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ABSTRACT

Deep learning in medical image analysis requires large-scale, high-quality anno-
tated datasets that are expensive and time-consuming to obtain due to extensive ex-
pert involvement. Most existing approaches rely on supervised learning, severely
limiting practical deployment given annotation scarcity.
To address this limitation, we propose the Label Transfer Hypothesis (LTH), a
theoretical framework for tackling annotation scarcity. The core hypothesis holds
that when diseases present characteristic pathological features, precise lesion seg-
mentation guided by clinical diagnosis and treatment logic can act as ”implicit di-
agnostic labels” for disease classification—this enables knowledge transfer from
segmentation to classification tasks. This approach not only reduces annotation
requirements while retaining the advantages of supervised classification, but also
leverages the combination of the label transfer method and clinical diagnosis and
treatment logic to obtain more reliable diagnoses.
We validate LTH on diabetic macular edema (DME) and retinal vein occlusion
(RVO) classification tasks. Results demonstrate that LTH achieves performance
comparable or superior to supervised methods while requiring significantly fewer
labeled data.The code will be released after acceptance.
This work contributes: (1) A pioneering theoretical framework bridging segmen-
tation and classification through clinical knowledge integration; (2) Demonstrated
feasible knowledge transfer maintaining competitive performance with reduced
supervision; (3) A scalable solution for resource-constrained healthcare settings,
particularly beneficial for medically underserved regions.

1 INTRODUCTION

Artificial intelligence technologies, particularly deep learning, have demonstrated tremendous po-
tential in medical image analysis, achieving remarkable progress in automated screening and di-
agnosis of fundus diseases (He et al., 2023; Chen et al., 2021). However, clinical deployment of
these AI-driven diagnostic systems faces a fundamental bottleneck: the stringent requirement for
large-scale, high-quality expert annotations.

Medical image annotation presents unique challenges distinguishing it from conventional computer
vision tasks. Accurate diagnostic labeling necessitates extensive clinical expertise, making the an-
notation process inherently time-consuming and expensive. The scarcity of qualified specialists ca-
pable of providing reliable annotations creates significant resource constraints, while inter-annotator
variability introduces inconsistencies that compromise model reliability. These factors collectively
create substantial barriers to acquiring the extensive labeled datasets required for robust supervised
learning models, severely limiting the scalability and clinical translation of AI technologies in oph-
thalmic diagnosis.

Existing research has primarily explored weakly-supervised and unsupervised learning paradigms
to address annotation scarcity (Kumari & Singh, 2024). However, these approaches exhibit criti-
cal limitations in clinical contexts. Weakly-supervised methods often lack the precision necessary
for reliable medical diagnosis, while unsupervised approaches suffer from insufficient clinical in-
terpretability due to the absence of explicit pathological basis in model decision-making, and sub-
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optimal diagnostic accuracy resulting from the disconnect between data-driven feature learning and
established clinical diagnostic logic. Current research lacks a systematic theoretical framework that
can effectively reduce annotation dependency while preserving both diagnostic accuracy and clinical
interpretability.

In clinical practice, experienced ophthalmologists rely on pattern recognition and prior knowledge
when making diagnostic decisions. Rather than processing fundus images holistically, clinicians sys-
tematically identify and evaluate specific pathological manifestations—characteristic lesions serving
as diagnostic indicators. For instance, when diagnosing Diabetic Macular Edema (DME), ophthal-
mologists focus on identifying and assessing the spatial distribution of microaneurysms, hard exu-
dates, and intraretinal fluid accumulation in the macular region. This observation-based diagnostic
process suggests that pathological features themselves contain rich diagnostic information that could
potentially serve as surrogate supervisory signals.

Inspired by clinical diagnostic reasoning, we propose the Label Transfer Hypothesis, an innovative
theoretical framework that addresses the annotation bottleneck through indirect label substitution.
The core hypothesis posits that when diseases exhibit characteristic imaging manifestations, precise
lesion segmentation guided by clinical prior knowledge can serve as “implicit diagnostic labels”
for disease classification, enabling knowledge transfer from pixel-level annotations to image-level
diagnosis.

This paradigm shift offers several theoretical innovations: (1) Epistemological redefinition: recon-
ceptualizing diagnostic “labels” from externally assigned categorical identifiers to intrinsic patho-
logical feature representations derivable from image content itself; (2) Methodological bridge: es-
tablishing formal theoretical connections between segmentation and classification tasks, creating
a new paradigm for cross-task knowledge transfer; (3) Clinical alignment: organically integrating
established medical diagnostic logic into algorithmic design, significantly enhancing model inter-
pretability and clinical credibility.

To systematically validate the effectiveness and generalizability of our Label Transfer Hypothesis
framework, we selected Diabetic Macular Edema (DME) and Retinal Vein Occlusion (RVO) as
representative test cases. This selection is strategically motivated by three factors: First, both con-
ditions represent high-prevalence diseases with significant public health impact, ensuring clinical
relevance. Second, despite distinct pathophysiological mechanisms, both diseases manifest through
clearly identifiable characteristic lesions in fundus imagery, providing ideal testing grounds for our
lesion-based approach. Third, well-established clinical guidelines for both conditions provide robust
medical foundations for objective lesion definition and validation.

Through comprehensive experiments, this study demonstrates the feasibility and clinical value of the
Label Transfer Hypothesis in fundus disease diagnosis while establishing a theoretically grounded
and practically viable solution to the persistent data annotation bottleneck constraining AI deploy-
ment in healthcare applications.

2 RELATED WORK

2.1 CURRENT STATE OF OPHTHALMIC DISEASE DIAGNOSIS: FROM MANUAL ASSESSMENT
TO AUTOMATED ANALYSIS

Retinal diseases, including Diabetic Retinopathy (DR), Age-related Macular Degeneration (AMD),
and Retinal Vein Occlusion (RVO), constitute leading causes of irreversible vision loss worldwide.
Current clinical diagnosis relies on manual examination of fundus images by ophthalmologists, who
systematically identify individual pathological biomarkers—microaneurysms, hemorrhages, cotton-
wool spots, exudates, and drusen—before synthesizing these observations into comprehensive diag-
nostic assessments.

This manual approach faces critical limitations: the process is labor-intensive with substantial inter-
observer variability, while the global shortage of qualified specialists, particularly in underserved
regions, restricts access to timely screening. These challenges necessitate automated retinal image
analysis systems capable of providing scalable, consistent, and objective diagnosis while maintain-
ing alignment with clinical reasoning processes.
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2.2 DEEP LEARNING IN RETINAL IMAGE ANALYSIS: PROGRESS AND PERSISTENT
CHALLENGES

Deep learning has achieved significant advances in automated retinal disease diagnosis, with
approaches broadly categorized into end-to-end disease classification and lesion segmentation
paradigms. Despite notable progress, fundamental challenges persist in bridging computational
methods with clinical diagnostic logic.

The annotation-knowledge gap. Supervised models exhibit profound dependence on labeled data,
prompting exploration of alternative learning paradigms. Unsupervised approaches have demon-
strated promise—Yousefi et al. employed clustering for glaucoma progression monitoring (Yousefi
et al., 2014), while Yu et al. developed frameworks for dry eye disease stratification (Matta et al.,
2022). However, these methods typically operate on holistic image representations without mech-
anisms for integrating structured clinical knowledge. They identify patterns but fail to explicitly
recognize individual pathological manifestations (hemorrhages, exudates, cotton-wool spots) that
clinicians systematically evaluate, creating a fundamental disconnect between data-driven pattern
discovery and the sequential, lesion-based reasoning employed in clinical practice.

Architectural approaches to lesion integration. Recent work has attempted to incorporate le-
sion information through architectural innovations. (?) proposed MSGDA-Net, utilizing lesion
segmentation as an auxiliary task to generate regional prior knowledge for DR grading through at-
tention mechanisms. Similarly, (?) developed a multi-view framework combining fundus images
with lesion snapshots via heterogeneous convolution blocks. While these approaches recognize the
importance of lesion information, they primarily treat lesions as supplementary features for enhanc-
ing classification performance rather than as the fundamental basis of diagnosis. This architectural
focus diverges from clinical practice, where physicians first identify and characterize individual le-
sion types before integrating these observations into a final diagnosis—a sequential, evidence-based
process that current methods fail to emulate.

The critical limitation remains: existing methods do not systematically mirror the clinical diagnostic
workflow of observing individual pathological features and synthesizing these observations into di-
agnostic conclusions. This misalignment between computational approaches and medical reasoning
constitutes a principal barrier to clinical trust and adoption.

2.3 THE LABEL TRANSFER HYPOTHESIS: EMULATING CLINICAL DIAGNOSTIC LOGIC
THROUGH THEORETICAL FRAMEWORK

Current literature reveals a fundamental gap: the absence of a theoretical framework that faithfully
reproduces the clinical diagnostic process—from individual lesion observation to comprehensive
disease assessment. We propose the Label Transfer Hypothesis (LTH), a theoretical framework that
fundamentally reconceptualizes automated diagnosis to align with clinical reasoning patterns.

Clinical alignment as core principle. Unlike existing methods that leverage lesions as auxiliary
information (?) or additional input modalities (?), LTH explicitly models the two-stage clinical di-
agnostic process: (1) systematic identification and characterization of individual pathological man-
ifestations (hemorrhages, microaneurysms, cotton-wool spots, hard exudates), and (2) synthesis of
these lesion patterns into diagnostic conclusions. This approach treats lesion segmentation not as a
means to enhance features but as the primary diagnostic evidence—mirroring how clinicians derive
diagnoses directly from observed pathological patterns.

From feature enhancement to diagnostic reasoning. While architectural approaches focus on
improving classification accuracy through lesion-guided attention or multi-view fusion, LTH estab-
lishes a formal theoretical connection between lesion patterns and disease states. The framework
posits that precise lesion segmentation can serve as “implicit diagnostic labels,” enabling the model
to learn the mapping from pathological evidence to diagnosis—exactly as clinicians are trained.
This represents a paradigm shift from using lesions to improve black-box classifiers to building
inherently interpretable systems where every diagnostic decision traces back to specific, clinically-
defined pathological features.

Theoretical foundation for clinical interpretability. The key innovation of LTH lies not in ar-
chitectural design but in its theoretical grounding: by formally defining disease labels as derivable
from spatial configurations of characteristic lesions, the framework ensures that model reasoning
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inherently aligns with medical logic. This alignment is not post-hoc or superficial but fundamental
to the model’s operation—each diagnosis emerges from systematic evaluation of individual lesions
and their relationships, providing natural interpretability that clinicians can verify against their own
diagnostic process.

This theoretical framework offers a unified solution by:

• Reducing annotation dependency through clinical logic: Leveraging the objectivity of
lesion identification—which follows established clinical criteria—as the foundation for di-
agnosis, eliminating the need for subjective disease-level labels while maintaining diagnos-
tic accuracy.

• Ensuring inherent interpretability: Every diagnostic decision directly corresponds to
specific lesion patterns, allowing clinicians to trace and validate the model’s reasoning
against their own diagnostic process, fostering clinical trust through transparency.

• Preserving diagnostic workflow: The two-stage process of lesion identification followed
by pattern synthesis faithfully reproduces clinical reasoning, making the system intuitive
for medical professionals and facilitating seamless integration into clinical practice.

By establishing this formal theoretical foundation that mirrors clinical diagnostic logic, LTH ad-
vances beyond architectural innovations to provide a principled approach for developing AI systems
that emulate clinical reasoning—systematically observing individual pathological features before
synthesizing them into diagnostic conclusions.

3 APPROACH

Our research employs the Label Transfer Hypothesis framework, which enables disease-level classi-
fication from pixel-level lesion annotations through knowledge transfer. This leverages the intrinsic
mapping between lesion patterns and disease types—specific pathological combinations correspond
to distinct disease categories.

This approach mirrors clinical diagnosis, where ophthalmologists identify diseases by recognizing
pathological manifestations (hemorrhages, exudates, neovascularization), providing clinical valida-
tion for our methodology.

We developed a three-stage diagnostic pipeline: (1) pathological segmentation generates pixel-
level lesion masks from fundus images; (2) feature extraction transforms segmentation results into
clinically-relevant representations; (3) pattern recognition performs disease classification based on
extracted features, achieving accurate diagnosis (as illustrated in Figure 1).

Figure 1: Overview of the proposed Label Transfer Hypothesis framework architecture
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3.1 PATHOLOGICAL REGION SEGMENTATION

Precise segmentation of pathological regions constitutes the theoretical foundation for label trans-
fer, as accurate identification and localization of various lesions are essential for providing reliable
“implicit labels” for subsequent disease classification. From a clinical perspective, ophthalmolo-
gists initially identify various pathological manifestations in fundus images, each exhibiting distinct
morphological, chromatic, luminance, and textural characteristics—hemorrhages present as dark
red patches, hard exudates manifest as yellowish-white punctate lesions, while neovascularization
appears as filamentous structures.

To emulate this clinical recognition process, we employ a modified U-Net (Ronneberger et al., 2015)
architecture integrated with attention mechanisms (Figure 2). Through systematic evaluation of
backbone networks including ResNet (He et al., 2016), VGG (Simonyan & Zisserman, 2014), and
DenseNet (Huang et al., 2017), we identified optimal feature extraction architectures for each lesion
type. The specific backbone selections and their performance metrics are detailed in Table 4 in
Appendix A.1.

The decoder incorporates the squeeze-and-excitation (scSE) attention mechanism (Roy et al., 2018),
which adaptively weights both channel and spatial dimensions to simulate clinicians’ cognitive pro-
cess of focusing attention on pathological regions, effectively enhancing segmentation accuracy and
clinical relevance.

Considering the typically small proportion of lesion regions in fundus images, we designed a com-
posite loss function combining Dice Loss (Li et al., 2019) and Focal Loss (Lin et al., 2017) to address
class imbalance challenges. The detailed loss function formulation and hyperparameter settings are
provided in Appendix A.4.

Figure 2: Architecture of the Pathological Region Segmentation and Annotation Stage. (a) Lesion-
specific encoder selection strategy. (b) U-Net decoder with scSE attention mechanism. (c) Compos-
ite loss function design combining Dice Loss and Focal Loss.

3.2 CLINICAL FEATURE EXTRACTION AND TRANSFORMATION

Feature extraction transforms low-level image features into high-level clinical concepts, serving as
the crucial bridge between image processing and clinical diagnosis. From a clinical perspective,
different lesion types possess varying diagnostic significance—in diabetic retinopathy diagnosis,
neovascularization often indicates progression to the proliferative stage, while the quantity of mi-
croaneurysms and hemorrhages reflects disease severity.

Based on this clinical understanding, we utilize a pre-trained VGG19 network as the feature ex-
tractor, transforming input images into 512×7×7 feature maps corresponding to 25,088-dimensional
feature vectors. We apply importance-weighted aggregation to the extracted features, with weight
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combinations optimized through grid search. The specific optimization process and resulting weight
values are detailed in Appendix A.4.

Finally, Principal Component Analysis (PCA) (Abdi & Williams, 2010) reduces the high-
dimensional features to 50 dimensions, preserving critical diagnostic information while improving
computational efficiency (Figure 3).

Figure 3: Architecture of the Clinical Feature Extraction and Disease Classification Stages. (a)
Feature extraction with importance-weighted aggregation. (b) PCA dimensionality reduction and
clustering. (c) Multi-dimensional clustering evaluation metrics.

3.3 DISEASE PATTERN RECOGNITION AND CLASSIFICATION

Disease pattern recognition derives from a fundamental assumption in medical image analysis: simi-
lar lesion patterns typically correspond to similar disease types, enabling unsupervised classification
based on lesion features. From a clinical perspective, physicians identify disease types by recog-
nizing specific lesion combination patterns—the co-occurrence of microaneurysms, hemorrhages,
and hard exudates commonly indicates diabetic retinopathy, while geographic atrophy and drusen
suggest age-related macular degeneration.

To implement this pattern recognition, considering the discrete distribution characteristics of fundus
lesion features, we employ the k-modes (Huang & Ng, 1999) clustering algorithm, which updates
cluster centers based on frequency, making it more suitable for categorical or mixed-feature data
characteristic of medical image features. The detailed clustering algorithm parameters and evalua-
tion metrics are provided in Appendix A.4.

For clustering effectiveness evaluation, we adopt a multi-dimensional assessment framework com-
bining external metrics (accuracy, precision, recall, F1 score) with internal cluster quality met-
rics (Calinski-Harabasz index (Caliński & Harabasz, 1974) and Davies-Bouldin index (Davies &
Bouldin, 2009)).

3.4 SYSTEM INTEGRATION AND CLINICAL WORKFLOW ALIGNMENT

The three stages operate synergistically to implement the Label Transfer Hypothesis paradigm:
pathological region segmentation provides structured lesion representations, clinical feature trans-
formation incorporates medical expertise through importance weighting, and disease pattern recog-
nition demonstrates unsupervised diagnostic capability. This architecture realizes knowledge trans-
fer by exploiting the intrinsic relationship between lesion patterns and disease manifestations, guided
by established clinical diagnostic criteria. The system design aligns with clinical diagnostic work-
flows—physicians systematically identify characteristic lesions, evaluate their clinical significance,
and make diagnostic decisions based on pattern recognition, thereby achieving both high diagnostic
accuracy and enhanced clinical interpretability. This design ensures the entire diagnostic process re-
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mains transparent and comprehensible to clinicians, facilitating the establishment of human-machine
collaborative diagnostic paradigms.

Table 1: Overview of Publicly Available Medical Image Datasets Used in This Study

Dataset Samples Classes/Task
LCFP-14M 13,718,610 10 Classes
IDRiD Dataset 506 5 Classes
Retinal Lesions Dataset 198 Segmentation
Retinal Vessel Segmentation Combined 104 Segmentation
REFUGE2 1,200 Segmentation
Final Clean Haemorrhage Dataset 3,483 Segmentation

4 EXPERIMENTS

4.1 DATASETS AND EXPERIMENTAL SETUP

To evaluate the efficacy and generalizability of our proposed Label Transfer Hypothesis, we assem-
bled three complementary datasets encompassing the spectrum of fundus pathology analysis tasks.

Diabetic Macular Edema (DME) Classification Dataset: This dataset comprises 302 high-resolution
retinal fundus images from six public repositories (Rocamora, 2023; Scientist, 2022; Lemos, 2024;
Patel, 2020; SHIROUQSHAWKY16, 2024; Decencière et al., 2014) (Table 1). Each image features
pixel-level annotations for microhemorrhages, macular edema, cotton wool spots, vascular struc-
tures, and lipid exudates. The dataset maintains balanced class distribution with 151 DME-positive
and 151 DME-negative cases.

Retinal Vein Occlusion (RVO) Classification Dataset: The RVO dataset contains 374 fundus im-
ages from the aforementioned six databases (Table 1), comprising 187 RVO-positive cases and 187
controls.

Multi-lesion Segmentation Dataset: We constructed pixel-level ground-truth annotations by integrat-
ing multiple public sources. This dataset provides binary masks for hemorrhagic lesions, edematous
regions, lipid deposits, neovascular formations, cotton wool spots, and other retinal pathologies es-
sential for segmentation model training.

Experimental Setup: All experiments were conducted on a distributed GPU cluster. The detailed
hardware configuration and training hyperparameters are provided in Appendix A.4.

4.2 COMPARATIVE EXPERIMENTS

To rigorously assess the efficacy and clinical viability of our proposed Label Transfer Hypothe-
sis paradigm, we conducted systematic benchmarking experiments against established supervised
learning methodologies.

Table 2: Comparative performance analysis of supervised and unsupervised approaches for DME
and RVO classification

Task Method Accuracy Precision Recall F1-Score

RVO
Supervised three grading 0.5241 0.5065 0.4840 0.4949
Supervised binary grading 0.8056 0.8837 0.7037 0.7835
Ours 0.8621 0.8234 0.8621 0.8423

DME
MobileNet 0.7903 0.8214 0.7419 0.7797
ResNet18 0.7581 0.9000 0.5806 0.7058
Ours 0.8600 0.8606 0.8600 0.8603

Experimental results demonstrate that our Label Transfer Hypothesis framework achieves remark-
ably competitive diagnostic performance across both experimental domains through disease-specific
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model configurations tailored to distinct pathological characteristics. For DME classification, our
framework employs GoogLeNet (Szegedy et al., 2015) as the feature extraction backbone combined
with k-medoids clustering, achieving 86.00% accuracy, while RVO subtype differentiation utilizes
VGG19 paired with k-modes clustering, yielding 86.21% accuracy. These results, presented in
Table 2, not only rival but occasionally exceed those of traditional supervised approaches across
multiple evaluation criteria. This performance parity is particularly noteworthy given the funda-
mental paradigmatic difference: our framework operates entirely without disease-level annotations,
instead leveraging intrinsic pathological feature representations derived from lesion segmentation.
The disease-specific model selection strategy reflects the heterogeneous nature of retinal patholo-
gies and demonstrates the framework’s adaptability to diverse clinical scenarios while maintaining
consistently high diagnostic performance.

The clinical significance of these findings extends beyond mere performance metrics. By achieving
diagnostic accuracy comparable to supervised methods while circumventing the requirement for
extensive disease-level annotation, our Label Transfer Hypothesis framework addresses a critical
bottleneck in medical AI deployment—the dependency on labor-intensive expert labeling.

The comprehensive results of comparative analysis between various backbone networks and clus-
tering algorithms for both DME and RVO classification are presented in Tables 5 and 6 in Ap-
pendix A.1.

4.3 ABLATION STUDIES

To systematically validate the contribution of each component within our proposed Label Trans-
fer Hypothesis framework, we conducted comprehensive ablation experiments across three distinct
configurations: (1) Classification-only baseline: Direct classification on raw fundus images without
segmentation or feature extraction; (2) Feature extraction and classification without segmentation:
Deep feature extraction using pre-trained networks followed by classification, bypassing the region
segmentation module; and (3) Complete framework incorporating all components (Region Segmen-
tation, Feature Extraction, Classification).

Table 3: Component-wise Evaluation of the Proposed Framework for DME and RVO

Task Method Metrics
A B C Accuracy Precision Recall F1-Score CH index DB index

DME
✓ 0.5430 0.5430 0.5371 0.5225 2359.7505 0.3350

✓ ✓ 0.8400 0.8400 0.8422 0.8397 29.7464 2.0853
✓ ✓ ✓ 0.8600 0.8606 0.8600 0.8603 36.3945 1.8753

RVO
✓ 0.4947 0.4947 0.1658 0.2483 0.2310 1.9950

✓ ✓ 0.5241 0.5065 0.4840 0.4949 327.3534 0.8380
✓ ✓ ✓ 0.8621 0.8234 0.8621 0.8423 6.2923 2.4017

Note: A = Region Segmentation; B = Feature Extraction; C = Classification; CH index = Calinski-Harabasz
index; DB index = Davies-Bouldin index.

The experimental results, summarized in Table 3, demonstrate the critical importance of each frame-
work component. For DME classification, the classification-only baseline achieved merely 54.30%
accuracy, highlighting the inadequacy of raw image classification for medical diagnosis. The inte-
gration of deep feature extraction substantially improved performance to 84.00% accuracy, confirm-
ing the necessity of semantic feature representations. However, our complete framework incorpo-
rating lesion segmentation achieved optimal performance at 86.00% accuracy, validating our core
hypothesis that explicit pathological localization enhances diagnostic capability.

Similar performance trends were observed in RVO classification, where the classification-only ap-
proach yielded suboptimal performance (49.47% accuracy), while feature extraction provided sig-
nificant improvement (52.41% accuracy). The complete framework achieved 86.21% accuracy, rep-
resenting a substantial performance gain of over 36 percentage points. Notably, the removal of
attention mechanisms resulted in comparable accuracy but inferior feature discriminability metrics
(Calinski-Harabasz and Davies-Bouldin indices), indicating that attention mechanisms enhance both
feature quality and classification coherence.
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These ablation results conclusively demonstrate that each component contributes synergistically to
overall framework performance, with the lesion segmentation module serving as the most critical
element for effective knowledge transfer from pixel-level annotations to image-level diagnosis.

5 CONCLUSION

This study presents and validates the Label Transfer Hypothesis, a framework that tackles the anno-
tation shortage problem in medical imaging through knowledge transfer from lesion-level to disease-
level classification. Evaluation on Diabetic Macular Edema (DME) and Retinal Vein Occlusion
(RVO) demonstrates theoretical validity and clinical applicability.

The Label Transfer Hypothesis redefines supervision in medical imaging by utilizing pathological
patterns from clinically-guided lesion segmentation instead of requiring disease-level annotations.
This approach overcomes annotation limitations while integrating computational methods with clin-
ical diagnostic procedures, improving model interpretability and clinical utility.

Results show classification accuracies of 86.00% for DME detection and 86.21% for RVO subtype
classification without disease-level supervision. These findings confirm that lesion-level annotations
provide sufficient discriminative information for accurate disease classification, demonstrating that
structured pathological knowledge can replace explicit disease labels.

This work provides a foundation for clinically-guided supervision methods across medical imaging
applications. By establishing knowledge transfer from pixel-level pathological annotations to image-
level classification, we present a generalizable framework that combines clinical domain knowledge
with machine learning, enabling interpretable and annotation-efficient medical AI systems compat-
ible with clinical practice.
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A APPENDIX

A.1 DETAILED SEGMENTATION PERFORMANCE

Table 4 presents the detailed segmentation performance metrics for different lesion types using var-
ious backbone networks. Through systematic evaluation, we identified optimal backbone architec-
tures for each lesion type, achieving the best balance between segmentation accuracy and computa-
tional efficiency.

Table 4: Optimal backbone network selection and segmentation performance for different lesion
types

Foci Backbone IoU Accuracy Precision
Hemorrhage ResNet34 0.4942 0.9956 0.8008
Edema ResNet50 0.9925 0.9867 0.9988
Neovascularization VGG19 0.7415 0.9692 0.8921
Hard exudation VGG16 0.8719 0.9968 0.9625
Cotton-Wool-Spots VGG19 0.3636 0.9920 0.5671
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A.2 BACKBONE NETWORK COMPARISON FOR DME CLASSIFICATION

Table 5: Performance comparison across different backbone networks and clustering algorithms for
DME classification

Clustering Backbone Accuracy Precision Recall F1-Score Calinski-Harabasz Davies-Bouldin

k-medoids

AlexNet 0.8333 0.8437 0.8333 0.8321 15.9312 2.2379
GoogLeNet 0.8600 0.8606 0.8600 0.8603 36.3945 1.8753
ResNet18 0.8333 0.8437 0.8333 0.8321 161.6702 0.7050
VGG16 0.8133 0.8283 0.8133 0.8112 12.4736 3.1007

Kmeans

GoogLeNet 0.8000 0.8054 0.8000 0.7991 267.8952 0.5985
ResNet34 0.8333 0.8437 0.8333 0.8321 19.4077 2.6955
VGG16 0.7667 0.7749 0.7667 0.7649 12.0028 3.1943
VGG19 0.8067 0.8134 0.8067 0.8056 14.0618 2.7996

Agg

AlexNet 0.8267 0.5630 0.5511 0.5539 14.7440 2.1688
GoogLeNet 0.8400 0.5742 0.5600 0.5626 16.1686 2.1582
ResNet18 0.7267 0.5265 0.4844 0.4982 71.7643 1.5988
VGG16 0.8533 0.5780 0.5689 0.5728 11.0147 2.2108

A.3 BACKBONE NETWORK COMPARISON FOR RVO CLASSIFICATION

Table 6: Performance comparison across different backbone networks and clustering algorithms for
RVO classification

Clustering Backbone Accuracy Precision Recall F1 Score Calinski-Harabasz Davies-Bouldin
Agglomerative AlexNet 0.8483 0.8805 0.6229 0.6280 10.5400 2.0712

VGG16 0.8759 0.6844 0.6329 0.6374 9.6975 2.0309
Kmeans VGG19 0.8759 0.6844 0.6329 0.6374 9.6975 2.3316

GMM VGG19 0.8897 0.9085 0.6531 0.6571 9.0810 2.1721

Kmedoid VGG19 0.8552 0.8149 0.8552 0.8312 7.0336 2.0823

Kmodes VGG16 0.8552 0.8829 0.8552 0.8384 7.4719 2.0309
VGG19 0.8621 0.8234 0.8621 0.8423 6.2923 2.4017

A.4 TRAINING PARAMETERS AND IMPLEMENTATION DETAILS

A.4.1 HARDWARE CONFIGURATION

All experiments were conducted on a distributed GPU cluster with the following configuration:

• 2× NVIDIA RTX 3080 (24GB VRAM)

• 1× NVIDIA RTX 2070 SUPER (8GB VRAM)

• 1× NVIDIA RTX 2080 Ti (11GB VRAM)

• 1× NVIDIA GTX 1080 (8GB VRAM)

A.4.2 SEGMENTATION MODEL TRAINING PARAMETERS

The U-Net segmentation models were trained with the following hyperparameters:

• Optimizer: Adam with initial learning rate of 1e-4

• Learning rate scheduler: ReduceLROnPlateau with patience=10, factor=0.5

• Batch size: 8 for RTX 3080, 4 for other GPUs

• Epochs: 100 with early stopping (patience=20)

• Data augmentation: Random horizontal/vertical flips, rotation (±30°), brightness/contrast
adjustment
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• Loss function weights: Dice Loss weight = 0.5, Focal Loss weight = 0.5
• Focal Loss parameters: α = 0.25, γ = 2.0

A.4.3 FEATURE EXTRACTION PARAMETERS

The feature extraction stage employs the following configuration:

• Pre-trained model: VGG19 trained on ImageNet
• Input image size: 224 × 224 pixels
• Feature map dimensions: 512 × 7 × 7
• PCA components: 50
• Lesion importance weights (optimized via grid search):

– Hemorrhage: 0.25
– Edema: 0.30
– Neovascularization: 0.20
– Hard exudates: 0.15
– Cotton-wool spots: 0.10

A.4.4 CLUSTERING ALGORITHM PARAMETERS

The clustering algorithms were configured as follows:

• K-modes/K-medoids: k=2 for binary classification
• Initialization: k-means++ for numerical features
• Maximum iterations: 300
• Convergence tolerance: 1e-4
• Number of runs: 10 with different random seeds

A.4.5 LOSS FUNCTION FORMULATION

The composite loss function for segmentation is defined as:

Lcombined = Ldice + Lfocal (1)

where:

Ldice = 1− 2 · |X ∩ Y |
|X|+ |Y |

(2)

Lfocal = −αt · (1− pt)
γ · log(pt) (3)

with αt = 0.25 for lesion pixels and 0.75 for background pixels, and γ = 2.0 to focus learning on
hard examples.
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