.656
GCN + RandAlign 59.798±0.324 65.405±0.603 66.711±0.338 70.919±0.522
GCN 55.710±0.381 54.242±0.454 53.867±0.090 53.353±0.184
GCN + RandAlign Test

55.275±0.165 57.145±0.202 57.603±0.157 57.736±0.162
GAT

Training
89.114±0.499 99.561±0.064 99.972±0.005 99.980±0.003

GAT + RandAlign 74.522±1.179 81.071±0.596 81.511±0.464 79.962±0.142l
GAT 64.223±0.455 64.452±0.303 64.423±0.121 64.340±0.146
GAT + RandAlign Test 65.385±0.074 69.158±0.438 69.707±0.350 69.920±0.082
GatedGCN

Training
94.553±1.018 99.983±0.006 99.995±0.003 99.995±0.004

GatedGCN + RandAlign 77.784±0.799 83.552±0.570 86.779±0.520 90.903±0.785
GatedGCN 67.312±0.311 69.808±0.421 68.417±0.262 70.007±0.165
GatedGCN + RandAlign Test 72.075±0.154 75.015±0.177 76.135±0.248 76.395±0.186

atoms. The graphs are categorized into 10 classes based on the peptide functions, e.g., antibacterial, antiviral,
cell-cell communication. This dataset is used for evaluating the model for multi-label graph classification.

• OGBG-molhiv is a molecule graph dataset introduced in the open graph benchmark (OGB) (Hu et al., 2020).
The nodes and edges in the graphs represent atoms and the chemical bonds between these atoms. This dataset
is used for evaluating the model’s ability to predict if or not the molecule can inhibit HIV virus replication,
which is a binary class classification task.

Implementation Details. We closely follow the experimental setup as Dwivedi et al. (Dwivedi et al., 2020) and
Rampasek et al. (Rampasek et al., 2022) for training the models. We use the same train/validation/test split of each
dataset and report the mean and standard deviation over 10 runs. For experiments on MNIST, CIFAR10, PATTERN
and CLUSTER, the Adam algorithm (Kingma & Ba, 2014) is used for optimizing the models. The learning rate is
initialized to 10−3 and reduced by a factor of 2 if the loss has not improved for a number of epochs (10, 20 or 30).
The training procedure is terminated when the learning rate is reduced to smaller than 10−6. For experiments on
PascalVOC-SP, Peptides-func and OGBG-molhiv, the AdamW algorithm (Loshchilov & Hutter, 2017) with cosine
learning rate schedule is used for training the models. The training epochs are set to 300, 200 and 150, respectively.
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Table 2: Comparison with previous methods on MNIST and CIFAR10 on superpixel graph classification.

Model MNIST CIFAR10

GCN (Kipf & Welling, 2016) 90.705±0.218 55.710±0.381
MoNet (Monti et al., 2017) 90.805±0.032 54.655±0.518
GraphSAGE (Hamilton et al., 2017) 97.312±0.097 65.767±0.308
GIN (Xu et al., 2019) 96.485±0.252 55.255±1.527
GCNII (Chen et al., 2020) 90.667±0.143 56.081±0.198
PNA (Corso et al., 2020) 97.94±0.12 70.35±0.63
DGN (Beaini et al., 2021) – 72.838±0.417
CRaWl (Toenshoff et al., 2021) 97.944±0.050 69.013±0.259
GIN-AK+ (Zhao et al., 2021) – 72.19±0.13
3WLGNN (Maron et al., 2019) 95.075±0.961 59.175±1.593
EGT (Hussain et al., 2022) 98.173±0.087 68.702±0.409
GPS (Bresson & Laurent, 2017) 98.051±0.126 72.298±0.356
GatedGCN + SSFG (Zhang et al., 2022) 97.985±0.032 71.938±0.190
EdgeGCN (Zhang et al., 2023) 98.432±0.059 76.127±0.402
Exphormer (Shirzad et al., 2023) 98.550±0.039 74.754±0.194
TIGT (Choi et al., 2024) 98.230±0.133 73.955±0.360

GAT-16 (Veličković et al., 2018) 95.535±0.205 64.223±0.455
GAT-16 + RandAlign 97.553±0.034 (2.11%↑) 69.920±0.082 (8.87%↑)
GatedGCN-16 (Bresson & Laurent, 2017) 97.340±0.143 67.312±0.311
GatedGCN-16 + RandAlign 98.512±0.033 (1.20%↑) 76.395±0.186 (13.49%↑)

More details about the seven datasets, including the dataset sizes and splits, and the evaluation metrics are in the
appendix section.

4.2 Experimental Results

Superpixel Graph Classification on MNIST and CIFAR10. The quantitative results on MNIST and CIFAR10 for
superpixel graph classification are reported in Table 1. We experiment with three different base models: GCN, GAT
and GatedGCN. We also applied residual connections (He et al., 2016) and batch normalizations (Ioffe & Szegedy,
2015) to the base models of GCN and GAT. Residual connection and batch normalization are simple strategies which
are empirically helpful to reduce the over-smoothing issue and improve the numerical stability in optimization. Gat-
edGCN employs the gated update approach in aggregating information from neighbours and also integrates residual
connections and batch normalizations. We see that the base models only slightly improve the performance or see a
reduced performance as the number of layers increases from 4 to 16. Without residual connection and batch normal-
ization, the performance would drop considerably with increased layers due to over-smoothing. By integrating the
RandAlign regularization method into the models, the performance of the base models consistently improves as the
number of layers increases. RandAlign on GatedGCN with 16 layers yields a 6.388% performance improvement on
CIFAR10, which is a 9.13% relative improvement. We also see that for the 4 layer GCN model, applying RandAlign
could not improve the performance on the two datasets. This is because the model does not suffer the over-smoothing
issue at this layer.

We see from Table 1 that the base models suffer serious over-fitting problem on the two datasets. For example, the GAT
and GatedGCN with 8 or more graph convolutional layers obtain nearly 100% training accuracy on CIFAR10, but their
test accuracy is below 70.007%. By using our RandAlign regularization method, we see that all their training accuracy
reduces while the task performance improves. This shows that through tackling the over-smoothing issue with our
RandAlign, the over-fitting problem is significantly reduced, and therefore the model generalization performance is
improved. Figure 2 demonstrates the learning curves of the three base models with 16 layers on the CIFAR10.

Table 2 compares the performance of our results with the recent methods on MNIST and CIFAR10. EGT Hussain et al.
(2022), which integrates an additional edge channels into the Transformer model and also uses global self-attention
to generate embeddings, achieves 98.173% accuracy on MNIST, which is the best among the previous models. Our
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Figure 2: Learning curves on CIFAR10. Bold lines are training curves and thin lines are test curves. We show that our
RandAlign method improves the generalization performance by reducing the issue of over-smoothing.

Table 3: Comparison with previous work on PascalVOC-SP on the superpixel graph classification task.

Model PascalVOC-SP COCO-SP

GCN (Kipf & Welling, 2016) 0.1268±0.0060 0.0841±0.0010
GINE (Hu et al., 2019) 0.1265±0.0076 0.1339±0.0044
GatedGCN (Bresson & Laurent, 2017) 0.2873±0.0219 0.2641±0.0045
GatedGCN + RWSE (Dwivedi et al., 2021) 0.2860±0.0085 0.2574±0.0034
Transformer + LapPE (Dwivedi et al., 2022) 0.2694±0.0098 0.2618±0.0031
SAN + LapPE (Dwivedi et al., 2022) 0.3230±0.0039 0.2592±0.0158
SAN + RWSE (Dwivedi et al., 2022) 0.3216±0.0027 0.2434±0.0156
DREW (Gutteridge et al., 2023) 0.3314±0.0024 –
Exphormer (Shirzad et al., 2023) 0.3960±0.0027 0.3430 ±0.0008
CRAWL (Tönshoff et al., 2023) 0.4588±0.0079 –
GPS (Rampasek et al., 2022) 0.3748±0.0109 –
GPS + RandAlign 0.4188±0.0062 (11.7%↑) –
Fine-tuned GPS (Tönshoff et al., 2023) 0.4440±0.0065 0.3884±0.0055
Fine-tuned GPS + RandAlign 0.4653±0.0791 (4.80%↑) 0.3956±0.0018 (1.85%↑)

model achieves 0.337% improved performance compared with EGT (Hussain et al., 2022). On CIFAR10, our model
outperforms the previous best model DGN (Beaini et al., 2021) by 3.557%, which is a significant improvement. Our
RandAlign also outperforms the SSFG regularization method (Zhang et al., 2022), which essentially stochastically
scales features and gradients during training for regularization graph neural network models, but the SSFG method
involves a time-consuming parameter tuning process. To the best of our knowledge, our method achieves the state of
the art results on the two datasets.

Results on PascalVOC-SP. PascalVOC-SP is a long range superpixel classification dataset as compared to MNIST
and CIFAR10. Table 3 reports the results on this dataset. We experiment with GPS (Rampasek et al., 2022) as the base
model. The GPS model uses a graph convolutional network and a Transformer to model local and global dependencies
in the graph. This model archives the best performance among the baseline models. We see from Table 3 that our
RandAlign improves the performance of GPS from 37.48% to 42.88%, which is a 14.41% relative improvement. Once
again, our RandAlign method improves the performance of the base model, advancing the state of the art result for
long range graph representation learning on this dataset.

Node Classification on PATTERN and CLUSTER. Table 4 reports the experimental results on PATTERN and
CLUSTER on node classification. We experiment with two state of the art base architectures: the spectral attention
network (SAN) (Kreuzer et al., 2021) and GPS (Rampasek et al., 2022). SAN utilizes an invariant aggregation of
Laplacian’s eigenvectors for position encoding and also utilizes conditional attention for the real and virtual edges to
improve the performance. As introduced above, a GPS layer integrates a message passing graph convolutional layer
and a Transformer layer to learn local and global dependencies. We see from Table 4 our RandAlign regularization
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Table 4: Experimental results PATTERN and CLUSTER on the node classification task.

Model PATTERN CLUSTER

GCN (Kipf & Welling, 2016) 71.892±0.334 68.498±0.976
GraphSAGE (Hamilton et al., 2017) 50.492±0.001 63.844±0.110
GIN (Xu et al., 2019) 85.387±0.136 64.716±1.553
GAT (Veličković et al., 2018) 78.271±0.186 70.587±0.447
RingGNN (Chen et al., 2019) 86.245±0.013 42.418±20.063
MoNet (Monti et al., 2017) 85.582±0.038 66.407±0.540
GatedGCN (Bresson & Laurent, 2017) 85.568±0.088 73.840±0.326
DGN (Beaini et al., 2021) 86.680 ± 0.034 –
K-Subgraph SAT (Chen et al., 2022a) 86.848±0.037 77.856±0.104
GatedGCN + SSFG (Zhang et al., 2022) 85.723±0.069 75.960±0.020

SAN (Kreuzer et al., 2021) 86.581±0.037 76.691±0.650
SAN + RandAlign 86.770±0.067 77.847±0.073
GPS (Rampasek et al., 2022) 86.685±0.059 78.016±0.180
GPS + RandAlign 86.858±0.010 78.592±0.052

Table 5: Experimental results on Peptides-func on the multi-label graph classification task.

Model AP (↑)

GCN (Kipf & Welling, 2016) 0.5930±0.0023
GINE (Hu et al., 2019) 0.5498±0.0079
GatedGCN (Bresson & Laurent, 2017) 0.5864±0.0077
GatedGCN + RWSE (Dwivedi et al., 2021) 0.6069±0.0035
Transformer + LapPE (Dwivedi et al., 2022) 0.6326±0.0126
SAN + LapPE (Dwivedi et al., 2022) 0.6384±0.0121
SAN + RWSE (Dwivedi et al., 2022) 0.6439±0.0075
Exphormer (Shirzad et al., 2023) 0.6527±0.0043

GPS (Rampasek et al., 2022) 0.6535±0.0041
GPS + RandAlign 0.6630±0.0005 (1.45%↑)

method improves the performance of the two base models and advances the state of the results on the two datasets. It
improves the performance by 1.156% on SAN and 0.576% on GPS on the CLUSTER dataset. Our model achieves
considerably improved performance when compared with GCN, GAT and GraphSAGE. Notably, the GPS model with
RandAlign regularization outperforms all the baseline models on the two datasets.

Multi-label Graph Classification on Peptides-func. Table 5 reports the results on Peptides-func. This dataset was
introduced to evaluate a model’s ability to capture long-range dependencies in the graph. We also experiment with GPS
(Rampasek et al., 2022) as the base model. As aforementioned, the GPS model combines a Transformer layer with
the message passing graph convolutional network framework to capture the global dependencies. We see from Table
5 that our RandAlign improves the average precision of GPS from 0.6535 to 0.6630, outperforming all the baseline
models including GatedGCN, Transformer (Vaswani et al., 2017) and SAN. Peptides-struct is also a long range graph
dataset, as with the PascalVOC-SP dataset. The results on the two datasets also show that RandAlign helps to improve
the performance for capturing long-range dependencies in the graph in graph representation learning.

Binary Graph Classification on OGBG-molhiv. The results on OGBG-molhiv are reported in Table 6. As with
Rampasek et al. (Rampasek et al., 2022), we only compare with the baseline models that are trained from scratch. We
experiment using GPS as the base model. It can be seen that RandAlign improves the ROC-AUC of GPS from 0.6535
to 0.6630, which is a relative 1.45% improvement, outperforming all the baseline models, including PNA (Corso et al.,
2020), DGN (Beaini et al., 2021) and GIN-AK+ (Zhao et al., 2022).

11



Under review as submission to TMLR

Table 6: Experimental results on OGBG-molhiv on binary graph classification. The models are all trained from
scratch.

Model ROC-AUC (↑)

GCN (Kipf & Welling, 2016) 0.7599±0.0119
GIN (Xu et al., 2019) 0.7707±0.0149
PNA (Corso et al., 2020) 0.7905±0.0132
DeeperGCN (Li et al., 2020) 0.7858±0.0117
DGN (Beaini et al., 2021) 0.7970±0.0097
ExpC (Yang et al., 2022) 0.7799±0.0082
GIN-AK+ (Zhao et al., 2022) 0.7961±0.0119
SAN (Kreuzer et al., 2021) 0.7785±0.2470

GPS (Rampasek et al., 2022) 0.7880±0.0101
GPS + RandAlign 0.8021±0.0305 (1.79%↑)

Table 7: Importance of scaling embeddings of the previous layer in alignment.

Model MNIST CIFAR10

GAT-8
w/o Lrn&Align 96.065±0.093 64.452±0.303
RandAlign w/o scaling 96.977±0.021 66.212±0.182
RandAlign + scaling 97.250±0.049 69.158±0.438

GatedGCN-8
w/o RandAlign 97.950±0.023 69.808±0.421
RandAlign w/o scaling 98.247±0.018 74.437±0.150
RandAlign + scaling 98.463±0.079 75.015±0.177

We have shown that RandAlign is a general method for preventing the over-smoothing issue. It improves the gener-
alization performance of different graph convolutional network models and on different domain tasks. We also see
from the experimental results that applying RandAlign results in a small standard deviation for most experiments com-
pared with the base models. This suggests that RandAlign is also effective for improving numerical stability when
optimizing the graph convolutional network models.

Importance of Scaling h(k−1)
u in Alignment. In our RandAlign method, we first scale h(k−1)

u to have the norm
of h(k−1)

u

∥h(k−1)
u ∥

∥h(k)
v ∥ and then apply a random interpolation between the scaled feature and h(k)

v (see Equation 8) for

aligning h(k)
v . To show the importance of the scaling step, we further validate our method without the scaling step.

The experiments are carried out on MNIST and CIFAR10 using GAT-8 and GatedGCN-8 as the base models, and
Table 12 reports the comparison results. We see that applying scaling improves the performance of the two base
models on the two datasets. By scaling h(k−1)

u to have the norm of h(k)
v , more information about h(k)

v is contained in
the aligned representation, and therefore the task performance is improved.

Results of without Using Batch Normalizations and Residual Connections. Table 8 reports the results of without
using batch normalizations and residual connections on MNIST and CIFAR10. We can see from Table 8 that the base
models suffer from the over-smoothing problem without using batch normalizations and residual connections. By
applying our RandAlign method, the phenomenon of over-smoothing is effectively reduced.

We further validated the time cost for an epoch to take a forward run on CIFAR10 and MNIST using an RTX 6000
GPU. The GatedGCN with 16 layers was used as the base model. The results are shown in Table 9. It can be seen
from Table 9 that the time cost for a training epoch in forward run is only slightly increased, while the time cost for a
test epoch in forward run in nearly unchanged.
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Table 8: Results of our RandAlign method on the base models, wherein batch normalizations and residual connections
are not applied.

Model
MNIST

Mode 4 layers 8 layers 12 layers 16 layers

GCN
Training

90.480±0.436 91.607±0.257 93.187±0.429 11.235±0.000
GCN + RandAlign 92.857±0.255 93.940±0.298 94.109±0.417 90.952±0.548
GCN 87.590±0.336 86.212±0.589 86.135±0.208 11.350±0.000
GCN + RandAlign Test 91.442±0.251 92.054±0.151 92.197±0.284 90.533±0.195
GAT

Training
100.00±0.000 100.00±0.000 100.00±0.000 100.00±0.000

GAT + RandAlign 97.584±0.155 98.990±0.192 98.898±0.104 98.850±0.139
GAT 94.951±0.049 95.558±0.059 95.212±0.041 92.813±0.257
GAT + RandAlign Test 96.700±0.032 96.863±0.054 96.880±0.115 96.938±0.026

Model
CIFAR10

Mode 4 layers 8 layers 12 layers 16 layers

GCN
Training

57.461±1.223 57.743±1.390 58.590±1.013 10.000±0.000
GCN + RandAlign 51.259±0.354 51.933±0.368 51.413±0.642 45.939±0.609
GCN 48.810±1.045 46.686±0.314 45.045±0.418 10.000±0.000
GCN + RandAlign Test

48.565±0.243 48.643±0.216 47.773±0.445 43.037±0.637
GAT

Training
91.854±1.347 100.00±0.000 100.00±0.000 10.000±0.000

GAT + RandAlign 77.601±0.110 79.055±0.169 80.736±0.921 81.436±0.653
GAT 59.636±0.169 56.978±0.314 56.712±0.011 10.000±0.000
GAT + RandAlign Test 61.866±0.095 61.293±0.112 59.640±0.300 60.547±0.105

Table 9: Time cost for an epoch to take a forward run using an RTX 6000 GPU. The results are reported in seconds.

Model
MNIST CIFAR10

Training Test Training Test

GatedGCN-16 w/o RandAlign 79.840 18.280 89.804 17.654
GatedGCN-16 + RandAlign 80.387 18.317 90.930 17.656

Figure 3 shows the norms of embeddings and average cosine similarity between adjacent nodes at different GCN layers
on the MNIST dataset. We see the standard deviation of the embedding norms generated by the basic GCN16 is close
to 0 and the average cosine similarity is close to 1.0, which suggests that the model suffers the over-smoothing problem.
By applying our RandAlign method, the phenomenon of embedding over-smoothness is effectively prevented.

We further experimented using GAT-8 on MNIST and CIFAR10 to show the importance of the residual connection
and norm scaling in Eq. (8). The results are shown in Table 10. We see that the model performance drops on the two
datasets, with a significant drop on the CIFAR10 dataset. The joint use of the residual connection, random interpolation
and norm scaling yields the best model performance.

Figure 4 shows the results of our RandAlign method on the basic GCN model with different message-passing layers.
Following up on the results in Table 8, we further experimented using 13, 14, and 15 layers. We see that our RandAlign
method helps improve the generalization performance of the base model. It prevents the model performance from
dropping significant with increased layers on the two datasets.

5 Conclusions

Over-smoothing is a common issue in message-passing graph convolutional networks. In this paper, we proposed
RandAlign for regularizing graph convolutional networks through reducing the over-smoothing problem. The basic
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Figure 3: Norms of embeddings and average cosine similarity between adjacent nodes at different model layers on the
MNIST dataset. We show the mean and and standard deviation of the embeddings generated at different model layers.
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Figure 4: Performance of our RandAlign method on the basic GCN model with different message-passing layers.

idea of RandAlign is to randomly align the generate embedding for each node and with that generated by the previ-
ous layer in each message passing iteration. Our method is motivated by the intuition that learned embeddings for
the nodes become smoothed layerwisely or asymptotically layerwisely. In our RandAlign, a random interpolation
method is utilized for feature alignment. By aligning the generated embedding for each node with that generated by
the previous layer, the smoothness of these embeddings is reduced. Moreover, we introduced a scaling step to scale
the embedding of the previous layer to the same norm as the generated embedding before performing random inter-
polation. This scaling step can better maintain the benefit yielded by graph convolution in the aligned embeddings.
The proposed RandAlign is a parameter-free method, and it can be directly applied current graph convolutional net-
works without introducing additional trainable weights and the hyper-parameter tuning procedure. We experimentally
evaluated RandAlign on seven popular benchmark datasets on four graph domain tasks including graph classification,
node classification, multi-label graph classification and binary graph classification. We presented extensive results to
demonstrate RandAlign is a generic method that improves the performance of a variety of graph convolutional network
models and advances the state of the art results for graph representation learning.
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Table 10: Importance of residual connection and norm scaling in Eq. (8).

Model Residual connection Interpolation Norm scaling MNIST CIFAR10

GAT-8
– ✓ – 96.786±0.188 62.040±0.412
✓ ✓ ✓ 97.250±0.049 69.158±0.438
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gation for graph nets. Advances in Neural Information Processing Systems, 33:13260–13271, 2020.

Hanjun Dai, Bo Dai, and Le Song. Discriminative embeddings of latent variable models for structured data. In
International conference on machine learning, pp. 2702–2711. PMLR, 2016.

Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional neural networks on graphs with fast
localized spectral filtering. In Advances in neural information processing systems, pp. 3844–3852, 2016.

15



Under review as submission to TMLR

Yongjian Deng, Hao Chen, Hai Liu, and Youfu Li. A voxel graph cnn for object classification with event cameras. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1172–1181, 2022.

Vijay Prakash Dwivedi, Chaitanya K Joshi, Thomas Laurent, Yoshua Bengio, and Xavier Bresson. Benchmarking
graph neural networks. arXiv preprint arXiv:2003.00982, 2020.

Vijay Prakash Dwivedi, Anh Tuan Luu, Thomas Laurent, Yoshua Bengio, and Xavier Bresson. Graph neural networks
with learnable structural and positional representations. arXiv preprint arXiv:2110.07875, 2021.

Vijay Prakash Dwivedi, Ladislav Rampasek, Mikhail Galkin, Ali Parviz, Guy Wolf, Anh Tuan Luu, and Dominique
Beaini. Long range graph benchmark. In Thirty-sixth Conference on Neural Information Processing Systems
Datasets and Benchmarks Track, 2022.

Wenzheng Feng, Jie Zhang, Yuxiao Dong, Yu Han, Huanbo Luan, Qian Xu, Qiang Yang, Evgeny Kharlamov, and
Jie Tang. Graph random neural networks for semi-supervised learning on graphs. Advances in Neural Information
Processing Systems, 33, 2020.

Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural message passing for
quantum chemistry. In International conference on machine learning, pp. 1263–1272. PMLR, 2017.

Marco Gori, Gabriele Monfardini, and Franco Scarselli. A new model for learning in graph domains. In Proceedings.
2005 IEEE international joint conference on neural networks, volume 2, pp. 729–734, 2005.

Dalu Guo, Chang Xu, and Dacheng Tao. Bilinear graph networks for visual question answering. IEEE Transactions
on neural networks and learning systems, 2021.

Benjamin Gutteridge, Xiaowen Dong, Michael M Bronstein, and Francesco Di Giovanni. Drew: Dynamically rewired
message passing with delay. In International Conference on Machine Learning, pp. 12252–12267. PMLR, 2023.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs. In Advances in
neural information processing systems, pp. 1024–1034, 2017.

William L Hamilton. Graph representation learning. Synthesis Lectures on Artifical Intelligence and Machine Learn-
ing, 14(3):1–159, 2020.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In Proceed-
ings of the IEEE conference on computer vision and pattern recognition, pp. 770–778, 2016.

Weihua Hu, Bowen Liu, Joseph Gomes, Marinka Zitnik, Percy Liang, Vijay Pande, and Jure Leskovec. Strategies for
pre-training graph neural networks. arXiv preprint arXiv:1905.12265, 2019.

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta, and Jure
Leskovec. Open graph benchmark: Datasets for machine learning on graphs. Advances in neural information
processing systems, 33:22118–22133, 2020.

Hong Huang, Yu Song, Yao Wu, Jia Shi, Xia Xie, and Hai Jin. Multitask representation learning with multiview graph
convolutional networks. IEEE Transactions on Neural Networks and Learning Systems, 33(3):983–995, 2020.

Md Shamim Hussain, Mohammed J Zaki, and Dharmashankar Subramanian. Global self-attention as a replacement
for graph convolution. In Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data
Mining, pp. 655–665, 2022.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by reducing internal
covariate shift. In International conference on machine learning, pp. 448–456. pmlr, 2015.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980,
2014.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional networks. arXiv preprint
arXiv:1609.02907, 2016.

16



Under review as submission to TMLR

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional networks. In International
Conference on Learning Representations (ICLR2017), 2017.

Devin Kreuzer, Dominique Beaini, Will Hamilton, Vincent Létourneau, and Prudencio Tossou. Rethinking graph
transformers with spectral attention. Advances in Neural Information Processing Systems, 34:21618–21629, 2021.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to document recog-
nition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

Guohao Li, Chenxin Xiong, Ali Thabet, and Bernard Ghanem. Deepergcn: All you need to train deeper gcns. arXiv
preprint arXiv:2006.07739, 2020.

Qimai Li, Zhichao Han, and Xiao-Ming Wu. Deeper insights into graph convolutional networks for semi-supervised
learning. AAAI Conference on Artificial Intelligence, 2018.

Yujia Li, Daniel Tarlow, Marc Brockschmidt, and Richard Zemel. Gated graph sequence neural networks. Interna-
tional Conference on Learning Representations, 2015.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint arXiv:1711.05101, 2017.

Haggai Maron, Heli Ben-Hamu, Hadar Serviansky, and Yaron Lipman. Provably powerful graph networks. arXiv
preprint arXiv:1905.11136, 2019.

Federico Monti, Davide Boscaini, Jonathan Masci, Emanuele Rodola, Jan Svoboda, and Michael M Bronstein. Geo-
metric deep learning on graphs and manifolds using mixture model cnns. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pp. 5115–5124, 2017.

Christopher Morris, Martin Ritzert, Matthias Fey, William L Hamilton, Jan Eric Lenssen, Gaurav Rattan, and Martin
Grohe. Weisfeiler and leman go neural: Higher-order graph neural networks. In Proceedings of the AAAI conference
on artificial intelligence, volume 33, pp. 4602–4609, 2019.

Kenta Oono and Taiji Suzuki. Graph neural networks exponentially lose expressive power for node classification.
arXiv preprint arXiv:1905.10947, 2019.

Ladislav Rampasek, Mikhail Galkin, Vijay Prakash Dwivedi, Anh Tuan Luu, Guy Wolf, and Dominique Beaini.
Recipe for a general, powerful, scalable graph transformer. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and
Kyunghyun Cho (eds.), Advances in Neural Information Processing Systems, 2022.

Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Monfardini. The graph neural
network model. IEEE transactions on neural networks, 20(1):61–80, 2008.

Hamed Shirzad, Ameya Velingker, Balaji Venkatachalam, Danica J Sutherland, and Ali Kemal Sinop. Exphormer:
Sparse transformers for graphs. In International Conference on Machine Learning, 2023.

Mengying Sun, Sendong Zhao, Coryandar Gilvary, Olivier Elemento, Jiayu Zhou, and Fei Wang. Graph convolutional
networks for computational drug development and discovery. Briefings in bioinformatics, 21(3):919–935, 2020.

Gabriel Taubin. A signal processing approach to fair surface design. In Proceedings of the 22nd annual conference
on Computer graphics and interactive techniques, pp. 351–358, 1995.

Jan Toenshoff, Martin Ritzert, Hinrikus Wolf, and Martin Grohe. Graph learning with 1d convolutions on random
walks. arXiv preprint arXiv:2102.08786, 2021.

Jan Tönshoff, Martin Ritzert, Eran Rosenbluth, and Martin Grohe. Where did the gap go? reassessing the long-range
graph benchmark. The Second Learning on Graphs Conference (LoG 2023), 2023.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia
Polosukhin. Attention is all you need. Advances in neural information processing systems, 30, 2017.

17



Under review as submission to TMLR
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A Appendix

The details of the benchmark datasets used in the experiments are show in below Table 11.

Table 11: Details of the seven benchmark datasets used in the experiments.

Dataset Graphs Nodes Avg. nodes/graph #Training #Validation #Test #Categories Task

MNIST 70K – 40-75 55,000 5000 10,000 10 Superpixel graph classificationCIFAR10 60K – 85-150 45,000 5000 10,000 10

PascalVOC-SP 11,355 5,443,545 479.40 8,489 1,428 1,429 20 Node classificationCOCO-SP 123,286 58,793,216 476.88 113,286 5,000 5,000 81

PATTERN 14K – 44-188 10,000 2000 2000 2 Node classificationCLASTER 12K – 41-190 10,000 1000 1000 6

Peptides-Func 15,535 2,344,859 150.90 70% 15% 15% 10 Multi-label graph classification

OGBG-Molhiv 41,127 – 25.50 80% 10% 10% 2 Binary graph classification

Evaluation Metrics. Following Dwivedi et al. (2020) and Rampasek et al. (2022), the following metrics are used
for different domain tasks. For node classification on PATTERN and CLUSTER, the performance is measured using
the weighted accuracy. Te performance on PascalVOC-SP and COCO-SP is evaluated using the macro weighted F1
score. For superpixel graph classification, we report the classification accuracy on test set. For multi-label graph clas-
sification on Peptides-func, the performance is measured using average precision (AP) across the categories. For the
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Table 12: Results (%) on the Cora dataset.

Model 4 layers 8 layers 16 layers

GAT 83.2 28.3 0.09
GAT + RandAlign 82.6 82.5 82.2

binary classification task on OGBG-molhiv, the performance is measured using the area under the receiver operating
characteristic curve (ROC-AUC).

We further experimented on the Cora dataset using GAT as the base model. Our implementation is based on https:
//github.com/Diego999/pyGAT. The base model uses Dropout as a regularization method. We found that the
joint use of Dropout and RandAlign results in reduced classification accuracy. Therefore, we removed the Dropout
method in the base model. Additionally, we found that randomly aligning features with those generated by the first
GAT layer yields better results. The results on the Cora dataset are reported in Table 12. We see that when the number
of layers is increased to 16, the model results in significantly reduced performance. With our RandAlign method, the
model performance remains almost unchanged with increased layers. The results suggest that our methods helps to
alleviate the over-smoothing problem when deeper layers are used.
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