
Position: Rethinking Post-Hoc Search-Based Neural Approaches for Solving
Large-Scale Traveling Salesman Problems

Yifan Xia 1 † Xianliang Yang 2 Zichuan Liu 1 † Zhihao Liu 3 † Lei Song 2 Jiang Bian 2

Abstract
Recent advancements in solving large-scale
traveling salesman problems (TSP) utilize the
heatmap-guided Monte Carlo tree search (MCTS)
paradigm, where machine learning (ML) mod-
els generate heatmaps, indicating the probability
distribution of each edge being part of the opti-
mal solution, to guide MCTS in solution finding.
However, our theoretical and experimental anal-
ysis raises doubts about the effectiveness of ML-
based heatmap generation. In support of this, we
demonstrate that a simple baseline method can
outperform complex ML approaches in heatmap
generation. Furthermore, we question the practi-
cal value of the heatmap-guided MCTS paradigm.
To substantiate this, our findings show its inferior-
ity to the LKH-3 heuristic despite the paradigm’s
reliance on problem-specific, hand-crafted strate-
gies. For the future, we suggest research direc-
tions focused on developing more theoretically
sound heatmap generation methods and exploring
autonomous, generalizable ML approaches for
combinatorial problems. The code is available for
review: https://github.com/xyfffff/
rethink_mcts_for_tsp.

1. Introduction
The traveling salesman problem (TSP) is a classic opti-
mization challenge with significant applications in logis-
tics, network design, and the broader field of operations
research (OR). Traditionally addressed through exact algo-
rithms like Concorde (Applegate et al., 2009) and heuris-
tic algorithms such as LKH-3 (Helsgaun, 2017; Taillard &
Helsgaun, 2019), recent years have seen a shift towards inte-

†Work done during internship at MSRA. 1Nanjing University,
Nanjing, China 2Microsoft Research Asia, Beijing, China 3Institute
of Automation, Chinese Academy of Sciences, Beijing, China.
Correspondence to: Jiang Bian <jiang.bian@microsoft.com>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

ATT-GCN

DIMES

DIFUSCO

SoftDist (ours)

Pareto Front (w/o SoftDist)

Pareto Front (w/ SoftDist)

Inference Latency

S
o
lu

ti
o
n
 C

o
s
t

Figure 1. Relative performance comparison of ML-based meth-
ods with and without SoftDist. Inference Latency represents the
heatmap generation time, with lower being better. Solution Quality
represents the effectiveness of TSP solutions generated through
MCTS guided by the heatmaps, with higher being better.

grating machine learning (ML) for solving TSP, exemplified
by Bello et al. (2016); Kool et al. (2019); da Costa et al.
(2020). However, these methods often lack scalability and
become highly inefficient when applied to large-scale TSPs
due to the exponentially growing action space, the quadratic
computational complexity of self-attention mechanisms, and
the issue of sparse rewards on large graphs (Vaswani et al.,
2017; Bengio et al., 2021; Joshi et al., 2022).

Monte Carlo tree search (MCTS) is a versatile and adaptive
algorithm widely applied across various domains (Browne
et al., 2012; Silver et al., 2016; 2017). Its recent combination
with ML, in efforts like ATT-GCN (Fu et al., 2021), DIMES
(Qiu et al., 2022), UTSP (Min et al., 2023), and DIFUSCO
(Sun & Yang, 2023), represents a novel approach, known as
heatmap-guided MCTS, for solving large-scale TSPs. These
methods typically involve ML models generating heatmaps
for TSP instances, assigning probabilities to each edge as
potential parts of solutions, rather than directly generating
TSP solutions. MCTS then utilizes these heatmaps as priors
for edge selection to generate the final TSP solutions. How-
ever, the non-differentiable and time-consuming nature of
the MCTS process complicates its direct integration into the
training loss function of ML models. Consequently, there’s
a necessity for surrogate loss functions, typically designed
heuristically, to facilitate ML model training. These surro-
gate losses aim to approximate the original TSP objective
for a more feasible training process, but this heuristic ap-

1

https://github.com/xyfffff/rethink_mcts_for_tsp
https://github.com/xyfffff/rethink_mcts_for_tsp

Rethinking Post-Hoc Search-Based Neural Approaches for Solving Large-Scale TSPs

Neural

Network

Surrogate

Loss

TSP Instance

Heatmap

(a) Training Phase

TSP Instance Heatmap

Solution

Neural

Network

MCTS

(b) Test Phase

Figure 2. Heatmap-Guided MCTS Phases.

Original

Loss

Heatmap

MCTS

𝜙𝑖,𝑗 =
ⅇ−𝑑𝑖,𝑗/𝜏

𝛴𝑘≠𝑖ⅇ
−𝑑𝑖,𝑘/𝜏

SoftDist
TSP Instance

(a) Training Phase

Heatmap

Solution
MCTS

𝜙𝑖,𝑗 =
ⅇ−𝑑𝑖,𝑗/𝜏

𝛴𝑘≠𝑖ⅇ
−𝑑𝑖,𝑘/𝜏

SoftDist
TSP Instance

(b) Test Phase

Figure 3. SoftDist-Guided MCTS Phases.

proach can lead to inconsistencies between training (without
MCTS integration) and testing phases (with MCTS), creat-
ing uncertainties in test scenario performances. This raises
a critical question about the actual effectiveness of these
ML-generated heatmaps in guiding MCTS. For a visual
representation of the inconsistent training and test phases
of ML-based heatmap generation methods, please refer to
Figure 2.

Moreover, considering the similarities between MCTS and
LKH-3, such as their reliance on k-opt operations (Reeves,
1993) and self-adaptive search strategies, and their imple-
mentation in C++ on CPU platforms, it’s natural to conduct
comparative experiments between heatmap-guided MCTS
methods and LKH-3. LKH-3’s status as a strong heuristic
solver across various combinatorial problems prompts us
to investigate: How effective is the heatmap-guided MCTS
paradigm in comparison to LKH-3?

Aligning training and testing objectives is crucial. We intro-
duce a straightforward baseline method, SoftDist, applying
softmax to the TSP distance matrix. Its simplicity allows
direct optimization using the original TSP objective via grid
search, and importantly, it doesn’t require hard-to-obtain
supervision. For a visual representation of SoftDist’s con-
sistent training and test phases, refer to Figure 3. Our ex-
periments demonstrate that SoftDist not only outperforms
most complex ML-based heatmap generation methods in

both solution quality and inference speed, but also achieves
comparable performance to the fully-supervised DIFUSCO
method (Sun & Yang, 2023), which requires hard-to-obtain
supervision labels, as depicted in Figure 1.

To facilitate a fair comparison between guided MCTS and
LKH-3, we introduce the Score metric, which evaluates
MCTS performance relative to LKH-3 under identical hard-
ware resources and time constraints. Our findings reveal that
heatmap-guided MCTS methods significantly underperform
compared to LKH-3, regardless of the allocated runtime or
fine-tuning of MCTS parameters.

In this paper, we critically evaluate ML-guided heatmap gen-
eration and the heatmap-guided MCTS paradigm in large-
scale TSPs, introducing key insights:

• Critical Evaluation: We present the first comprehen-
sive critique of both ML-based heatmap generation and
the overall heatmap-guided MCTS paradigm for TSPs,
highlighting critical insights into their effectiveness.

• SoftDist Method: We introduce SoftDist, an effective
TSP heatmap generation method that surpasses com-
plex ML methods, highlighting the ineffectiveness of
current ML-based approaches and the necessity for the-
oretical validation in surrogate loss function designs.

• Score Metric: We propose the Score metric to evalu-

2

Rethinking Post-Hoc Search-Based Neural Approaches for Solving Large-Scale TSPs

ate the relative performance of heatmap-guided MCTS
against the LKH-3 heuristic. This metric, utilized
across different MCTS parameter settings and time
budgets, reveals significant inefficiency of MCTS com-
pared to LKH-3. It highlights the limited practical
effectiveness of heatmap-guided MCTS in OR, despite
the advancements in ML.

2. Related Work
This section reviews state-of-the-art methods for solving
large-scale TSPs, all of which belong to the heatmap-guided
MCTS paradigm. These methods are differentiated primar-
ily by their heatmap generation approaches, categorized into
supervised learning, unsupervised learning, and reinforce-
ment learning.

2.1. Supervised Learning

ATT-GCN (Fu et al., 2021) employs a supervised model pre-
trained on small-scale TSP instances (e.g., 20 or 50 nodes),
based on a graph convolutional network (Joshi et al., 2019).
The model, once trained, generalizes to larger TSP instances
through graph sampling techniques, creating sub-heatmaps
that are merged to form a global heatmap for the original
graph. This approach utilizes fixed-scale, small-scale TSP
solutions as labels, enabling generalization to larger scales.

DIFUSCO (Sun & Yang, 2023), in contrast, adopts a fully-
supervised training methodology, requiring TSP solutions
for training instances at each scale. It introduces a graph-
based diffusion model (Ho et al., 2020; Graikos et al., 2022),
treating TSP as a search for an optimal {0, 1}-valued edge
selection vector. Utilizing an anisotropic graph neural net-
work (Bresson & Laurent, 2018), the model iteratively de-
noises variables under supervision, with the final prediction
serving as the heatmap.

2.2. Unsupervised Learning

UTSP (Min et al., 2023) employs an unsupervised approach,
leveraging geometric scattering-based graph neural net-
works (Min et al., 2022) to generate heatmaps. The method
features a heuristically designed surrogate loss function op-
timized by the model. This unsupervised loss consists of
two components: one that encourages the discovery of the
shortest path, and another serving as a proxy for ensuring
that the path forms a Hamiltonian Cycle covering all nodes.

2.3. Reinforcement Learning

DIMES (Qiu et al., 2022) adopts a reinforcement learning
strategy, focusing on efficient sampling for REINFORCE-
based gradient estimation (Williams, 2004). Utilizing
anisotropic graph neural networks (Bresson & Laurent,

2018), it generates heatmaps, which are sampled using au-
toregressive factorization. This process creates a surrogate
solution distribution approximating the TSP’s true solution
distribution, which is challenging to sample efficiently.

However, all of these methods have a significant limitation:
the training of ML models for heatmap generation does
not consider MCTS. Consequently, these models cannot
ensure the quality of solutions that MCTS will derive from
their heatmaps. This is concerning because the heatmap’s
effectiveness in guiding MCTS remains unpredictable, re-
gardless of model performance during training. This dis-
connect between heatmap generation and its application in
MCTS poses a critical challenge, emphasizing the need for
alignment between these components.

3. Preliminaries
3.1. Problem Definition

Existing methods within heatmap-guided MCTS use the
problem setting of 2D Euclidean TSP, and our study adheres
to this established problem setting. We consider a TSP in-
stance as an input graph with n vertices in a two-dimensional
space, represented by s = {xi}ni=1 where xi ∈ [0, 1]2. The
goal is to find a permutation π = (π1, π2, ..., πn) that forms
a tour, visiting each vertex once and returning to the start,
with the objective to minimize the total path length c(π),
calculated as:

c(π) = ∥xπn
− xπ1

∥2 +
n−1∑
i=1

∥∥xπi
− xπi+1

∥∥
2
, (1)

where ∥ · ∥2 denotes the ℓ2 norm.

3.2. Heatmap Generation

In the context of large-scale TSP, recent state-of-the-art
approaches blend ML and OR, where ML models do not
predict a solution (i.e., a permutation π = (π1, π2, ..., πn)
of all the vertices) outright but alter the solution space dis-
tribution. Specifically, trained models predict an n × n
heatmap Φ, where Φi,j indicates the suitability of includ-
ing edge (i, j) in the solution. The optimization problem’s
objective is defined as:

L(θ) = Es∼S
[
EΦ∼fθ(s)

[
Eπ∼g(s,Φ) [c (π)]

]]
, (2)

where s represents an instance from distribution S, θ is
the trainable parameters of model f , π is the solution out-
puted by post-hoc search algorithm g given Φ, and c(π) is
calculated based on Equation 1.

Given the non-differentiable and computationally intensive
nature of Eπ∼g(s,Φ) [c (π)], a surrogate loss ℓ (s,Φ), which
is both differentiable and easy to compute, is often em-

3

Rethinking Post-Hoc Search-Based Neural Approaches for Solving Large-Scale TSPs

ployed, leading to a surrogate objective:

Lsurrogate(θ) = Es∼S
[
EΦ∼fθ(s) [ℓ (s,Φ)]

]
. (3)

This surrogate loss, designed heuristically, can take forms
of supervised (Fu et al., 2021; Sun & Yang, 2023), un-
supervised (Min et al., 2023), or reinforcement learn-
ing (Qiu et al., 2022), where the optimized θ∗ from
minimizing Lsurrogate(θ) is aimed to approximate the op-
timal θ obtained from the original loss, i.e., θ∗ ≈
argminθEs∼S

[
EΦ∼fθ(s)

[
Eπ∼g(s,Φ) [c (π)]

]]
. However,

this approximation often lacks a rigorous theoretical foun-
dation, making it uncertain whether minimizing the surro-
gate loss genuinely aligns with optimizing the original TSP
objective. Consequently, despite optimizing θ∗ for the sur-
rogate loss, its efficacy in guiding MCTS to find optimal
solutions during testing remains questionable. During in-
ference, the output heatmap Φ∗ from fθ∗(s) is fed into the
search algorithm g, yielding the solution π∗ ∼ g(s,Φ∗).
This disconnect between training and test phases—where
training focuses on heatmap generation without involv-
ing MCTS, while testing relies on MCTS guided by these
heatmaps—highlights a potential misalignment in the ap-
proach, as depicted in Figure 2.

3.3. Monte Carlo Tree Search

MCTS is utilized as a guided k-opt process, which itera-
tively refines a complete TSP solution π by alternating edge
deletions and additions. The selection of edges during k-opt
is influenced by a weight matrix W and an access matrix
Q, both of which are dynamically updated based on k-opt
outcomes. Here, Wi,j scores the suitability of edge (i, j) in
the solution, while Qi,j records the number of times edge
(i, j) is selected. Note that this section covers only the key
aspects of MCTS. For a detailed understanding, please refer
to Fu et al. (2019; 2021); Min et al. (2023).

Initialization. The heatmap H initializes W (Wi,j =
100×Hi,j). The access matrix Q starts with all elements set
to zero. Edge potential matrix Z guides the k-opt process,
balancing exploitation and exploration. The edge potential

Zi,j is formulated as Zi,j =
Wi,j

Ωi
+ α

√
ln(M+1)
Qi,j+1 , where

Ωi, the average weight of edges connected to vertex i, is
Ωi =

∑
j ̸=i Wi,j∑

j ̸=i 1
, α balances exploitation and exploration,

and M is the total number of actions sampled so far.

A random initial tour π is constructed and optimized using
2-opt. The initial tour construction probability is formu-
lated as p(π) = p(π1)

∏n
i=2 p(πi|πi−1), where p(πi|πi−1)

is the conditional probability of choosing the next vertex,
calculated by the edge potential:

p(πi|πi−1) =
Zπi−1,πi∑

l∈Xπi−1
Zπi−1,l

, (4)

with Xπi−1
includes candidate vertices connected to πi−1,

selected based on their edge potential value.

k-opt Search. Each k-opt action is represented as a ver-
tex decision sequence (a1, b1, a2, b2, . . . , ak, bk, ak+1) with
ak+1 = a1. This sequence involves deleting k edges (ai, bi)
and adding k new edges (bi, ai+1) for 1 ≤ i ≤ k. Given bi,
the subsequent vertex ai+1 is sampled based on Equation
4. The tour π is transformed into πnew, and metrics M ,
Qbi,ai+1 , and Qai+1,bi are updated.

Backpropagation. Upon obtaining a better solution
πnew with c(πnew) < c(π), the weights of the newly
added edges during the k-opt action are increased by
β
[
exp

(
c(π)−c(πnew)

c(π)

)
− 1

]
, where β is the update rate.

4. Proposed Baseline
4.1. Motivation

Machine learning methods for generating TSP heatmaps
usually rely on surrogate loss functions (Equation 3) due to
the computational challenges of the original loss (Equation
2). This substitution, often without theoretical justification,
can lead to inconsistent performance in the test phase. This
inconsistency is particularly concerning because MCTS,
which is critical for determining the final solution, is not
integrated during neural network training. In response, we
introduced SoftDist, a baseline method that incorporates
MCTS into the training process, thus directly optimizing the
original TSP objective. However, the direct optimization
of the original TSP loss presents challenges due to its non-
differentiability and the time-consuming nature of deriving
solutions via MCTS. Therefore, our aim with SoftDist is to
simplify the optimization process by reducing the number of
tunable parameters, effectively addressing these challenges.

4.2. SoftDist Baseline

We introduce a novel method for generating heatmaps,
termed SoftDist, based on applying softmax to the distance
matrix of a TSP instance. The heatmap Φ allocates scores
to each edge (i, j) as follows:

Φi,j =
e−di,j/τ∑
k ̸=i e

−di,k/τ
, (5)

where di,j = ∥xi − xj∥2, and τ is a parameter controlling
the smoothness of the score distribution in Φ. This sim-
plicity, with only one parameter to optimize, sets SoftDist
apart from more complex models and aligns with our aim
to simplify the optimization process.

Moreover, our SoftDist method requires no supervision, sig-
nificantly reducing its training complexity, especially benefi-
cial for large-scale TSPs where obtaining high-quality labels

4

Rethinking Post-Hoc Search-Based Neural Approaches for Solving Large-Scale TSPs

is both expensive and challenging. Its inherent simplicity
also ensures minimal hardware resource consumption, mak-
ing it a highly practical option in various computational
environments. This aspect of SoftDist underscores its effi-
ciency and accessibility, further distinguishing it from more
complex, resource-intensive ML models.

SoftDist’s design prioritizes shorter edges while maintaining
a balance between exploration and exploitation. This strat-
egy is crucial for avoiding suboptimal, greedy solutions. By
allocating scores inversely proportional to edge distances,
moderated by τ , SoftDist encourages structured exploration,
aiding in superior solution discovery for large-scale TSPs.

During training, as illustrated in Figure 3a, SoftDist directly
optimizes the original TSP objective, contrasting with the
surrogate objectives used by other methods (see Figure 2a).
Owing to its single tunable parameter, τ , SoftDist’s opti-
mization is straightforward, employing even the most basic
optimization techniques like grid search. Once optimized, in
the test phase, SoftDist generates heatmaps to guide MCTS,
merging the training and test phases cohesively, as shown
in Figure 3b. This alignment ensures that the heatmap’s
effectiveness in training directly translates to performance
in testing.

5. Proposed Metric
5.1. Motivation

MCTS and LKH-3, both handcrafted heuristic algorithms,
have several similarities, such as their reliance on local op-
erators (Reeves, 1993) and self-adaptive strategies for edge
selection. This similarity lays the foundation for a compara-
tive analysis between MCTS, particularly when guided by
ML-generated heatmaps, and LKH-3, a leading heuristic
solver for various routing problems. Past ML solvers for
TSP (Vinyals et al., 2015; Bello et al., 2016; Kool et al.,
2019; da Costa et al., 2020; Kwon et al., 2020; Ma et al.,
2021b; 2023) did not directly compare with LKH-3 due
to differences in programming languages (e.g., Python vs.
C++) and computational resources (e.g., GPU vs. CPU).
Additionally, these ML solvers were designed as general-
purpose solvers, typically independent of problem-specific
features, while LKH-3 is a specialized solver relying on
expert knowledge, tailored to specific types of problems,
making direct comparisons unfair. However, MCTS and
LKH-3, both being problem-specific algorithms, share the
same implementation environment, raising an important
question: How does MCTS, even with external heatmap
guidance, compare in performance to LKH-3?

5.2. Score Metric

To establish an objective comparison between MCTS and
LKH-3, we introduce the Score metric, designed to assess

the relative efficiency of MCTS compared to LKH-3 under
identical programming and hardware conditions. The Score
is calculated as the ratio of the performance gaps of LKH-3
and MCTS:

Score =
GapLKH-3

GapMCTS
, (6)

where GapLKH-3 = LLKH-3
L∗ − 1 and GapMCTS = LMCTS

L∗ − 1.
Among them, LLKH-3 and LMCTS represent the solution
lengths obtained by LKH-3 and MCTS, respectively. L∗

serves as the baseline for this comparison. Intuitively, Score
evaluates MCTS’s relative efficiency, indicating the extent
to which MCTS’s performance is equivalent to that of LKH-
3. A Score above 100% implies that MCTS is more efficient
than LKH-3, while a score below 100% indicates the oppo-
site. This metric allows for an objective assessment of the
performance of MCTS in relation to the efficacy of LKH-3.

6. Experiments
6.1. Experimental Settings

Data sets We follow the data generation as seen in
Kool et al. (2019), creating TSP problems named TSP-
500/1000/10000, where TSP-n represents instances with
n nodes. We generate 1024 two-dimensional Euclidean
TSP instances for TSP-500/1000 and 128 instances for TSP-
10000 for parameter searching, using a random seed of 1234.
For testing purposes, we utilize test instances generated by
Fu et al. (2021), following the approach used in Qiu et al.
(2022); Min et al. (2023); Sun & Yang (2023).

SoftDist temperature For determining the optimal Soft-
Dist temperature parameter τ defined in Equation 5, we
conduct a grid search on the generated training instances.
We identify the optimal temperatures for heatmap genera-
tion to be 0.0066 for TSP-500, 0.0051 for TSP-1000, and
0.0018 for TSP-10000. Detailed results of the grid search
are presented in Appendix A.

MCTS parameters We maintain default settings for all
MCTS parameters, including α, β, time budgets, etc., con-
sistent with approaches in Fu et al. (2021); Qiu et al. (2022);
Sun & Yang (2023). These default parameters are fixed
across various problem scales. Notably, Min et al. (2023)
uses a different approach, applying different parameter set-
tings for different scale TSPs. For a fair comparison, we
aligned the parameter settings in Min et al. (2023) with
those used in the other referenced works.

Evaluation metrics In our model comparison, we report
the average tour length (Length), average performance gap
(Gap), and average inference latency time (Time) in Table 1.
Length (lower is better) represents the average length of the

5

Rethinking Post-Hoc Search-Based Neural Approaches for Solving Large-Scale TSPs

Table 1. Results on large-scale TSP problems. Abbreviations: RL (Reinforcement learning), SL (Supervised learning), UL (Unsupervised
learning), AS (Active search), G (Greedy decoding), S (Sampling decoding), and BS (Beam-search). ∗ indicates the baseline for
performance gap calculation. † indicates methods utilizing heatmaps provided by the original authors, with MCTS executed on our setup.
signifies methods without available heatmaps, requiring reproduction and potential overestimation of reported gaps due to issues found
in their code. Some methods list two terms for Time, corresponding to heatmap generation and MCTS runtimes, respectively. Baseline
results (excluding those methods with MCTS) are sourced from (Fu et al., 2021; Qiu et al., 2022).

METHOD TYPE
TSP-500 TSP-1000 TSP-10000

LENGTH ↓ GAP ↓ TIME ↓ LENGTH ↓ GAP ↓ TIME ↓ LENGTH ↓ GAP ↓ TIME ↓
CONCORDE OR(EXACT) 16.55∗ — 37.66M 23.12∗ — 6.65H N/A N/A N/A
GUROBI OR(EXACT) 16.55 0.00% 45.63H N/A N/A N/A N/A N/A N/A
LKH-3 (DEFAULT) OR 16.55 0.00% 46.28M 23.12 0.00% 2.57H 71.78∗ — 8.8H
LKH-3 (LESS TRAILS) OR 16.55 0.00% 3.03M 23.12 0.00% 7.73M 71.79 — 51.27M
NEAREST INSERTION OR 20.62 24.59% 0S 28.96 25.26% 0S 90.51 26.11% 6S
RANDOM INSERTION OR 18.57 12.21% 0S 26.12 12.98% 0S 81.85 14.04% 4S
FARTHEST INSERTION OR 18.30 10.57% 0S 25.72 11.25% 0S 80.59 12.29% 6S

EAN RL+S 28.63 73.03% 20.18M 50.30 117.59% 37.07M N/A N/A N/A
EAN RL+S+2-OPT 23.75 43.57% 57.76M 47.73 106.46% 5.39H N/A N/A N/A
AM RL+S 22.64 36.84% 15.64M 42.80 85.15% 63.97M 431.58 501.27% 12.63M
AM RL+G 20.02 20.99% 1.51M 31.15 34.75% 3.18M 141.68 97.39% 5.99M
AM RL+BS 19.53 18.03% 21.99M 29.90 29.23% 1.64H 129.40 80.28% 1.81H
GCN SL+G 29.72 79.61% 6.67M 48.62 110.29% 28.52M N/A N/A N/A
GCN SL+BS 30.37 83.55% 38.02M 51.26 121.73% 51.67M N/A N/A N/A
POMO+EAS-EMB RL+AS 19.24 16.25% 12.80H N/A N/A N/A N/A N/A N/A
POMO+EAS-LAY RL+AS 19.35 16.92% 16.19H N/A N/A N/A N/A N/A N/A
POMO+EAS-TAB RL+AS 24.54 48.22% 11.61H 49.56 114.36% 63.45H N/A N/A N/A

DIFUSCO# SL+MCTS 16.63 0.51% 3.61M+
1.67M

23.39 1.18% 11.86M+
3.34M

73.76 2.77% 28.51M+
16.87M

ATT-GCN† SL+MCTS 16.82 1.64% 0.52M+
1.67M

23.67 2.37% 0.73M+
3.34M

74.50 3.80% 4.16M+
16.77M

DIMES† RL+MCTS 16.84 1.77% 0.97M+
1.67M

23.68 2.44% 2.08M+
3.34M

74.10 3.23% 4.65M+
16.77M

UTSP† UL+MCTS 17.11 3.41% 1.37M+
1.67M

24.14 4.40% 3.35M+
3.34M

— — —

OURS SOFTDIST+MCTS 16.78 1.44% 0.00M+
1.67M

23.63 2.20% 0.00M+
3.34M

74.03 3.13% 0.00M+
16.78M

predicted tour for each graph in the test set. Gap (smaller is
better) measures the average relative performance gap in so-
lution length compared to a baseline method. Time (shorter
is better) denotes the total clock time to generate solutions
for all test instances, reported in seconds (s), minutes (m),
or hours (h). For our proposed metric Score, we follow the
default setting of LKH-3 in Kool et al. (2019); Qiu et al.
(2022) by setting the maximum of trials to 10000 and align
the search time with MCTS by adjusting the number of runs.

Hardware Our SoftDist heatmap generation is performed
on an NVIDIA A100 GPU. Due to its simplicity, the in-
ference time is negligible (e.g., < 0.1 seconds), and the
GPU type has minimal impact. For fairness in comparison,
all MCTS computations are conducted on an AMD EPYC
7V13 64-Core CPU @ 2.45GHz. We use 64 threads for
TSP-500 and TSP-1000, and 16 threads for TSP-10000,
following the setup in Qiu et al. (2022). To evaluate all
methods under the Score metric, LKH-3 is also run on the
same CPU with the same thread count.

6.2. Results and Analyses

How effective are the heatmaps generated by deep neural
networks? In Table 1, we compare our SoftDist approach

with state-of-the-art methods on TSP-500, TSP-1000, and
TSP-10000. Notably, our simple baseline significantly out-
performs most existing neural solvers across all three prob-
lem sizes, achieving lower gaps with negligible heatmap
generation time under the same MCTS settings. Specifically,
SoftDist demonstrates a performance gap of just 1.44% for
TSP-500, 2.20% for TSP-1000, and 3.13% for TSP-10000,
highlighting its effectiveness in heatmap generation. More-
over, SoftDist’s simplicity and hardware efficiency make it
less resource-intensive than other methods. An exception
is DIFUSCO (Sun & Yang, 2023), which achieves Pareto
optimality alongside SoftDist, showing lower performance
gaps but at the expense of considerably longer heatmap gen-
eration times. Specifically, for TSP-500, DIFUSCO takes
3.61 minutes for heatmap generation, which is 2.2 times the
MCTS search time. For TSP-1000, it requires 11.86 min-
utes, approximately 3.6 times the MCTS search duration. In
the case of TSP-10000, the heatmap generation time is 28.51
minutes, about 1.7 times the MCTS search time. By con-
trast, our SoftDist method generates heatmaps in less than
0.1 seconds for TSP-10000 and even under 0.01 seconds for
TSP-500 and TSP-1000. For a visual representation of the
dominance and Pareto relationship between these methods
exemplified in TSP-10000, please refer to Figure 1. More-
over, DIFUSCO requires high-quality labels for each TSP

6

Rethinking Post-Hoc Search-Based Neural Approaches for Solving Large-Scale TSPs

Table 2. Resource consumption and Score comparison of various methods on TSPs. Score measures the efficiency relative to LKH-3.
Detailed metric calculations are in Section 5.2. The definitions of notations † and # are explained in Table 1.

METHOD SUPERVISION HARDWARE
SCORE ↑

TSP-500 TSP-1000 TSP-10000

ATT-GCN† ✓ GTX 1080 TI GPU 0.74% 3.87% 24.66%
DIMES† ✗ NVIDIA P100 GPU 0.68% 3.75% 28.99%
UTSP† ✗ NVIDIA V100 GPU 0.35% 2.08% —
DIFUSCO# ✓ 8×NVIDIA V100 GPUS 2.39% 7.78% 33.82%
SOFTDIST ✗ NVIDIA A100 GPU 0.84% 4.17% 29.88%

Table 3. Comparison of MCTS performance under the different settings by (Min et al., 2023) for TSP-500 and TSP-1000. The Score
metric is detailed in Section 5.2. Definitions of superscript notations ∗, †, and # are provided in Table 1.

METHOD
TSP-500 TSP-1000

LENGTH ↓ GAP ↓ TIME ↓ SCORE ↑ LENGTH ↓ GAP ↓ TIME ↓ SCORE ↑
LKH-3 (DEFAULT) 16.55∗ 0.00% 46.28M — 23.12∗ 0.00% 2.57H —

ATT-GCN† 16.72 1.02% 0.52M+0.67M 5.38% 23.48 1.58% 0.73M+1.43M 13.77%
DIMES† 16.75 1.26% 0.97M+0.68M 4.35% 23.61 2.11% 2.08M+1.45M 10.29%
DIFUSCO# 16.69 0.90% 3.61M+0.68M 6.12% 23.48 1.56% 11.86M+1.43M 13.93%
UTSP† 16.73 1.09% 1.37M+0.68M 5.05% 23.50 1.65% 3.35M+1.45M 13.18%
SOFTDIST 16.72 1.03% 0.00M+0.68M 5.32% 23.52 1.73% 0.00M+1.44M 12.56%
ZEROS 16.72 1.06% 0.00M+0.68M 5.20% 23.55 1.85% 0.00M+1.44M 11.72%

scale and is trained directly on large-scale TSPs, consuming
substantial hardware resources, as shown in Table 2. Unlike
DIFUSCO, SoftDist does not need ground truth solutions
and is hardware-friendly.

The aim of introducing SoftDist is not necessarily to outper-
form other models but to provide a benchmark for evaluating
the effectiveness of ML-based approaches in TSP heatmap
generation. Our findings, particularly the notable perfor-
mance of SoftDist, illuminate a significant shortcoming in
current ML methods: their dependence on surrogate loss
functions. These heuristic loss functions, while simplifying
training, often lack theoretical grounding, leading to a gap in
performance during test phases, especially when integrated
with MCTS. Such a discrepancy validates our position that
ML-based heatmap generation in large-scale TSPs may not
be as effective as anticipated. This necessitates a more
aligned approach in heatmap generation, harmonizing train-
ing and test phases, and fostering the development of more
consistent and theoretically robust ML models for TSPs.

How effective is the heatmap-guided MCTS paradigm
for large-scale TSPs? Our experimental analysis, em-
ploying the Score metric in Table 2, critically evaluates
the practical effectiveness of the heatmap-guided MCTS
paradigm in large-scale TSPs. The results clearly highlight
the paradigm’s limitations, particularly when compared to
LKH-3 under the same computational resources and time
constraints. Across various TSP scales, MCTS consistently

achieves Scores that are significantly low, indicating its
substantial underperformance. For example, MCTS’s per-
formance is less than one-tenth for TSP-500 and TSP-1000,
and about a third for TSP-10000, relative to LKH-3. These
findings emphasize a significant performance gap, reinforc-
ing our position that despite advancements in TSP through
deep learning, traditional heuristic methods like LKH-3 still
maintain a significant advantage in efficiency and applicabil-
ity for these problems. The pronounced underperformance
of heatmap-guided MCTS, despite significant resource in-
vestment in training and inference, motivates our call for
future research to narrow this gap and explore possibilities
to potentially outperform established heuristics like LKH-3.

How does MCTS perform under varying parameter set-
tings? We evaluate different MCTS settings proposed by
Min et al. (2023), which vary based on TSP scale and in-
corporate randomness into the search process, noted for
improved performance. For the detailed implementation
of these settings, please refer to Min et al. (2023). Table
3 indicates that, except for DIFUSCO, all methods show
performance improvements even with reduced search time
budgets, compared with the default MCTS settings in Ta-
ble 1. This improvement, consistent across methods even
including a zero-input heatmap1 baseline , which is referred
to as Zeros in Table 3, indicates the reduced influence of

1Actually, all elements of the heatmap are set to 10−10 to avoid
division by zero errors.

7

Rethinking Post-Hoc Search-Based Neural Approaches for Solving Large-Scale TSPs

0 200 400 600 800 1000
Time (s)

0

20

40

60

80

100

Sc
or

e
(%

)

LKH-3
ATT-GCN
DIFUSCO
DIMES
SoftDist
UTSP

(a) TSP-500 with default MCTS settings.

0 250 500 750 1000 1250 1500 1750
Time (s)

0

20

40

60

80

100

Sc
or

e
(%

)

LKH-3
ATT-GCN
DIFUSCO
DIMES
SoftDist
UTSP

(b) TSP-1000 with default MCTS settings.

0 1000 2000 3000 4000 5000
Time (s)

20

40

60

80

100

Sc
or

e
(%

)

LKH-3
ATT-GCN
DIFUSCO
DIMES
SoftDist

(c) TSP-10000 with default MCTS settings.

Figure 4. Performance of MCTS under default settings for TSP-500, TSP-1000, and TSP-10000.

the heatmap and the enhanced impact of fine-tuned MCTS
parameters on search efficiency. However, despite the pa-
rameter optimization, MCTS methods do not outperform
LKH-3 in effectiveness, which means that for large-scale
TSP problems, LKH-3 remains a more preferable choice.
The Score of MCTS methods, even lower than 7% for TSP-
500 and 14% for TSP-1000, further highlights the superior
efficiency of LKH-3 over MCTS methods. This aligns with
our position that heatmap-guided MCTS, despite parameter
optimization, remains less practical and effective compared
to LKH-3 for large-scale TSP problems.

How does MCTS perform under varying time budgets? In
Figure 4, we examine the performance of heatmap-guided
MCTS under various time budgets, and the results show
that MCTS methods consistently underperform compared to
LKH-3. Specifically, as time budgets increase for TSP-500
and TSP-1000, the Score for MCTS methods approaches
zero, indicating a persistent and significant performance gap
for MCTS even as LKH-3 nearly optimizes the solution. For
the experimental results of MCTS under Min et al. (2023)’s
settings, which show similar trends to the default settings,
please refer to Appendix B.

For TSP-10000, we observe that longer time budgets do not
exhibit rapid convergence to zero, as seen with TSP-500 and
TSP-1000. Instead, the score enters a plateau phase, show-
ing only gradual changes. This pattern suggests that both
MCTS and LKH-3 do not significantly enhance solution
quality with increased time, indicating a slower optimization
process for larger-scale problems. Notably, the performance
curves of heatmap-guided MCTS methods exhibit a turning
point, and within a time budget of around 230 seconds or
less, our SoftDist method demonstrates the most effective
performance among the heatmap-guided MCTS approaches.
Nevertheless, all methods, including SoftDist, still fall sig-
nificantly short of LKH-3’s performance. In summary, these
findings affirm our position that the heatmap-guided MCTS
paradigm, despite its innovative approach, shows limited
practical effectiveness compared to LKH-3 across various

scenarios, whether with ample or limited time budgets.

7. Conclusion, Discussion and Future Work
Conclusion. This paper presents, for the first time, a crit-
ical evaluation of ML-based heatmap generation and the
heatmap-guided MCTS paradigm in large-scale TSPs, align-
ing with our position on their limitations. We introduced
SoftDist, a simple yet effective baseline, outperforming
more complex ML-based heatmap generation methods in
solution quality and inference speed. SoftDist aims not to
surpass but to provoke a reconsideration of current ML-
based methods. Additionally, we proposed a novel metric
Score for evaluating the relative effectiveness of the guided
MCTS compared to LKH-3, revealing a significant perfor-
mance gap, underscoring the limited practical effectiveness
of the heatmap-guided MCTS approach. We believe our pro-
posed baseline and metric can serve as valuable benchmarks
for future research in this domain.

Discussion. A key issue with heatmap-guided MCTS is its
reliance on surrogate loss functions, which do not directly
optimize the original TSP loss and lack a rigorous theo-
retical foundation, resulting in uncertain performance dur-
ing test phases. Moreover, the reliance on post-hoc search
methods like MCTS contradicts the original goal of using
ML in OR, which is to develop generalizable, autonomous,
problem-agnostic algorithms. This continued dependence
on handcrafted, problem-specific search strategies is con-
trary to the intended automation and generalizability of ML
solutions in OR.

Future work. Future research should focus on developing
more effective heatmap generation methods with a theoret-
ical basis for their loss functions. Additionally, exploring
end-to-end solution generation methods, which generate
solutions directly without complex postprocessing steps, de-
spite their current performance lagging behind MCTS-based
methods, offers another promising direction.

8

Rethinking Post-Hoc Search-Based Neural Approaches for Solving Large-Scale TSPs

Impact Statement
Our research critically evaluates ML-guided heatmap gen-
eration and the heatmap-guided MCTS paradigm in large-
scale TSPs. The potential broader impact of this work lies
in advancing the field of ML and OR, especially in com-
plex problem-solving like logistics and network design. We
highlight the need for more theoretically robust approaches
in ML and the exploration of efficient, autonomous ML
methods for combinatorial problems. These advancements
could lead to more sustainable and effective solutions in
various industries, while also underscoring the importance
of aligning theoretical soundness with practical applicability
in ML research and applications.

References
Applegate, D. L., Bixby, R. E., Chvatál, V., and Cook,

W. J. The Traveling Salesman Problem: A Computa-
tional Study. Princeton University Press, 2006.

Applegate, D. L., Bixby, R. E., Chvátal, V., Cook, W., Es-
pinoza, D. G., Goycoolea, M., and Helsgaun, K. Cer-
tification of an optimal TSP tour through 85,900 cities.
Operations Research Letters, 37(1):11—-15, 2009.

Bello, I., Pham, H., Le, Q. V., Norouzi, M., and Bengio,
S. Neural combinatorial optimization with reinforcement
learning. arXiv preprint arXiv:1611.09940, 2016.

Bengio, Y., Lodi, A., and Prouvost, A. Machine learning
for combinatorial optimization: A methodological tour
d’horizon. European Journal of Operational Research,
290(2):405–421, 2021.

Bresson, X. and Laurent, T. An experimental study of neural
networks for variable graphs. In ICLR Workshop, 2018.

Browne, C. B., Powley, E., Whitehouse, D., Lucas, S. M.,
Cowling, P. I., Rohlfshagen, P., Tavener, S., Perez, D.,
Samothrakis, S., and Colton, S. A survey of Monte Carlo
tree search methods. IEEE Transactions on Computa-
tional Intelligence and AI in Games, 4(1):1–43, 2012.

Chen, X. and Tian, Y. Learning to perform local rewriting
for combinatorial optimization. In NeurIPS, pp. 6278–
6289, 2019.

Coulom, R. Efficient selectivity and backup operators in
Monte-Carlo tree search. In ICCG, pp. 72–83, 2006.

da Costa, P., Rhuggenaath, J., Zhang, Y., and Akçay, A. E.
Learning 2-opt heuristics for the traveling salesman prob-
lem via deep reinforcement learning. In ACML, pp. 465–
480, 2020.

Drori, I., Kharkar, A., Sickinger, W. R., Kates, B., Ma,
Q., Ge, S., Dolev, E., Dietrich, B. L., Williamson, D. P.,

and Udell, M. Learning to solve combinatorial optimiza-
tion problems on real-world graphs in linear time. IEEE
International Conference on Machine Learning and Ap-
plications, pp. 19–24, 2020.

Fu, Z.-H., Qiu, K.-B., Qiu, M., and Zha, H. Targeted sam-
pling of enlarged neighborhood via Monte Carlo tree
search for TSP. 2019.

Fu, Z.-H., Qiu, K.-B., and Zha, H. Generalize a small pre-
trained model to arbitrarily large TSP instances. In AAAI,
pp. 7474–7482, 2021.

Graikos, A., Malkin, N., Jojic, N., and Samaras, D. Dif-
fusion models as plug-and-play priors. In NeurIPS, pp.
14715–14728, 2022.

Helsgaun, K. An Extension of the Lin-Kernighan-Helsgaun
TSP Solver for Constrained Traveling Salesman and Ve-
hicle Routing Problems: Technical report. Roskilde Uni-
versitet, 2017.

Ho, J., Jain, A., and Abbeel, P. Denoising diffusion proba-
bilistic models. In NeurIPS, pp. 6840–6851, 2020.

Hottung, A. and Tierney, K. Neural large neighborhood
search for routing problems. Artificial Intelligence, 313:
103786, 2022.

Joshi, C. K., Laurent, T., and Bresson, X. An efficient
graph convolutional network technique for the travelling
salesman problem. ArXiv, abs/1906.01227, 2019.

Joshi, C. K., Cappart, Q., Rousseau, L.-M., and Laurent,
T. Learning the travelling salesperson problem requires
rethinking generalization. Constraints, 27(1-2):70–98,
2022.

Kim, M., Park, J., and Park, J. Sym-NCO: Leveraging
symmetricity for neural combinatorial optimization. In
NeurIPS, pp. 1936–1949, 2022.

Kool, W., van Hoof, H., and Welling, M. Attention, learn to
solve routing problems! In ICLR, pp. 1–25, 2019.

Kool, W., van Hoof, H., Gromicho, J., and Welling, M.
Deep policy dynamic programming for vehicle routing
problems. In CPAIOR, pp. 190–213, 2022.

Kwon, Y.-D., Choo, J., Kim, B., Yoon, I., Gwon, Y., and
Min, S. POMO: Policy optimization with multiple optima
for reinforcement learning. In NeurIPS, pp. 21188–21198,
2020.

Lu, H., Zhang, X., and Yang, S. A learning-based iterative
method for solving vehicle routing problems. In ICLR,
pp. 1–15, 2020.

9

Rethinking Post-Hoc Search-Based Neural Approaches for Solving Large-Scale TSPs

Ma, Y., Li, J., Cao, Z., Song, W., Zhang, L., Chen, Z., and
Tang, J. Learning to iteratively solve routing problems
with dual-aspect collaborative transformer. In NeurIPS,
pp. 11096–11107, 2021a.

Ma, Y., Li, J., Cao, Z., Song, W., Zhang, L., Chen, Z., and
Tang, J. Learning to iteratively solve routing problems
with dual-aspect collaborative transformer. In NeurIPS,
pp. 11096–11107, 2021b.

Ma, Y., Cao, Z., and Chee, Y. M. Learning to search feasible
and infeasible regions of routing problems with flexible
neural k-opt. In NeurIPS, 2023.

Min, Y., Wenkel, F., Perlmutter, M., and Wolf, G. Can
hybrid geometric scattering networks help solve the max-
imum clique problem? In NeurIPS, pp. 22713–22724,
2022.

Min, Y., Bai, Y., and Gomes, C. P. Unsupervised learning
for solving the travelling salesman problem. In NeurIPS,
2023.

Nowak, A. W., Villar, S., Bandeira, A. S., and Bruna, J.
Revised note on learning algorithms for quadratic as-
signment with graph neural networks. arXiv preprint
arXiv:1706.07450, 2017.

Pan, X., Jin, Y., Ding, Y., Feng, M., Zhao, L., Song, L., and
Bian, J. H-TSP: Hierarchically solving the large-scale
traveling salesman problem. In AAAI, pp. 9345–9353,
2023.

Papadimitriou, C. H. The euclidean travelling salesman
problem is NP-complete. Theoretical Computer Science,
4(3):237—-244, 1977.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J.,
Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga,
L., et al. Pytorch: An imperative style, high-performance
deep learning library. In NeurIPS, pp. 8024–8035, 2019.

Qiu, R., Sun, Z., and Yang, Y. DIMES: A differentiable
meta solver for combinatorial optimization problems. In
NeurIPS, pp. 25531–25546, 2022.

Reeves, C. R. Modern heuristic techniques for combinato-
rial problems. John Wiley & Sons, Inc., 1993.

Rego, C., Gamboa, D., Glover, F., and Osterman, C. Trav-
eling salesman problem heuristics: Leading methods,
implementations and latest advances. European Journal
of Operational Research, 211(3):427––441, 2011.

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L.,
van den Driessche, G., Schrittwieser, J., Antonoglou, I.,
Panneershelvam, V., Lanctot, M., Dieleman, S., Grewe,
D., Nham, J., Kalchbrenner, N., Sutskever, I., Lillicrap,

T. P., Leach, M., Kavukcuoglu, K., Graepel, T., and Has-
sabis, D. Mastering the game of go with deep neural
networks and tree search. Nature, 529:484–489, 2016.

Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou,
I., Huang, A., Guez, A., Hubert, T., Baker, L., Lai, M.,
Bolton, A., Chen, Y., Lillicrap, T. P., Hui, F., Sifre, L.,
van den Driessche, G., Graepel, T., and Hassabis, D.
Mastering the game of go without human knowledge.
Nature, 550(7676):354–359, 2017.

Sun, Z. and Yang, Y. DIFUSCO: Graph-based diffusion
solvers for combinatorial optimization. In NeurIPS, 2023.

Taillard, E. D. and Helsgaun, K. POPMUSIC for the travel-
ling salesman problem. European Journal of Operational
Research, 272(2):420––429, 2019.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I. Attention
is all you need. In NeurIPS, pp. 5998–6008, 2017.

Vinyals, O., Fortunato, M., and Jaitly, N. Pointer networks.
In NeurIPS, pp. 2692––2700, 2015.

Williams, R. J. Simple statistical gradient-following algo-
rithms for connectionist reinforcement learning. Machine
Learning, 8:229–256, 2004.

Wu, Y., Song, W., Cao, Z., Zhang, J., and Lim, A. Learn-
ing improvement heuristics for solving routing problems.
IEEE Transactions on Neural Networks and Learning
Systems, 33(9):5057–5069, 2021.

Ye, H., Wang, J., Liang, H., Cao, Z., Li, Y., and Li, F.
GLOP: Learning global partition and local construction
for solving large-scale routing problems in real-time. In
AAAI, 2024.

10

Rethinking Post-Hoc Search-Based Neural Approaches for Solving Large-Scale TSPs

A. Grid Search Results for SoftDist Temperature Setting
In our approach to fine-tuning the SoftDist temperature parameter τ , we employed a two-stage grid search strategy. Initially,
we conducted a coarsened grid search to broadly identify the range of effective temperatures for each TSP problem scale.
This preliminary search was performed with a wide range of temperature values to quickly narrow down the potential
candidates. The results of this coarsened grid search are presented in Table 4.

Following the coarsened grid search, we conducted a refined grid search within the narrowed range to find the most optimal
temperature settings for each TSP scale. This second stage involved a more granular exploration of temperatures, allowing
for a precise determination of the best-performing setting. The findings from this refined grid search are detailed in Table 5.

Table 4. Coarsened grid search results for SoftDist tempera-
ture settings.

TSP PROBLEM TEMPERATURE AVERAGE LENGTH

TSP-500

0.0010 52.47558
0.0020 31.59499
0.0030 21.16313
0.0040 17.48539
0.0050 16.84009
0.0060 16.78332
0.0070 16.78133
0.0080 16.78511
0.0090 16.78920
0.0100 16.79291

TSP-1000

0.0010 81.45604
0.0020 38.64677
0.0030 25.53236
0.0040 23.71077
0.0050 23.64351
0.0060 23.64804
0.0070 23.65656
0.0080 23.66394
0.0090 23.67698
0.0100 23.69137

TSP-10000

0.0010 106.22613
0.0020 74.10114
0.0030 74.24206
0.0040 74.48813
0.0050 74.77912
0.0060 75.08760
0.0070 75.43125
0.0080 75.73975
0.0090 76.09572
0.0100 76.45497

Table 5. Refined grid search results for SoftDist temperature
settings.

TSP PROBLEM TEMPERATURE AVERAGE LENGTH

TSP-500

0.0060 16.78332
0.0061 16.78390
0.0062 16.78535
0.0063 16.78268
0.0064 16.78538
0.0065 16.78185
0.0066 16.78020
0.0067 16.78195
0.0068 16.78463
0.0069 16.78320

TSP-1000

0.0050 23.64351
0.0051 23.63891
0.0052 23.64239
0.0053 23.64302
0.0054 23.64231
0.0055 23.64560
0.0056 23.64476
0.0057 23.64931
0.0058 23.64592
0.0059 23.64683

TSP-10000

0.0010 106.22613
0.0011 91.68151
0.0012 83.10377
0.0013 78.16867
0.0014 75.74385
0.0015 74.72504
0.0016 74.26747
0.0017 74.13749
0.0018 74.07734
0.0019 74.09550

B. Performance Analysis under Varying Time Budgets with UTSP’s MCTS Settings
We present the performance of MCTS under the settings proposed by Min et al. (2023), offering a supplementary perspective
to our main experiments. Our findings indicate that the performance under UTSP’s MCTS settings closely mirrors
that observed with the default MCTS settings, with LKH-3 consistently outperforming MCTS across the experiments.
Additionally, the performance of various methods, including those using a zero-input heatmap, perform similarly, indicating
the limited influence of the heatmap on the MCTS with Min et al. (2023)’s settings.

11

Rethinking Post-Hoc Search-Based Neural Approaches for Solving Large-Scale TSPs

0 200 400 600 800 1000
Time (s)

0

20

40

60

80

100

Sc
or

e
(%

)

LKH-3
ATT-GCN
DIFUSCO
DIMES
SoftDist
UTSP
Zeros

(a) TSP-500 with different MCTS settings.

0 250 500 750 1000 1250 1500 1750
Time (s)

0

20

40

60

80

100

Sc
or

e
(%

)

LKH-3
ATT-GCN
DIFUSCO
DIMES
SoftDist
UTSP
Zeros

(b) TSP-1000 with different MCTS settings.

Figure 5. Performance of MCTS under different settings by (Min et al., 2023) for TSP-500 and TSP-1000.

C. Runnable PyTorch Code for SoftDist-Based Heatmap Generation
We have provided a directly runnable Python code, implemented using PyTorch (Paszke et al., 2019). The input
batch coords represents a batch of TSP-n problems, where each problem is represented as n two-dimensional coor-
dinates, forming a tensor of size (batch size, n, 2). The tau parameter is the temperature τ in Equation 5, determined
through grid search. This function outputs a tensor of size (batch size, n, n), generating a corresponding heatmap for each
TSP problem.

1 import torch
2 import torch.nn.functional as F
3

4

5 def create_heatmap_matrix(batch_coords, tau, device="cuda:0"):
6 batch_coords = torch.tensor(batch_coords, device=device).float()
7

8 coord_diff = batch_coords[:, :, None, :] - batch_coords[:, None, :, :]
9

10 distance_matrix = torch.sqrt(torch.sum(coord_diff ** 2, dim=-1))
11

12 eye = torch.eye(distance_matrix.size(1), device=device).unsqueeze(0)
13 distance_matrix = torch.where(
14 eye == 1,
15 torch.tensor(float(’inf’), dtype=torch.float, device=device),
16 distance_matrix
17)
18

19 heatmap = F.softmax(-distance_matrix / tau, dim=2)
20

21 return heatmap.cpu().numpy()

D. Extended Related Work
Existing methods to tackle the TSP fall into two broad categories: machine learning-based and non-learning algorithms. In
this section, we focus exclusively on machine learning-based approaches. For non-learning algorithms, interested readers
are directed to Applegate et al. (2006; 2009); Rego et al. (2011); Helsgaun (2017); Taillard & Helsgaun (2019) for further
exploration.

Machine learning-based approaches for solving TSP can be broadly classified into two categories, based on the method
of solution construction. The first category, construction-based methods, progressively builds a solution by sequentially
adding new points to an incomplete path in an autoregressive manner until a complete path is formed. The second category,
search-based methods, starts with a complete solution and continuously applies local OR operations (Reeves, 1993) in an

12

Rethinking Post-Hoc Search-Based Neural Approaches for Solving Large-Scale TSPs

effort to improve it. This classification reflects a fundamental divide in strategy: while construction-based methods focus on
incrementally creating a route, search-based methods revolve around refining an already established route.

D.1. Construction-based Methods

Construction-based methods in machine learning for solving the TSP have evolved significantly over the years. Early
approaches like the Pointer Network (PointerNet) (Vinyals et al., 2015) proposed an end-to-end approach that decodes TSP
solutions autoregressively from scratch using recurrent neural networks. However, this supervised learning method requires
a large number of pre-computed optimal (at least high-quality) TSP solutions, being unaffordable for large-scale instances.
This framework was further enhanced by integrating reinforcement learning for better performance and generalization,
as seen in the work of Bello et al. (2016), where the negative tour length serves as a reward signal to guide an actor-
critic architecture. The emergence of Transformer architectures (Vaswani et al., 2017), known for their success in the text
generation domain, has further revolutionized this field (Kool et al., 2019; Kwon et al., 2020; Kim et al., 2022) by supplanting
PointerNet. These methods, while effective for smaller TSP instances up to about 100 nodes, encounter scalability challenges
and latency in inference when dealing with larger numbers of cities (Joshi et al., 2022; Fu et al., 2021). This is due to the
action space growing linearly and the quadratic complexity inherent in the self-attention mechanism (Vaswani et al., 2017).

One exception is Pan et al. (2023), which employs a hierarchical divide-and-conquer strategy by decomposing a large-scale
TSP problem into smaller open-loop TSP sub-problems (Papadimitriou, 1977). While this hierarchical approach reduces
training complexity, enabling scalability to large instances (e.g., up to 10,000 points), it trades off solution quality: the
partitioning strategy limits the solution quality, resulting in a notable reduction in performance. For instance, the optimality
gap reaches 6.62% for TSP-1000 and 7.32% for TSP-10000.

D.2. Search-based Methods

In contrast to construction-based methods, search-based methods aim to improve existing solutions through iterative
refinement until computational budgets are exhausted. These methods rely on classical local operators, such as local
search by Chen & Tian (2019); Lu et al. (2020), ruin-and-repair by Hottung & Tierney (2022) and 2-opt by da Costa et al.
(2020); Ma et al. (2021a); Wu et al. (2021). However, improvement heuristic learners encounter the sparse reward problem
when dealing with large graphs (Joshi et al., 2022; Bengio et al., 2021), and overly simplistic local operators can limit the
performance of the algorithms. One variant is Ye et al. (2024), which adopts a divide-and-conquer strategy and utilizes
search-based methods for improving the smaller subproblems. However, similar to Pan et al. (2023), it also trades off
solution quality to reduce training complexity.

Recent successes in addressing large-scale TSP problems (Fu et al., 2021; Qiu et al., 2022; Sun & Yang, 2023; Min et al.,
2023) have utilized Monte Carlo tree search (Coulom, 2006; Silver et al., 2016; 2017) as a powerful post-processing
algorithm. These emerging algorithms can be divided into two stages: heatmap generation and MCTS with guidance from
the heatmap. Initially, deep learning models are trained to generate heatmaps, providing scores for each edge’s selection
(which indicates the probability of each edge belonging to the optimal solution) as mentioned in Nowak et al. (2017); Joshi
et al. (2019); Drori et al. (2020); Kool et al. (2022), where a specific surrogate loss function is designed by supervised
learning (Fu et al., 2021; Sun & Yang, 2023), or unsupervised learning (Min et al., 2023), or reinforcement learning (Qiu
et al., 2022). Subsequently, these heatmaps will act as priors to guide the MCTS. This heatmap-guided MCTS method
has achieved satisfactory results in solving large-scale TSP problems, reaching state-of-the-art performance. For a visual
representation of this method, please refer to Figure 2.

13

