From Simple to Complex: An Agent Framework with a Progressive
Difficulty Planning Strategy for Text-to-SQL

Anonymous ACL submission

Abstract

Large Language Models (LLMs) have shown
significant potential in text-to-SQL tasks. How-
ever, most existing methods operate within
simplified scenarios with pre-prepared inputs
(i.e., questions and database schemas) and out-
puts (i.e., predicted SQL). In contrast, real-
world SQL development often requires consult-
ing external knowledge and interacting with
the database environment through iterative
steps. To address this, we propose SoC-Agent,
a novel LLM-powered agent framework de-
signed for SQL generation in complex environ-
ments. SoC-Agent emulates the human itera-
tive development process, breaking down tasks
into a series of subtasks of increasing difficulty.
Specifically, the agent first tackles simpler sub-
tasks, iteratively refining its approach based on
previous results, and then addresses more com-
plex tasks. This incremental strategy enhances
the agent’s reasoning ability for complex SQL
generation. Additionally, agent can also lever-
age external knowledge sources and dynami-
cally interacts with the database environment to
gather necessary information for each subtask,
ensuring that the results are both accurate and
contextually relevant. We evaluate our method
on Spider 2.0 dataset, specifically designed for
agentic tasks, demonstrating the superiority in
handling complex SQL generation. Our codes
are available at: https://anonymous.4open.
science/r/SoC-Agent-694B.

1 Introduction

Text-to-SQL (Qin et al., 2022; Deng et al., 2022;
Kumar et al., 2022) aims to translate natural lan-
guage queries into SQL statements, enabling users
to interact with databases without needing database
expertise. It enhances database accessibility and us-
ability, allowing non-experts to perform data oper-
ations through intuitive language inputs, providing
greater convenience for data analysis.

In recent years, the remarkable success of Large
Language Models (LLMs) in various fields has

ia da fda
Simple/@ Medium ’@) Complex /@

Y AN

Query the salaries Query the average Query the employees

of all employees salary of employees with salaries above the
for each department. average salary in their

respective departments.

X —
A * NS~
It is an easy SQL Based on the \ f d .
writing task. IJus'r previous SQL[-), ~ eIl O T e ﬂ
need . to finish- I/cun Jjust update ... prevrous SQL
thetoske N o finish the o niebiube” =
\ S "‘\msﬁ 7 final task.

'@‘

<

“%‘

F
F
i
LU
l—ﬁ-

Figure 1: The workflow of our proposed agent planning
framework (SoC) for text-to-SQL tasks.

led to the emergence of LLM-based methods (Shi
et al., 2024; Liu et al., 2024b; Mohammadjafari
et al., 2024; Zhu et al., 2024b) as the mainstream
paradigm in the text-to-SQL domain. These meth-
ods can be broadly categorized into two main ap-
proaches: @ Prompt-based methods leverage the
zero-shot in-context learning (ICL) capabilities of
LLMs for SQL generation. Building on this founda-
tion, subsequent efforts, including DIN-SQL (Pour-
reza and Rafiei, 2024a), DAIL-SQL (Gao et al.,
2024), MAC-SQL (Wang et al., 2024a), and C3
(Dong et al., 2023), have enhanced LLM perfor-
mance through schema-linking, question represen-
tation, task decomposition, and techniques such as
chains of thought (CoT) (Wei et al., 2022) and self-
consistency (Wang et al., 2023). @ Fine-tuning-
based methods aim to elevate the capabilities of
open-source LLMs through supervised fine-tuning
(SFT), with the goal of aiming to match or sur-
pass the close-source LLMs. For instance, DTS-
SQL (Pourreza and Rafiei, 2024b) introduces a

https://anonymous.4open.science/r/SoC-Agent-694B
https://anonymous.4open.science/r/SoC-Agent-694B
https://anonymous.4open.science/r/SoC-Agent-694B

two-stage SFT method, incorporating SFT in both
the schema-linking and SQL generation stages;
CHESS (Talaei et al., 2024) combines ICL and SFT
strategies; and SENSE (Yang et al., 2024a) further
improves the capabilities of open-source models by
synthesizing data through strong models.

Despite their effectiveness, most studies (Yu
et al., 2018; Li et al., 2024c¢) operate in relatively
simple text-to-SQL scenarios, where LLMs are ex-
pected to directly produce the predicted SQL for a
given query and database schema. However, in real-
world complex SQL writing tasks, developers often
need to frequently consult external knowledge doc-
uments and interact with the database environment
to complete the task through multiple plans and
steps (Lei et al., 2024). Moreover, language agents
(Guo et al., 2024; Wang et al., 2024b; Xi et al.,
2023), which utilize the advanced reasoning abil-
ities of LLMs to interface with executable tools,
have become crucial elements of Al systems in-
tended to tackle complex tasks (Liu et al., 2024a).
These language agents offer promising potential for
automatic SQL generation in real database devel-
opment scenarios. Although some LLM-powered
agent frameworks have been designed to solve code
generation problems (Chen et al., 2024; Xia et al.,
2024; Yang et al., 2024b; Pan et al., 2024), the
design of agent frameworks specifically for text-to-
SQL scenarios still remains largely unexplored.

To address this gap, we focus on developing
an effective LLM-powered agent framework tai-
lored for a realistic SQL development environment.
Drawing inspiration from the SQL writing strate-
gies employed by professional database develop-
ers, we note that they frequently use a simple-to-
complex strategy (Huang et al., 2023). This in-
volves breaking down a complex task into manage-
able sub-problems, which are then solved individu-
ally and iteratively combined to address the original
task. This observation leads us to a critical ques-
tion: how can we integrate this problem-solving
methodology into the design of an agent framework
for handling complex text-to-SQL tasks?

In this paper, we propose a Simple-to-Complex
Agent planning framework (SoC-Agent). Specifi-
cally, for a given task, it decomposes the task into a
series of versions ranging from simple to complex,
solving them sequentially. As illustrated in Fig-
ure 1, the agent first addresses simpler versions of
the subtask, iteratively refining its approach based
on previous results, and then tackles more com-
plex tasks. This incremental strategy enhances the

agent’s ability for complex SQL generation. Ad-
ditionally, during the completion of these tasks,
SoC-Agent utilizes external SQL knowledge by
invoking tools and dynamically interacting with
the database to ensure accurate task completion.
We conducted extensive experiments on Spider 2.0
(Lei et al., 2024), a real-world enterprise-level text-
to-SQL dataset specifically customized for agentic
settings. The experimental results demonstrate the
effectiveness of the proposed framework.

Our main contributions can be summarized as

follows:

* We emphasize the necessity of addressing text-
to-SQL tasks within agentic task settings, a
domain that remains largely underexplored.

* We introduce a novel agent framework, SoC-
Agent, which employs a simple-to-complex
planning strategy to enhance the performance
of agents in text-to-SQL tasks.

* We validate the effectiveness of our approach
on the latest public dataset, Spider 2.0, achiev-
ing state-of-the-art results. Case studies further
verifies the efficacy of our approach.

2 Preliminaries

2.1 Problem Definition of Text-to-SQL

Consider an input triplet X = (7,D,K), where
T represents a natural language task, D denotes
the database schema, and K stands for optional
external knowledge. The objective of the text-to-
SQL task is to generate the correct SQL query S*
that corresponds to the given task 7. Text-to-SQL
can be framed as a generation problem, where a
LLM M is guided to produce the correct SQL
query by designing suitable prompts:

m;xxPM(S* | f(T.D,K)), (1

where the function f determines the representation
of the target task 7, the database schema D, and
any additional external knowledge K necessary to
complete the task. Additionally, f can incorpo-
rate elements such as instructional statements, rule
implications, and foreign key information.

2.2 Text-to-SQL in Agentic Setting

The primary distinction from traditional text-to-
SQL tasks is that the agentic setting includes an
SQL development environment, necessitating the
agent to accomplish the final task through multiple
interactions with the database and command line

Query the employees with salaries above the
average salary in their respective departments.

The answer is @ N

SQL Generation

i I will decompose the original problem T into three sub-problems 73, 75, 73

Schema Linking

First, I will search W from simple to complex. Then I will tackle them in order of difficulty.
for relevant
information. Simple-level Medium-level Complex-level

Based on the SQL results
of 73, I can just update ...
to complete 7.

T3 is an easy SQL
writing task. To finish
the task, I just need ...

Based on the SQL results
of 75, I can just update ...
to complete T5.

Self-Ref‘Iecﬂon

Finally, T will recall

the original problem

/and double-check
the results.

En Database Metadata
E@] External Knowledge
SQL Dialect Docs

—_— .’“f
= Y. X
'3:3

__ W _ﬂ@.li
= - a r':
=0 &ol

> =2
i

Figure 2: The overview of the proposed SoC-Agent framework.

interface. The agentic setting with an SQL devel-
opment environment was first introduced by Spider
2.0 (Lei et al., 2024). Our work adheres strictly
to this framework. Specifically, given a task 7T,
a database interface Z, and a codebase C (which
includes project context, configuration, and docu-
mentation), the task involves iteratively modifying
the code (e.g., Bash/SQL/Python) based on obser-
vations O; = execute(C,Z, 7") until the final result
R (such as text, table, or database) is achieved.
In essence, the final observation O serves as the
agent’s response to the question, i.e., R = O.

3 Methodology

In this section, we present our proposed SoC-Agent
for text-to-SQL tasks. The framework, as de-
picted in Figure 2, consists of three primary mod-
ules: schema linking, SQL generation, and self-
reflection. Each of these components is discussed
in detail below.

3.1 Schema Linking

When given a natural language task, the agent must
retrieve pertinent information, such as tables, fields,
and other external knowledge bases necessary to
complete the task. Hence, we first outline the
workspace required for the agent to perform its
tasks and the process of information retrieval.

Action Space. We follow the environment settings
of Spider 2.0 and action space of Spider-Agent (Lei
et al., 2024), which require the agent to complete
the final task through multiple rounds of interaction
with the database and command line interface. The
tools available to the agent are defined as follows:

* Command line operations: Inspect files and

execute scripts using shell commands.
* File operations: Generate and modify files.

Algorithm 1: SoC Planning

Input: The user’s task 7.

Output: The generated SQL S.
1 Initialization:
2 Start with an initial empty SQL Sy < ¢;
3 Decompose the task 7 into N versions:
[T1,72,-..,Tn], where Ty = T and

the order of task complexity is

L Ti<T2s < TN
4 fori=1to N do
5 Based on the previous SQL S;_1, write a
new SQL S; to address 7;;
6 Execute S; in the database system to

obtain the result R;;

7 if R; does not solve T; then

8 L Continuously modify and execute S;
until it satisfactorily addresses 7;.

* SQL execution operations: Run SQL queries
by interfacing with a local or cloud-based
database APL

» Termination operations: The agent can assess
whether the task is complete or has failed, thus
concluding the task process.

Information Collection. Much like how humans
navigate files, the agent is instructed to first survey
the files in the current directory and pinpoint the
information most pertinent to the user’s query, in-
cluding tables, fields, and external knowledge. In
this module, we refer to the prompt in Spider-Agent
(Lei et al., 2024) and make appropriate adjustments
and improvements. We provide specific prompts,
please refer to Appendix A.1 and A.2 for details.

3.2 SQL Generation

Once the relevant information has been gathered,
the agent moves on to the crucial stage of SQL

Type 1 Type 2 Type 3
Simple | 3 T 7 75
Level
il -1 AN
T2 | |7 T3
Complex \/
Level T3 T2 T

Figure 3: Illustration of different types of SQL canvas.

generation. Producing a completely accurate SQL
query in a single attempt is particularly challenging,
especially for complex tasks. To address this, we
propose an innovative planning strategy to guide
the agent in effectively and accurately completing
intricate SQL generation tasks.

Task decomposition. Initially, the agent decom-
poses task into several subtasks, arranged from
simple to complex. Specifically, for a given task 7T,
the agent decomposes it into 71, 7, . . ., Tn, Where
the complexity relationshipis 73 < 7o < ... < Ty.

SoC Planning. Drawing inspiration from profes-
sional SQL developers, who often divide intricate
tasks into manageable subtasks and iteratively re-
fine the SQL scripts, we adopt a similar idea. The
SQL for each subtask is progressively refined and
expanded to address subsequent subtasks, culmi-
nating in the completion of the overall task. Figure
3 presents a schematic diagram of various sub-SQL
canvases generated by a professional SQL devel-
oper when tackling a complex problem 7. Our
goal is for the agent to emulate the strategies em-
ployed by professional SQL developers to handle
more challenging SQL generation tasks. The pro-
cess of solving the SQL generation problem based
on the SoC process is detailed in Algorithm 1. Our
SoC planning strategy incorporates two types of
prompts: a pure text description of the workflow,
as shown in Figure 11 in Appendix A.3, and a pseu-
docode workflow description for LLM, as shown
in Figure 12 in Appendix A.3. In our experiments,
we consider both types of prompts to ensure clarity
in the detailed planning process.

Demonstrations. Inspired by the few-shot strategy
in in-context learning, we also provide an exam-
ple to illustrate the process of solving a specific
problem using the LLM Agent. We use the ques-

tion shown in Figure 2: “Query the employees
with salaries above the average salary in their re-
spective departments.” We simulate the agent’s
thought and action process to complete the entire
SQL generation task. Specifically, the agent begins
by decomposing the task into a series of sub-tasks,
ranging from simple to complex. The agent then
addresses each sub-task sequentially, following the
progression from simpler to more complex tasks.
Finally, the agent reviews the problems and verifies
the results to ensure accuracy. For specific prompt
details, please refer to Figure 14 in Appendix A.S.

3.3 Self-Reflection

Task Recall. While the LLM Agent can effectively
enhance the success rate of solving complex prob-
lems through the SoC strategy, it may forget crucial
details of the original problem after multiple rounds
of interaction. Despite the final task Ty = T, the
agent might overlook or misinterpret some aspects
of the original problem due to language and literal
rewrites. To mitigate this, we require the agent to
recall the original task upon completing the task,
ensuring no important issues are neglected.

Result Verification. Beyond reviewing the prob-
lem, the agent must also reflect on whether there is
a discrepancy between the SQL-generated results
and the original problem requirements. Although
the agent generally adheres to the original require-
ments, it may still commit basic errors, leading to
suboptimal results. Common issues include:

» Data Validity: Ensure the SQL query results
are not empty and contain valid data. An empty
file or one with only headers indicates an incor-
rect SQL query.

* Sample Size Limitation: Verify if the task
specifies extracting the “most X, “top X”, or
“first X’ entities. If so, include “LIMIT X” in
the SQL to appropriately restrict the result set.

Field Completeness: Always return both the
entity ID and the entity name for any identi-
fied players or entities, along with any other
relevant details.

Additionally, there are important result checks and
precautions that the model must consider. For spe-
cific prompts, please refer to Figure 13 in the Ap-
pendix A.4. This reflection strategy helps prevent
the agent from overlooking details, thereby reduc-
ing the likelihood of basic errors.

Table 1: Statistics of the datasets.

Dataset # Test #Easy #Medium #Hard #Test #Col. #Tok. # Func.
Examples Examples Examples Examples DB /DB /SQL /SQL
Spider 2.0-lite 547 128 246 173 158 803.6 1445 6.5
Spider 2.0-snow 547 128 246 173 152 812.1 161.8 6.8

Table 2: Performance comparison. Numbers in bold indicate the best performance.

Spider 2.0-snow

Spider 2.0-lite

Method

Easy Medium Hard Overall Easy Medium Hard Overall
SFT CodeS-15B 0.00% 0.00% 0.00% 0.00% 1.65% 0.86% 0.00% 0.73%
DIN-SQL + GPT-4o 0.00% 0.00% 0.00% 0.00% 5.79% 043% 0.00% 1.46%
CHESS + GPT-40 4.69% 041% 0.00% 128% 9.92% 3.00% 1.24% 3.84%
DAIL-SQL + GPT-40 6.25% 1.63% 0.00% 220% 1320% 558% 124% 5.68%
Spider-Agent + QwQ-32B - - 8.96% - - - 11.33%
Spider-Agent + DeepSeek-R1 - - - 10.55% - - - 13.71%
Spider-Agent + GPT-40 19.53% 10.16% 520% 10.79% 21.09% 10.57% 4.05% 10.97%
SoC-Agent + QwQ-32B 22.66% 11.38% 6.94% 12.61% 25.00% 12.60% 4.62% 12.98%

4 Experiments

In this section, we conduct experiments to answer
the following research questions:

* RQ1: How does SoC-Agent perform in a real-
world, complex SQL development environment?

* RQ2: Can we conduct a more in-depth anal-
ysis of the SoC-Agent framework during SQL
development tasks?

* RQ3: Does SoC-Agent follow the planned steps
to complete the SQL generation task?

4.1 Experimental Settings

Datasets. We select two versions of the Spider
2.0 dataset, namely Spider 2.0-lite and Spider 2.0-
snow, for experiments. Consistent with (Lei et al.,
2024), we categorize task difficulty based on the
length of the golden SQL: < 80 tokens as easy task,
80 ~ 159 as medium task, and > 160 as hard task.
The detailed statistical information of the dataset is
shown in Table 1.

Metrics. Following the settings recommended in
(Lei et al., 2024), we use the Execution Accuracy
(EX) metric to assess the accuracy of SQL execu-
tion results. The evaluation scripts accept output in
the form of strings, tables, or databases. For each
example, an evaluation script is run, producing a
score of either 0 or 1.

Baselines. We evaluate our approach against sev-
eral state-of-the-art and widely recognized text-to-
SQL methods. These include LLM-prompting tech-
niques such as DIN-SQL, DAIL-SQL, and CHESS.
Additionally, we consider SFT CodeS, which in-
volves fine-tuning open-source models on large

text-to-SQL datasets, and Spider-Agent, an agent-
based text-to-SQL framework. Consistent with
(Lei et al., 2024), we optimize prompt structures
across all methods to ensure they are well-suited to
the tasks at hand.

* SFT CodeS (Li et al., 2024b) is a series of
pre-trained language models, with parameters
ranging from 1 billion to 15 billion, specifically
tailored for the text-to-SQL task. It employs
an incremental pre-training approach using a
meticulously curated SQL-centric corpus.

* DIN-SQL (Pourreza and Rafiei, 2024a) in-
corporates classification and decomposition
modules. It classifies each query into one of
three categories, subsequently applying distinct
strategies to process each group effectively.

* CHESS (Talaei et al., 2024) decomposes the
text-to-SQL task into a three-stage pipeline,
comprising entity and context retrieval, schema
selection, and query generation. It achieves a
performance of 67.86% on the BIRD dataset.

e DAIL-SQL (Gao et al., 2024) introduces an
innovative prompt strategy, designed from the
perspectives of question representation, exam-
ple selection, and example organization, achiev-
ing a performance of 86.6% on the Spider 1.0
dataset (Yu et al., 2018).

* Spider-Agent (Lei et al., 2024) is the first agent
framework implemented on the enterprise-level
text-to-SQL dataset, Spider 2.0. It is developed
based on the ReAct (Yao et al., 2023) frame-
work, with a primary focus on database-related
coding tasks and projects.

Our Setups. To ensure fairness, we utilize GPT-

-
-
o
S

®
3
®
S

eeeeeeeeeeeeeee

HI|I||I| . m“'ll-

@
3
@
S

Frequency

&
S

Frequency

&
S

N
S

._.
o
3
-

Frequency

IS
S

®
3
®
3

@
3

Average Step: 10.07

Frequency

&
S

20

60
| I) | Il
. a0 Il T N “Illll..

SYAPEOONBOSOIMNAGIBIDD OYLD R0 B ONONANAMEID S

Step Step

(b) SoC-Agent on Spider
2.0-snow

(a) Spider-Agent on Spider
2.0-snow

R LR A BN UUKR I

Step Step

(c) Spider-Agent on Spider ~ (d) SoC-Agent on Spider

Figure 4: Step distribution.

. Easy Il Hard

3 Medium @ Overall

96 96

Finishing Rate (%)
2

Finishing Rate (%)
@ =

@
2

Spider-Agent

Soc-Agent

Spider-Agent

(b) Spider 2.0-lite

Soc-Agent

(a) Spider 2.0-snow
Figure 5: Finish rate.

40 (2024-08-06) for all methods. The value of
N is determined dynamically by the model based
on the problem’s complexity, ranging from 2 to
4. For our demonstration prompt, we employ a 1-
shot approach. The maximum number of execution
steps is set to 20, meaning the process terminates
if the agent exceeds this limit.

4.2 Overall Performance (RQ1)

LLM-based Methods. The experimental results
in Table 2 indicate that existing LLM-based meth-
ods struggle with these enterprise-level text-to-SQL
tasks. SFT CodeS-15B and DIN-SQL fail to com-
plete any tasks on the Spider 2.0-snow dataset. On
the hard version of Spider 2.0-snow, none of the
four LLM-based methods succeed. The state-of-
the-art text-to-SQL method, DAIL, achieves only
2.20% and 5.68% performance on the snow and
lite datasets, respectively, highlighting the need for
an agent-based framework.

Agent-based Methods. Spider-Agent, a relatively
simple agent-based framework, demonstrates sig-
nificant performance improvements. Compared
to the strongest LLM-based method, DAIL-SQL,
Spider-Agent shows improvements of 8.59% and
5.29% on the Spider 2.0-snow and Spider 2.0-
lite datasets, respectively. Our proposed method,
SoC-Agent, further enhances performance, with
improvements of 1.82% and 2.01% over Spider-
Agent. These results validate the effectiveness of
our SoC planning approach.

2.0-lite 2.0-lite
25
— | 251 A/ﬁ\‘/_,‘\‘
~20 -
S .
81s g
g ——o— 9o 9 | 5157
g 10 g ./’—.——.“
8 —— Easy 8 101 —— Easy
g | Medium —+———| & Medium
5 —< Hard 51 g — Hard ———g
—o— Overall —e— Overall

o
o

3 1 2 3 4 0 1 2 3 4
k-shot k-shot

(a) Spider 2.0-snow (b) Spider 2.0-lite
Figure 6: k-shot examples.

Table 3: Results of the ablation studies.

Spider 2.0-snow

Method

Easy Medium Hard Overall
SoC-Agent 22.66% 11.38% 6.94% 12.61%
w/o SoC 20.31% 10.16% 5.20% 10.97%
w/o De 21.88% 1098% 6.94% 12.25%
w/o Self 21.09% 1098% 6.36% 11.88%

4.3 In-depth Analysis (RQ2)

Running Step. The running step refers to the num-
ber of steps the agent needs to execute to generate
SQL results. We plot the distribution of steps ex-
ecuted by Spider-Agent and our method on the
Spider 2.0-snow and Spider 2.0-lite dataset. Figure
4 illustrates these results, where blue bars represent
the frequency of each step in completed tasks, and
black bars indicate the frequency of tasks not com-
pleted after exceeding the maximum of 20 steps.
The red dotted line shows the average number of
steps in completed tasks. Our method requires a
slightly higher average number of steps compared
to Spider-Agent, likely because our SoC planning
involves more steps to solve subtasks.

Finish Rate. The finish rate measures the propor-
tion of tasks where the agent outputs the final SQL
execution result, divided by the total number of
tasks. Although the final result may not always be
correct, the finish rate indicates that the agent com-
pletes the entire task process without issues such
as interruptions, unexpected jumps, or exceeding
the maximum step limit. As shown in Figure 5, our

Task: What is the highest number of electric bike rides lasting more than 10 minutes taken by subscribers with
'Student Membership' in a single day, excluding rides starting or ending at 'Mobile Station' or 'Repair Shop'?

Observation: (previous schema linking process)

Thought: | now have the necessary information about the
BIKESHARE_TRIPS table. To solve the task, | will break it down into
simpler sub-tasks: T1: Query all electric bike rides lasting more than 10
minutes taken by subscribers with 'Student Membership'. T2: Exclude rides
that start or end at ‘Mobile Station' or ‘Repair Shop'. T3: Calculate the number
of such rides for each day. T4: Find the highest number of rides in a single
day. | will start by writing the SQL query for T1.
Action: SNOWFLAKE_EXEC_SQL(sql_query=

SELECT start_time

FROM AUSTIN.AUSTIN_BIKESHARE.BIKESHARE_TRIPS
WHERE subscriber_type = 'Student Membership'
AND bike_type = 'electric’

AND duration_minutes > 10

,1s_save=False)

Observation: (returned results from database)

Thought: The result for T1 is correct, as it returns the start times of electric
bike rides lasting more than 10 minutes by subscribers with 'Student
Membership'. Next, | will address T2 by excluding rides that start or end at
‘Mobile Station' or '‘Repair Shop'.

Action: SNOWFLAKE_EXEC_SQL(sql_query=

SELECT start_time
FROM AUSTIN.AUSTIN_BIKESHARE.BIKESHARE_TRIPS
WHERE subscriber_type = 'Student Membership'
AND bike_type = 'electric’
AND duration_minutes > 10
AND start_station_name

NOT IN ('Mobile Station', 'Repair Shop')
AND end_station_name

NOT IN ('Mobile Station', 'Repair Shop')

,1s_save=False)

Observation: (returned results from database)

(Thought: The result for T2 is correct, as it excludes rides starting or ending
at 'Mobile Station’ or '‘Repair Shop'. Now, | will address T3 by calculating the
number of such rides for each day. | will convert the "start_time" to a date and
count the rides for each day.

Action: SNOWFLAKE_EXEC_SQL(sql_query=

SELECT
TO_DATE(TO_TIMESTAMP(start_time/1000000)) AS ride_date,
COUNT(*) AS ride_count

FROM AUSTIN.AUSTIN_BIKESHARE.BIKESHARE_TRIPS

WHERE subscriber_type = 'Student Membership'

AND bike_type = 'electric’

AND duration_minutes > 10

AND start_station_name
NOT IN ('Mobile Station', 'Repair Shop')

AND end_station_name
NOT IN ('Mobile Station', 'Repair Shop')

GROUP BY ride_date

,1s_save=False)

Observation: (returned results from database)

p
Thought: The result for T3 is correct, as it provides the count of rides for
each day. Now, | will address T4 by finding the highest number of rides in a
single day from the results obtained in T3.

Action: SNOWFLAKE_EXEC_SQL(sql_query= ,1s_save=True)

SELECT MAX(ride_count) AS max_ride_count
FROM (
SELECT TO_DATE(TO_TIMESTAMP("start_time" / 1000000))
AS ride_date,
COUNT(*) AS ride_count
FROM AUSTIN.AUSTIN_BIKESHARE.BIKESHARE_TRIPS
WHERE subscriber_type = 'Student Membership'
AND bike_type = 'electric’
AND duration_minutes > 10
AND start_station_name
NOT IN ('Mobile Station', 'Repair Shop')
AND end_station_name
NOT IN ('Mobile Station', 'Repair Shop')
GROUP BY ride_date

Observation: Results saved to /workspace/result.csv

Thought: The SQL query executed successfully, and the results are saved
in "result.csv". I will now display the contents of this CSV file to verify
the result.

Action:

cat /workspace/result.csv

Observation: MAX_RIDE_COUNT
201

Thought: The result appears correct, showing the highest number of electric
bike rides lasting more than 10 minutes taken by subscribers with 'Student
Membership' in a single day, excluding rides starting or ending at 'Mobile
Station' or 'Repair Shop'. The maximum number of such rides is 201.
Action:

Terminate(output="result.csv")

Figure 7: Case study of SoC-Agent in Spider 2.0-snow dataset.

method achieves a significantly higher completion
rate than Spider-Agent across all task difficulties.

Ablation Study. We conduct a series of ablation
studies to assess the impact of different modules
in our method on overall performance. As shown
in Table 3, “SoC-Agent” represents the original
method, “w/o SoC” represents the removal of SoC
planning, “w/o De” denotes the removal of demon-
stration, and “w/o Self” indicates the removal of
self-reflection. The results clearly demonstrate a
slight performance drop upon the removal of these
modules, underscoring their necessity. In particu-
lar, the performance drops more significantly when
SoC planning is removed, and the performance on
hard tasks also drops significantly, highlighting the
critical role of SoC planning in solving complex
SQL generation tasks. Additionally, we experiment

with multiple-shot examples in our demonstration
module, as depicted in Figure 6. While the pres-
ence of examples proves effective, an excessive
number does not yield significant performance im-
provements.

4.4 Case Study (RQ3)

To intuitively verify the workflow of the proposed
SoC-Agent, we sample a case from Spider 2.0-
snow dataset and demonstrate the complete work-
flow of the agent, as shown in Figure 7. For a
given task, the agent first collects and retrieves rel-
evant information along the current working path,
which we omit here for brevity. After informa-
tion collection, the agent decomposes the original
problem from simple to complex, splitting it into
four sub-problems in this example. Specifically,
the original task 7 is “What is the highest number

of electric bike rides lasting more than 10 minutes
taken by subscribers with ’Student Membership’
in a single day, excluding rides starting or ending
at "Mobile Station’ or *Repair Shop’?”. According
to the decomposition results of the agent, we can
clearly see that 7; is the simplest query for tram
riding records, and the complexity of 75, T3, and
T4 gradually increases. Starting with the simplest,
the agent writes a 5-line SQL query to successfully
solve 71. Building on the SQL for 77, additional
constraints are added to solve 75. Subsequently, us-
ing the SQL from 73, the number of rides per day is
calculated, successfully solving 73. Finally, based
on the SQL from 73, the maximum number of rides
is determined, completing the final task. This pro-
cess of generating SQL from simple to complex
aligns with our SoC planning workflow. Addition-
ally, the agent reviews the problem and checks the
generated results at the end, further ensuring the
effectiveness and accuracy of SQL generation.

5 Related Work

LLMs in Text-to-SQL. LLMs have revolution-
ized text-to-SQL tasks (Shi et al., 2024; Liu et al.,
2024b; Li et al., 2024a) through their exceptional
reasoning capabilities and world knowledge inte-
gration. Early studies leverage the zero-shot capa-
bilities (Chang and Fosler-Lussier, 2023; Liu et al.,
2023; Rajkumar et al., 2022; Dong et al., 2023)
of LLMs, enabling them to generate valid SQL
queries without prior examples. Building on the
principles of in-context learning (Wei et al., 2022),
DAIL-SQL (Gao et al., 2024) utilizes problem-
relevant examples to guide SQL generation. DIN-
SQL (Pourreza and Rafiei, 2024a) introduces a
decomposition approach that breaks down com-
plex queries into manageable sub-problems. MAC-
SQL (Wang et al., 2024a) presents a collaborative
framework involving multiple agents to tackle the
challenges of SQL generation. Studies (Nan et al.,
2023; Luo et al., 2024; Pourreza et al., 2024; Cafer-
oglu and Ulusoy, 2024; Qu et al., 2024; Mao et al.,
2024) also explore various advanced prompting
techniques for text-to-SQL. Beyond prompt design,
some studies emphasize the importance of schema
linking. For instance, CHESS (Talaei et al., 2024)
and PURPLE (Ren et al., 2024) focus on improving
SQL generation capabilities through retrieval mech-
anisms and schema pruning strategies. Conversely,
study (Maamari et al., 2024) offers a critical per-
spective, arguing that the loss of essential informa-

tion during schema linking may adversely affect the
accuracy of SQL generated by LLMs. In addition
to prompt-based approaches, other studies investi-
gate supervised fine-tuning (SFT) methods applied
to open-source LLMs. For example, DB-GPT-Hub
(Zhou et al., 2024) examines the influence of dif-
ferent SFT strategies on the performance of open-
source LL.Ms, while SENSE (Yang et al., 2024a)
introduces an innovative data synthesis technique
that enables open-source LLMs to outperform their
closed-source counterparts for the first time.

LLM-Powered Agents. LLLMs have become a
key technology in the quest for Artificial General
Intelligence (AGI), providing strong support for
developing intelligent agent systems (Wang et al.,
2024b; Xi et al., 2023; Park et al., 2023; Liu et al.,
2024a; Huang et al., 2024a). Existing efforts pri-
marily focus on agent planning (Yao et al., 2023;
Chen et al., 2023; Song et al., 2023) and using ex-
ternal tools (Qin et al., 2024b; Qiao et al., 2024;
Qin et al., 2024a; Qu et al., 2025). Recently, LLM-
powered agents are being used to automate the
generation of code (Zhang et al., 2023; Zhu et al.,
2024a; Yin et al., 2023; Huang et al., 2024b; Chen
et al., 2021, 2024; Xia et al., 2024), which can
make the development process faster and reduce
the need for human programmers. Despite this,
agent-based methods are rarely explored in text-
to-SQL (Deng et al., 2025; Wang et al., 2024c).
MAC-SQL (Wang et al., 2024a) first proposes the
concept of using agents to solve text-to-SQL tasks
but lacks the process of interacting with complex
environments in real scenarios. Spider-Agent (Lei
et al., 2024), based on the ReAct (Yao et al., 2023)
and Intercode (Yang et al., 2024b) frameworks, for
the first time runs the agent in a real-world SQL
development environment, establishing a strong
baseline approach.

6 Conclusion

In this paper, we propose a novel agent framework,
SoC-Agent, to address the task of text-to-SQL in
real-world development scenarios. Specifically, for
a given task, SoC-Agent decomposes it into a se-
ries of subtasks ranging from simple to complex,
solving them sequentially based on task complexity.
The final self-reflection module ensures the effec-
tiveness of the generated results. We conduct ex-
tensive experiments on real-world enterprise-level
SQL benchmarks, and the results demonstrate the
effectiveness of our proposed method.

Limitations

This paper has several key limitations that war-
rant attention. Firstly, due to the cost constraints,
we do not use more advanced models for experi-
ments, such as OpenAl ol or 03. Secondly, while
our method outperforms existing state-of-the-art
methods in real-world text-to-SQL tasks, the im-
provement is limited. Therefore, there is signif-
icant room for performance enhancement in the
design of more advanced agent workflows, such as
incorporating more advanced planning strategies,
better memory management techniques, and im-
proved tools. We will consider these limitations as
research directions for our future work.

Ethics Statement

We affirm that this study adheres to the ethical
guidelines set forth by the relevant academic and
research institutions. The datasets utilized in our re-
search are publicly accessible and have been widely
adopted in the field of text-to-SQL research. This
ensures that our work is transparent and that our
results can be reproduced by other researchers. Ad-
ditionally, the outputs of our study are in the form
of SQL queries, which are less likely to contain
harmful or biased content compared to natural lan-
guage text. Our team conducts thorough reviews
of all outputs to ensure they do not contain any
politically sensitive or biased information.

References

Hasan Alp Caferoglu and Ozgiir Ulusoy. 2024. E-sql:
Direct schema linking via question enrichment in
text-to-sql. arXiv preprint arXiv:2409.16751.

Shuaichen Chang and Eric Fosler-Lussier. 2023. How
to prompt llms for text-to-sql: A study in zero-
shot, single-domain, and cross-domain settings. In
NeurlPS 2023 Second Table Representation Learning
Workshop.

Dong Chen, Shaoxin Lin, Muhan Zeng, Daoguang Zan,
Jian-Gang Wang, Anton Cheshkov, Jun Sun, Hao Yu,
Guoliang Dong, Artem Aliev, et al. 2024. Coder: Is-
sue resolving with multi-agent and task graphs. arXiv
preprint arXiv:2406.01304.

Guangyao Chen, Siwei Dong, Yu Shu, Ge Zhang,
Jaward Sesay, Borje F Karlsson, Jie Fu, and Yemin
Shi. 2023. Autoagents: A framework for automatic
agent generation. arXiv preprint arXiv:2309.17288.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming
Yuan, Henrique Ponde De Oliveira Pinto, Jared Ka-
plan, Harri Edwards, Yuri Burda, Nicholas Joseph,

Greg Brockman, et al. 2021. Evaluating large
language models trained on code. arXiv preprint
arXiv:2107.03374.

Minghang Deng, Ashwin Ramachandran, Canwen Xu,
Lanxiang Hu, Zhewei Yao, Anupam Datta, and Hao
Zhang. 2025. Reforce: A text-to-sql agent with
self-refinement, format restriction, and column explo-
ration. arXiv preprint arXiv:2502.00675.

Naihao Deng, Yulong Chen, and Yue Zhang. 2022. Re-
cent advances in text-to-sql: A survey of what we
have and what we expect. In Proceedings of the 29th
International Conference on Computational Linguis-
tics, pages 2166-2187.

Xuemei Dong, Chao Zhang, Yuhang Ge, Yuren Mao,
Yunjun Gao, Jinshu Lin, Dongfang Lou, et al. 2023.
C3: Zero-shot text-to-sql with chatgpt. arXiv
preprint arXiv:2307.07306.

Dawei Gao, Haibin Wang, Yaliang Li, Xiuyu Sun,
Yichen Qian, Bolin Ding, and Jingren Zhou. 2024.
Text-to-sql empowered by large language models: A
benchmark evaluation. Proceedings of the VLDB
Endowment, 17(5):1132-1145.

T Guo, X Chen, Y Wang, R Chang, S Pei, NV Chawla,
O Wiest, and X Zhang. 2024. Large language model
based multi-agents: A survey of progress and chal-
lenges. In 33rd International Joint Conference on
Artificial Intelligence (IJCAI 2024). 1JCAI; Cornell
arxiv.

Qian Huang, Jian Vora, Percy Liang, and Jure Leskovec.
2024a. Mlagentbench: Evaluating language agents
on machine learning experimentation. In /CML.

Quzhe Huang, Yanxi Zhang, and Dongyan Zhao. 2023.
From simple to complex: A progressive framework
for document-level informative argument extraction.

In Findings of the Association for Computational
Linguistics: EMNLP 2023, pages 6129—-6140.

Yiming Huang, Jianwen Luo, Yan Yu, Yitong Zhang,
Fangyu Lei, Yifan Wei, Shizhu He, Lifu Huang, Xiao
Liu, Jun Zhao, et al. 2024b. Da-code: Agent data sci-
ence code generation benchmark for large language
models. In Proceedings of the 2024 Conference on
Empirical Methods in Natural Language Processing,

pages 13487-13521.

Ayush Kumar, Parth Nagarkar, Prabhav Nalhe, and San-
jeev Vijayakumar. 2022. Deep learning driven natu-
ral languages text to sql query conversion: a survey.
arXiv preprint arXiv:2208.04415.

Fangyu Lei, Jixuan Chen, Yuxiao Ye, Ruisheng
Cao, Dongchan Shin, Hongjin Su, Zhaoqing Suo,
Hongcheng Gao, Wenjing Hu, Pengcheng Yin, et al.
2024. Spider 2.0: Evaluating language models on
real-world enterprise text-to-sql workflows. arXiv
preprint arXiv:2411.07763.

Boyan Li, Yuyu Luo, Chengliang Chai, Guoliang Li,
and Nan Tang. 2024a. The dawn of natural lan-
guage to sql: Are we fully ready? arXiv preprint
arXiv:2406.01265.

Haoyang Li, Jing Zhang, Hanbing Liu, Ju Fan, Xi-
aokang Zhang, Jun Zhu, Renjie Wei, Hongyan Pan,
Cuiping Li, and Hong Chen. 2024b. Codes: Towards
building open-source language models for text-to-sql.
Proceedings of the ACM on Management of Data,
2(3):1-28.

Jinyang Li, Binyuan Hui, Ge Qu, Jiaxi Yang, Binhua
Li, Bowen Li, Bailin Wang, Bowen Qin, Ruiying
Geng, Nan Huo, et al. 2024c. Can llm already serve
as a database interface? a big bench for large-scale
database grounded text-to-sqls. NeurlPS, 36.

Aiwei Liu, Xuming Hu, Lijie Wen, and Philip S
Yu. 2023. A comprehensive evaluation of chat-
gpt’s zero-shot text-to-sql capability. arXiv preprint
arXiv:2303.13547.

Xiao Liu, Hao Yu, Hanchen Zhang, Yifan Xu, Xuanyu
Lei, Hanyu Lai, Yu Gu, Hangliang Ding, Kaiwen
Men, Kejuan Yang, Shudan Zhang, Xiang Deng, Ao-
han Zeng, Zhengxiao Du, Chenhui Zhang, Sheng
Shen, Tianjun Zhang, Yu Su, Huan Sun, Minlie
Huang, Yuxiao Dong, and Jie Tang. 2024a. Agent-
bench: Evaluating LLMs as agents. In /CLR.

Xinyu Liu, Shuyu Shen, Boyan Li, Peixian Ma, Runzhi
Jiang, Yuxin Zhang, Ju Fan, Guoliang Li, Nan Tang,
and Yuyu Luo. 2024b. A survey of nl2sql with large
language models: Where are we, and where are we
going? arXiv preprint arXiv:2408.05109.

Ruilin Luo, Liyuan Wang, Binghuai Lin, Zicheng Lin,
and Yujiu Yang. 2024. Ptd-sql: Partitioning and tar-
geted drilling with llms in text-to-sql. In Proceedings
of the 2024 Conference on Empirical Methods in Nat-
ural Language Processing, pages 3767-3799.

Karime Maamari, Fadhil Abubaker, Daniel Jaroslawicz,
and Amine Mhedhbi. 2024. The death of schema
linking? text-to-sql in the age of well-reasoned lan-
guage models. In NeurlPS 2024 Third Table Repre-
sentation Learning Workshop.

Wenxin Mao, Ruiqi Wang, Jiyu Guo, Jichuan Zeng,
Cuiyun Gao, Peiyi Han, and Chuanyi Liu. 2024. En-
hancing text-to-sql parsing through question rewrit-
ing and execution-guided refinement. In Findings of
the Association for Computational Linguistics ACL
2024, pages 2009-2024.

Ali Mohammadjafari, Anthony S Maida, and Raju Got-
tumukkala. 2024. From natural language to sql: Re-
view of llm-based text-to-sql systems. arXiv preprint
arXiv:2410.01066.

Linyong Nan, Yilun Zhao, Weijin Zou, Narutatsu
Ri, Jaesung Tae, Ellen Zhang, Arman Cohan, and
Dragomir Radev. 2023. Enhancing text-to-sql capa-
bilities of large language models: A study on prompt
design strategies. In Findings of the Association

10

for Computational Linguistics: EMNLP 2023, pages
14935-14956.

Jiayi Pan, Yichi Zhang, Nicholas Tomlin, Yifei Zhou,
Sergey Levine, and Alane Suhr. 2024. Autonomous
evaluation and refinement of digital agents. arXiv
preprint arXiv:2404.06474.

Joon Sung Park, Joseph O’Brien, Carrie Jun Cai, Mered-
ith Ringel Morris, Percy Liang, and Michael S Bern-
stein. 2023. Generative agents: Interactive simulacra
of human behavior. In Proceedings of the 36th an-
nual acm symposium on user interface software and
technology, pages 1-22.

Mohammadreza Pourreza, Hailong Li, Ruoxi Sun,
Yeounoh Chung, Shayan Talaei, Gaurav Tarlok
Kakkar, Yu Gan, Amin Saberi, Fatma Ozcan, and
Sercan O Arik. 2024. Chase-sql: Multi-path reason-
ing and preference optimized candidate selection in
text-to-sql. arXiv preprint arXiv:2410.01943.

Mohammadreza Pourreza and Davood Rafiei. 2024a.
Din-sql: Decomposed in-context learning of text-to-
sql with self-correction. NeurIPS, 36.

Mohammadreza Pourreza and Davood Rafiei. 2024b.
Dts-sql: Decomposed text-to-sql with small large
language models. arXiv preprint arXiv:2402.01117.

Shuofei Qiao, Honghao Gui, Chengfei Lv, Qianghuai
Jia, Huajun Chen, and Ningyu Zhang. 2024. Making
language models better tool learners with execution
feedback. In Proceedings of the 2024 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies (Volume 1: Long Papers), pages 3550—
3568.

Bowen Qin, Binyuan Hui, Lihan Wang, Min Yang,
Jinyang Li, Binhua Li, Ruiying Geng, Rongyu Cao,
Jian Sun, Luo Si, et al. 2022. A survey on text-to-sql
parsing: Concepts, methods, and future directions.
arXiv preprint arXiv:2208.13629.

Yujia Qin, Shengding Hu, Yankai Lin, Weize Chen,
Ning Ding, Ganqu Cui, Zheni Zeng, Xuanhe Zhou,
Yufei Huang, Chaojun Xiao, et al. 2024a. Tool learn-
ing with foundation models. ACM Computing Sur-
veys, 57(4):1-40.

Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan
Yan, Yaxi Lu, Yankai Lin, Xin Cong, Xiangru Tang,
Bill Qian, Sihan Zhao, Lauren Hong, Runchu Tian,
Ruobing Xie, Jie Zhou, Mark Gerstein, dahai li,
Zhiyuan Liu, and Maosong Sun. 2024b. ToolLLM:
Facilitating large language models to master 16000+
real-world APIs. In ICLR.

Changle Qu, Sunhao Dai, Xiaochi Wei, Hengyi Cai,
Shuaigiang Wang, Dawei Yin, Jun Xu, and Ji-Rong
Wen. 2025. Tool learning with large language mod-
els: A survey. Frontiers of Computer Science,
19(8):198343.

https://openreview.net/forum?id=zAdUB0aCTQ
https://openreview.net/forum?id=zAdUB0aCTQ
https://openreview.net/forum?id=zAdUB0aCTQ
https://openreview.net/forum?id=dHng2O0Jjr
https://openreview.net/forum?id=dHng2O0Jjr
https://openreview.net/forum?id=dHng2O0Jjr
https://openreview.net/forum?id=dHng2O0Jjr
https://openreview.net/forum?id=dHng2O0Jjr

Ge Qu, Jinyang Li, Bowen Li, Bowen Qin, Nan Huo,
Chenhao Ma, and Reynold Cheng. 2024. Before gen-
eration, align it! A novel and effective strategy for
mitigating hallucinations in text-to-sql generation. In
Findings of the Association for Computational Lin-
guistics, ACL 2024, Bangkok, Thailand and virtual
meeting, August 11-16, 2024, pages 5456-5471.

Nitarshan Rajkumar, Raymond Li, and Dzmitry Bah-
danau. 2022. Evaluating the text-to-sql capabil-
ities of large language models. arXiv preprint
arXiv:2204.00498.

Tonghui Ren, Yuankai Fan, Zhenying He, Ren Huang,
Jiaqi Dai, Can Huang, Yinan Jing, Kai Zhang, Yifan
Yang, and X. Sean Wang. 2024. PURPLE: making
a large language model a better SQL writer. In 40th
IEEE International Conference on Data Engineering,
ICDE 2024, Utrecht, The Netherlands, May 13-16,
2024, pages 15-28. IEEE.

Liang Shi, Zhengju Tang, Nan Zhang, Xiaotong Zhang,
and Zhi Yang. 2024. A survey on employing large
language models for text-to-sql tasks. arXiv preprint
arXiv:2407.15186.

Chan Hee Song, Jiaman Wu, Clayton Washington,
Brian M Sadler, Wei-Lun Chao, and Yu Su. 2023.
Llm-planner: Few-shot grounded planning for em-
bodied agents with large language models. In Pro-
ceedings of the IEEE/CVF International Conference
on Computer Vision, pages 2998-3009.

Shayan Talaei, Mohammadreza Pourreza, Yu-Chen
Chang, Azalia Mirhoseini, and Amin Saberi. 2024.
Chess: Contextual harnessing for efficient sql synthe-
sis. arXiv preprint arXiv:2405.16755.

Bing Wang, Changyu Ren, Jian Yang, Xinnian Liang, Ji-
aqi Bai, Linzheng Chai, Zhao Yan, Qian-Wen Zhang,
Di Yin, Xing Sun, et al. 2024a. Mac-sql: A multi-
agent collaborative framework for text-to-sql. arXiv
preprint arXiv:2312.11242.

Lei Wang, Chen Ma, Xueyang Feng, Zeyu Zhang, Hao
Yang, Jingsen Zhang, Zhiyuan Chen, Jiakai Tang,
Xu Chen, Yankai Lin, et al. 2024b. A survey on large
language model based autonomous agents. Frontiers
of Computer Science, 18(6):186345.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V Le,
Ed H. Chi, Sharan Narang, Aakanksha Chowdhery,
and Denny Zhou. 2023. Self-consistency improves
chain of thought reasoning in language models. In
ICLR.

Zhongyuan Wang, Richong Zhang, Zhijie Nie, and
Jaein Kim. 2024c¢. Tool-assisted agent on sql inspec-
tion and refinement in real-world scenarios. arXiv
preprint arXiv:2408.16991.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,
et al. 2022. Chain-of-thought prompting elicits rea-
soning in large language models. NeurIPS, 35:24824—
24837.

11

Zhiheng Xi, Wenxiang Chen, Xin Guo, Wei He, Yiwen
Ding, Boyang Hong, Ming Zhang, Junzhe Wang,
Senjie Jin, Enyu Zhou, et al. 2023. The rise and
potential of large language model based agents: A
survey. arXiv preprint arXiv:2309.07864.

Chunqiu Steven Xia, Yinlin Deng, Soren Dunn, and
Lingming Zhang. 2024. Agentless: Demystify-
ing llm-based software engineering agents. arXiv
preprint arXiv:2407.01489.

Jiaxi Yang, Binyuan Hui, Min Yang, Jian Yang, Junyang
Lin, and Chang Zhou. 2024a. Synthesizing text-to-
sql data from weak and strong llms. In Proceedings
of the 62nd Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 7864—7875.

John Yang, Akshara Prabhakar, Karthik Narasimhan,
and Shunyu Yao. 2024b. Intercode: Standardizing
and benchmarking interactive coding with execution
feedback. NeurlIPS, 36.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak
Shafran, Karthik R Narasimhan, and Yuan Cao. 2023.
React: Synergizing reasoning and acting in language
models. In ICLR.

Pengcheng Yin, Wen-Ding Li, Kefan Xiao, Abhishek K
Rao, Yeming Wen, Kensen Shi, Joshua Howland,
Paige Bailey, Michele Catasta, Henryk Michalewski,
et al. 2023. Natural language to code generation in
interactive data science notebooks. In The 61st An-
nual Meeting Of The Association For Computational
Linguistics.

Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga,
Dongxu Wang, Zifan Li, James Ma, Irene Li, Qingn-
ing Yao, Shanelle Roman, et al. 2018. Spider: A
large-scale human-labeled dataset for complex and
cross-domain semantic parsing and text-to-sql task.
In Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing.

Shun Zhang, Zhenfang Chen, Yikang Shen, Mingyu
Ding, Joshua B. Tenenbaum, and Chuang Gan. 2023.
Planning with large language models for code gener-
ation. In ICLR.

Fan Zhou, Sigiao Xue, Danrui Qi, Wenhui Shi, Wang
Zhao, Ganglin Wei, Hongyang Zhang, Caigai Jiang,
Gangwei Jiang, Zhixuan Chu, et al. 2024. Db-gpt-
hub: Towards open benchmarking text-to-sql em-
powered by large language models. arXiv preprint
arXiv:2406.11434.

Qihao Zhu, Daya Guo, Zhihong Shao, Dejian Yang,
Peiyi Wang, Runxin Xu, Y Wu, Yukun Li, Huazuo
Gao, Shirong Ma, et al. 2024a. Deepseek-coder-v2:
Breaking the barrier of closed-source models in code
intelligence. arXiv preprint arXiv:2406.11931.

Xiaohu Zhu, Qian Li, Lizhen Cui, and Yongkang
Liu. 2024b. Large language model enhanced
text-to-sql generation: A survey. arXiv preprint
arXiv:2410.06011.

https://openreview.net/forum?id=1PL1NIMMrw
https://openreview.net/forum?id=1PL1NIMMrw
https://openreview.net/forum?id=1PL1NIMMrw
https://openreview.net/forum?id=WE_vluYUL-X
https://openreview.net/forum?id=WE_vluYUL-X
https://openreview.net/forum?id=WE_vluYUL-X
https://openreview.net/forum?id=Lr8cOOtYbfL
https://openreview.net/forum?id=Lr8cOOtYbfL
https://openreview.net/forum?id=Lr8cOOtYbfL

A Prompts

A.1 Task Description

Task Description

You are a data scientist proficient in database, SQL and DBT Project. You are starting in the
{work_dir} directory, which contains all the data needed for your tasks. You can only use the
actions provided in the ACTION SPACE to solve the task. For each step, you must output an
Action; it cannot be empty. The maximum number of steps you can take is {max_steps}. Do
not output an empty string! Carefully review the markdown content below, as it contains the
information you need to successfully complete the task.

ACTION SPACE
{action_space}

Figure 8: The prompt of task description

A.2 Schema Inspection and SQL Task Guide

File Checking and Information Gathering

* You are in the /workspace directory. Begin by checking if there are any markdown files in this
directory (e.g. 1s -R). If found, read them as they may contain useful information for answering
your questions.

* The database schema folder is located in the /workspace directory. This folder contains one
or more schema directories for the databases. Each directory includes a DDL . csv file with the
database’s DDL, along with JSON files that contain the column names, column types, column
descriptions, and sample rows for individual tables. Start by reviewing the DDL . csv file in each
directory, then selectively examine the JSON files as needed. Read them carefully.

* Do not write SQL queries to retrieve the schema; use the existing schema documents in the folders.

Figure 9: The prompt of schema inspection and SQL task guide

Snowflake-Query Execution Rules

* Use SNOWFLAKE_EXEC_SQL to run your SQL queries and interact with the database. Do not use
this action to query INFORMATION_SCHEMA or show DATABASES/TABLES; the schema information
is all stored in the /workspace/database_name folder. Refer to this folder whenever you have
doubts about the schema.

* Focus on SQL queries rather than frequently using Bash commands like grep and cat, though they
can be used when necessary.

* When referencing table names in Snowflake SQL, you must include both the database_name and
schema_name. For example, for /workspace/DEPS_DEV_V1/DEPS_DEV_V1/ADVISORIES. json,
if you want to use it in SQL, you should write DEPS_DEV_V1.DEPS_DEV_V1.ADVISORIES.

¢ Column names must be enclosed in quotes.

* If you encounter an SQL error, reconsider the database information and your previous queries,
then adjust your SQL accordingly. Do not output the same SQL queries repeatedly.

Figure 10: The prompt of Snowflake-Query execution rules

12

A.3 Gradual SQL Query Development: From Simple to Complex

Workflow Description of SoC Planning

Creating a SQL query that works perfectly on the first try can be difficult. To enhance accuracy,
please simplify the problem step by step before writing the final SQL query. Begin by addressing
a basic version of the task, then progressively enhance your SQL query to tackle more complex
versions, ultimately solving the original task. The process is outlined below:

* Decompose the task: Break down the original task 7 into N versions: 71, 7o, ..., Ty, where
the complexity increases with each index. Here: 77 is the simplest version; 75 builds on 77 with
added functionality; ...; T is the most complex version, equivalent to the original task 7. The
value of IV should generally be between 1 and 5, depending on the task’s complexity.

* Complete tasks from simple to complex: First, write SQL query S; to accomplish task 77.
Next, create SQL S5 to complete task 75, building upon S;. Continue this process until you
write SQL statement S(y_1) for the penultimate task. Finally, write the SQL Sy to complete
the final task 7" based on S(y_1).

Figure 11: The prompt of workflow description of SoC planning

Pseudocode Description of SoC Planning

1. Start with an initial empty SQL Sy « ¢.
2. Decompose the problem T into n versions: [T, 73, ..., Tn], where Ty = T.
3. Fort:=1to N do
3.1. Based on the previous SQL S;_1, write a new SQL S; to address 7;.
3.2. Execute S; in the database system to obtain the result R; (set is_save=False).
3.3. If R; does not solve 7; then
3.3.1. Continuously modify and execute S; until it satisfactorily addresses 7;.
4. End For

Figure 12: The prompt of pseudocode description of SoC planning

13

A.4 Self-Reflection

Task Recall and Result Verification

Before terminating the task, you MUST recall the original task thoroughly. This review is es-
sential to ensure that the generated results meet the specified criteria and that nothing is overlooked.

Task Recall
After generating the final result (e.g., producing "result.csv"), you MUST first recall the original
task (7). Make sure you fully understand what was requested.

Final Result Inspection
Evaluate the output to confirm it meets the task requirements. If not, adjust the SQL query.
Consider the following:

* Output Format: The final result MUST be a CSV file, not an .sql file, a calculation, an idea,
a sentence, or merely an intermediate step. Save the final output as a CSV and provide the file
name, typically derived from the SQL execution result. Do not create the file to save results;
use SNOWFLAKE _EXEC_SQL directly and just set "is_save=True" to generate the result file.

* Data Validity: Ensure the CSV is not empty and contains valid data. An empty file or one
with only headers indicates an incorrect SQL query.

* Sample Size Limitation: Pay attention to whether the task specifies extracting the "most X,"
"top X," or "first X" entities. If so, include "LIMIT X" in your SQL query to restrict the result
set accordingly.

* Field Completeness: Always return both the entity ID and the entity name for any identified
players or entities, along with any other relevant details.

* Unit Conversion: Verify that results adhere to specified units (e.g., hours, meters) from the
original task. Perform necessary conversions for accuracy.

* Confidence in Results: If the result is obtained from your query or calculation and you
believe your SQL (or Python) is correct, do not doubt the result based on objective data; avoid
adding unnecessary interpretations. For example, if the average value through correct SQL is
0, do not assume that the result should be a non-zero value.

Figure 13: The prompt of task recall and result verification

14

A.5 Response Format and Example

Response Format and Example

Response Format

For each task input, your response should contain:

1. One analysis of the task and the current environment, reasoning to determine the next action
(prefix "Thought: ").

2. One action string in the ACTION SPACE (prefix "Action: ").

Example
Task: List employees with salaries above the average level in their respective departments.
Observation: ... (Output from previous actions, as provided by the environment; no need to

generate it).

Thought: For the original task 7, we can break it down into the following three sub-tasks from
easy to difficult: 771: “Query the basic information and salaries of all employees in 2023”. 7s:
“Query the average salary of employees for each department in 2023”. 73: “Query the employees
with salaries above the average salary in their respective departments in 2023, including id, name,
department, salary”. Firstly, I will write and execute SQL S to check if it can solve 77.

Action: SNOWFLAKE_EXEC_SQL (sql_query="SELECT employee_id, employee_name,
department, salary FROM employees WHERE year = 2023", is_save=False)
Observation: ... (Output from previous actions).

Thought: The result seems correct. The next task 75 is: “Query the average salary of employees
for each department in 2023”. I will write SQL Ss based on S;.

Action: SNOWFLAKE_EXEC_SQL (sql_query="SELECT department, AVG(salary) AS
avg_salary FROM employees WHERE year = 2023 GROUP BY department”, is_save=False)
Observation: ... (Output from previous actions).

Thought: The result seems correct. The result seems correct. The next task 73 is: “Query the
employees with salaries above the average salary in their respective departments in 2023, including
id, name, department, salary”. I will write SQL S3 based on Ss.

Action: SNOWFLAKE_EXEC_SQL (sql_query="WITH department_avg AS (SELECT department,
AVG(salary) AS avg_salary FROM employees WHERE year = 2023 GROUP BY department)
SELECT e.employee_id, e.employee_name, e.department, e.salary FROM employees
e JOIN department_avg da ON e.department = da.department WHERE e.salary >
da.avg_salary AND e.year = 2023", is_save=True)

Observation: Results saved to /workspace/result.csv

Thought: The SQL query executed successfully, and results are saved. I MUST recall the original
task T, it is "List employees with salaries above the average level in their respective departments.".
Then, I will display the contents of this CSV file to verify the result.

Action: Bash(code="cat /workspace/result.csv")

Observation: ... (Output from previous actions).

Thought: The result appears correct, containing all required information, including employee ID,
name, department and salary.

Action: Terminate(output="result.csv")

Figure 14: The prompt of response format and example

15

	Introduction
	Preliminaries
	Problem Definition of Text-to-SQL
	Text-to-SQL in Agentic Setting

	Methodology
	Schema Linking
	SQL Generation
	Self-Reflection

	Experiments
	Experimental Settings
	Overall Performance (RQ1)
	In-depth Analysis (RQ2)
	Case Study (RQ3)

	Related Work
	Conclusion
	Prompts
	Task Description
	Schema Inspection and SQL Task Guide
	Gradual SQL Query Development: From Simple to Complex
	Self-Reflection
	Response Format and Example

