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Abstract

Large Language Models (LLMs) have shown001
significant potential in text-to-SQL tasks. How-002
ever, most existing methods operate within003
simplified scenarios with pre-prepared inputs004
(i.e., questions and database schemas) and out-005
puts (i.e., predicted SQL). In contrast, real-006
world SQL development often requires consult-007
ing external knowledge and interacting with008
the database environment through iterative009
steps. To address this, we propose SoC-Agent,010
a novel LLM-powered agent framework de-011
signed for SQL generation in complex environ-012
ments. SoC-Agent emulates the human itera-013
tive development process, breaking down tasks014
into a series of subtasks of increasing difficulty.015
Specifically, the agent first tackles simpler sub-016
tasks, iteratively refining its approach based on017
previous results, and then addresses more com-018
plex tasks. This incremental strategy enhances019
the agent’s reasoning ability for complex SQL020
generation. Additionally, agent can also lever-021
age external knowledge sources and dynami-022
cally interacts with the database environment to023
gather necessary information for each subtask,024
ensuring that the results are both accurate and025
contextually relevant. We evaluate our method026
on Spider 2.0 dataset, specifically designed for027
agentic tasks, demonstrating the superiority in028
handling complex SQL generation. Our codes029
are available at: https://anonymous.4open.030
science/r/SoC-Agent-694B.031

1 Introduction032

Text-to-SQL (Qin et al., 2022; Deng et al., 2022;033

Kumar et al., 2022) aims to translate natural lan-034

guage queries into SQL statements, enabling users035

to interact with databases without needing database036

expertise. It enhances database accessibility and us-037

ability, allowing non-experts to perform data oper-038

ations through intuitive language inputs, providing039

greater convenience for data analysis.040

In recent years, the remarkable success of Large041

Language Models (LLMs) in various fields has042
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Figure 1: The workflow of our proposed agent planning
framework (SoC) for text-to-SQL tasks.

led to the emergence of LLM-based methods (Shi 043

et al., 2024; Liu et al., 2024b; Mohammadjafari 044

et al., 2024; Zhu et al., 2024b) as the mainstream 045

paradigm in the text-to-SQL domain. These meth- 046

ods can be broadly categorized into two main ap- 047

proaches: ❶ Prompt-based methods leverage the 048

zero-shot in-context learning (ICL) capabilities of 049

LLMs for SQL generation. Building on this founda- 050

tion, subsequent efforts, including DIN-SQL (Pour- 051

reza and Rafiei, 2024a), DAIL-SQL (Gao et al., 052

2024), MAC-SQL (Wang et al., 2024a), and C3 053

(Dong et al., 2023), have enhanced LLM perfor- 054

mance through schema-linking, question represen- 055

tation, task decomposition, and techniques such as 056

chains of thought (CoT) (Wei et al., 2022) and self- 057

consistency (Wang et al., 2023). ❷ Fine-tuning- 058

based methods aim to elevate the capabilities of 059

open-source LLMs through supervised fine-tuning 060

(SFT), with the goal of aiming to match or sur- 061

pass the close-source LLMs. For instance, DTS- 062

SQL (Pourreza and Rafiei, 2024b) introduces a 063
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two-stage SFT method, incorporating SFT in both064

the schema-linking and SQL generation stages;065

CHESS (Talaei et al., 2024) combines ICL and SFT066

strategies; and SENSE (Yang et al., 2024a) further067

improves the capabilities of open-source models by068

synthesizing data through strong models.069

Despite their effectiveness, most studies (Yu070

et al., 2018; Li et al., 2024c) operate in relatively071

simple text-to-SQL scenarios, where LLMs are ex-072

pected to directly produce the predicted SQL for a073

given query and database schema. However, in real-074

world complex SQL writing tasks, developers often075

need to frequently consult external knowledge doc-076

uments and interact with the database environment077

to complete the task through multiple plans and078

steps (Lei et al., 2024). Moreover, language agents079

(Guo et al., 2024; Wang et al., 2024b; Xi et al.,080

2023), which utilize the advanced reasoning abil-081

ities of LLMs to interface with executable tools,082

have become crucial elements of AI systems in-083

tended to tackle complex tasks (Liu et al., 2024a).084

These language agents offer promising potential for085

automatic SQL generation in real database devel-086

opment scenarios. Although some LLM-powered087

agent frameworks have been designed to solve code088

generation problems (Chen et al., 2024; Xia et al.,089

2024; Yang et al., 2024b; Pan et al., 2024), the090

design of agent frameworks specifically for text-to-091

SQL scenarios still remains largely unexplored.092

To address this gap, we focus on developing093

an effective LLM-powered agent framework tai-094

lored for a realistic SQL development environment.095

Drawing inspiration from the SQL writing strate-096

gies employed by professional database develop-097

ers, we note that they frequently use a simple-to-098

complex strategy (Huang et al., 2023). This in-099

volves breaking down a complex task into manage-100

able sub-problems, which are then solved individu-101

ally and iteratively combined to address the original102

task. This observation leads us to a critical ques-103

tion: how can we integrate this problem-solving104

methodology into the design of an agent framework105

for handling complex text-to-SQL tasks?106

In this paper, we propose a Simple-to-Complex107

Agent planning framework (SoC-Agent). Specifi-108

cally, for a given task, it decomposes the task into a109

series of versions ranging from simple to complex,110

solving them sequentially. As illustrated in Fig-111

ure 1, the agent first addresses simpler versions of112

the subtask, iteratively refining its approach based113

on previous results, and then tackles more com-114

plex tasks. This incremental strategy enhances the115

agent’s ability for complex SQL generation. Ad- 116

ditionally, during the completion of these tasks, 117

SoC-Agent utilizes external SQL knowledge by 118

invoking tools and dynamically interacting with 119

the database to ensure accurate task completion. 120

We conducted extensive experiments on Spider 2.0 121

(Lei et al., 2024), a real-world enterprise-level text- 122

to-SQL dataset specifically customized for agentic 123

settings. The experimental results demonstrate the 124

effectiveness of the proposed framework. 125

Our main contributions can be summarized as 126

follows: 127

• We emphasize the necessity of addressing text- 128

to-SQL tasks within agentic task settings, a 129

domain that remains largely underexplored. 130

• We introduce a novel agent framework, SoC- 131

Agent, which employs a simple-to-complex 132

planning strategy to enhance the performance 133

of agents in text-to-SQL tasks. 134

• We validate the effectiveness of our approach 135

on the latest public dataset, Spider 2.0, achiev- 136

ing state-of-the-art results. Case studies further 137

verifies the efficacy of our approach. 138

2 Preliminaries 139

2.1 Problem Definition of Text-to-SQL 140

Consider an input triplet X = (T ,D,K), where 141

T represents a natural language task, D denotes 142

the database schema, and K stands for optional 143

external knowledge. The objective of the text-to- 144

SQL task is to generate the correct SQL query S∗ 145

that corresponds to the given task T . Text-to-SQL 146

can be framed as a generation problem, where a 147

LLM M is guided to produce the correct SQL 148

query by designing suitable prompts: 149

max
f

PM(S∗ ∣ f(T ,D,K)), (1) 150

where the function f determines the representation 151

of the target task T , the database schema D, and 152

any additional external knowledge K necessary to 153

complete the task. Additionally, f can incorpo- 154

rate elements such as instructional statements, rule 155

implications, and foreign key information. 156

2.2 Text-to-SQL in Agentic Setting 157

The primary distinction from traditional text-to- 158

SQL tasks is that the agentic setting includes an 159

SQL development environment, necessitating the 160

agent to accomplish the final task through multiple 161

interactions with the database and command line 162
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of 𝒯2, I can just update ... 
to complete 𝒯3.

Figure 2: The overview of the proposed SoC-Agent framework.

interface. The agentic setting with an SQL devel-163

opment environment was first introduced by Spider164

2.0 (Lei et al., 2024). Our work adheres strictly165

to this framework. Specifically, given a task T ,166

a database interface I, and a codebase C (which167

includes project context, configuration, and docu-168

mentation), the task involves iteratively modifying169

the code (e.g., Bash/SQL/Python) based on obser-170

vations Oi = execute(C,I,T ) until the final result171

R (such as text, table, or database) is achieved.172

In essence, the final observation O serves as the173

agent’s response to the question, i.e.,R = O.174

3 Methodology175

In this section, we present our proposed SoC-Agent176

for text-to-SQL tasks. The framework, as de-177

picted in Figure 2, consists of three primary mod-178

ules: schema linking, SQL generation, and self-179

reflection. Each of these components is discussed180

in detail below.181

3.1 Schema Linking182

When given a natural language task, the agent must183

retrieve pertinent information, such as tables, fields,184

and other external knowledge bases necessary to185

complete the task. Hence, we first outline the186

workspace required for the agent to perform its187

tasks and the process of information retrieval.188

Action Space. We follow the environment settings189

of Spider 2.0 and action space of Spider-Agent (Lei190

et al., 2024), which require the agent to complete191

the final task through multiple rounds of interaction192

with the database and command line interface. The193

tools available to the agent are defined as follows:194

• Command line operations: Inspect files and195

execute scripts using shell commands.196

• File operations: Generate and modify files.197

Algorithm 1: SoC Planning
Input: The user’s task T .
Output: The generated SQL S.

1 Initialization:
2 Start with an initial empty SQL S0 ← ϕ;
3 Decompose the task T into N versions:

[T1,T2, . . . ,TN ], where TN = T and
the order of task complexity is
T1 ≤ T2 ≤, ...,≤ TN ;

4 for i = 1 to N do
5 Based on the previous SQL Si−1, write a

new SQL Si to address Ti;
6 Execute Si in the database system to

obtain the resultRi;
7 ifRi does not solve Ti then
8 Continuously modify and execute Si

until it satisfactorily addresses Ti.

• SQL execution operations: Run SQL queries 198

by interfacing with a local or cloud-based 199

database API. 200

• Termination operations: The agent can assess 201

whether the task is complete or has failed, thus 202

concluding the task process. 203

Information Collection. Much like how humans 204

navigate files, the agent is instructed to first survey 205

the files in the current directory and pinpoint the 206

information most pertinent to the user’s query, in- 207

cluding tables, fields, and external knowledge. In 208

this module, we refer to the prompt in Spider-Agent 209

(Lei et al., 2024) and make appropriate adjustments 210

and improvements. We provide specific prompts, 211

please refer to Appendix A.1 and A.2 for details. 212

3.2 SQL Generation 213

Once the relevant information has been gathered, 214

the agent moves on to the crucial stage of SQL 215
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Figure 3: Illustration of different types of SQL canvas.

generation. Producing a completely accurate SQL216

query in a single attempt is particularly challenging,217

especially for complex tasks. To address this, we218

propose an innovative planning strategy to guide219

the agent in effectively and accurately completing220

intricate SQL generation tasks.221

Task decomposition. Initially, the agent decom-222

poses task into several subtasks, arranged from223

simple to complex. Specifically, for a given task T ,224

the agent decomposes it into T1,T2, . . . ,TN , where225

the complexity relationship is T1 ≤ T2 ≤ . . . ≤ TN .226

SoC Planning. Drawing inspiration from profes-227

sional SQL developers, who often divide intricate228

tasks into manageable subtasks and iteratively re-229

fine the SQL scripts, we adopt a similar idea. The230

SQL for each subtask is progressively refined and231

expanded to address subsequent subtasks, culmi-232

nating in the completion of the overall task. Figure233

3 presents a schematic diagram of various sub-SQL234

canvases generated by a professional SQL devel-235

oper when tackling a complex problem T . Our236

goal is for the agent to emulate the strategies em-237

ployed by professional SQL developers to handle238

more challenging SQL generation tasks. The pro-239

cess of solving the SQL generation problem based240

on the SoC process is detailed in Algorithm 1. Our241

SoC planning strategy incorporates two types of242

prompts: a pure text description of the workflow,243

as shown in Figure 11 in Appendix A.3, and a pseu-244

docode workflow description for LLM, as shown245

in Figure 12 in Appendix A.3. In our experiments,246

we consider both types of prompts to ensure clarity247

in the detailed planning process.248

Demonstrations. Inspired by the few-shot strategy249

in in-context learning, we also provide an exam-250

ple to illustrate the process of solving a specific251

problem using the LLM Agent. We use the ques-252

tion shown in Figure 2: “Query the employees 253

with salaries above the average salary in their re- 254

spective departments.” We simulate the agent’s 255

thought and action process to complete the entire 256

SQL generation task. Specifically, the agent begins 257

by decomposing the task into a series of sub-tasks, 258

ranging from simple to complex. The agent then 259

addresses each sub-task sequentially, following the 260

progression from simpler to more complex tasks. 261

Finally, the agent reviews the problems and verifies 262

the results to ensure accuracy. For specific prompt 263

details, please refer to Figure 14 in Appendix A.5. 264

3.3 Self-Reflection 265

Task Recall. While the LLM Agent can effectively 266

enhance the success rate of solving complex prob- 267

lems through the SoC strategy, it may forget crucial 268

details of the original problem after multiple rounds 269

of interaction. Despite the final task TN = T , the 270

agent might overlook or misinterpret some aspects 271

of the original problem due to language and literal 272

rewrites. To mitigate this, we require the agent to 273

recall the original task upon completing the task, 274

ensuring no important issues are neglected. 275

Result Verification. Beyond reviewing the prob- 276

lem, the agent must also reflect on whether there is 277

a discrepancy between the SQL-generated results 278

and the original problem requirements. Although 279

the agent generally adheres to the original require- 280

ments, it may still commit basic errors, leading to 281

suboptimal results. Common issues include: 282

• Data Validity: Ensure the SQL query results 283

are not empty and contain valid data. An empty 284

file or one with only headers indicates an incor- 285

rect SQL query. 286

• Sample Size Limitation: Verify if the task 287

specifies extracting the “most X”, “top X”, or 288

“first X” entities. If so, include “LIMIT X” in 289

the SQL to appropriately restrict the result set. 290

• Field Completeness: Always return both the 291

entity ID and the entity name for any identi- 292

fied players or entities, along with any other 293

relevant details. 294

Additionally, there are important result checks and 295

precautions that the model must consider. For spe- 296

cific prompts, please refer to Figure 13 in the Ap- 297

pendix A.4. This reflection strategy helps prevent 298

the agent from overlooking details, thereby reduc- 299

ing the likelihood of basic errors. 300
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Table 1: Statistics of the datasets.

Dataset # Test
Examples

# Easy
Examples

# Medium
Examples

# Hard
Examples

# Test
DB

# Col.
/ DB

# Tok.
/ SQL

# Func.
/ SQL

Spider 2.0-lite 547 128 246 173 158 803.6 144.5 6.5
Spider 2.0-snow 547 128 246 173 152 812.1 161.8 6.8

Table 2: Performance comparison. Numbers in bold indicate the best performance.

Method Spider 2.0-snow Spider 2.0-lite

Easy Medium Hard Overall Easy Medium Hard Overall

SFT CodeS-15B 0.00% 0.00% 0.00% 0.00% 1.65% 0.86% 0.00% 0.73%
DIN-SQL + GPT-4o 0.00% 0.00% 0.00% 0.00% 5.79% 0.43% 0.00% 1.46%
CHESS + GPT-4o 4.69% 0.41% 0.00% 1.28% 9.92% 3.00% 1.24% 3.84%
DAIL-SQL + GPT-4o 6.25% 1.63% 0.00% 2.20% 13.20% 5.58% 1.24% 5.68%
Spider-Agent + QwQ-32B - - - 8.96% - - - 11.33%
Spider-Agent + DeepSeek-R1 - - - 10.55% - - - 13.71%
Spider-Agent + GPT-4o 19.53% 10.16% 5.20% 10.79% 21.09% 10.57% 4.05% 10.97%
SoC-Agent + QwQ-32B 22.66% 11.38% 6.94% 12.61% 25.00% 12.60% 4.62% 12.98%

4 Experiments301

In this section, we conduct experiments to answer302

the following research questions:303

• RQ1: How does SoC-Agent perform in a real-304

world, complex SQL development environment?305

• RQ2: Can we conduct a more in-depth anal-306

ysis of the SoC-Agent framework during SQL307

development tasks?308

• RQ3: Does SoC-Agent follow the planned steps309

to complete the SQL generation task?310

4.1 Experimental Settings311

Datasets. We select two versions of the Spider312

2.0 dataset, namely Spider 2.0-lite and Spider 2.0-313

snow, for experiments. Consistent with (Lei et al.,314

2024), we categorize task difficulty based on the315

length of the golden SQL: < 80 tokens as easy task,316

80 ∼ 159 as medium task, and ≥ 160 as hard task.317

The detailed statistical information of the dataset is318

shown in Table 1.319

Metrics. Following the settings recommended in320

(Lei et al., 2024), we use the Execution Accuracy321

(EX) metric to assess the accuracy of SQL execu-322

tion results. The evaluation scripts accept output in323

the form of strings, tables, or databases. For each324

example, an evaluation script is run, producing a325

score of either 0 or 1.326

Baselines. We evaluate our approach against sev-327

eral state-of-the-art and widely recognized text-to-328

SQL methods. These include LLM-prompting tech-329

niques such as DIN-SQL, DAIL-SQL, and CHESS.330

Additionally, we consider SFT CodeS, which in-331

volves fine-tuning open-source models on large332

text-to-SQL datasets, and Spider-Agent, an agent- 333

based text-to-SQL framework. Consistent with 334

(Lei et al., 2024), we optimize prompt structures 335

across all methods to ensure they are well-suited to 336

the tasks at hand. 337

• SFT CodeS (Li et al., 2024b) is a series of 338

pre-trained language models, with parameters 339

ranging from 1 billion to 15 billion, specifically 340

tailored for the text-to-SQL task. It employs 341

an incremental pre-training approach using a 342

meticulously curated SQL-centric corpus. 343

• DIN-SQL (Pourreza and Rafiei, 2024a) in- 344

corporates classification and decomposition 345

modules. It classifies each query into one of 346

three categories, subsequently applying distinct 347

strategies to process each group effectively. 348

• CHESS (Talaei et al., 2024) decomposes the 349

text-to-SQL task into a three-stage pipeline, 350

comprising entity and context retrieval, schema 351

selection, and query generation. It achieves a 352

performance of 67.86% on the BIRD dataset. 353

• DAIL-SQL (Gao et al., 2024) introduces an 354

innovative prompt strategy, designed from the 355

perspectives of question representation, exam- 356

ple selection, and example organization, achiev- 357

ing a performance of 86.6% on the Spider 1.0 358

dataset (Yu et al., 2018). 359

• Spider-Agent (Lei et al., 2024) is the first agent 360

framework implemented on the enterprise-level 361

text-to-SQL dataset, Spider 2.0. It is developed 362

based on the ReAct (Yao et al., 2023) frame- 363

work, with a primary focus on database-related 364

coding tasks and projects. 365

Our Setups. To ensure fairness, we utilize GPT- 366
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Figure 5: Finish rate.

4o (2024-08-06) for all methods. The value of367

N is determined dynamically by the model based368

on the problem’s complexity, ranging from 2 to369

4. For our demonstration prompt, we employ a 1-370

shot approach. The maximum number of execution371

steps is set to 20, meaning the process terminates372

if the agent exceeds this limit.373

4.2 Overall Performance (RQ1)374

LLM-based Methods. The experimental results375

in Table 2 indicate that existing LLM-based meth-376

ods struggle with these enterprise-level text-to-SQL377

tasks. SFT CodeS-15B and DIN-SQL fail to com-378

plete any tasks on the Spider 2.0-snow dataset. On379

the hard version of Spider 2.0-snow, none of the380

four LLM-based methods succeed. The state-of-381

the-art text-to-SQL method, DAIL, achieves only382

2.20% and 5.68% performance on the snow and383

lite datasets, respectively, highlighting the need for384

an agent-based framework.385

Agent-based Methods. Spider-Agent, a relatively386

simple agent-based framework, demonstrates sig-387

nificant performance improvements. Compared388

to the strongest LLM-based method, DAIL-SQL,389

Spider-Agent shows improvements of 8.59% and390

5.29% on the Spider 2.0-snow and Spider 2.0-391

lite datasets, respectively. Our proposed method,392

SoC-Agent, further enhances performance, with393

improvements of 1.82% and 2.01% over Spider-394

Agent. These results validate the effectiveness of395

our SoC planning approach.396
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Figure 6: k-shot examples.

Table 3: Results of the ablation studies.

Method Spider 2.0-snow

Easy Medium Hard Overall

SoC-Agent 22.66% 11.38% 6.94% 12.61%
w/o SoC 20.31% 10.16% 5.20% 10.97%
w/o De 21.88% 10.98% 6.94% 12.25%
w/o Self 21.09% 10.98% 6.36% 11.88%

4.3 In-depth Analysis (RQ2) 397

Running Step. The running step refers to the num- 398

ber of steps the agent needs to execute to generate 399

SQL results. We plot the distribution of steps ex- 400

ecuted by Spider-Agent and our method on the 401

Spider 2.0-snow and Spider 2.0-lite dataset. Figure 402

4 illustrates these results, where blue bars represent 403

the frequency of each step in completed tasks, and 404

black bars indicate the frequency of tasks not com- 405

pleted after exceeding the maximum of 20 steps. 406

The red dotted line shows the average number of 407

steps in completed tasks. Our method requires a 408

slightly higher average number of steps compared 409

to Spider-Agent, likely because our SoC planning 410

involves more steps to solve subtasks. 411

Finish Rate. The finish rate measures the propor- 412

tion of tasks where the agent outputs the final SQL 413

execution result, divided by the total number of 414

tasks. Although the final result may not always be 415

correct, the finish rate indicates that the agent com- 416

pletes the entire task process without issues such 417

as interruptions, unexpected jumps, or exceeding 418

the maximum step limit. As shown in Figure 5, our 419
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Task: What is the highest number of electric bike rides lasting more than 10 minutes taken by subscribers with 

'Student Membership' in a single day, excluding rides starting or ending at 'Mobile Station' or 'Repair Shop'?

Thought:  I now have the necessary information about the 

BIKESHARE_TRIPS table. To solve the task, I will break it down into 

simpler sub-tasks: T1: Query all electric bike rides lasting more than 10 

minutes taken by subscribers with 'Student Membership'. T2: Exclude rides 

that start or end at 'Mobile Station' or 'Repair Shop'. T3: Calculate the number 

of such rides for each day. T4: Find the highest number of rides in a single 

day. I will start by writing the SQL query for T1.

Action: SNOWFLAKE_EXEC_SQL(sql_query=   ,is_save=False)

SELECT start_time
FROM AUSTIN.AUSTIN_BIKESHARE.BIKESHARE_TRIPS
WHERE subscriber_type = 'Student Membership'
AND bike_type = 'electric'
AND duration_minutes > 10

Thought: The result for T1 is correct, as it returns the start times of electric 

bike rides lasting more than 10 minutes by subscribers with 'Student 

Membership'. Next, I will address T2 by excluding rides that start or end at 

'Mobile Station' or 'Repair Shop'. 

Action: SNOWFLAKE_EXEC_SQL(sql_query=   ,is_save=False)

SELECT start_time
FROM AUSTIN.AUSTIN_BIKESHARE.BIKESHARE_TRIPS
WHERE subscriber_type = 'Student Membership'
AND bike_type = 'electric'
AND duration_minutes > 10
AND start_station_name 
    NOT IN ('Mobile Station', 'Repair Shop')
AND end_station_name 
    NOT IN ('Mobile Station', 'Repair Shop')

Thought: The result for T2 is correct, as it excludes rides starting or ending 

at 'Mobile Station' or 'Repair Shop'. Now, I will address T3 by calculating the 

number of such rides for each day. I will convert the "start_time" to a date and 

count the rides for each day.

Action: SNOWFLAKE_EXEC_SQL(sql_query=   ,is_save=False)

SELECT 
    TO_DATE(TO_TIMESTAMP(start_time/1000000)) AS ride_date, 
    COUNT(*) AS ride_count
FROM AUSTIN.AUSTIN_BIKESHARE.BIKESHARE_TRIPS
WHERE subscriber_type = 'Student Membership'
AND bike_type = 'electric'
AND duration_minutes > 10
AND start_station_name 
    NOT IN ('Mobile Station', 'Repair Shop')
AND end_station_name 
    NOT IN ('Mobile Station', 'Repair Shop')
GROUP BY ride_date

Thought: The result for T3 is correct, as it provides the count of rides for 

each day. Now, I will address T4 by finding the highest number of rides in a 

single day from the results obtained in T3.

Action: SNOWFLAKE_EXEC_SQL(sql_query=   ,is_save=True)

SELECT MAX(ride_count) AS max_ride_count
FROM (
    SELECT TO_DATE(TO_TIMESTAMP("start_time" / 1000000)) 
    AS ride_date, 
    COUNT(*) AS ride_count
    FROM AUSTIN.AUSTIN_BIKESHARE.BIKESHARE_TRIPS
    WHERE subscriber_type = 'Student Membership'
    AND bike_type = 'electric'
    AND duration_minutes > 10
    AND start_station_name 
        NOT IN ('Mobile Station', 'Repair Shop')
    AND end_station_name 
        NOT IN ('Mobile Station', 'Repair Shop')
    GROUP BY ride_date
)

Thought: The SQL query executed successfully, and the results are saved 

in "result.csv". I will now display the contents of this CSV file to verify 

the result.

Action:

cat /workspace/result.csv

Observation: MAX_RIDE_COUNT
    201

Thought: The result appears correct, showing the highest number of electric 

bike rides lasting more than 10 minutes taken by subscribers with 'Student 

Membership' in a single day, excluding rides starting or ending at 'Mobile 

Station' or 'Repair Shop'. The maximum number of such rides is 201.

Action:

Terminate(output="result.csv")

Observation: …… (previous schema linking process) …… 

Observation: …… (returned results from database) …… 

Observation: …… (returned results from database) …… 

Observation: …… (returned results from database) …… 

Observation: Results saved to /workspace/result.csv

Figure 7: Case study of SoC-Agent in Spider 2.0-snow dataset.

method achieves a significantly higher completion420

rate than Spider-Agent across all task difficulties.421

Ablation Study. We conduct a series of ablation422

studies to assess the impact of different modules423

in our method on overall performance. As shown424

in Table 3, “SoC-Agent” represents the original425

method, “w/o SoC” represents the removal of SoC426

planning, “w/o De” denotes the removal of demon-427

stration, and “w/o Self” indicates the removal of428

self-reflection. The results clearly demonstrate a429

slight performance drop upon the removal of these430

modules, underscoring their necessity. In particu-431

lar, the performance drops more significantly when432

SoC planning is removed, and the performance on433

hard tasks also drops significantly, highlighting the434

critical role of SoC planning in solving complex435

SQL generation tasks. Additionally, we experiment436

with multiple-shot examples in our demonstration 437

module, as depicted in Figure 6. While the pres- 438

ence of examples proves effective, an excessive 439

number does not yield significant performance im- 440

provements. 441

4.4 Case Study (RQ3) 442

To intuitively verify the workflow of the proposed 443

SoC-Agent, we sample a case from Spider 2.0- 444

snow dataset and demonstrate the complete work- 445

flow of the agent, as shown in Figure 7. For a 446

given task, the agent first collects and retrieves rel- 447

evant information along the current working path, 448

which we omit here for brevity. After informa- 449

tion collection, the agent decomposes the original 450

problem from simple to complex, splitting it into 451

four sub-problems in this example. Specifically, 452

the original task T is “What is the highest number 453
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of electric bike rides lasting more than 10 minutes454

taken by subscribers with ’Student Membership’455

in a single day, excluding rides starting or ending456

at ’Mobile Station’ or ’Repair Shop’?”. According457

to the decomposition results of the agent, we can458

clearly see that T1 is the simplest query for tram459

riding records, and the complexity of T2, T3, and460

T4 gradually increases. Starting with the simplest,461

the agent writes a 5-line SQL query to successfully462

solve T1. Building on the SQL for T1, additional463

constraints are added to solve T2. Subsequently, us-464

ing the SQL from T2, the number of rides per day is465

calculated, successfully solving T3. Finally, based466

on the SQL from T3, the maximum number of rides467

is determined, completing the final task. This pro-468

cess of generating SQL from simple to complex469

aligns with our SoC planning workflow. Addition-470

ally, the agent reviews the problem and checks the471

generated results at the end, further ensuring the472

effectiveness and accuracy of SQL generation.473

5 Related Work474

LLMs in Text-to-SQL. LLMs have revolution-475

ized text-to-SQL tasks (Shi et al., 2024; Liu et al.,476

2024b; Li et al., 2024a) through their exceptional477

reasoning capabilities and world knowledge inte-478

gration. Early studies leverage the zero-shot capa-479

bilities (Chang and Fosler-Lussier, 2023; Liu et al.,480

2023; Rajkumar et al., 2022; Dong et al., 2023)481

of LLMs, enabling them to generate valid SQL482

queries without prior examples. Building on the483

principles of in-context learning (Wei et al., 2022),484

DAIL-SQL (Gao et al., 2024) utilizes problem-485

relevant examples to guide SQL generation. DIN-486

SQL (Pourreza and Rafiei, 2024a) introduces a487

decomposition approach that breaks down com-488

plex queries into manageable sub-problems. MAC-489

SQL (Wang et al., 2024a) presents a collaborative490

framework involving multiple agents to tackle the491

challenges of SQL generation. Studies (Nan et al.,492

2023; Luo et al., 2024; Pourreza et al., 2024; Cafer-493

oğlu and Ulusoy, 2024; Qu et al., 2024; Mao et al.,494

2024) also explore various advanced prompting495

techniques for text-to-SQL. Beyond prompt design,496

some studies emphasize the importance of schema497

linking. For instance, CHESS (Talaei et al., 2024)498

and PURPLE (Ren et al., 2024) focus on improving499

SQL generation capabilities through retrieval mech-500

anisms and schema pruning strategies. Conversely,501

study (Maamari et al., 2024) offers a critical per-502

spective, arguing that the loss of essential informa-503

tion during schema linking may adversely affect the 504

accuracy of SQL generated by LLMs. In addition 505

to prompt-based approaches, other studies investi- 506

gate supervised fine-tuning (SFT) methods applied 507

to open-source LLMs. For example, DB-GPT-Hub 508

(Zhou et al., 2024) examines the influence of dif- 509

ferent SFT strategies on the performance of open- 510

source LLMs, while SENSE (Yang et al., 2024a) 511

introduces an innovative data synthesis technique 512

that enables open-source LLMs to outperform their 513

closed-source counterparts for the first time. 514

LLM-Powered Agents. LLMs have become a 515

key technology in the quest for Artificial General 516

Intelligence (AGI), providing strong support for 517

developing intelligent agent systems (Wang et al., 518

2024b; Xi et al., 2023; Park et al., 2023; Liu et al., 519

2024a; Huang et al., 2024a). Existing efforts pri- 520

marily focus on agent planning (Yao et al., 2023; 521

Chen et al., 2023; Song et al., 2023) and using ex- 522

ternal tools (Qin et al., 2024b; Qiao et al., 2024; 523

Qin et al., 2024a; Qu et al., 2025). Recently, LLM- 524

powered agents are being used to automate the 525

generation of code (Zhang et al., 2023; Zhu et al., 526

2024a; Yin et al., 2023; Huang et al., 2024b; Chen 527

et al., 2021, 2024; Xia et al., 2024), which can 528

make the development process faster and reduce 529

the need for human programmers. Despite this, 530

agent-based methods are rarely explored in text- 531

to-SQL (Deng et al., 2025; Wang et al., 2024c). 532

MAC-SQL (Wang et al., 2024a) first proposes the 533

concept of using agents to solve text-to-SQL tasks 534

but lacks the process of interacting with complex 535

environments in real scenarios. Spider-Agent (Lei 536

et al., 2024), based on the ReAct (Yao et al., 2023) 537

and Intercode (Yang et al., 2024b) frameworks, for 538

the first time runs the agent in a real-world SQL 539

development environment, establishing a strong 540

baseline approach. 541

6 Conclusion 542

In this paper, we propose a novel agent framework, 543

SoC-Agent, to address the task of text-to-SQL in 544

real-world development scenarios. Specifically, for 545

a given task, SoC-Agent decomposes it into a se- 546

ries of subtasks ranging from simple to complex, 547

solving them sequentially based on task complexity. 548

The final self-reflection module ensures the effec- 549

tiveness of the generated results. We conduct ex- 550

tensive experiments on real-world enterprise-level 551

SQL benchmarks, and the results demonstrate the 552

effectiveness of our proposed method. 553
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Limitations554

This paper has several key limitations that war-555

rant attention. Firstly, due to the cost constraints,556

we do not use more advanced models for experi-557

ments, such as OpenAI o1 or o3. Secondly, while558

our method outperforms existing state-of-the-art559

methods in real-world text-to-SQL tasks, the im-560

provement is limited. Therefore, there is signif-561

icant room for performance enhancement in the562

design of more advanced agent workflows, such as563

incorporating more advanced planning strategies,564

better memory management techniques, and im-565

proved tools. We will consider these limitations as566

research directions for our future work.567

Ethics Statement568

We affirm that this study adheres to the ethical569

guidelines set forth by the relevant academic and570

research institutions. The datasets utilized in our re-571

search are publicly accessible and have been widely572

adopted in the field of text-to-SQL research. This573

ensures that our work is transparent and that our574

results can be reproduced by other researchers. Ad-575

ditionally, the outputs of our study are in the form576

of SQL queries, which are less likely to contain577

harmful or biased content compared to natural lan-578

guage text. Our team conducts thorough reviews579

of all outputs to ensure they do not contain any580

politically sensitive or biased information.581
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A Prompts878

A.1 Task Description879

Task Description

You are a data scientist proficient in database, SQL and DBT Project. You are starting in the
{work_dir} directory, which contains all the data needed for your tasks. You can only use the
actions provided in the ACTION SPACE to solve the task. For each step, you must output an
Action; it cannot be empty. The maximum number of steps you can take is {max_steps}. Do
not output an empty string! Carefully review the markdown content below, as it contains the
information you need to successfully complete the task.

# ACTION SPACE
{action_space}

Figure 8: The prompt of task description

A.2 Schema Inspection and SQL Task Guide880

File Checking and Information Gathering

• You are in the /workspace directory. Begin by checking if there are any markdown files in this
directory (e.g. ls -R). If found, read them as they may contain useful information for answering
your questions.

• The database schema folder is located in the /workspace directory. This folder contains one
or more schema directories for the databases. Each directory includes a DDL.csv file with the
database’s DDL, along with JSON files that contain the column names, column types, column
descriptions, and sample rows for individual tables. Start by reviewing the DDL.csv file in each
directory, then selectively examine the JSON files as needed. Read them carefully.

• Do not write SQL queries to retrieve the schema; use the existing schema documents in the folders.

Figure 9: The prompt of schema inspection and SQL task guide

Snowflake-Query Execution Rules

• Use SNOWFLAKE_EXEC_SQL to run your SQL queries and interact with the database. Do not use
this action to query INFORMATION_SCHEMA or show DATABASES/TABLES; the schema information
is all stored in the /workspace/database_name folder. Refer to this folder whenever you have
doubts about the schema.

• Focus on SQL queries rather than frequently using Bash commands like grep and cat, though they
can be used when necessary.

• When referencing table names in Snowflake SQL, you must include both the database_name and
schema_name. For example, for /workspace/DEPS_DEV_V1/DEPS_DEV_V1/ADVISORIES.json,
if you want to use it in SQL, you should write DEPS_DEV_V1.DEPS_DEV_V1.ADVISORIES.

• Column names must be enclosed in quotes.

• If you encounter an SQL error, reconsider the database information and your previous queries,
then adjust your SQL accordingly. Do not output the same SQL queries repeatedly.

Figure 10: The prompt of Snowflake-Query execution rules
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A.3 Gradual SQL Query Development: From Simple to Complex 881

Workflow Description of SoC Planning

Creating a SQL query that works perfectly on the first try can be difficult. To enhance accuracy,
please simplify the problem step by step before writing the final SQL query. Begin by addressing
a basic version of the task, then progressively enhance your SQL query to tackle more complex
versions, ultimately solving the original task. The process is outlined below:

• Decompose the task: Break down the original task T into N versions: T1, T2, ..., TN , where
the complexity increases with each index. Here: T1 is the simplest version; T2 builds on T1 with
added functionality; ...; TN is the most complex version, equivalent to the original task T . The
value of N should generally be between 1 and 5, depending on the task’s complexity.

• Complete tasks from simple to complex: First, write SQL query S1 to accomplish task T1.
Next, create SQL S2 to complete task T2, building upon S1. Continue this process until you
write SQL statement S(N−1) for the penultimate task. Finally, write the SQL SN to complete
the final task T based on S(N−1).

Figure 11: The prompt of workflow description of SoC planning

Pseudocode Description of SoC Planning

1. Start with an initial empty SQL S0 ← ϕ.
2. Decompose the problem T into n versions: [T1,T2, . . . ,TN ], where TN = T .
3. For i = 1 to N do

3.1. Based on the previous SQL Si−1, write a new SQL Si to address Ti.
3.2. Execute Si in the database system to obtain the resultRi (set is_save=False).
3.3. IfRi does not solve Ti then

3.3.1. Continuously modify and execute Si until it satisfactorily addresses Ti.
4. End For

Figure 12: The prompt of pseudocode description of SoC planning
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A.4 Self-Reflection882

Task Recall and Result Verification

Before terminating the task, you MUST recall the original task thoroughly. This review is es-
sential to ensure that the generated results meet the specified criteria and that nothing is overlooked.

## Task Recall
After generating the final result (e.g., producing "result.csv"), you MUST first recall the original
task (T ). Make sure you fully understand what was requested.

## Final Result Inspection
Evaluate the output to confirm it meets the task requirements. If not, adjust the SQL query.
Consider the following:

• Output Format: The final result MUST be a CSV file, not an .sql file, a calculation, an idea,
a sentence, or merely an intermediate step. Save the final output as a CSV and provide the file
name, typically derived from the SQL execution result. Do not create the file to save results;
use SNOWFLAKE_EXEC_SQL directly and just set "is_save=True" to generate the result file.

• Data Validity: Ensure the CSV is not empty and contains valid data. An empty file or one
with only headers indicates an incorrect SQL query.

• Sample Size Limitation: Pay attention to whether the task specifies extracting the "most X,"
"top X," or "first X" entities. If so, include "LIMIT X" in your SQL query to restrict the result
set accordingly.

• Field Completeness: Always return both the entity ID and the entity name for any identified
players or entities, along with any other relevant details.

• Unit Conversion: Verify that results adhere to specified units (e.g., hours, meters) from the
original task. Perform necessary conversions for accuracy.

• Confidence in Results: If the result is obtained from your query or calculation and you
believe your SQL (or Python) is correct, do not doubt the result based on objective data; avoid
adding unnecessary interpretations. For example, if the average value through correct SQL is
0, do not assume that the result should be a non-zero value.

Figure 13: The prompt of task recall and result verification
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A.5 Response Format and Example 883

Response Format and Example

## Response Format
For each task input, your response should contain:
1. One analysis of the task and the current environment, reasoning to determine the next action
(prefix "Thought: ").
2. One action string in the ACTION SPACE (prefix "Action: ").

## Example
Task: List employees with salaries above the average level in their respective departments.
Observation: ... (Output from previous actions, as provided by the environment; no need to
generate it).
Thought: For the original task T , we can break it down into the following three sub-tasks from
easy to difficult: T1: “Query the basic information and salaries of all employees in 2023”. T2:
“Query the average salary of employees for each department in 2023”. T3: “Query the employees
with salaries above the average salary in their respective departments in 2023, including id, name,
department, salary”. Firstly, I will write and execute SQL S1 to check if it can solve T1.
Action: SNOWFLAKE_EXEC_SQL(sql_query="SELECT employee_id, employee_name,
department, salary FROM employees WHERE year = 2023", is_save=False)
Observation: ... (Output from previous actions).
Thought: The result seems correct. The next task T2 is: “Query the average salary of employees
for each department in 2023”. I will write SQL S2 based on S1.
Action: SNOWFLAKE_EXEC_SQL(sql_query="SELECT department, AVG(salary) AS
avg_salary FROM employees WHERE year = 2023 GROUP BY department", is_save=False)
Observation: ... (Output from previous actions).
Thought: The result seems correct. The result seems correct. The next task T3 is: “Query the
employees with salaries above the average salary in their respective departments in 2023, including
id, name, department, salary”. I will write SQL S3 based on S2.
Action: SNOWFLAKE_EXEC_SQL(sql_query="WITH department_avg AS (SELECT department,
AVG(salary) AS avg_salary FROM employees WHERE year = 2023 GROUP BY department)
SELECT e.employee_id, e.employee_name, e.department, e.salary FROM employees
e JOIN department_avg da ON e.department = da.department WHERE e.salary >
da.avg_salary AND e.year = 2023", is_save=True)
Observation: Results saved to /workspace/result.csv
Thought: The SQL query executed successfully, and results are saved. I MUST recall the original
task T , it is "List employees with salaries above the average level in their respective departments.".
Then, I will display the contents of this CSV file to verify the result.
Action: Bash(code="cat /workspace/result.csv")
Observation: ... (Output from previous actions).
Thought: The result appears correct, containing all required information, including employee ID,
name, department and salary.
Action: Terminate(output="result.csv")

Figure 14: The prompt of response format and example
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