
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054

Transformer Designs for In-Context Learning in Foundation Models for Time
Series Forecasting with Covariates

Anonymous Authors1

Abstract

Recent foundation models (FMs) for time series
forecasting (TSF) have shown promising results
in zero-shot generalization to new series. How-
ever, when time series are associated with input
covariates, these models are incapable of model-
ing series-specific dependence of the forecasted
values on the covariates. We identify that histori-
cal values in TSF implicitly provide labeled data,
which can be leveraged for in-context learning
(ICL). While transformers have demonstrated ICL
capabilities for regression tasks, when harnessing
them as FMs we need to analyze the impact of
what constitutes a token in the transformer, the
type of attention, and the placement of loss func-
tions during pre-training. We study three existing
tokenization schemes for regression tasks in terms
of their training convergence and ICL capacity.
We propose a modified shifted causal attention de-
signed for faster convergence during pre-training
since it allows imposition of next-token loss at
multiple positions. Further, it combines the co-
variates and target such that ICL is achievable for
linear regression in just one layer. For time-series
data, a popular tokenization method in existing
FMs is patching the input series. Our theoretical
analysis shows that such tokenization is subopti-
mal for ICL on time series with covariates.

1. Introduction
In time series forecasting (TSF) with covariates, each series
i at time t is characterized by a real-valued output yτt and
a vector of input features xτ

t . Our goal is to train a model
to predict a set of future values yH+1, . . . , yH+F given the
history {(x1, y1), . . . , (xH , yH)} def

= (X1:H , Y1:H) and cor-
responding future covariates xH+1, . . . ,xH+F .

Following the success of foundation models in NLP, sev-
eral foundation models have been proposed for TSF (Das
et al., 2024; Jin et al., 2024; Ansari et al., 2024; Rasul et al.,
2023; Ekambaram et al., 2024). These transformer-based
models are pre-trained on diverse time series datasets and

can generalize to new series without fine-tuning, typically
by minimizing loss on future values given the preceding
sequence of y values.

A limitation is that these models primarily focus on fore-
casts based on previous y values and do not adequately
handle series-specific covariates x without fine-tuning1. In
many applications, such as retail, covariates like holidays,
discounts, promotions, and weather conditions are crucial.
A major challenge with building foundation models with co-
variates is handling arbitrary series-specific dependence of
y values on the covariates. Without covariates, it is unclear
if test series differ enough from the large collection of se-
ries used for pre-training to require series-specific learning.
However, with covariates where each series is associated
with its own distribution Pτ (yt|X1:t, Y1:t−1), some form of
series-specific adaptation is essential.

Recently, transformers have demonstrated the capability
of in-context learning (ICL) for the regression task, a
special case of the TSF task where yt only depends on
xt. Given few-shot examples in-context x1, y1 . . . ,xH , yH
where each yt is a series-specific function fτ (xt) of the
corresponding input, prior work (Garg et al., 2022; Ahn
et al., 2023; Akyürek et al., 2023; Panwar et al., 2024; Ma-
hankali et al., 2024; Zhang et al., 2023; Von Oswald et al.,
2023) has shown that causal transformers can estimate f via
gradient-like updates across the transformer layers. How-
ever, the layout of the covariates and targets and placements
of loss functions significantly impact ICL capacity and pre-
training convergence. We analyze these options and propose
an alternative Shifted Causal Attention model that allows
pre-training with next-token loss while supporting ICL with
just one layer.

For time-series data, although most foundation models are
also transformer-based, these are modified to better repre-
sent the local context of time series and handle long series
efficiently. A common modification is patching (Das et al.,
2024; Nie et al., 2023; Jin et al., 2024) where instead of treat-
ing each time step as a separate transformer token, the series

1The model in (Garza & Mergenthaler-Canseco, 2023) may
be an exception, but it lacks detailed information on covariate
handling.
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(a) Interleaved (b) Aligned (c) Lagged

Figure 1. Different choices of tokenization of in-context examples along with positions of loss terms during pre-training a foundation
model for regression. Our proposed SCA model’s loss and input tokenization is identical to Lagged, the only difference is internally the
attention is Shifted Causal Attention instead of standard causal attention in the above three variants.

is disjointly partitioned into equal-sized contiguous patches,
and each patch is treated as a token. These models do not
handle covariates, and we show that patched transformers
reduce the capacity of in-context learning with covariates
in Section 3.2. We empirically study the impact of these
design with two classes of regression functions.

2. Related Work
Recently, there has been a surge in building foundation
models (FM) for zero-shot forecasting on new time series.
These models, often variations of the causal transformer
trained with next-token prediction loss, include TimeGPT-
1 (Garza & Mergenthaler-Canseco, 2023), Lag-Llama (Ra-
sul et al., 2023), and TimesFM (Das et al., 2024). While
details of TimeGPT-1 are unavailable, TimesFM relies heav-
ily on patching. Other models, like Chronos (Ansari et al.,
2024), LLMTime (Gruver et al., 2023), and TimeLLM (Jin
et al., 2024), treat y values as discrete tokens. The first non-
transformer-based FM, TTM (Ekambaram et al., 2024), uses
feed-forward layers and shows superior performance, indi-
cating generalization without explicit ICL for time-series
data without covariates.

The ICL abilities of transformers have been extensively stud-
ied for regression tasks (Garg et al., 2022; Ahn et al., 2023;
Akyürek et al., 2023; Panwar et al., 2024; Mahankali et al.,
2024; Zhang et al., 2023; Von Oswald et al., 2023). Trans-
formers can learn various function classes in-context, such
as linear functions, 2-layer neural networks, and decision
trees, with performance comparable to standard algorithms
like XGBoost and SGD (Garg et al., 2022). Subsequent
work shows transformers can simulate steps of gradient de-
scent and Sherman-Morrison updates (Akyürek et al., 2023).
ICL matches ordinary least-squares predictions on noiseless
datasets and the minimum Bayes risk predictor on noisy
datasets. Zhang et al. (Zhang et al., 2023) demonstrate that
linear attention converges to meta-learning linear regression
functions.

3. ICL for Time-Series with Covarates
For training the foundation models we assume that we are
given a large diverse collection of series S = {(xτ

t , y
τ
t ) :

t = 1 . . . Tτ , i = 1 . . . S} where each xτ
t ∈ ℜdτ . Each

series i follows its own distribution yτt = fτ (X
τ
1:t, Y

τ
1:t−1)+

η, where η ∼ N(0, σ2), Xτ
1:t and Y τ

1:t denote the sequence
of covariates and output y values between 1 and t, and
fτ ∼ F a broad class of functions.

When designing a transformer as a foundation model, there
are several design choices to be made in terms of what
constitutes a token in the transformer, the type of attention,
and the placement of loss functions during pre-training.
These decisions arise even for the regression task, a special
case of TSF where yt only depends on xt and we discuss
these in Section 3.1. We then analyze patched transformers
since they are commonplace for time-series in Section 3.2.

3.1. ICL for Regression with Transformers
For regression, each value yt is a function of only xt (i.e.
yt = f(xt)), and given {(xs, ys) : s = 1 . . . H} we need
to in-context learn to output f(xH+1). The training data
S covers examples with diverse fτ , and we need to train
parameters θ of Mθ using these. In prior work, many dif-
ferent methods have been proposed for how the in-context
examples can be tokenized for input to a transformer and
where loss terms are introduced. These are categorized into
three types, as shown in Figure 1.

1. Interleaved (Garg et al., 2022) This option interleaves the
position of covariates and labels after padding to equal-
sized vectors (Figure 1a). The attention is causal, and this
allows imposing a loss for each in-context example during
training as

∑
i∈S

∑
t∈[H](y

τ
t − o2t−1)

2 where we use ot
to denote the output from position t of the transformer.
Since for each sequence i, the loss is introduced for each
yt, the convergence of θ potentially accelerates.

2. Aligned Zhang et al. (2023) analyzes an Aligned set-
ting (Figure 1b), where the inputs and labels are concate-
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nated, while the label of the last query token xH+1 is
masked to 0. The loss is only on this last token since other
positions already know the labels. The training loss is∑

i∈S (y
τ
H+1 − oH+1)

2. An advantage of this setting is
that since the inputs and labels are part of the same token,
ICL is possible only with a single linear transformer layer,
as shown in (Zhang et al., 2023).

3. Lagged To get the best of both worlds, one might be moti-
vated to employ a lagged setting (variant 1c), where each
xt is concatenated with yt−1 thus making the sequence
compact while allowing the imposition of loss for every
example as

∑
i∈S

∑
t∈[H](y

τ
t − ot)

2. However, in the
lagged variant, a single transformer layer does not suffice
for ICL since this ability crucially depends on the self-
attention matrix being able to compute

∑H
t=1 x

T
t yt within

the single layer.

An ideal variant would aim to include the inductive bias of
the Aligned variant for ICL while imposing next-token loss
at multiple positions for faster convergence. To do so, we
propose a tweak to causal attention, which we refer to as
shifted causal attention (SCA). Given the query, key and
value vectors qt,kt,vt ∈ RD for t ∈ [H], we define the
output of SCA as:

[SCA]

∑t−1
j=1 exp(⟨qt,kj⟩)vj+1 + exp(qt,kt⟩)vt∑t

j=1 exp(⟨qt,kj⟩)
(1)

Compared to standard causal attention, we see two differ-
ences. The value vector is obtained not from the same
position j as key but from a position shifted by 1 position
ahead, and there is no attention over t itself. Since the
indices in the summation never exceed t, shifted causal at-
tention is strictly causal in nature, i.e., there is no leakage of
information regarding yt at the tth position, thus allowing us
to impose a loss for each in-context example during training
as
∑

i∈S
∑

t∈[H](y
τ
t − ot)

2.

3.2. Patched Transformers

For time-series data, a more popular transformer variant is
to tokenize the input series into disjoint partitions, called
patches of a fixed length (Nie et al., 2023; Das et al., 2024;
Jin et al., 2024). Here, we analyze why patching could
hinder in-context learning with series-specific covariates.
Following prior work (Zhang et al., 2023; Ahn et al., 2023;
Von Oswald et al., 2023) consider a single-headed, one-layer
transformer with linear self-attention in the Aligned setting
(Figure 1b).

If the input sequence length is (x1, y1) . . . (xH , yH), p is
the patch length, and covariate x ∈ ℜd, number of patches

N = H
p , the input to the transformer can be written as

G =


x1 xp+1 . . . xNp−p+1 xH+1

y1 yp+1 . . . yNp−p+1 0
...

...
...

... 0
xp x2p . . . xNp 0
yp y2p . . . yNp 0

 ∈ ℜ(d+1)p×N+1

Let Z be a submatrix of G comprising only its first N
columns. As shown in (Zhang et al., 2023) a one-layer
linear transformer Mlsa(G) has parameters U, v ∈ ℜr×r

where r = (d+ 1)p the size of an input token, and for the
query point xH+1, the output of the transformer is:

ŷH+1 =
1

N
UZZT vxH+1

def
= ŵ xH+1

Theorem 3.1. Consider a data distribution where P (x) ∼
N (0,Σ) where Σ ∈ ℜd×d is a positive definite co-variance
matrix, and for each series i, let Pτ (y|x) ∼ N (wτxt, σ

2)
where wτ ∼ N (0, Id×d). Consider a new input sequence
τ , x1, y1, . . .xH , yH ,xH+1 where y = w∗x + η sampled
from this distribution. We show that if the U, v parameters
lead to an unbiased estimate for w∗, then the error of the
estimate is lower bounded by σ2dp

2H . This is suboptimal by a
factor of p

2 , compared to an unpatched transformer where
p = 1. (Proof in Appendix)

4. Experiments
We first present experiments on the regression task to answer
the following research question: 1. Does imposing loss at
each in-context position accelerate pre-training compared
to imposing loss on a single masked position? 2. How
does shifted causal attention compare with standard causal
attention? 3. How does patching impact ICL?

To answer these questions, we train the four transformer
variants on two tasks following the setup of (Garg et al.,
2022). We train the transformer variants using squared error
as mentioned in Section 3.1. We optimize the parameters
using gradient descent by training for 200K steps with a
batch size of 64. We compare performance across one and
four layers with dimensions of x d set to 10 and the number
of in-context examples H set to 40. For each sequence i,
first, we sample x1,x2, ...,xH ,xH+1

i.i.d∼ N (0, I), and then
sample fτ ∈ F and assign yt = fτ (xt) for t = 1 . . . H +1.
We considered two different classes F : 1. Linear Regres-
sion where fτ (xt) = wτxt where weight wτ is sam-
pled independently from the isotropic Gaussian distribu-
tion N (0, Id×d). 2. 2NN Two-layer neural network where
fτ (xt) = (wτ

2 )
T ReLU((wτ

1 )
Txt) where each parameter is

sampled independently from the Gaussian distribution. The
hidden state size is set to 100.

In our experiments, we utilize two loss functions: last in-
dex loss and validation loss, and we plot by averaging loss

3
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Figure 2. Comparison of Regression Networks. This figure compares four different regression networks: Interleaved, Aligned, Lagged,
and SCA, across increasing training epochs for (a) one layer and (b) four layers. The first two plots from the left represent the Linear
Regression Task, while the rightmost plot represents the Two-Layer Neural Network Task.

over five independent model runs. The last index loss fo-
cuses solely on the prediction at the final position (H + 1),
corresponding to a single example following H in-context
examples. In contrast, the validation loss calculates the
mean squared error across a wider range, encompassing
positions 2d to H + 1. The validation loss reflects on the
model’s ability to predict multiple y’s given 2d in-context
examples. In the depicted figures, the last index loss is
computed at the 41st position, and the validation loss spans
positions 21 to 41.

In Figure 2, we compare four regression networks: Inter-
leaved, Aligned , Lagged, and SCA as shown in Figure 1,
across increasing training epochs for linear regression task
with one and four layers and 2NN task with four layers. We
can make the following observations: (1) SCA converges
slightly faster than the Aligned setting, and both achieve
similar final loss values during training, except in the one-
layer transformer case for the linear regression task. (2)
Although both SCA and Aligned models achieve similar
final loss values, the Aligned model performs significantly
worse in the case of predictions at multiple positions. This
is due to the aligned model applying loss only at the last po-
sition during training, whereas the other variants apply loss
at multiple positions. (3) The shifting in SCA allows for a
direct interaction between the y’s and x’s in the Lagged set-
ting, leading to better convergence compared to the standard
causal attention.

Figure 3 investigates the impact of patch size on the conver-
gence of the SCA variant with one and four-layer transform-
ers. We employed linear attention for this set of experiments.

Figure 3. Impact of Patching on Convergence of Regression Net-
works. Compares SCA with increasing patch size using (a) one
layer and (b) four layers.

We observe that increasing patch size hinders in-context
learning for a one-layer transformer. This is evident from
the slower convergence (less improvement in loss with more
training steps) with a larger patch size.

5. Conclusion
In this work, we investigate the in-context learning capa-
bilities of transformer variants based on different training
losses and tokenization strategies for in-context examples.
We introduce the shifted causal attention (SCA) mecha-
nism, which enables faster convergence and an improved
in-context learning capability with just one transformer
layer. We empirically and theoretically show that patching,
a widely used technique in time series foundation models,
hinders in-context learning. As ongoing work, we are exper-
imenting with an FM for TSF that incorporates SCA and a
hybrid set of linear and patched layers to provide efficient
ICL for time-series data.

4
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Akyürek, E., Schuurmans, D., Andreas, J., Ma, T., and
Zhou, D. What learning algorithm is in-context learn-
ing? investigations with linear models. In The Eleventh
International Conference on Learning Representations,
2023. URL https://openreview.net/forum?
id=0g0X4H8yN4I.

Ansari, A. F., Stella, L., Turkmen, C., Zhang, X., Mercado,
P., Shen, H., Shchur, O., Rangapuram, S. S., Arango,
S. P., Kapoor, S., Zschiegner, J., Maddix, D. C., Wang, H.,
Mahoney, M. W., Torkkola, K., Wilson, A. G., Bohlke-
Schneider, M., and Wang, Y. Chronos: Learning the
language of time series, 2024.

Das, A., Kong, W., Sen, R., and Zhou, Y. A decoder-only
foundation model for time-series forecasting. In ICML,
2024.

Ekambaram, V., Jati, A., Nguyen, N. H., Dayama, P., Reddy,
C., Gifford, W. M., and Kalagnanam, J. Tiny time mixers
(ttms): Fast pre-trained models for enhanced zero/few-
shot forecasting of multivariate time series, 2024.

Garg, S., Tsipras, D., Liang, P., and Valiant, G. What
can transformers learn in-context? a case study of sim-
ple function classes. In Oh, A. H., Agarwal, A., Bel-
grave, D., and Cho, K. (eds.), Advances in Neural In-
formation Processing Systems, 2022. URL https:
//openreview.net/forum?id=flNZJ2eOet.

Garza, A. and Mergenthaler-Canseco, M. Timegpt-1, 2023.

Gruver, N., Finzi, M. A., Qiu, S., and Wilson, A. G. Large
language models are zero-shot time series forecasters. In
Thirty-seventh Conference on Neural Information Pro-
cessing Systems, 2023. URL https://openreview.
net/forum?id=md68e8iZK1.

Jin, M., Wang, S., Ma, L., Chu, Z., Zhang, J. Y., Shi,
X., Chen, P.-Y., Liang, Y., Li, Y.-F., Pan, S., and
Wen, Q. Time-LLM: Time series forecasting by re-
programming large language models. In The Twelfth
International Conference on Learning Representations,
2024. URL https://openreview.net/forum?
id=Unb5CVPtae.

Lehmann, E. L. and Casella, G. Theory of point estimation.
Springer Science & Business Media, 2006.

Mahankali, A. V., Hashimoto, T., and Ma, T. One step of
gradient descent is provably the optimal in-context learner
with one layer of linear self-attention. In The Twelfth
International Conference on Learning Representations,
2024. URL https://openreview.net/forum?
id=8p3fu56lKc.

Nie, Y., Nguyen, N. H., Sinthong, P., and Kalagnanam, J. A
time series is worth 64 words: Long-term forecasting with
transformers. In The Eleventh International Conference
on Learning Representations, 2023. URL https://
openreview.net/forum?id=Jbdc0vTOcol.

Panwar, M., Ahuja, K., and Goyal, N. In-context learn-
ing through the bayesian prism. In The Twelfth In-
ternational Conference on Learning Representations,
2024. URL https://openreview.net/forum?
id=HX5ujdsSon.

Rasul, K., Ashok, A., Williams, A. R., Khorasani, A.,
Adamopoulos, G., Bhagwatkar, R., Biloš, M., Ghonia,
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A. Theoretical results
Let us first set some notation. Let p be the patch size, and n be the total number of in-context examples. So, the in-context
examples are given by zi := (xi1, yi1, · · · , xip, yip) ∈ Rp(d+1) for i = 1, · · · , n

p . Given a test example x, its prediction by
a single layer, single linear attention head is given by:

ŷ = P

n/p∑
i=1

(V zi)
(
(Qx)

⊤
Kzi

)
,

where Q ∈ Rh×d,K ∈ Rh×p(d+1), V ∈ Rh×p(d+1),P∈R1×h

are the query, key, value and projection matrices respectively,
and h is the head dimension. Denoting U := Q⊤K ∈ Rd×p(d+1) and v := V ⊤P⊤ ∈ Rp(d+1), the above equation can
equivalently be written as:

ŷ = ⟨x,
n/p∑
i=1

Uzizi⊤v⟩. (2)

We will also denote ŵ :=
∑n/p

i=1 Uzizi⊤v ∈ Rd. Our main result is the following.

Theorem A.1. Let xi for i ∈ [n/p] be sampled independently from N (0, I). Let yi = ⟨w∗, xi⟩ + ηi where the noise
ηi ∼ σ · N (0, 1) for some arbitrary w∗. Suppose further that the predictor of a single linear self attention head (2) is
unbiased i.e.,

Exij ,ηij [ŵ|w∗] = w∗.

Then, we have that Exij ,ηij

[
∥ŵ − w∗∥2

]
≥ p

2 · σ2d
n .

Remark: Note that this rate is suboptimal by a factor of p
2 compared to the optimal rate of σ2d

n for linear least squares
regression (Van der Vaart, 2000; Lehmann & Casella, 2006).

Proof. Let us first denote U =
[
Ux1 , uy1 , · · · , Uxp , uyp

]
, where each Uxj

∈ Rd×d and uyj
∈ Rd and v =


vx1

vy1

...
vxp

vyp

, where

each vxj
∈ Rd and vyj

∈ R for each j = 1, · · · , p. We now compute E [ŵ] and see what the unbiasedness property tells us.
We have that (after dropping the subscript i in xij and ηijdue to linearity of expectation):

E [ŵ] =
n

p
· E

 p∑
j=1

vyj (⟨w∗, xj⟩+ ηj) + ⟨vxj , xj⟩

 p∑
j=1

Uxjxj + (⟨w∗, xj⟩+ ηj)uyj


=

n

p
·

p∑
j,k=1

(
vyk

Uxj + uyk
v⊤xj

)
E
[
xjx

⊤
k

]
w∗ +

(
vyjUxk

+ uyjv
⊤
xk

)
E [ηjxk]

+ Uxj
E
[
xjx

⊤
k

]
vxk

+ vyj
uyk

E [(⟨w∗, xj⟩+ ηj) (⟨w∗, xk⟩+ ηk)]

=
n

p
·

 p∑
j=1

(
vyj

Uxj
+ uyj

v⊤xj

)
w∗ + Uxj

vxj
+ vyj

uyj

(
1 + ∥w∗∥2

) .
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The unbiasedness condition that E [ŵ|w∗] = w∗ for any w∗ implies that:

p∑
j=1

(
vyjUxj + uyjv

⊤
xj

)
=

p

n
· Id (3)

p∑
j=1

Uxj
vxj

= 0, and (4)

p∑
j=1

uyj
vyj

= 0, (5)

where Id is the d× d identity matrix. We now wish to compute ∥ŵ − w∗∥2. To do so, let us first decompose ŵ − w∗ as:

ŵ − w∗ = α+ β,

where:

α :=

n/p∑
i=1

p∑
j,k=1

(
vyk

Uxj
+ uyk

v⊤xj

)
xijx

⊤
ik

− Id

w∗ +

n/p∑
i=1

p∑
j,k=1

Uxj
xijx

⊤
ikvxk


+

n/p∑
i=1

p∑
j,k=1

vyj
uyk

(⟨w∗, xij⟩+ ηij) (⟨w∗, xik⟩+ ηik)

 , and

β :=

n/p∑
i=1

p∑
j,k=1

(
vyj

Uxk
+ uyj

v⊤xk

)
ηijxik.

Note that Exij ,ηij
[α] = Exij ,ηij

[β] = 0 by the unbiasedness assumption, while Exij ,ηij
[⟨α, β⟩] = 0 since xij , ηij are all

independent for all i ∈ [n/p] and j ∈ [p] with xij ∼ N (0, Id) and ηij ∼ N (0, σ2). So, we have that:

E
[
∥ŵ − w∗∥2

]
= E

[
(α+ β)2

]
= E

[
α2
]
+ E

[
β2
]
≥ E

[
β2
]
.

So, it suffices to lower bound E
[
β2
]
. We have that:

E
[
β2
]
=

n/p∑
i=1

p∑
j,k=1

E
[
η2ijx

⊤
ik

(
vyj

Uxk
+ uyj

v⊤xk

)⊤ (
vyj

Uxk
+ uyj

v⊤xk

)
xik

]
=

σ2n

p

p∑
j,k=1

⟨
(
vyj

Uxk
+ uyj

v⊤xk

) (
vyj

Uxk
+ uyj

v⊤xk

)⊤
,E
[
xikx

⊤
ik

]
⟩

=
σ2n

p

p∑
j,k=1

Tr
((

vyjUxk
+ uyjv

⊤
xk

) (
vyj

Uxk
+ uyj

v⊤xk

)⊤)
=

σ2n

p

p∑
j,k=1

∥∥vyjUxk
+ uyjv

⊤
xk

∥∥2
F

=
σ2n

p

 p∑
j=1

v2yj

( p∑
k=1

∥Uxk
∥2F

)
+

 p∑
j=1

∥∥uyj

∥∥2( p∑
k=1

∥vxk
∥2
)

+ ⟨
p∑

j=1

uyj
vyj

,

p∑
k=1

Uxk
vxk

⟩


=

σ2n

p

 p∑
j=1

v2yj

( p∑
k=1

∥Uxk
∥2F

)
+

 p∑
j=1

∥∥uyj

∥∥2( p∑
k=1

∥vxk
∥2
) ,
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where we used the fact that
∑p

j=1 uyjvyj = 0 from (5) in the last step. Denoting by vy :=

vy1

...
vyp

 ∈ Rp, vx(ℓ) :=

vx1
(ℓ)
...

vxp
(ℓ)

 ∈ Rp, uy(ℓ) :=

uy1
(ℓ)
...

uyp
(ℓ)

 ∈ Rp and Ux(ℓ) :=

Ux1
(ℓ, ℓ)
...

Uxp
(ℓ, ℓ)

 ∈ Rp for every ℓ ∈ [d], where A(ℓ1, ℓ2) the

(ℓ1, ℓ2)
th element of the matrix A and by b(ℓ), the ℓth element of the vector b, we recase Equation (3) as:

⟨vy, Ux(ℓ)⟩+ ⟨uy(ℓ), vx(ℓ)⟩ =
p

n
, (6)

for every ℓ ∈ [d].

We now have that:

E
[
β2
]
≥ σ2n

p

 p∑
j=1

v2yj

( p∑
k=1

∥Uxk
∥2F

)
+

 p∑
j=1

∥∥uyj

∥∥2( p∑
k=1

∥vxk
∥2
)

≥ σ2n

p

(
∥vy∥2

(
d∑

ℓ=1

∥Ux(ℓ)∥2F

)
+

(
d∑

ℓ=1

∥uy(ℓ)∥2
)(

d∑
ℓ=1

∥vx(ℓ)∥2
))

≥ σ2n

p

d∑
ℓ=1

∥vy∥2 ∥Ux(ℓ)∥2F + ∥uy(ℓ)∥2 ∥vx(ℓ)∥2

≥ σ2n

2p

d∑
ℓ=1

⟨vy, Ux(ℓ)⟩+ ⟨uy(ℓ), vx(ℓ)⟩ ≥
σ2dn

2p
·
( p
n

)2
=

p

2
· σ

2d

n
,

where the last step follows from Equation (6). This proves the theorem.
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