
SNAPKV: HETEROGENEOUS KEY-VALUE STORE FOR HETEROGENEOUS

WORKLOADS

Anonymous authors
Paper under double-blind review

Abstract
Modern businesses increasingly require fast and accurate real-
time decisions over concurrently modified data. The existing
literature lacks a unified data repository supporting hetero-
geneous workloads (transactional, analytics, and machine
learning inference). Prior work made significant trade-offs
between freshness, performance, consistency, and generality.
In this paper, we design SnapKV, a key-value store that sup-
ports heterogeneous workloads without sacrificing real-time
order.

1 Introduction

Real-time analysis of data stored in transactional data repos-
itories is becoming increasingly important. Databases like
4Paradigm’s FeDB/OpenMLDB [5,11], PingCap’s TiDB [22],
Google’s AlloyDB [18], Google’s F1 Lightning [41], and Ve-
gito [33] enable users to transact with databases and analyze
the data concurrently. The workloads these systems process
include hybrid transactional/analytical processing (HTAP)
workloads and online decision augmentation (OLDA) work-
loads.

HTAP enables a database management system to perform
both online transactional processing (OLTP) and online ana-
lytical processing (OLAP). Supporting these heterogeneous
operations, which are substantially different in terms of com-
puting demand, could lead to performance inferior to the
performance of both OLTP-only or OLAP-only systems. This
is mainly because accessing data while it is getting modified
introduces bottlenecks within the concurrency control due
to conflicts between long-running OLAP queries and short
running OLTP transactions.

To address this bottleneck, recent solutions in literature
have dealt with this issue by relaxing real-time guarantees
and allowing for some staleness of queries in exchange for
higher performance of transactional and analytical compu-
tation [22, 33]. However, the cost of staleness in high-
performance HTAP databases can be too high for some ap-
plications like credit card fraud [11] (see scenario below).
Ensuring data freshness in such applications, which is in-
formally defined as the time between the commitment of a
database transaction and when its modification can be ob-
served by other transactions, is essential to reach decisions
based on up-to-date data snapshots.

The need for more stringent freshness prompted the cre-
ation of a new computing paradigm named Online Decision
Augmentation (OLDA) [11]. OLDA is a specific paradigm
that allows for fast feature engineering to be used in machine
learning models to improve the performance of the inference
task. OLDA focuses on the specific kinds of analytics related
to machine learning and allows for interfacing with machine
learning inference services. Although existing OLDA systems
indeed achieve high performance and high data freshness (i.e.,
real-time order), unfortunately they relax the transactional
model in order to avoid the above bottlenecks. For example,
FeDB/OpenMLDB [5,11], an OLDA database, does not allow
for the use of the BEGIN and COMMIT SQL commands needed
to write arbitrary transactions. As a result, performance in-
creases, but programmability is severely affected.

The following example highlights an emerging need to
maintain both freshness (through real-time order) and pro-
grammability (through general-purpose transactions that in-
clude analytics and machine learning inference computation)
in modern data management systems. The example is in-
spired by credit card fraud detection. In a recent work [11],
4Paradigm [6], a company for banking fraud detection ser-
vices, suggests that as people use credit cards, complex infor-
mation stemming from the credit card transactions and their
time relative to other transactions can aid in predicting fraud.
In the same work, it is shown that fraud detection using ma-
chine learning inference primitives must occur within 20ms
of the moment the transaction arrives.

Best effort approaches like those seen in recent HTAP
databases [22, 33] do not guarantee such freshness and low
latency. On the other hand, transactional support and real-
time order are necessary properties to commit a financial
transaction only if the most recent snapshot of execution is
found to be not fraudulent.

Programmability through expressive APIs that allow for
transactional operations, atomically executed along with non-
conventional computation, such as machine learning infer-
ence, is essential for engineers to work with data repositories
and analyze real-time data.

Motivated by the above observations, in this paper we in-
troduce SnapKV, a heterogeneous data repository architecture
that aims at achieving both programmability and freshness
by (1) enabling transactional support along with real-time
analytics, and (2) providing a general architecture to achieve
high-performance transactions, analytics, and machine learn-



Submitted to the Journal of Systems Research (JSys) 2024

ing inference, all in an integrated infrastructure. The key to
enabling SnapKV’s heterogeneity is a new primitive called
SNAPSHOT. This SNAPSHOT primitive builds off of prior work
on linearizable range-queries [28, 40]. It allows programmers
to perform a collection of range query operations that creates
an arbitrarily large snapshot of data to be computed by OLDA
and OLAP workloads. SNAPSHOT can be invoked within a
transactional context, and SnapKV’s concurrency control en-
sures that the snapshot remains consistent until the transaction
commits.

In order to achieve all the aforementioned goals without
sacrificing scalability, SnapKV follows the recent trend of
integrating heterogeneous architectures, mainly graphics pro-
cessing units (GPUs), in data repositories [15, 36, 42].

SnapKV’s approach to heterogeneous computing is to di-
vide transactions into smaller computational tasks and eval-
uate which architecture (i.e., CPU or GPU) may have more
affinity to each task. We then evaluate the affinity of each
task and design optimal functions/kernels for that architec-
ture. More specifically to SnapKV, transactional primitives
and data structures are more amenable to the CPU for these
problems. However, when performing machine learning in-
ference, we offload to the GPU. This type of approach to
heterogeneity enables users to meet OLTP, OLAP, OLDA,
and similar workload demands by utilizing high performance
heterogeneous computation within their transactions.

We implemented SnapKV in C++ and tested it using enter-
prise CPUs and an NVIDIA Tesla V100 GPU. We compare
its performance against FeDB [5,11] for OLDA workloads,
and against Vegito [33] and TiDB [22] for HTAP workloads.
The results show that SnapKV achieves up to 2.43x speedup
and 45.7% lower latency compared to FeDB. In HTAP work-
loads, SnapKV significantly outperforms TiDB, achieving
up to 604x and 4x speedup in OLTP and OLAP throughput,
respectively. Compared to Vegito, SnapKV’s transactional
throughput is improved by 1.3x, which matches our goals of
providing real-time order guarantees without sacrificing trans-
actional performance. On the other hand, SnapKV’s OLAP
throughput is 16.8% of Vegito’s OLAP throughput. This is
not surprising due to the highly optimized column-store de-
sign Vegito adopts, which is not the focus of this paper. Our
future plans include investigating the possible extensions to
include such optimizations in SnapKV.

SnapKV is released as open source project and publicly
available at: https://zenodo.org/records/13858237.

2 System Overview

SnapKV is an in-memory data repository designed to concur-
rently handle a variety of complex workloads including OLAP,
OLTP, and OLDA (machine learning). SnapKV achieves this
by providing two interoperating subsystems, the transactional
and compute subsystems. Our transactional subsystem imple-
ments the transactional primitives, concurrency control, and

in-memory storage. Support for OLAP operations and GPUs
are enabled in the compute subsystem. More in detail:

• The transactional subsystem provides transactional prim-
itives, including SNAPSHOT, which are all able to support
the reads and modifications needed for each workload.

• The compute subsystem is able to provide relational
algebra operations (e.g. join or sort) along with com-
putational kernels (e.g. general matrix-matrix multipli-
cations needed for deep learning inference) and GPU
support in order to achieve the low latency required for
these workloads. The compute subsystem supports dy-
namic loading so that custom operations and kernels can
be added to enable future workloads to achieve their
performance objectives.

These two subsystems are then utilized within a transaction,
allowing programmers to consistently interact with data while
optimizing analysis through CPU and GPU computation. Un-
like prior approaches to HTAP or OLDA, SnapKV differs in
how it fuses these two subsystems into a single centralized
system.

SnapKV relies on the key-value data model, which provides
a useful abstraction for storing unstructured data, as well
as relational data with appropriate transformations (e.g., by
mapping the primary key and a representation of the rest of the
record’s fields to the key and the value of the key-value pair,
respectively [3, 33]). Internally, key-value pairs are stored
in ordered maps to support consistent range operations, as
shown later.

Figure 1 displays how our APIs enable SnapKV to sup-
port OLAP, OTLP, and machine learning (OLDA) workloads.
OLAP, OLTP, and OLDA transactions must operate atom-
ically, consistently, and isolated. Since these transactions
are heterogeneous in their computation, we identify a set of
common primitive operations and augment them with the
capability to run other types of computations (e.g., machine
learning inference, relational algebra). Among the common
primitives, we also include our SNAPSHOT API, which allows
programmers to specify multiple keys or ranges of keys (i.e., a
snapshot). Importantly, the SNAPSHOT API is also managed by
the concurrency control to guarantee its consistency with the
other transactional APIs. This snapshot can be further manip-
ulated using other transactional APIs, but more importantly
it is used by the other types of computations to atomically
retrieve and analyze the target snapshot.

At a high level, SnapKV implements a snapshot isolation
(SI) [9] concurrency control through multi-versioning and val-
idation of conflicts at commit time (more details in Section 3).
We choose to support SI because, in addition to being widely
used in commercial databases [31, 37] (although often called
something other than snapshot isolation [9, 19]) and widely
studied [10, 34], it provides real-time order, which is neces-
sary for our workloads. Informally, real-time order guarantees

2

https://zenodo.org/records/13858237


Submitted to the Journal of Systems Research (JSys) 2024

Figure 1: SnapKV’s Heterogeneous Architecture for Hetero-
geneous Workloads.

that a transaction atomically occurs between invocation and
commit and that all operations that committed before in time
are visible. Within snapshot isolation, a global timestamp is
used as the ordering mechanism.

SnapKV operates by receiving a BEGIN operation, at which
point the transactional manager begins a transaction. The
client can issue READ and WRITE or SNAPSHOT operations.
The APIs work as follows:

• READ: takes a key or a range and returns a value or list
of values.

• WRITE: takes a key-value pair to be written or deleted.

• SNAPSHOT: takes a list of keys and a list of ranges and
returns the corresponding list of values.

• ABORT: used to intentionally abort a transaction.

• COMMIT: used to finalize a transaction.

The SNAPSHOT API implements a linearizable range query
over multiple ordered maps and can be invoked within a trans-
actional context. As opposed to the multi-get API available in
other data repositories (e.g., Memcached [4]), our SNAPSHOT
performs a single optimized traversal of the data repository,
which is faster and critical to support long-running code (e.g.,
OLAP queries or transactions that use machine learning prim-
itives).

To support heterogeneous computation within a transaction
using the GPU, we extend the transactional programming
model to allow running operations to program the GPU for
efficient execution (e.g., CPU/GPU memory allocation and
transfer, GPU kernel scheduling). In Figure 1, this is de-
noted by the computational API. Within a transaction, the

computational APIs can be invoked on data provided by a
transactional API (READ or SNAPSHOT) or can be invoked on
data not stored within SnapKV (e.g. arguments to the trans-
action). Correctness is preserved by disallowing the GPU to
modify data provided by SNAPSHOT, as well as synchroniz-
ing CPU and GPU execution to avoid parallelism within a
transaction (more details in Section 4).

SnapKV does not limit its support of heterogeneous com-
putation to what is provided within its pre-existing compute
subsystem libraries; programmers can provide their own cus-
tom implementations of arbitrary operations (e.g., a linear
regression task) to be run on both CPU and GPU. This hetero-
geneous computation can use SnapKV’s primitives to retrieve
data and manipulate data, consistently, with the only limita-
tion that GPU tasks should not modify data. Customizability
enables SnapKV to optimally adapt to new transactional work-
loads and run these operations on both the CPU and GPU.

2.1 Differing Approaches

The approach SnapKV takes is different from prior sys-
tems [11, 22, 33].

Figure 2 illustrates how existing HTAP [22, 33] and
OLDA [11] systems utilize middleware or distributed pro-
tocols to couple together multiple nodes or services. This
approach increases system complexity and often introduces
undesirable trade-offs, such as the inability to guarantee real-
time order across the system. On the other hand, SnapKV is
built from the ground up and, in order to simplify system guar-
antees, it ensures SI across the key-value store. Furthermore,
SnapKV is designed to support the computing capability of
emerging hardware, such as GPUs, within transactions.

Figure 2: SnapKV vs Prior HTAP and OLDA Approaches.

The most basic differences in the systems can be seen when
implementing a simple fraud detection microbenchmark on
FeDB [11] versus SnapKV. Within our fraud detection, we
want to store information about the current credit card transac-
tion (e.g., user, location, etc.) and retrieve/pre-process some
amount of prior transactional history. At this point, we can
infer whether the current transaction is fraudulent or not. A

3



Submitted to the Journal of Systems Research (JSys) 2024

FeDB based implementation must run an insert transaction
to insert a new record into a table, followed by another trans-
action to query the prior relevant transactions. These two
operations are not atomic in FeDB. At this point, the cur-
rent financial transaction and historical financial transactional
information must be run through another server with an infer-
ence engine to infer.

Unlike FeDB, SnapKV does not require any networking
or another node for inference. Also, this process would be
representable as a single atomic operation; the transaction
would begin with a WRITE followed by a SNAPSHOT of prior
information. These operations would interact with the trans-
actional subsystem and the concurrency control. Once the
SNAPSHOT returns the relevant transactional history, the pro-
grammer will use the compute subsystem to copy the data to
the GPU, run our machine learning kernels, and copy the data
back. Once the compute subsystem finishes and copies the
data, the programmer can handle the result of the inference
and COMMIT through the transactional subsystem.

In Section 3 we detail how the transactional subsystem
and the SNAPSHOT primitive works. In Section 4 we explain
how the compute subsystem and heterogeneous computing
is enabled within the key-value store. In Section 5 we detail
our OLDA credit card fraud microbenchmark. Finally, in
Section 6 we evaluate our approach in comparison to prior
approaches.

3 Transactional Subsystem

SnapKV’s transactional subsystem is designed to support the
operations that are necessary to implement concurrent OLAP,
OLTP, and OLDA workloads. This includes READ, SNAPSHOT,
and WRITE. The two APIs retrieving data ensure the highest
level of freshness (i.e., real-time order).

SnapKV’s transactional subsystem supports SI through
multi-versioning [34]. Clients are able to interact with the
SnapKV transactional manager through the six operations
mentioned in Section 2. We determined that these operations
have an affinity for the CPU instead of the GPU, and therefore
we implement and optimize them for the CPU.

SnapKV implements an optimistic concurrency control
(pseudocode shown in Algorithm 1) that ensures the Snapshot
Isolation (SI) correctness level. It works as follows. A global
timestamp is read on BEGIN. This is stored in tx.timeStamp.
A map associates a key with a list of versioned values. When
a WRITE occurs, it is buffered by the transaction manager
(within the tx.orderedWriteSet in the pseudocode). When
a READ occurs, tx.orderedWriteSet is checked to see if
the key has been updated; otherwise the map is read, and the
most recent version with a timestamp less than or equal to
the transaction timestamp is returned. Recall that, because of
the SI guarantees, the return values of read operations can be
avoided to be recorded for future validation. ABORT frees the

Algorithm 1 COMMIT

Require: Transaction tx and global timestamp gts
1: versionLists← {}
2: for (k, v) ∈ tx.orderedWriteSet do
3: l← map.getVersionList(k)
4: if l is null then
5: l← map.insertVersionList(k)
6: end if
7: lock_exclusive(l)
8: versionLists.append(l)
9: if l.latestTimestamp > tx.start then

10: unlock(versionLists)
11: return ABORT_AND_RETRY
12: end if
13: end for
14: tx.commit← ++gts
15: for l ∈ versionLists do
16: l.prepend((tx.commit, tx.orderedWriteSet(l.key)))
17: unlock(l)
18: end for
19: return COMMITTED

state of the transaction, while COMMIT initiates the commit
protocol.

The commit protocol locks in exclusive mode the keys that
will be written to in increasing order to prevent deadlock. If
the key does not exist in SnapKV, a new version list will be
inserted and marked with timestamp 0 (i.e., no read opera-
tion can retrieve it). While locking, the concurrency control
validates that no concurrent transaction has written a newer
version by comparing the transaction timestamp to the lat-
est write of each key. If this does not hold, the transaction
aborts and retries; otherwise the global timestamp is atomi-
cally incremented, updated values are written, and locks are
released.

Upon commit, SnapKV must modify the in-memory stor-
age. To implement the storage in practice, we rely on a
concurrent map that implements an elementwise linearizable
skiplist [1]. It should be noted that SnapKV is not limited
to using this map; it is possible to use any linearizable map-
ping data structure that supports reads, modifications, and
concurrent iteration over the data structure.

The concurrency control also supports calling GPU kernels
through the compute subsystem (more details on how this
interacts with the concurrency control are in Section 4.1).

Our main innovation to the transactional manager is the ad-
dition of the SNAPSHOT primitive (detailed in Section 3.1).
This primitive is able to provide a method to perform a
large series of real-time order reads, enable a programmer to
quickly move the resulting data to a GPU, and help minimize
the data structure’s lock holding time.

4



Submitted to the Journal of Systems Research (JSys) 2024

3.1 SNAPSHOT Primitive

Within a data repository, there are two different types of reads
that are important to support: range queries and point queries.
The SNAPSHOT primitive implements these reads as a unified
primitive.

To call SNAPSHOT, a list of points and ranges is taken as an
argument. The transactional subsystem will iterate through
this list of arguments and perform each range query or point
query. The transactional subsystem will then return the keys
and values associated with each read. For example: the call
SNAPSHOT({a,range-b}) will return a list containing the
value of a followed by the first value in range-b, the second
value in range-b, and so on, along with the associated keys.
There is also an index that is returned that contains the start
location and end location of the ith argument in SNAPSHOT.

To implement this primitive in practice, SnapKV uses
the multi-version concurrency control and a concurrent map
which is elementwise linearizable. Algorithm 2 details how
the SNAPSHOT primitive works. For each argument given to
SNAPSHOT, the individual query is run. For point queries,
SnapKV performs the same operations as a READ. For range
queries, the maps are traversed in an elementwise lineariz-
able fashion. At each element, SnapKV acquires a shared
lock on the version list and get the value associated with the
timestamp of the transaction (i.e., the value with a timestamp
less than or equal to the start timestamp of the transaction).
When performing a range query in the absence of concurrent
updates, it is guaranteed it will always find the latest version
consistent with the transaction’s start timestamp.

If there is a COMMIT concurrent with a range query, and
it increments the global timestamp before the transaction
issuing the range query reads the timestamp, then all updates
in the COMMIT must be observed by the range query. SnapKV
guarantees this through the multi-versioning scheme along
with the lock protection on the version lists. Specifically, since
the COMMIT acquires all the locks before incrementing the
global timestamp, the range query will be blocked if needed
until the new versions are added.

In the case that the transaction issuing the range query
reads the timestamp before the COMMIT increments the global
timestamp, even if it will be blocked by the COMMIT it will not
observe those updates because it will have a larger timestamp.

3.2 READ vs SNAPSHOT

SnapKV’s SNAPSHOT primitive is advantageous over READ
by enabling ease of copying data when doing heterogeneous
programming. The structure of the vectors returned by the
SNAPSHOT primitive is designed to facilitate offloading future
computations to the GPU. Since it returns vectors of keys,
values, and indexes, it is straightforward to move these to the
GPU with three memory copies. If SNAPSHOT was not used,
individual copies to the GPU must be done or the programmer

must assemble the vector in their transaction and perform a
similar copy. By using SNAPSHOT we are able to better support
the use of heterogeneous architectures in SnapKV’s compute
subsystem (more details in Section 4.1).

Algorithm 2 SNAPSHOT primitive

Require: a set Args of points and ranges
1: keys← vector({})
2: values← vector({})
3: index← vector({})
4: count = 0
5: for arg ∈ Args do
6: if arg is range query then
7: l = map.iterator(arg.begin) ▷ l is a version list
8: for l != map.iterator(arg.end); ++l do
9: lock_shared(l)

10: kv← l.getKVAtTime(currentTx.start)
11: unlock_shared(l)
12: keys.append(kv.key)
13: values.append(kv.value)
14: count++
15: end for
16: iter = writeSet.iterator(arg.begin)
17: for iter != writeSet.iterator(arg.end); ++iter do
18: if iter.key ∈ keys then
19: values.update(value)
20: else
21: keys.append(iter.key)
22: values.append(iter.value)
23: count++
24: end if
25: end for
26: index.append(count)
27: else
28: kv← writeSet(arg.key)
29: if arg.key /∈ writeSet then
30: lock_shared(l)
31: kv← l.getKVAtTime(arg, currentTx.start))
32: unlock_shared(l)
33: end if
34: keys.append(kv.key)
35: values.append(kv.value)
36: index.append(++count)
37: end if
38: end for
39: return {keys, values, index}

SNAPSHOT can also be advantageous for performing index
joins when query selectivity, i.e., the probability a key will
be selected when selecting keys based on a predicate, is high.
This case occurs in Q3 of ch-benCHmark [12], an HTAP
benchmark, where there are index joins. A database must join
customer, order, neworder, and orderline where the cus-
tomer’s state matches a predicate and then perform aggrega-

5



Submitted to the Journal of Systems Research (JSys) 2024

tion. Traditional query optimizers like TiDB’s optimizer [22]
approach this by joining order with customer and filter out
customers on this join. At this point, the cardinality may be
less than the cardinality of the order table, and the database
may be able to perform the rest of the operations with fewer
reads.

SnapKV can implement the above join in two ways. In
both ways, it represents tables as key-value pairs with tuple
(table name, primary key) as the key and the record as
the value. When attempting to benefit from low selectivity,
SnapKV would use READ and perform an index join, which
is comprised of an O(logn) operation on the skiplist for each
element in the range.

When selectivity is high, this means that the cardinality of
order joined with customer after the filtering out customers
is close to the cardinality of order joined with customer.
This limits the benefit of approaching the query this way.
Using SNAPSHOT instead, SnapKV will get all tables and use
the compute subsystem to perform the joins. When there is
minimal impact of cardinality, this means performing a O(n)
traversal, which is less costly than the O(logn) operations
required for each element in the range when performing the
index join.

In Section 6 we evaluate this approach to using SNAPSHOT
and find it can lead to up to about 20% increase in throughput
to approach joins this way when there is high selectivity. In
order to efficiently use the primitive, the programmer must
make a determination whether to perform a snapshot or indi-
vidual reads. We approach the decision to use SNAPSHOT and
READ based on our insights gained from testing performance
versus selectivity in Section 6, which suggests above 80%
selectivity is best for using SNAPSHOT. We also advise group-
ing any reads that follow one another as a snapshot when
programming.

When implementing ch-benCHmark, we generally utilize
SNAPSHOT on the queries and READ on the transactions. In
the case of our credit card fraud benchmark (described in
Section 5), we found ourselves using SNAPSHOT since the
credit card transaction logging and detection operation has
initial reads.

4 Compute Subsystem

The compute subsystem enables programmers to accelerate
complex data analysis and operations within SnapKV by us-
ing both the CPU and GPU. In order to achieve the high
performance and scalability goals of the compute subsystem,
SnapKV enables GPU compute within transactions and builds
upon GPU asynchronous programming APIs. Details about
this are in Section 4.1.

Another important characteristic of SnapKV is that trans-
actions are compiled as procedures. Within these procedures,
a programmer can utilize CPU primitives (e.g., join) and tell

SnapKV to dynamically load user specified kernels or func-
tions. We detail this in Section 4.2.

4.1 GPU Compute within Transactions

Supporting GPU compute within transactions presents two
problems, how the CPU and the GPU are able to share mem-
ory and how to maintain high performance when switching
execution between the CPU and the GPU. Consider im-
plementing a GPU accelerated fraud detection transactional
benchmark within SnapKV. In this benchmark, historical fi-
nancial transactional data are read, GPU accelerated machine
learning is then used to infer whether the new transaction is
fraudulent, and finalize the new financial transaction.

In order to enable the GPU to work on transactional data,
the data must be accessible by the GPU and the results visible
to the CPU. SnapKV relies on the standard memory copy
mechanism [2] between host memory and device memory,
but to retain high performance and limit overheads, it ensures
minimal synchronization between the CPU and GPU. That is
done by utilizing non-blocking queues of operations (called
streams [21] in CUDA) to asynchronously schedule kernels
for the runtime to execute.

Memory access between the CPU and GPU should be done
efficiently to enable high-performance processing of transac-
tional data. While the CPU can directly access data through
the transactional manager because it is locally stored, the GPU
cannot since the data structures are located in CPU memory
and written by the CPU only. To overcome this limitation, the
CPU should move the relevant key-value pairs to the GPU.
Likewise, any data the GPU should return to the CPU, will be
written into its device memory and copied back to the CPU.

SnapKV utilizes CUDA streams, which are queues of ker-
nel invocations and memory movement to be executed by the
runtime. SnapKV’s allows transactions to include CPU and
GPU code blocks, which enables the invocation of CUDA
stream to enqueue GPU operations. Within a CPU code block,
only CPU code can be called (e.g., transactional APIs, CPU
join implementations); within a GPU code block, only GPU
kernels and APIs may be called within the context of the
stream (e.g., deep learning kernels or memory movement).
At the end of a GPU code block, the CPU is synchronized
with the GPU. In our implementation, we rely on the pro-
grammer to write their transactions in this blocked manner.
As an example, we implement our fraud detection benchmark
as a sequence of the three code blocks. The first is a CPU
block that starts a transaction and calls SNAPSHOT within it.
This is followed by a GPU code block where the results of
this SNAPSHOT are copied to the GPU, machine learning is
run, and the results are copied back. Following the GPU
code block is a CPU code block to finalize the transaction
and COMMIT. All the code within the GPU code block occurs
within the context of a single stream.

The above approach forbids parallelism between the CPU

6



Submitted to the Journal of Systems Research (JSys) 2024

and GPU, which is important to maintain transactional seman-
tics. In our fraud detection benchmark, for example, without
synchronizing after the movement of the results from the
GPU to the CPU, the CPU could miss important outcomes
produced by the GPU computation. Importantly, our approach
avoids synchronizing the CPU and GPU after every GPU call,
which would lead to poor performance [30].

SnapKV further relies on GPU kernels to be equivalent to
a single thread execution on the CPU. With this guarantee,
we can reliably have the same semantics as a CPU-only data
repository.

4.2 Compiling Transactions and Analytics

In SnapKV, transactions are written in C++, compiled as
procedures that can be dynamically loaded as kernels and
functions. In order to add new kernels, SnapKV compiles
with the CUDA compiler nvcc and the C++ compiler and
creates a shared object file. The GPU kernels will be in a fat
binary in the shared object file. When loading the transactions,
SnapKV utilizes the operating system’s existing dynamic
library loading functionality. After the functions are loaded,
SnapKV searches through the shared object file for the fat
binary. Once SnapKV finds the fat binary the programmer
wants to load, SnapKV uses the CUDA driver API to load in
the kernels. The CPU primitives are added within C++ header
files as inlined, and often templated functions. By inlining,
SnapKV is also able to potentially help gain performance and
benefit from further compiler optimization.

By compiling transactions as procedures, SnapKV enables
handcrafted solutions to address specific workload require-
ments, as shown in our evaluation (Section 6).

5 Online Decision Augmentation Fraud Mi-
crobenchmark

Our Online Decision Augmentation (OLDA) microbench-
mark is based off of the credit card fraud problem presented
in [11]. Since the benchmark used in [11] is not open, we
seek to create a synthetic benchmark to test OLDA, which
consists of feature-engineering, machine learning inference,
and an insertion into a data repository.

We design our benchmark depicting the scenario in which
users perform financial transactions and a database is used
to store relevant information for inferring credit card fraud.
Along with each transaction, the following metadata is also
provided: the latitude and longitude of the location where
the transaction is performed, an identifier of the user, and an
identifier of the database transaction. The microbenchmark
distinguishes fraudulent and non-fradulent credit card trans-
actions depending on their geographic location. Transactions
are considered non-fraudulent if they are issued within 300km
of a user’s prior transaction(s).

The benchmark is parameterized by the number of users
issuing financial transactions. To set up the microbenchmark,
historical credit card transactions for users are generated with
a uniform random distribution and initially located uniformly
around four locations. When benchmarking, each credit card
transaction is normally distributed around the associated lo-
cation, with a standard deviation of 1 in both longitude and
latitude and no co-variance between the longitude and lati-
tude.

Each time a credit card transaction is received by a database,
the following steps must occur:

• The prior credit card transaction(s) for a user is retrieved;

• The distance between the prior and current credit card
transactions is calculated;

• The features: distance, latitudes, and longitudes are fed
to a dense neural network trained on the data for infer-
ence;

• A new credit card transaction for a user with the associ-
ated latitude and longitude is inserted into the database.

These steps are done to test a typical OLDA workload,
in which concurrent writes, reads, feature engineering, and
inference are performed.

We initially train our neural network on the synthetic data
set. The neural network consists of single precision floating
point layers with a 5 element input, followed by a 128 neuron
layer and a ReLU. This is then output into a 2 neuron layer
with a sigmoid.

SnapKV performs these operations as a single transaction,
with the support of GPU acceleration. Other competitors, such
as FeDB [11], execute these operations as a read transaction, a
separate inference process, and then an insert transaction. The
absence of atomicity between these operations could impact
the identification of fraudulent transactions.

6 Evaluation

To assess SnapKV’s performance under OLDA workload, we
contrast SnapKV with FeDB [5, 11] (a state-of-art OLDA
database) using the credit card fraud detection microbench-
mark described in Section 5. On the other hand, to evaluate
SnapKV’s performance under HTAP workloads, we compare
it with two HTAP databases, Vegito [3, 33] and TiDB [22],
using the ch-benCHmark [12] benchmark. ch-benCHmark
combines the well-known TPC-C [13] benchmark with the
TPC-H [14] benchmark to model an application of HTAP for
a warehouse business.

SnapKV is built with GCC-10 and CUDA 11.6. We also
utilize CUTLASS [24] version 2.9.0 for our deep learning
kernels.

7



Submitted to the Journal of Systems Research (JSys) 2024

6.1 OLDA Workload

The test bed for our OLDA credit card fraud microbenchmark
is a Cloudlab R7525 [16], which has two 32-core AMD Epyc
7542 and two NVIDIA Tesla V100. We only utilize one
V100 and pin threads to one socket for the experiments. On
the CPU, we fix the number of threads to 8 because in that
configuration FeDB performs best in comparison to SnapKV.

When we analyze the performance of SnapKV we find that
it is able to achieve 80% utilization of the GPU starting at
2 threads. Since the benchmark depends on executing on
the GPU before writing back to the database, SnapKV is
effectively bound by the inference computation on the GPU,
and increasing CPU threads will not improve performance.

(a) Throughput and Latency when Varying Credit Card Users
(Throughput on the Left Axis and Latency on the Right Axis).

(b) SnapKV Abort Rate when Varying Credit Card Users.

Figure 3: Performance when Varying Credit Card Users in
Credit Card Microbenchmark.

We begin evaluating SnapKV on OLDA workloads by vary-
ing the number of credit card users (Figure 3). In Figure 3a
we show both the throughput and the latency. As can be
seen, we consistently achieve higher throughput and lower
latency than FeDB. We are able to gain increased throughput
through combining both our inference and transactional sys-
tems together. FeDB utilizes HTTP requests to run queries
to perform its feature engineering. This is then followed by

the GPU accelerated deep neural network inference, and then
a second transaction to write the credit card transaction. In
contrast, we limit memory movement from system to system,
and by doing so are able to achieve high performance while
providing transactional semantics. We achieve between 1.32
and 2.43x speedup and 31-48% improvement in latency.

Looking more closely at the contention level in the work-
load, at 10 users we find that there is a significant number of
conflicts, which leads to a high abort rate (40% of transactions
are retried) and high system latency (0.63ms). Also, increas-
ing the number of users decreases aborts. This trend is visible
in Figure 3b. At 1,000 users, throughput and latency begin to
stabilize as the number of users in the system increases. We
find that at 10,000 users the contention level is acceptable,
and so we will use this configuration in future experiments.

Figure 4: Varying Size of Additional Key-Value Pairs Snap-
shotted in OLDA Microbenchmark.

SnapKV is not only able to utilize the GPU to improve
performance of OLDA workloads, but it is also able to utilize
the SNAPSHOT primitive.

We now evaluate the performance of the SNAPSHOT prim-
itive. Specifically, we consider how snapshot size impacts
performance, and we do this by varying the number of histor-
ical transactions retrieved. Results are shown in Figure 4.

When moving from no additional snapshot size to 100 extra
historical transactions, we observe a 7.4% increase in p50 la-
tency and parity with transactional throughput. This suggests
that there is minimal overhead to SNAPSHOT in the range of
100 records. Increasing up to 1,000 reads per transaction, we
find continued minimal difference in performance, maintain-
ing 93.5% of transactional performance with a 5.6% increase
in latency. It is only when we increase to 10,000 reads in a
single transaction that we experience a drop in performance.

6.2 OLAP and OLTP Workload
Our OLTP and OLAP competitors, TiDB and Vegito, uti-
lize a testbed with 2 Intel Xeon Platinum 8160 CPU with
hyper-threading enabled, giving us 48 cores with 96 hard-

8



Submitted to the Journal of Systems Research (JSys) 2024

ware threads, and a Mellanox Connect X-5 for loopback.
SnapKV utilizes the SNAPSHOT operation and a optimistic
concurrency control to minimize the duration during which
contention occurs between transactions. On the other hand, in
order to achieve desirable performance for concurrent OLAP
and OLTP transactions, TiDB and Vegito utilize the existing
replication mechanism to execute OLAP queries in separate
processes.

We test the competitors with multiple processes on a single
node and rely on the loopback network interface to ensure
the performance differences between all competitors are not
due to the networking. We also only utilize the CPU for ex-
ecuting queries on SnapKV to minimize differences due to
GPU vs CPU acceleration. Vegito relies on Intel TSX-NI
and a Mellanox RDMA network card, so it is not possible
to reproduce results on the AMD Epyc system. We repro-
duce TiDB’s results on the AMD Epyc system and find it
consistently performs better on the Intel Xeon machine, so we
only compare to the Intel Xeon machine. This configuration
enables Vegito to offload memory copies between processes
to the RDMA network card, effectively treating the card as a
hardware accelerator.

When running our experiments with ch-benCHmark, we
run with 10 warehouses. The version of TiDB used is 5.4.0.
TiDB is run with 3 TiKV processes, 3 placement drivers, and
2 TiDB processes. Unless otherwise mentioned, Vegito is
configured to broadcast the establishment of a new epoch
every 15ms, meaning that it could take longer than 15ms
to establish the next interval when writes are visible on the
OLAP process. We run Vegito with 1 primary process, 1
backup process, and 1 OLAP process.

To implement ch-benCHmark in SnapKV, we utilize key-
value tables with primary keys mapping to rows. In this
workload, we run 90% New Order transactions followed by
10% Delivery transactions. Both New Order and Delivery
transaction profiles write to the orderline and neworder
tables. We also concurrently run the Q1 query profile, which
reads from the orderline table to perform aggregation
over delivered orders (orders modified by the Delivery
transaction). This profile creates dependencies and anti-
dependencies between all transactions and queries, hence
making the level of data freshness critical. We generate a uni-
form random warehouse and district (1 of 10 districts) for each
transaction, and will read from orderline and neworder in
Q3 when a customer state matches a query. Unless otherwise
stated the probability a customer is selected is 1.7%. In order
to perform queries, we utilize single threaded transactions.
Instead, TiDB and Vegito parallelize parts of their queries.
Unlike our competitors, we are able to run transactions and an-
alytics with real-time order guarantees using ch-benCHmark.

In Figure 5, we run our custom New Order, Delivery,
and Q1 workload. As also confirmed in [33], TiDB does not
perform as well as in-memory systems due to the disk access
costs (to minimize that, our testbed is equipped with SSD

Figure 5: Throughput of different HTAP Solutions.

drive). SnapKV is able to achieve a significant improvement
in transactional performance (up to 600x) and a 4x improve-
ment in query performance.

Compared to Vegito, SnapKV obtains 1.3x the transac-
tional throughput, but it has a lower query throughput, up to
16.8% of Vegito’s. The improvement in transactional through-
put comes from the minimized concurrency control overhead:
SnapKV does not need to log to a backup node upon com-
mit, while Vegito does. On the other hand, Vegito is able
to perform better in terms of query throughput because of
two reasons. First, it works on stale data, therefore no syn-
chronization with the ongoing workload is required; second,
many of its components are optimized for a column store
relational database. As opposed to Vegito, SnapKV guaran-
tees real-time order and does not focus on implementing a
column store. Future work could be spent considering this
optimization.

In our next experiment (results in Figure 6) we dig deeper
in the performance impact of allowing stale accesses. We
exclude TiDB because of its comparatively poor performance.

Vegito maintains an oracle that periodically broadcasts
the establishment of a new epoch in which the analytical
database apply batch updates. In this experiment, we vary the
epoch time. We calculate freshness as the number of epochs
difference between the OLAP node and the OLTP node at
any given time. To achieve real-time order, the epochs would
need to be consistently equal.

By varying the epoch time, we find Vegito is unable to
reach real time order (0ms). Vegito is only able to achieve a
minimum freshness of 13.5 ms when the epoch time is set to
2ms. When running at its most fresh, Vegito is only able to
perform 66.8% of the maximum transactional throughput and
96.7% of the maximum query throughput it can achieve.

Moving from a 15ms epoch to a 2ms epoch, Vegito is able
to improve freshness, however, query throughput increases
and transactional throughput decreases. That is because, de-
creasing the delays between epochs entails the transactional
subsystem needs to push all logs to the backups at higher rate.

9



Submitted to the Journal of Systems Research (JSys) 2024

Figure 6: Throughput versus Freshness of Vegito While Vary-
ing Epoch Timing (Epoch Times Written on Plot). SnapKV
has 0ms freshness, 292 kTxps, and 26.9 QPS.

As a result, more synchronization is needed to log updates
and transactional performance suffers. Interestingly, in this
case the OLAP process is able to serve more requests while
waiting for updated logs to be pushed. This increases the
query throughput and keeps it stable; query throughput only
varies between 249 and 270 qps while transactional through-
put varies between 78 ktxps and 209 ktxps.

Vegito is unable to maintain its freshness when moving
from a 2ms epoch to 1ms epoch. At this point, logging to
the OLAP process is a significant overhead for the OLTP
process. This overhead leads to a significant skew between
the epoch that the OLAP process has stored and the epoch
that the OLTP process has stored, which makes the OLAP
transactions more stale. Unlike Vegito, SnapKV is able to
maintain consistency for both the transactions and queries
without significant impact on their performance.

Next, we evaluate the performance of the SNAPSHOT primi-
tives versus the READ primitive when changing the selectivity
of queries (i.e., the probability a key is selected). When using
READ, we perform index joins and utilize the selectivity of the
query to minimize the number of reads that must occur of the
following tables. When using SNAPSHOT, we snapshot all the
tables, rebuild indexes, and perform the joins. In Figure 7,
we evaluate changing the selectivity of ch-benCHmark’s Q3
query by changing the proportion of customers we filter out
by selecting on the customer state when implementing with
READ and when implementing with SNAPSHOT.

At a selectivity of 0.1, the query throughput when using
SNAPSHOT is 34% of using READs and the p90 latency is 2.7x
that of using just READs. At 0.8 selectivity and above, we
find that SNAPSHOT becomes a better option to achieve high
performance transactions. It is able to achieve 6% greater
throughput and 8.5% of the p90 latency. This is because we
are able to perform all reads in a sequence, which limits time

Figure 7: Read Versus Snapshot (p90 Latency) While Varying
Selectivity of the Q3 Query.

for contention. We also are able to benefit from having a copy
of data, which we can reuse rather than needing to perform
reads on the same key multiple times. In the best case, using
SNAPSHOT can result in 20.4% greater throughput and a 18.3%
decrease in the p90 latency.

7 Related Work

Both academia and industry have been interested in the
prospect of combining various analytical workloads and trans-
actions in a single data repository [7,8,11,22,25–27,29,33,35].
MemSQL [35], SQLServer [27], TiDB [22], Vegito [33], and
FeDB [11] support these kinds of workloads. These analyt-
ics and transactions are not limited to relational or key-value
models, and include graph processing [32,38] and in-database
machine learning [5, 11].

Recent innovations in HTAP databases have focused on
using replicas to serve queries over fresh data [7,22,33]. TiDB
and Vegito are recent examples of utilizing the availability
mechanism to replicate state onto a query processing node.
Unlike these solutions, we only rely on a single node/process
to provide support for queries and transactions.

Traditional solutions for HTAP focus on multiversion con-
currency control. Diva [25] focuses on supporting HTAP in
disk based MVCC databases. HyPer [29], RateupDB [26],
Vegito [33] and others utilize aspects multi-versioning as well.
We similarly focus on utilizing multiversioning, which en-
ables the optimistic approach to concurrency control that we
rely on in SnapKV.

Other HTAP database solutions, such as RateupDB [26]
have focused on using an alpha and delta store model, where
transactions modify the delta storage and are merged over
time into the alpha store. RateupDB also focuses on the
prospect of using the GPU for analytical processing similar to
SnapKV. Unlike SnapKV, RateupDB is specifically designed
for the relational model, relational algebra, and column stor-
age. SnapKV takes a more general approach, allowing for
any computation on the GPU within transactions.

10



Submitted to the Journal of Systems Research (JSys) 2024

Key-value stores enable a simpler data model and have
been greatly explored. Recent publications have focused on
enabling key-value stores to benefit from new memory archi-
tectures, such as how ChameleonDB [43] is capable of utiliz-
ing persistent memory. EvenDB [17] focuses on exploiting
spatial locality within key-value workloads to enable high-
performance. SnapKV neither benefits from new memory
architectures nor exploits spatial locality, but these techniques
are complementary to SnapKV.

Even more related papers on key-value stores focused on
the prospect of GPU computing. KVCG [15] provides a
method to serve skewed key-value store workloads by coop-
eratively utilizing the CPU and GPU. MegaKV [42] provides
another method for serving key-value store workloads using
the GPU as an accelerator. Unlike KVCG and MegaKV, we
focus on transactional workloads and must ensure atomicity,
isolation, and consistency across more than one operation. We
also do not utilize the GPU to do storage, only computation.

Related key-value store works enable multi-get opera-
tions, where a single request can read multiple keys in an
elementwise-linearizable fashion. Key value stores such as
Memcached [4] and KVCG [15] enable multi-get operations.
SNAPSHOT is similar to multi-get in that it is able to get multi-
ple keys by providing a set of keys or range. Unlike multi-get,
SNAPSHOT operations are used within transactions and guar-
entee consistency between all of the reads in the snapshot.
SNAPSHOT is designed as an API for optimizing read-only and
read-heavy transactional workloads.

For the programability of our system, we rely on existing
libraries to implement queries. We utilize C++ and the CUDA
programming language [2] and provide support for libraries
like CUTLASS [24] to design of deep learning solutions. We
demonstrate the ability to run deep learning inference in our
key-value store. We envision other CUDA libraries may be of
use in our system, and could be easily used within SnapKV.
Related to the deep-learning aspects of our work, Han et
al. [20] present a GPU preemption methodology to improve
throughput for inference workloads with real-time deadlines.
This work is complementary to our work. Our methodology
does not focus on preemption and instead focuses on eval-
uating the feasibility and performance of using the current
CUDA runtime to compute within a key-value store.

Our closest related works support both transactions and an-
alytics. TiDB [22] and Vegito [33] use the availability mecha-
nism to run analytics on a separate node. TiDB performs best
on fast storage like NVMe. Vegito, however, is in memory
and utilizes DrTM+H [39] to support transactional workloads
with remote direct memory access (RDMA). The backup
analytical node is based on MonetDB [23]. Both TiDB and
Vegito have a staleness issue (order of tens of ms in Vegito),
which makes it more difficult to reason about the system, and
prevents these systems from being broadly applied.

FeDB [11] is a closely related custom solution for feature
engineering and machine learning inference. It is designed in

contrast to HTAP solutions like TiDB and Vegito in how it
needs even fresher data. Similar to FeDB we support machine
learning and provide the programmer with the freshest pos-
sible state. Unlike FeDB, SnapKV is designed as a general
solution, not just a solution for online decision augmentation
workloads.

8 Conclusion

We introduced SnapKV, a transactional data repository ar-
chitecture for heterogeneous workloads (OLTP, OLAP, and
OLDA) that guarantees real-time order without sacrificing
performance. This is achieved through the use of the new
SNAPSHOT API and by supporting heterogeneous devices. Our
evaluation confirms that SnapKV is able to outperform state
of the art competitors in both OLDA and HTAP workloads.

References

[1] Intel® threading building blocks devel-
oper guide. URL: https://software.
intel.com/content/www/us/en/develop/
documentation/tbb-documentation/top/
intel-threading-building-blocks-developer-guide.
html.

[2] Cuda toolkit documentation, 2018. URL: https://
docs.nvidia.com/cuda/archive/9.1/.

[3] Vegito: a fast distributed in-memory htap system, Dec
2021. URL: https://github.com/SJTU-IPADS/
vegito.

[4] Memcached, October 2022. URL: https://github.
com/memcached/memcached.

[5] 4Paradigm. Openmldb, May 2022. URL: https:
//github.com/4paradigm/OpenMLDB.

[6] 4Paradigm. Intelligent banking, January 2023. URL:
https://en.4paradigm.com/industry/banking.
html.

[7] Michael Abebe, Horatiu Lazu, and Khuzaima Daud-
jee. Proteus: Autonomous adaptive storage for mixed
workloads. In Zachary G. Ives, Angela Bonifati, and
Amr El Abbadi, editors, SIGMOD ’22: International
Conference on Management of Data, Philadelphia, PA,
USA, June 12 - 17, 2022, pages 700–714. ACM, 2022.
https://doi.org/10.1145/3514221.3517834.

[8] Raja Appuswamy, Manos Karpathiotakis, Danica Poro-
bic, and Anastasia Ailamaki. The case for heteroge-
neous HTAP. In 8th Biennial Conference on Innova-
tive Data Systems Research, CIDR 2017, Chaminade,
CA, USA, January 8-11, 2017, Online Proceedings.

11

https://software.intel.com/content/www/us/en/develop/documentation/tbb-documentation/top/intel-threading-building-blocks-developer-guide.html
https://software.intel.com/content/www/us/en/develop/documentation/tbb-documentation/top/intel-threading-building-blocks-developer-guide.html
https://software.intel.com/content/www/us/en/develop/documentation/tbb-documentation/top/intel-threading-building-blocks-developer-guide.html
https://software.intel.com/content/www/us/en/develop/documentation/tbb-documentation/top/intel-threading-building-blocks-developer-guide.html
https://software.intel.com/content/www/us/en/develop/documentation/tbb-documentation/top/intel-threading-building-blocks-developer-guide.html
https://docs.nvidia.com/cuda/archive/9.1/
https://docs.nvidia.com/cuda/archive/9.1/
https://github.com/SJTU-IPADS/vegito
https://github.com/SJTU-IPADS/vegito
https://github.com/memcached/memcached
https://github.com/memcached/memcached
https://github.com/4paradigm/OpenMLDB
https://github.com/4paradigm/OpenMLDB
https://en.4paradigm.com/industry/banking.html
https://en.4paradigm.com/industry/banking.html
https://doi.org/10.1145/3514221.3517834


Submitted to the Journal of Systems Research (JSys) 2024

www.cidrdb.org, 2017. URL: http://cidrdb.org/
cidr2017/papers/p21-appuswamy-cidr17.pdf.

[9] Hal Berenson, Phil Bernstein, Jim Gray, Jim Melton,
Elizabeth O’Neil, and Patrick O’Neil. A critique of ansi
sql isolation levels. ACM SIGMOD Record, 24(2):1–10,
1995.

[10] Andrea Cerone and Alexey Gotsman. Analysing snap-
shot isolation. Journal of the ACM (JACM), 65(2):1–41,
2018.

[11] Cheng Chen, Jun Yang, Mian Lu, Taize Wang, Zhao
Zheng, Yuqiang Chen, Wenyuan Dai, Bingsheng He,
Weng-Fai Wong, Guoan Wu, Yuping Zhao, and Andy
Rudoff. Optimizing in-memory database engine for ai-
powered on-line decision augmentation using persistent
memory. Proc. VLDB Endow., 14(5):799–812, 2021.

[12] Richard Cole, Florian Funke, Leo Giakoumakis, Wey
Guy, Alfons Kemper, Stefan Krompass, Harumi Kuno,
Raghunath Nambiar, Thomas Neumann, Meikel Poess,
Kai-Uwe Sattler, Michael Seibold, Eric Simon, and Flo-
rian Waas. The mixed workload ch-benchmark. In
DBTest ’11. ACM, 2011.

[13] Transaction Processing Performance Council. Tpc
benchmark c revision 5.11, February 2010.

[14] Transaction Processing Performance Council. Tpc
benchmark h revision 3.0.1, April 2022.

[15] dePaul Miller, Jacob Nelson, Ahmed Hassan, and
Roberto Palmieri. KVCG: a heterogeneous key-value
store for skewed workloads. In Bruno Wassermann,
Michal Malka, Vijay Chidambaram, and Danny Raz,
editors, SYSTOR ’21: The 14th ACM International
Systems and Storage Conference, Haifa, Israel, June
14-16, 2021, pages 5:1–5:12. ACM, 2021. https:
//doi.org/10.1145/3456727.3463779.

[16] Dmitry Duplyakin, Robert Ricci, Aleksander Maricq,
Gary Wong, Jonathon Duerig, Eric Eide, Leigh Stoller,
Mike Hibler, David Johnson, Kirk Webb, Aditya Akella,
Kuang-Ching Wang, Glenn Ricart, Larry Landwe-
ber, Chip Elliott, Michael Zink, Emmanuel Cecchet,
Snigdhaswin Kar, and Prabodh Mishra. The de-
sign and operation of cloudlab. In Dahlia Malkhi
and Dan Tsafrir, editors, 2019 USENIX Annual Tech-
nical Conference, USENIX ATC 2019, Renton, WA,
USA, July 10-12, 2019, pages 1–14. USENIX As-
sociation, 2019. URL: https://www.usenix.org/
conference/atc19/presentation/duplyakin.

[17] Eran Gilad, Edward Bortnikov, Anastasia Braginsky,
Yonatan Gottesman, Eshcar Hillel, Idit Keidar, Nurit
Moscovici, and Rana Shahout. Evendb: optimizing

key-value storage for spatial locality. In Angelos Bilas,
Kostas Magoutis, Evangelos P. Markatos, Dejan Kostic,
and Margo I. Seltzer, editors, EuroSys ’20: Fifteenth
EuroSys Conference 2020, Heraklion, Greece, April
27-30, 2020, pages 27:1–27:16. ACM, 2020. https:
//doi.org/10.1145/3342195.3387523.

[18] Google. Introducing alloydb for post-
gresql: Free yourself from expensive, legacy
databases, May 2022. URL: https:
//cloud.google.com/blog/products/databases/
introducing-alloydb-for-postgresql.

[19] The PostgreSQL Global Development Group.
Transaction isolation, November 2022. URL:
https://www.postgresql.org/docs/current/
transaction-iso.html.

[20] Mingcong Han, Hanze Zhang, Rong Chen, and Haibo
Chen. Microsecond-scale preemption for concurrent
GPU-accelerated DNN inferences. In OSDI 22, pages
539–558.

[21] Mark Harris. Gpu pro tip: Cuda 7 streams
simplify concurrency, January 2015. URL:
https://developer.nvidia.com/blog/
gpu-pro-tip-cuda-7-streams-simplify-concurrency/.

[22] Dongxu Huang, Qi Liu, Qiu Cui, Zhuhe Fang, Xiaoyu
Ma, Fei Xu, Li Shen, Liu Tang, Yuxing Zhou, Menglong
Huang, Wan Wei, Cong Liu, Jian Zhang, Jianjun Li,
Xuelian Wu, Lingyu Song, Ruoxi Sun, Shuaipeng Yu,
Lei Zhao, Nicholas Cameron, Liquan Pei, and Xin Tang.
Tidb: A raft-based htap database. Proc. VLDB Endow.,
13(12):3072–3084, 2020.

[23] Stratos Idreos, Fabian Groffen, Niels Nes, Stefan Mane-
gold, K. Sjoerd Mullender, and Martin L. Kersten.
Monetdb: Two decades of research in column-oriented
database architectures. IEEE Data Eng. Bull., 35(1):40–
45, 2012. URL: http://sites.computer.org/
debull/A12mar/monetdb.pdf.

[24] Andrew Kerr, Haicheng Wu, Manish Gupta, Dustyn
Blasig, Pradeep Ramini, Duane Merrill, Aniket Shivam,
Piotr Majcher, Paul Springer, Markus Hohnerbach, Jin
Wang, and Matt Nicely. CUTLASS. URL: https:
//github.com/NVIDIA/cutlass.

[25] Jongbin Kim, Jaeseon Yu, Jaechan Ahn, Sooyong Kang,
and Hyungsoo Jung. Diva: Making mvcc systems htap-
friendly. In SIGMOD ’22, page 49–64. ACM, 2022.

[26] Rubao Lee, Minghong Zhou, Chi Li, Shenggang Hu,
Jianping Teng, Dongyang Li, and Xiaodong Zhang. The
art of balance: A rateupdb experience of building a
CPU/GPU hybrid database product. Proc. VLDB En-
dow., 14(12):2999–3013, 2021.

12

http://cidrdb.org/cidr2017/papers/p21-appuswamy-cidr17.pdf
http://cidrdb.org/cidr2017/papers/p21-appuswamy-cidr17.pdf
https://doi.org/10.1145/3456727.3463779
https://doi.org/10.1145/3456727.3463779
https://www.usenix.org/conference/atc19/presentation/duplyakin
https://www.usenix.org/conference/atc19/presentation/duplyakin
https://doi.org/10.1145/3342195.3387523
https://doi.org/10.1145/3342195.3387523
https://cloud.google.com/blog/products/databases/introducing-alloydb-for-postgresql
https://cloud.google.com/blog/products/databases/introducing-alloydb-for-postgresql
https://cloud.google.com/blog/products/databases/introducing-alloydb-for-postgresql
https://www.postgresql.org/docs/current/transaction-iso.html
https://www.postgresql.org/docs/current/transaction-iso.html
https://developer.nvidia.com/blog/gpu-pro-tip-cuda-7-streams-simplify-concurrency/
https://developer.nvidia.com/blog/gpu-pro-tip-cuda-7-streams-simplify-concurrency/
http://sites.computer.org/debull/A12mar/monetdb.pdf
http://sites.computer.org/debull/A12mar/monetdb.pdf
https://github.com/NVIDIA/cutlass
https://github.com/NVIDIA/cutlass


Submitted to the Journal of Systems Research (JSys) 2024

[27] Microsoft. Microsoft data platform. URL: https:
//www.microsoft.com/en-us/sql-server.

[28] Jacob Nelson-Slivon, Ahmed Hassan, and Roberto
Palmieri. Bundling linked data structures for lineariz-
able range queries. In Proceedings of the 27th ACM SIG-
PLAN Symposium on Principles and Practice of Parallel
Programming, PPoPP ’22, page 368–384, New York,
NY, USA, 2022. Association for Computing Machinery.
https://doi.org/10.1145/3503221.3508412.

[29] Thomas Neumann, Tobias Mühlbauer, and Alfons Kem-
per. Fast serializable multi-version concurrency control
for main-memory database systems. In Timos K. Sel-
lis, Susan B. Davidson, and Zachary G. Ives, editors,
Proceedings of the 2015 ACM SIGMOD International
Conference on Management of Data, Melbourne, Victo-
ria, Australia, May 31 - June 4, 2015, pages 677–689.
ACM, 2015. https://doi.org/10.1145/2723372.
2749436.

[30] NVIDIA. Cuda c++ best practices guide, March 2022.
URL: https://docs.nvidia.com/cuda/archive/
11.6.2/cuda-c-best-practices-guide/index.
html.

[31] Oracle. Oracle database 19c, January 2023.
URL: https://docs.oracle.com/en/database/
oracle/oracle-database/19/index.html.

[32] Siddhartha Sahu, Amine Mhedhbi, Semih Salihoglu,
Jimmy Lin, and M. Tamer Özsu. The ubiquity of large
graphs and surprising challenges of graph processing.
Proc. VLDB Endow., 11(4):420–431, December 2017.
https://doi.org/10.1145/3186728.3164139.

[33] Sijie Shen, Rong Chen, Haibo Chen, and Binyu Zang.
Retrofitting high availability mechanism to tame hybrid
transaction/analytical processing. In Angela Demke
Brown and Jay R. Lorch, editors, 15th USENIX Sympo-
sium on Operating Systems Design and Implementation,
OSDI 2021, July 14-16, 2021, pages 219–238. USENIX
Association, 2021. URL: https://www.usenix.org/
conference/osdi21/presentation/shen.

[34] Avi Silberschatz, Henry F. Korth, and S. Sudarshan.
Database System Concepts, Seventh Edition. McGraw-
Hill Book Company, 2020. URL: https://www.
db-book.com/.

[35] SingleStore. Singlestore. URL: https://www.
singlestore.com.

[36] Athinagoras Skiadopoulos, Qian Li, Peter Kraft, Kostis
Kaffes, Daniel Hong, Shana Mathew, David Be-
stor, Michael J. Cafarella, Vijay Gadepally, Goetz
Graefe, Jeremy Kepner, Christos Kozyrakis, Tim

Kraska, Michael Stonebraker, Lalith Suresh, and
Matei Zaharia. DBOS: A dbms-oriented oper-
ating system. Proc. VLDB Endow., 15(1):21–
30, 2021. URL: http://www.vldb.org/pvldb/
vol15/p21-skiadopoulos.pdf, https://doi.org/
10.14778/3485450.3485454.

[37] Michael Stonebraker and Lawrence A Rowe. The design
of postgres. ACM Sigmod Record, 15(2):340–355, 1986.

[38] Bing Tong, Yan Zhou, Chen Zhang, Jianheng Tang, Jing
Tang, Leihong Yang, Qiye Li, Manwu Lin, Zhongxin
Bao, Jia Li, and Lei Chen. Galaxybase: A high perfor-
mance native distributed graph database for HTAP. Proc.
VLDB Endow., 17(12):3893–3905, 2024. URL: https:
//www.vldb.org/pvldb/vol17/p3893-tong.pdf.

[39] Xingda Wei, Zhiyuan Dong, Rong Chen, and Haibo
Chen. Deconstructing rdma-enabled distributed trans-
actions: Hybrid is better! In Andrea C. Arpaci-
Dusseau and Geoff Voelker, editors, 13th USENIX
Symposium on Operating Systems Design and Im-
plementation, OSDI 2018, Carlsbad, CA, USA, Oc-
tober 8-10, 2018, pages 233–251. USENIX Asso-
ciation, 2018. URL: https://www.usenix.org/
conference/osdi18/presentation/wei.

[40] Yuanhao Wei, Naama Ben-David, Guy E. Blelloch,
Panagiota Fatourou, Eric Ruppert, and Yihan Sun.
Constant-time snapshots with applications to concur-
rent data structures. In Proceedings of the 26th ACM
SIGPLAN Symposium on Principles and Practice of Par-
allel Programming, PPoPP ’21, page 31–46, New York,
NY, USA, 2021. Association for Computing Machinery.
https://doi.org/10.1145/3437801.3441602.

[41] Jiacheng Yang, Ian Rae, Jun Xu, Jeff Shute, Zhan Yuan,
Kelvin Lau, Qiang Zeng, Xi Zhao, Jun Ma, Ziyang
Chen, Yuan Gao, Qilin Dong, Junxiong Zhou, Jeremy
Wood, Goetz Graefe, Jeffrey F. Naughton, and John
Cieslewicz. F1 lightning: HTAP as a service. Proc.
VLDB Endow., 13(12):3313–3325, 2020.

[42] Kai Zhang, Kaibo Wang, Yuan Yuan, Lei Guo, Rubao
Lee, and Xiaodong Zhang. Mega-kv: A case for gpus
to maximize the throughput of in-memory key-value
stores. Proc. VLDB Endow., 8(11):1226–1237, 2015.

[43] Wenhui Zhang, Xingsheng Zhao, Song Jiang, and Hong
Jiang. Chameleondb: a key-value store for optane
persistent memory. In Antonio Barbalace, Pramod
Bhatotia, Lorenzo Alvisi, and Cristian Cadar, editors,
EuroSys ’21: Sixteenth European Conference on Com-
puter Systems, Online Event, United Kingdom, April
26-28, 2021, pages 194–209. ACM, 2021. https:
//doi.org/10.1145/3447786.3456237.

13

https://www.microsoft.com/en-us/sql-server
https://www.microsoft.com/en-us/sql-server
https://doi.org/10.1145/3503221.3508412
https://doi.org/10.1145/2723372.2749436
https://doi.org/10.1145/2723372.2749436
https://docs.nvidia.com/cuda/archive/11.6.2/cuda-c-best-practices-guide/index.html
https://docs.nvidia.com/cuda/archive/11.6.2/cuda-c-best-practices-guide/index.html
https://docs.nvidia.com/cuda/archive/11.6.2/cuda-c-best-practices-guide/index.html
https://docs.oracle.com/en/database/oracle/oracle-database/19/index.html
https://docs.oracle.com/en/database/oracle/oracle-database/19/index.html
https://doi.org/10.1145/3186728.3164139
https://www.usenix.org/conference/osdi21/presentation/shen
https://www.usenix.org/conference/osdi21/presentation/shen
https://www.db-book.com/
https://www.db-book.com/
https://www.singlestore.com
https://www.singlestore.com
http://www.vldb.org/pvldb/vol15/p21-skiadopoulos.pdf
http://www.vldb.org/pvldb/vol15/p21-skiadopoulos.pdf
https://doi.org/10.14778/3485450.3485454
https://doi.org/10.14778/3485450.3485454
https://www.vldb.org/pvldb/vol17/p3893-tong.pdf
https://www.vldb.org/pvldb/vol17/p3893-tong.pdf
https://www.usenix.org/conference/osdi18/presentation/wei
https://www.usenix.org/conference/osdi18/presentation/wei
https://doi.org/10.1145/3437801.3441602
https://doi.org/10.1145/3447786.3456237
https://doi.org/10.1145/3447786.3456237

	Introduction
	System Overview
	Differing Approaches

	Transactional Subsystem
	SNAPSHOT Primitive
	READ vs SNAPSHOT

	Compute Subsystem
	GPU Compute within Transactions
	Compiling Transactions and Analytics

	Online Decision Augmentation Fraud Microbenchmark
	Evaluation
	OLDA Workload
	OLAP and OLTP Workload

	Related Work
	Conclusion

