Deep Implicit Optimization for Robust and Flexible Image Registration

Anonymous Author(s) Affiliation Address email

Abstract

Deep Learning in Image Registration (DLIR) methods have been tremendously 1 successful in image registration due to their speed and ability to incorporate weak 2 label supervision at training time. However, DLIR methods forego many of the З benefits of classical optimization-based methods. The functional nature of deep 4 5 networks do not guarantee that the predicted transformation is a local minima of the registration objective, the representation of the transformation (displace-6 ment/velocity field/affine) is fixed, and the networks are not robust to domain shift. 7 Our method aims to bridge this gap between classical and learning methods by 8 incorporating optimization as a layer in a deep network. A deep network is trained 9 to predict multi-scale dense feature images that are registered using a black box 10 iterative optimization solver. This optimal warp is then used to minimize image and 11 label alignment errors. By *implicitly* differentiating end-to-end through an iterative 12 optimization solver, our learned features are registration and label-aware, and the 13 warp functions are guaranteed to be local minima of the registration objective 14 in the feature space. Our framework shows excellent performance on in-domain 15 16 datasets, and is agnostic to domain shift such as anisotropy and varying inten-17 sity profiles. For the first time, our method allows switching between arbitrary transformation representations (free-form to diffeomorphic) at test time with zero 18 retraining. End-to-end feature learning also facilitates interpretability of features, 19 and out-of-the-box promptability using additional label-fidelity terms at inference. 20

21 **1 Introduction**

Deformable Image Registration (DIR) refers to the local, non-linear alignment of images by estimating a dense displacement field. Many workflows in medical image analysis require images to be in a common coordinate system for comparison, analysis, and visualization, including comparing intersubject data in neuroimaging [53, 104, 97, 38, 89, 94], biomechanics and dynamics of anatomical structures including myocardial motions, airflow and pulmonary function in lung imaging, organ motion tracking in radiation therapy [78, 77, 11, 70, 29, 105, 50, 18, 71, 84], and life sciences research [112, 104, 99, 80, 98, 72, 17].

Classical DIR methods are based on solving a variational optimization problem, where a similarity 29 metric is optimized to find the best transformation that aligns the images. However, these methods are 30 typically slow, and cannot leverage learning to incorporate a training set containing weak supervision 31 such as anatomical landmarks or expert annotations. The quality of the registration is therefore 32 limited by the fidelity of the intensity image. Deep Learning for Image Registration (DLIR) is an 33 interesting paradigm to overcome these challenges. DLIR methods take a pair of images as input 34 to a neural network and output a warp field that aligns the images, and their associated anatomical 35 36 landmarks. The neural network parameters are trained to minimize the alignment loss over image 37 pairs and landmarks in a training set. A benefit of this method is the ability to incorporate weak supervision like anatomical landmarks or expert annotations during training, which performs better
 landmark alignment without access to landmarks at inference time.

Motivation. However, DLIR methods face several limitations. First, the prediction paradigm of 40 deep learning implies the feature learning and amortized optimization steps are fused; transformations 41 predicted at test-time may not even be a local minima of the alignment loss between the fixed and 42 moving image. The end-to-end prediction also implies that the representation of the transforma-43 tion is fixed (as a design choice of the network), and the model cannot switch between different 44 representations like free-form, stationary velocity, geodesic, LDDMM, B-Splines, or affine at test 45 46 time without additional finetuning, in sharp contrast to the flexibility of classical methods. Typical 47 registration workflows require a practitioner to try different parameterizations of the transformation 48 (free-form, stationary velocity, geodesic, LDDMM, B-Splines, affine) to determine the representation most suitable for their application and additional retraining becomes expensive. Moreover, design 49 decisions like sparse keypoint learning for affine registration [103, 16, 69, 40] do not facilitate dense 50 deformable registration. Furthermore, DLIR methods do not allow interactive registration using 51 additional landmarks or label maps at test time, which is crucial for clinical applications. Hyper-52 53 parameter tuning for regularization is also expensive for DLIR methods. Although recent methods propose conditional registration [44, 67] to amortize over the hyperparameter search during training, 54 the family of regularization is fixed in such cases, and space of hyperparameters becomes exponential 55 in the number of hyperparameter families considered. Lastly, current DLIR methods are not robust 56 to minor domain shifts like varying anisotropy and voxel resolutions, different image acquisition 57 and preprocessing protocols [62, 53, 70, 43]. Robustness to domain shift is imperative to biomedical 58 and clinical imaging where volumes are acquired with different scanners, protocols, and resolutions, 59 where the applicability of DLIR methods is limited to the training domain. 60

Contributions. We introduce *DIO*, a generic *differentiable implicit optimization* layer to a 61 learnable feature network for image registration. By decoupling feature learning and optimization, 62 our framework incorporates weak supervision like anatomical landmarks into the learned 63 features during training, which improves the fidelity of the feature images for registration. Feature 64 learning also leads to *dense* feature images, which smoothens the optimization landscape compared 65 to intensity-based registration due to homogenity present in most medical imaging modalities. Since 66 optimization frameworks are agnostic to spatial resolutions and feature distortions, DIO is extremely 67 robust to domain shifts like varying anisotropy, difference in sizes of fixed and moving images, and 68 different image acquisition and preprocessing protocols, even when compared to models trained 69 on contrast-agnostic synthetic data [43]. Moreover, our framework allows zero-cost plug-and-70 *play* of arbitrary transformation representations (free-form, geodesics, B-Spline, affine, etc.) and 71 regularization at test time without additional training and loss of accuracy. This also paves the way for 72 practitioners to perform quick and interactive registration, and use additional arbitrary 'prompts' 73 such as new landmarks or label maps out-of-the-box at test time, as part of the optimization layer. 74

75 2 Related Work

Deep Learning for Image Registration DIR refers to the alignment of a fixed image I_f with a 76 moving image I_m using a transformation $\varphi \in T$ where T is a family of transformations. Classical 77 methods formulate a variational optimization problem to find the optimal φ that aligns the images [15, 78 4, 7, 5, 6, 2, 15, 25, 24, 23, 27, 39, 63, 102, 101, 100, 46, 60, 61, 76, 33, 32, 12]. In contrast, 79 earliest DLIR methods used supervised learning [19, 55, 82, 88] to predict the transformation φ . 80 Voxelmorph [13] was the first unsupervised method utilizing a UNet [83] for unsupervised registration 81 on brain MRI data. Recent works considered different architectural designs [21, 56, 48, 66], 82 cascade-based architectures and loss functions [116, 115, 49, 26, 68, 114, 79, 20], and symmetric 83 or inverse consistency-based formulations [65, 51, 52, 92, 116]. [67, 44] inject the hyperparameter 84 as input and perform amortized optimization over different values of the hyperparameter. Domain 85 randomization and finetuning [43, 96, 73, 30] are also proposed to improve robustness of registration 86 to domain shift, that is a core necessity in medical imaging since different institutions follow 87 varying acquisition and preprocessing pipelines. Foundational models are also proposed to improve 88 registration accuracy [57, 93]. Another line of work propose to use the implicit priors of deep 89 learning [95] within an optimization framework [110, 106, 49, 45]. We refer the reader to [36, 41, 28] 90 for other detailed reviews. 91

92 Iterative methods for DLIR Owing to the success of iterative optimization methods, few DLIR
 93 methods propose emulating the iterative optimization within a network. [115, 116] use a cascade of

networks to iteratively predict a warp field, and use the warped moving image as the input to the next 94 layer in the cascade. TransMorph-TVF [20] uses a recurrent network to predict a time-dependent 95 velocity field. [114] use a shared weights encoder to output feature images at multiple scales, and a 96 deformation field estimator utilizing a correlation layer. RAFT [91] similarly builds a 4D correlation 97 volume from two 2D feature maps, and updates the optical flow field using a recurrent unit that 98 performs lookup on the correlation volume. However, such recursive formulations have a large 99 memory footprint due to explicit backpropagation through the entire cascade [8], and are not adaptive 100 or optimal with respect to the inputs. In contrast, DIO uses optimization as a layer – guaranteeing 101 convergence to a local minima, and *implicit differentiation* avoids storing the entire computation 102 graph making the framework both memory and time efficient. 103

Feature Learning for Image Registration [103, 16, 69, 40] learn keypoints from images which 104 is then used to compute the optimal affine transform using a closed form solution. However, these 105 methods are restricted to transformations that can be represented by differentiable *closed-form* 106 analytical solutions, making backpropagation trivial. These sparse keypoints cannot be reused for 107 dense deformable registration either. On the other hand, dense deformable registration (diffeomorphic 108 or otherwise) is almost universally solved using iterative optimization methods. This motivates the 109 need to perform *implicit differentiation* through an iterative optimization solver to perform feature 110 learning for registration. Other approaches learn image features to perform registration [108, 59, 107, 111 81], but do not perform feature learning and registration end-to-end, i.e., the features obtained are not 112 113 task-aware and may not be optimal for registration, especially for anatomical landmarks. Learned 114 features are either fed into a functional form to compute the transformation end-to-end, or are learned using unsupervised learning in a stagewise manner. In contrast, by implicitly differentiating through 115 a black-box iterative solver, and minimizing the image and label alignment losses end-to-end, DIO 116 learns features that are registration-aware, label-aware, and dense. The optimization routine also 117 guarantees that the transformation is a local minima of the alignment of high-fidelity feature images. 118

Deep Equilibrium models Deep Equilibrium (DEQ) models [9, 34] have emerged as an interesting 119 alterative to recurrent architectures. DEQ layers solve a fixed-point equation of a layer to find its 120 equilibrium state without unrolling the entire computation graph. This leads to high expressiveness 121 without the need for memory-intensive backpropagation through time [10, 8, 31, 75, 37, 111]. 122 PIRATE [45] uses DEQ to finetune the PnP denoiser network for registration, but unlike our work, 123 the data-fidelity term comes from the intensity images. However, these methods use DEQ to emulate 124 an infinite-layer network, which typically consists of learnable parameters within the recurrent layer. 125 Conceptually, our work does not aim to simply emulate such an infinite cascade, but rather use 126 DEQ to decouple feature learning and optimization in an end-to-end registration framework. 127 This inherits all the robustness and agnosticity of optimization-based methods, while retaining the 128 fidelity of learned features. DEQ allows us to avoid the layer-stacking paradigm for cascades, and use 129 optimization as a black box layer without storing the entire computation graph, leading to constant 130 memory footprint and faster convergence. This allows learnable features to be registration-aware 131 since gradients are backpropagated to the feature images through the optimization itself. 132

133 **3 Methods**

¹³⁴ The registration problem is formulated as a variational optimization problem:

$$\varphi^* = \arg\min L(I_f, I_m \circ \varphi) + R(\varphi) = \arg\min C(\varphi, I_f, I_m)$$
(1)

where I_f and I_m are fixed and moving images respectively, L is a loss function that measures 135 the dissimilarity between the fixed image and the transformed moving image, and R is a suitable 136 regularizer that enforces desirable properties of the transformation φ . We call this the *image matching* 137 objective. If the images I_f and I_m are supplemented with anatomical label maps L_f and L_m , we call 138 139 this the *label matching* objective. Classical methods perform image matching on the intensity images, but the label matching performance is bottlenecked by the fidelity of image gradients with respect to 140 the label matching objective, and dynamics of the optimization algorithm. Deep learning methods 141 mitigate this by injecting label matching objectives (for example, Dice score) into the objective 142 Eq. (1) and using a deep network with parameters θ to predict φ for every image pair as input. In 143 essence, learning-based problems solve the following objective: 144

$$\theta^* = \arg\min_{\theta} \sum_{f,m} L(I_f, I_m \circ \varphi_{\theta}) + D(S_f, S_m \circ \varphi_{\theta}) + R(\varphi_{\theta}) = \arg\min_{\theta} \sum_{f,m} T(\varphi_{\theta}, I_f, I_m, S_f, S_m)$$
(2)

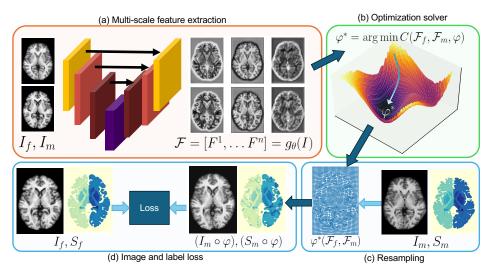


Figure 1: **Overview of our framework**. (a) A neural network extracts multi-scale features from the input images. (b)These features are used to optimize warp fields using a multi-scale differentiable optimization solver. (c) The optimized transform is used to warp the moving image and labels. (d) The warped image/label are compared with the fixed image/label using a similarity metric.

where $\varphi_{\theta}(I_f, I_m)$ is abbreviated to φ_{θ} . This leads to learned transformations φ_{θ} that perform both good image and label matching. However, the feature learning and optimization are coupled, and the learned features are optimized only for a specific training domain. This limitation primarily marks the difference between DIO and existing DLIR methods.

Fig. 1 shows the overview of our method. Our goal is to learn feature images such that regis-149 tration in this feature space corresponds to both image and label matching performance, by 150 disentangling feature learning and optimization. We do this by using a feature network to extract 151 dense features from the intensity image, that are used to solve Eq. (1) using a black-box optimization 152 solver, and obtain an optimal transform φ^* . Once φ^* is obtained, this is plugged into Eq. (2) to obtain 153 gradients with respect to φ^* . Since φ^* is a function of the feature images, we *implicitly differentiate* 154 through the optimization to backpropagate gradients to the feature images and to the deep network. 155 We discuss the details of our method in the following sections. 156

157 3.1 Feature Extractor Network

The first component of our framework is a feature network that extracts dense features from the 158 intensity images. This network is parameterized by θ , and takes an image $I \in \mathbb{R}^{H \times W \times D \times C_{in}}$ as input and outputs a feature map $F \in \mathbb{R}^{H \times W \times D \times C}$, where C is the number of feature channels, i.e. 159 160 $F = q_{\theta}(I)$. Unlike existing DLIR methods where moving and fixed images are concatenated and 161 passed to the network, our feature network processes the images *independently*. This allows the fixed and moving images to be of different voxel sizes. The feature network can also output multi-feature 162 163 feature maps $\mathcal{F} = g_{\theta}(I) = [F^0, F^1, \dots, F^N]$, where $F^k \in \mathbb{R}^{H/2^k \times W/2^k \times D/2^k \times C_k}$, which can be 164 used by multi-scale optimization solvers. The feature network is agnostic to architecture choice, and 165 we ablate on different architectures in the experiments. 166

167 **3.2 Implicit Differentiation through Optimization**

Given the feature maps F_f and F_m extracted from the fixed and moving images, an optimization solver optimizes Eq. (1) to obtain the transformation φ^* . This can be written by modifying Eq. (1) to use the feature maps F; i.e. $\varphi^* = \arg \min_{\varphi} C(F_f, F_m \circ \varphi)$. A local minima of this equation satisfies:

$$\varrho(\varphi^*, F_f, F_m) = \frac{\partial C}{\partial \varphi}\Big|_{\varphi^*} = 0$$
(3)

This φ^* is used to compute the loss Eq. (2) to minimize image and label matching objective. To propagate derivatives from φ^* to the feature images F_f, F_m , we invoke the Implicit Function Theo-

172 propagate d173 rem [54]:

Theorem 1 For a function $\varrho : \mathbb{R}^n \times \mathbb{R}^{m_1+m_2} \to \mathbb{R}^n$ that is continuously differentiable, if $\varrho(\varphi^*, F_f, F_m) = 0$ and $\left|\frac{\partial \varrho}{\partial \varphi}\right|_{\varphi^*} \neq 0$, then there exist open sets U, V_f, V_m containing φ^*, F_f, F_m , and a function $\varphi^*(F_f, F_m)$ defined on these open sets such that $\varrho(\varphi^*(F_f, F_m), F_f, F_m) = 0$.

Given the Implicit Function Theorem, we write $\rho(\varphi^*(F_f, F_m), F_f, F_m) = 0$ and differentiate with respect to F_f to obtain:

$$\frac{d\varrho}{dF_f} = \frac{\partial\varrho}{\partial\varphi}\frac{\partial\varphi}{\partial F_f} + \frac{\partial\varrho}{\partial F_f} = 0 \implies \frac{\partial\varphi}{\partial F_f} = -\left(\frac{\partial\varrho}{\partial\varphi}\right)^{-1}\frac{\partial\varrho}{\partial F_f} \tag{4}$$

The gradients of φ come from Eq. (2) (i.e. $\frac{\partial T}{\partial \varphi}$), and the gradients of F_f w.r.t. Eq. (2) are obtained as $\frac{\partial T}{\partial F_f} = -\frac{\partial T}{\partial \varphi} \left(\frac{\partial \varrho}{\partial \varphi}\right)^{-1} \frac{\partial \varrho}{\partial F_f}$. The gradients of F_m are obtained similarly.

This design ensures that optimal registration in the feature space corresponds to optimal registration *both* in the image and label spaces. Furthermore, the optimization layer ensures that the φ^* is a local minima of this high-fidelity feature matching objective, i.e., the features obtained by the network.

Jacobian-Free Backprop In practice, the Jacobian $\frac{\partial \varrho}{\partial \varphi}$ is expensive to compute, given the high dimensionality of φ and ϱ . Following [31], we substitute the Jacobian to identity, and compute $\frac{\partial \hat{T}}{\partial F_f} \approx -\frac{\partial T}{\partial \varphi} \frac{\partial \varrho}{\partial F_f}$. This leads to much less memory and stable training dynamics compared to other estimates of Jacobian like phantom gradients, damped unrolling, or Neumann series [35, 34].

188 3.3 Multi-scale optimization

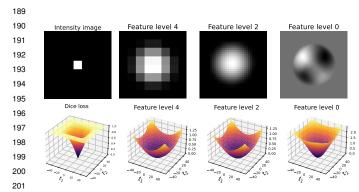


Figure 2: Dense feature learning leads to flatter loss landscapes. 202 Top row shows the intensity image with the corresponding multi-203 scale features predicted by the deep network, where the L^{th} level 204 denotes a feature of size $H/2^k \times W/2^k \times C_k$. Bottom row shows the 205 loss landscape as a function of the relative translation between the 206 squares in the fixed and moving image. Note the flat maxima which 207 occurs when there is no overlap between the fixed and moving 208 image, making optimization impossible if there is no overlap of the 209 squares. On the contrary, the loss landscape for learned features is 210 smooth, even at the finest scale, leading to much faster convergence 211 even when there is no overlap between the intensity images.

212 213

align at other finer or coarser scales.

215 4 Experiments

216 4.1 DIO learns dense features from sparse images

A key strength of DIO is the ability to learn interpretable dense features from sparse intensity images for accurate and robust image matching. This is especially relevant for medical image registration, which typically contain a lot of homogenity in the intensity images, making registration difficult. We design a toy task to isolate and demonstrate this behavior. The fixed and moving images are generated by placing a square of size 32×32 pixels on an image of 128×128 pixels. The squares in

Optimization based methods typically use a multi-scale approach to improve convergence and avoid local minima with the image matching objective [7, 5, 3, 15]. However, the downsampling of intensity images leads to indiscriminate blurring and loss of details at the coarser scales. We adopt a multi-scale approach by using pyramidal features from the network, which are naturally built into many convolutional architectures. We perform optimization at the coarsest scale, and use the result as initialization for the next finer scale (Algorithm 2). This is similar to optimization methods, but our multi-scale features obtained from different layers in the network correspond to different semantic content, in contrast to classical methods where the multi-scale features are simply downsampled versions of the original images. This allows the multi-scale registration to align different anatomical regions at different scales, which may be hard to

the fixed and moving images overlap with a 50% chance. The task is to find an affine transformation 222 to align the two images. However, classical optimization methods will fail this task 50% of the time, 223 because when the squares do not overlap, there is no gradient of the loss function, illustrated by the 224 flat loss landscape in Fig. 2. However, deep networks discover features that significantly flatten this 225 loss landscape in the feature matching space. To show this, we train a network to output multi-scale 226 feature maps that is used to optimize Eq. (1) to recover an affine transform. We choose a 2D UNet 227 228 architecture, and the multi-scale feature maps are recovered from different layers of the decoder path of the UNet. Since the features are trained to maximize label matching, the loss landscape is much 229 flatter, and the network is able to recover the affine transform with > 99% overlap (Appendix A.4). 230 End-to-end learning enables learning of features that are most conducive to registration, unlike 231 existing work [108, 59, 107, 81] that may not contain discriminative registration-aware features 232 about anatomical labels due to lack of task-awareness. 233

234 4.2 Results on brain MRI registration

Setup: We evaluated our method on inter-subject registration on the OASIS dataset [62]. The OASIS dataset contains 414 T1-weighted MRI scans of the brain with label maps containing 35 subcortical structures extracted from automatic segmentation with FreeSurfer and SAMSEG. We use the preprocessed version from the Learn2Reg challenge [42] where all the volumes are skull-stripped, intensity-corrected and center-cropped to $160 \times 192 \times 224$. We use the same training and validation sets as provided in the Learn2Reg challenge to enable fair comparison with other methods.

241 Architectures: We consider four architec-

tures for the task, representing different in-242 ductive biases in the network. We use a 243 3D UNet architecture (denoted as UNet in 244 experiments), and a large-kernel UNet (de-245 noted as LKU) [48]. To extract multi-scale 246 features from the networks, we attach sin-247 gle convolutional layers to the feature of the 248 desired scales from the decoder path. For 249 each of these architectures, we also consider 250 "Encoder-Only" versions by discarding the de-251 coder path, and creating independent encoders 252 for each scale Fig. 9, denoted as UNet-E and 253 LKU-E. We choose Encoder-Only versions to 254 ablate the performance using shared features 255 from the decoder path versus independent fea-256 ture extraction at each scale. 257

Results: We compare our method with existing methods on the Learn2Reg OASIS challenge (Table 1). We compare with state-ofthe-art classical methods [5, 46, 64, 100], and deep networks [58, 87, 67, 14, 22, 48]. DIO is highly competitive with existing methods, Table 1: **Performance on OASIS validation set.** DIO is highly competitive with state-of-the-art DLIR methods in the in-distribution setting. Our feature learning incorporates label-aware features, which is evident from the superior performance compared to four SOTA optimization-based classical methods.

Validation			
Method	Dice	HD95	
ANTs [5]	0.786 ± 0.033	2.209 ± 0.534	
NiftyReg [64]	0.775 ± 0.029	2.382 ± 0.723	
LogDemons [100]	0.804 ± 0.022	2.068 ± 0.448	
FireANTs [46]	0.791 ± 0.028	2.793 ± 0.602	
Progressive C2F [58]	0.827 ± 0.013	1.722 ± 0.318	
Little learning[87]	0.846 ± 0.016	1.500 ± 0.304	
CLapIRN [67]	0.861 ± 0.015	1.514 ± 0.337	
Voxelmorph-huge [14]	0.847 ± 0.014	1.546 ± 0.306	
TransMorph [22]	0.858 ± 0.014	1.494 ± 0.288	
TransMorph-Large [22]	0.862 ± 0.014	1.431 ± 0.282	
Ours (UNet-E)	0.845 ± 0.018	1.790 ± 0.433	
Ours (LKU-E)	0.849 ± 0.018	1.733 ± 0.401	
Ours (UNet)	0.853 ± 0.018	1.675 ± 0.379	
Ours (LKU)	0.862 ± 0.017	1.584 ± 0.351	

especially with TransMorph which uses up to two orders of magnitude more trainable parameters than DIO to achieve a similar performance. We note that the Large Kernel UNet architecture performs better than the standard UNet architecture, which is consistent with the findings in [48], even for dense feature extraction. This is due to the larger receptive field of LKUNet, which is able to capture more context in the image. Moreover, the Encoder-Only versions of the network perform slightly worse than the full networks, showing that sharing features across scales is beneficial for the task.

270 4.3 Optimization-in-the-loop introduces robustness to domain shift

A key requirement of registration algorithms is to generalize over a spectrum of acquisition and preprocessing protocols, since medical images are rarely acquired with the same configuration. Existing DLIR methods are extremely sensitive to domain shift, and catastrophically fail on other brain datasets. On the contrary, DIO inherits the domain agnosticism of the optimization solver, and is robust under feature distortions introduced by domain shift.

We evaluate the robustness of the trained models on three brain datasets: LPBA40, IBSR18, and CUMC12 datasets [85, 1, 53]. Contrary to the OASIS dataset, these datasets were obtained on different scanners, aligned to different atlases (MNI305, Talairach) with varying algorithms used
for skull-stripping, bias correction (BrainSuite, autoseg), and different manual labelling protocols
of different anatomical regions (as opposed to automatically generated Freesurfer labels in OASIS).
Unlike the OASIS dataset, these datasets have different volume sizes, and IBSR18 and CUMC12
datasets are not 1mm isotropic. More details about the datasets are provided in Appendix A.6.

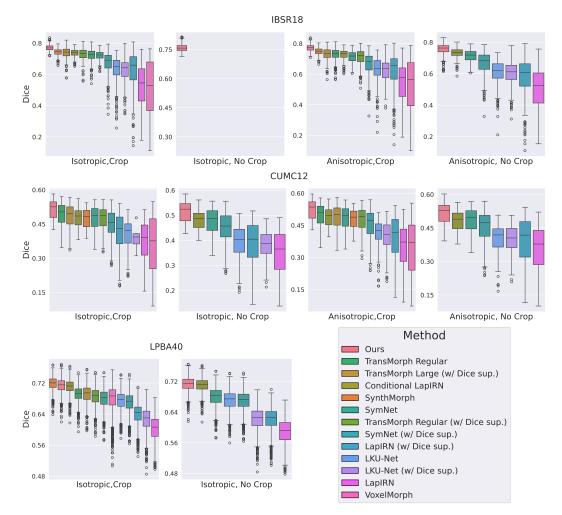


Figure 3: **Boxplots of Dice scores for three out-of-distribution datasets.** DIO performs significantly better across three datasets without additional finetuning. Contrary to other baselines that output warp fields considering 1mm isotropic data, leading to a performance drop with anisotropic volumes, DIO performs better with anisotropic data due to the optimization's resolution-agnostic nature.

283 **Results.** We evaluate across a variety of configurations -(i) preserving the anisotropy of the volumes or resampling to 1mm isotropic (denoted as *anisotropic* or *isotropic*), and (ii) center-cropping 284 the volumes to match the size of the OASIS dataset (denoted as Crop and No Crop). The results for all 285 three datasets are shown in Fig. 3 sorted by mean Dice score; quantitative comparison is also shown 286 in Appendix Table 4. Note that TransMorph, VoxelMorph, and SynthMorph do not work for sizes that 287 are different than the OASIS dataset, therefore they only work in the Crop setting. The IBSR18 dataset 288 also has volumes with different spatial sampling, and resampling to 1mm isotropic leads to different 289 voxel sizes. These volumes cannot be concatenated along the channel dimension, consequently every 290 DLIR method cannot run under this configuration (Fig. 3(a)). Since our method takes as input only a 291 single volume, and the convolutional architecture preserves the volume size, the fixed and moving 292 images can have different voxel sizes, i.e. feature extraction is not contingent on the voxel sizes of 293 the moving and fixed images being equal. The optimization solver can also handle different voxel 294 sizes for the fixed and moving volumes – which is useful in applications like multimodal registration 295 (in-vivo to ex-vivo, histology to 3D, MRI to microscopy). This unprecedented flexibility brings forth 296

a new operational paradigm in deep learning for registration that was unavailable before, widening
 the scope of applications for registration with deep features.

We compare our method with a variety of DLIR baselines, trained with and without label supervision (the former denoted as '*w*/*Dice sup*.' in Fig. 3). Our method performs substantially better than all the baselines with a significantly narrower interquartile range on the IBSR18 and CUMC12 datasets. The differences are significant – on IBSR18 and CUMC12, our median performance is higher than the third quartile of almost all baselines. The sturdy performance against domain shift provides a strong motivation for using optimization-in-the-loop for learnable registration.

4.4 Robust feature learning enables zero-shot performance by switching optimizers at test-time

Another major advantage of our framework is that we can switch the optimizer *at test time* without any retraining. This is useful when the registration constraints change over time (i.e. initially diffeomorphic transforms were required but now non-diffeomorphic transforms are acceptable), or when the registration is used in a pipeline where different parameterizations (freeform, diffeomorphic, geodesic, B-spline) may be compared. Since our framework decouples the feature learning from the optimization, we can switch the optimizer arbitrarily at test time, at no additional cost. A crucial requirement is that learned features should not be too sensitive to the training optimizer.

Optimizer		SGD		Fire	ANTs (diffeomo	orphic)
Architecture	DSC	HD95	$\%(\ \mathbf{J}\ < 0)$	DSC	HD95	$\%(\ \mathbf{J}\ < 0)$
UNet Encoder	0.845 ± 0.018	1.790 ± 0.433	0.7866 ± 0.1371	0.834 ± 0.018	1.847 ± 0.410	0.0000 ± 0.0000
LKU Encoder	0.849 ± 0.018	1.733 ± 0.401	0.8079 ± 0.1308	0.838 ± 0.018	1.806 ± 0.373	0.0000 ± 0.0000
UNet	0.853 ± 0.018	1.675 ± 0.379	1.0718 ± 0.1662	0.842 ± 0.018	1.748 ± 0.397	0.0000 ± 0.0000
LKU	0.862 ± 0.017	1.584 ± 0.351	0.8646 ± 0.1429	0.849 ± 0.017	1.740 ± 0.345	0.0000 ± 0.0000

Table 2: Zero shot performance by switching optimizers at test-time. Our method is trained on the OASIS dataset with the SGD optimizer to obtain the warp field. At inference time, we use an SGD optimizer for no constraint on the warp field, and the FireANTs optimizer to ensure diffeomorphic warps. Across all architectures, the Dice Score remains robust, with only a slight dip attributed to the constraints introduced by diffeomorphic mappings. The SGD optimization introduces $\sim 1\%$ singularities, while FireANTs shows no singularities.

To demonstrate this functionality, we use the val-314 idation set of the OASIS dataset and the four net-315 works trained in Section 4.2. The networks were 316 initially trained on the SGD optimizer without any 317 additional constraints on the warp field. At test 318 time, we switch the optimizer to the FireANTs 319 optimizer [46], that uses a Riemannian Adam op-320 timizer for multi-scale diffeomorphisms. Results 321 in Table 2 compare the Dice score, 95th percentile 322 of the Haussdorf distance (denoted as HD95) and 323 324 percentage of volume with negative Jacobians (de-325 noted as %(||J|| < 0)) for the two optimizers. The SGD optimizer introduces anywhere from 0.79% 326 to 1.1% of singularities in the registration, while 327 the FireANTs optimizer does not introduce any sin-328 gularities. A slight drop in performance can be at-329 tributed to the additional constraints imposed by dif-330 feomorphic transforms. However, the high-fidelity 331 features lead to a much better label overlap than 332 FireANTs run with image features (Table 1). Our 333 framework introduces an unprecedented amount 334 of flexibility at test time that is an indispensible 335 feature in deep learning for registration, and can 336 be useful in a variety of applications where the reg-337 istration requirements change over time, without 338 expensive retraining. 339

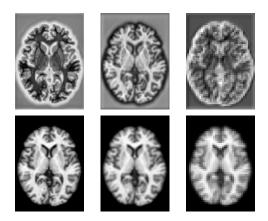


Figure 4: Examples of multi-scale features learned by the feature extractor. Scale-space features (*bottom row*) obtained by downsampling the image downsample all image features indiscriminately. Our features (*top row*) preserve necessary anatomical information at all scales, and introduce inhomogenity in the feature space for better optimization (watershed effect and enhanced contrast near gyri and a halo around the outer surface to delineaate background from gray matter).

340 4.5 Interpretability of features

Decoupling of feature learning and optimization allows us to examine the feature images obtained at 341 each scale to understand what feature help in the registration task. Classical methods use scale-space 342 images (smoothened and downsampled versions of the original image) to avoid local minima, but 343 lose discriminative image features at lower resolutions. Moreover, intensity images may not provide 344 sufficient details to perform label-aware registration. Since our method learns dense features to 345 minimize label matching losses, we can observe which features are necessary to enable label-aware 346 registration. Fig. 4 highlights differences between scale-space images and features learned by our 347 network. At all scales, the features introduces heterogeneity using a watershed effect and enhanced 348 contrast to improve label matching performance. 349

350 **4.6 Inference time**

DLIR methods have been very popular due to their fast inference time by performing amortized 351 optimization [14]. Classical methods generally focus on robustness and reproducubility, and do have 352 GPU implementations for fast inference. However, modern optimization toolkits [60, 46] utilize 353 massively parallel GPU computing to register images in seconds, and scale very well to ultrahigh 354 resolution imaging. A concern with optimization-in-the-loop methods is the inference time. Table 355 Table 3 shows the inference time for our method for all four architectures. These inference times are 356 fast for a lot of applications, and the plug-and-play nature of our framework makes DIO amenable to 357 rapid experimentation and hyperparameter tuning. 358

559 5 Conclusion and Limitations

360	Architecture	Neural net	Optimization
361	UNet	0.444	1.693
362	UNet-E	0.433	1.555
363	LKU	0.795	1.463
364	LKU-E	2.281	1.457

Table 3: Inference time for various architectures. A multi-scale optimization takes only ~ 1.5 seconds to run all iterations (no early stopping) making it suitable for most applications. This is compared to the time for neural network's feature extraction which is architecture dependent. **Conclusion** DLIR methods provide several benefits such as amortized optimization, integration of weak supervision, and the ability to learn from large (labeled) datasets. However, coupling of the feature learning and optimization steps in DLIR methods limits the flexibility and robustness of the deep networks. In this paper, we we introduce a novel paradigm that incorporates optimization-as-a-layer for learningbased frameworks. This paradigm retains all the flexibility and robustness of classical multi-scale methods while leverging large scale weak supervision such as anatomical landmarks into *high-fidelity, registration*-

aware feature learning. Our paradigm allows "promptable" registration out-of-the-box as part of 372 the plug-and-play optimization, where additional supervision such as labelmaps or landmarks can 373 be added to the optimization loss at test time. Our fast implementation allows for implementation 374 of optimization-as-a-layer in deep learning, which was previously thought to be infeasible, due 375 to existing optimization frameworks being prohibitively slow. Densification of features from our 376 method also leads to better optimization landscapes, and our method is robust to unseen anisotropy 377 and domain shift. To our knowledge, our method is the first to switch between transformation 378 representations (free-form to diffeomorphic) at test time without any retraining. This comes with fast 379 inference runtimes, and interpretability of the features used for optimization. Potential future work 380 can explore multimodal registration, online hyperparameter tuning and few-shot learning. 381

Limitations The first limitation is unlike existing DLIR methods that concatenate the fixed and 382 moving images to feed into the network, DIO processes the images independently. The features 383 extracted from an image are therefore trained to marginalize the label matching performance over all 384 possible moving images, and cannot adapt to the moving image. This leads to slightly asymptotically 385 lower in-domain performance than methods like [48]. The second limitation is the implicit bias of 386 the optimization algorithm. Implicit bias in SGD restricts the space of solutions for optimization 387 problems that are overparameterized, such as deep networks [113, 90, 47, 74, 109]. In deformable 388 registration, the implicit bias of SGD restricts the direction of the gradient of the particle at $\varphi(x)$, 389 which is *always parallel* to $\nabla F_m(\varphi(x))$, independent of the fixed image and dissimilarity function. 390 This limits the degrees of freedom of the optimization by N-fold for N-D images. This is unlike DLIR 391 methods where the warp is not constrained to move along $\nabla F_m(\varphi(x))$. This behavior is explored in 392 more detail in Appendix A.1. Future work aims to mitigate this implicit bias for better performance. 393

394 **References**

- [1] Internet brain segmentation repository (IBSR). http://www.cma.mgh.harvard.edu/
 ibsr/.
- [2] V. Arsigny, O. Commowick, X. Pennec, and N. Ayache. A Log-Euclidean Framework for
 Statistics on Diffeomorphisms. In R. Larsen, M. Nielsen, and J. Sporring, editors, *Medical Image Computing and Computer-Assisted Intervention MICCAI 2006*, Lecture Notes in
 Computer Science, pages 924–931, Berlin, Heidelberg, 2006. Springer.
- [3] J. Ashburner. A fast diffeomorphic image registration algorithm. *Neuroimage*, 38(1):95–113, 2007.
- [4] B. Avants and J. C. Gee. Geodesic estimation for large deformation anatomical shape averaging
 and interpolation. *NeuroImage*, 23:S139–S150, Jan. 2004.
- [5] B. B. Avants, C. L. Epstein, M. Grossman, and J. C. Gee. Symmetric diffeomorphic image
 registration with cross-correlation: evaluating automated labeling of elderly and neurodegener ative brain. *Medical Image Analysis*, 12(1):26–41, Feb. 2008.
- [6] B. B. Avants, C. L. Epstein, M. Grossman, and J. C. Gee. Symmetric diffeomorphic image
 registration with cross-correlation: Evaluating automated labeling of elderly and neurodegen erative brain. *Medical Image Analysis*, 12(1):26–41, Feb. 2008.
- [7] B. B. Avants, P. T. Schoenemann, and J. C. Gee. Lagrangian frame diffeomorphic image
 registration: Morphometric comparison of human and chimpanzee cortex. *Medical Image Analysis*, 10(3):397–412, June 2006.
- [8] S. Bai, Z. Geng, Y. Savani, and J. Z. Kolter. Deep Equilibrium Optical Flow Estimation. In
 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pages
 610–620, New Orleans, LA, USA, June 2022. IEEE.
- [9] S. Bai, J. Z. Kolter, and V. Koltun. Deep equilibrium models. Advances in neural information
 processing systems, 32, 2019.
- [10] S. Bai, V. Koltun, and J. Z. Kolter. Multiscale deep equilibrium models. *Advances in neural information processing systems*, 33:5238–5250, 2020.
- [11] W. Bai, H. Suzuki, J. Huang, C. Francis, S. Wang, G. Tarroni, F. Guitton, N. Aung, K. Fung,
 S. E. Petersen, et al. A population-based phenome-wide association study of cardiac and aortic
 structure and function. *Nature medicine*, 26(10):1654–1662, 2020.
- [12] R. Bajcsy, R. Lieberson, and M. Reivich. A computerized system for the elastic matching
 of deformed radiographic images to idealized atlas images. *Journal of computer assisted tomography*, 7(4):618–625, 1983.
- [13] G. Balakrishnan, A. Zhao, M. R. Sabuncu, J. Guttag, and A. V. Dalca. VoxelMorph: A
 Learning Framework for Deformable Medical Image Registration. *IEEE Transactions on Medical Imaging*, 38(8):1788–1800, Aug. 2019. arXiv:1809.05231 [cs].
- [14] G. Balakrishnan, A. Zhao, M. R. Sabuncu, J. Guttag, and A. V. Dalca. Voxelmorph: a learning
 framework for deformable medical image registration. *IEEE transactions on medical imaging*,
 38(8):1788–1800, 2019.
- [15] M. F. Beg, M. I. Miller, A. Trouvé, and L. Younes. Computing large deformation metric
 mappings via geodesic flows of diffeomorphisms. *International journal of computer vision*,
 61:139–157, 2005.
- [16] B. Billot, D. Moyer, N. Dey, M. Hoffmann, E. A. Turk, B. Gagoski, E. Grant, and P. Golland.
 Se (3)-equivariant and noise-invariant 3d motion tracking in medical images. *arXiv preprint arXiv:2312.13534*, 2023.
- [17] B. E. Brezovec, A. B. Berger, Y. A. Hao, F. Chen, S. Druckmann, and T. R. Clandinin.
 Mapping the neural dynamics of locomotion across the drosophila brain. *Current Biology*, 34(4):710–726, 2024.
- [18] K. K. Brock, S. Mutic, T. R. McNutt, H. Li, and M. L. Kessler. Use of image registration
 and fusion algorithms and techniques in radiotherapy: Report of the aapm radiation therapy
 committee task group no. 132. *Medical physics*, 44(7):e43–e76, 2017.

- [19] X. Cao, J. Yang, J. Zhang, D. Nie, M. Kim, Q. Wang, and D. Shen. Deformable image registration based on similarity-steered cnn regression. In *Medical Image Computing and Computer Assisted Intervention- MICCAI 2017: 20th International Conference, Quebec City, OC, Canada, September 11-13, 2017, Proceedings, Part I 20, pages 300–308. Springer, 2017.*
- [20] J. Chen, E. C. Frey, and Y. Du. Unsupervised learning of diffeomorphic image registration
 via transmorph. In *International Workshop on Biomedical Image Registration*, pages 96–102.
 Springer, 2022.
- [21] J. Chen, E. C. Frey, Y. He, W. P. Segars, Y. Li, and Y. Du. TransMorph: Transformer for unsupervised medical image registration. *Medical Image Analysis*, 82:102615, Nov. 2022.
- [22] J. Chen, E. C. Frey, Y. He, W. P. Segars, Y. Li, and Y. Du. TransMorph: Transformer for
 unsupervised medical image registration. *Medical Image Analysis*, 82:102615, Nov. 2022.
 arXiv:2111.10480 [cs, eess].
- [23] G. E. Christensen and H. J. Johnson. Consistent image registration. *IEEE transactions on medical imaging*, 20(7):568–582, 2001.
- [24] G. E. Christensen, S. C. Joshi, and M. I. Miller. Volumetric transformation of brain anatomy.
 IEEE transactions on medical imaging, 16(6):864–877, 1997.
- [25] G. E. Christensen, R. D. Rabbitt, and M. I. Miller. Deformable templates using large deformation kinematics. *IEEE transactions on image processing*, 5(10):1435–1447, 1996.
- [26] B. D. De Vos, F. F. Berendsen, M. A. Viergever, H. Sokooti, M. Staring, and I. Išgum. A deep
 learning framework for unsupervised affine and deformable image registration. *Medical image analysis*, 52:128–143, 2019.
- [27] F. Dru, P. Fillard, and T. Vercauteren. An ITK Implementation of the Symmetric Log-Domain
 Diffeomorphic Demons Algorithm. *The Insight Journal*, Sept. 2010.
- [28] Y. Fu, Y. Lei, T. Wang, W. J. Curran, T. Liu, and X. Yang. Deep learning in medical image
 registration: a review. *Physics in Medicine & Biology*, 65(20):20TR01, Oct. 2020.
- [29] Y. Fu, Y. Lei, T. Wang, K. Higgins, J. D. Bradley, W. J. Curran, T. Liu, and X. Yang. LungReg Net: an unsupervised deformable image registration method for 4D-CT lung. *Medical physics*,
 47(4):1763–1774, Apr. 2020.
- [30] Y. Fu, Y. Lei, J. Zhou, T. Wang, S. Y. David, J. J. Beitler, W. J. Curran, T. Liu, and X. Yang.
 Synthetic ct-aided mri-ct image registration for head and neck radiotherapy. In *Medical Imaging 2020: Biomedical Applications in Molecular, Structural, and Functional Imaging*, volume 11317, pages 572–578. SPIE, 2020.
- [31] S. W. Fung, H. Heaton, Q. Li, D. McKenzie, S. Osher, and W. Yin. JFB: Jacobian-Free
 Backpropagation for Implicit Networks, Dec. 2021. arXiv:2103.12803 [cs].
- [32] J. C. Gee and R. K. Bajcsy. Elastic matching: Continuum mechanical and probabilistic analysis.
 Brain warping, 2:183–197, 1998.
- [33] J. C. Gee, M. Reivich, and R. Bajcsy. Elastically deforming a three-dimensional atlas to match
 anatomical brain images. 1993.
- [34] Z. Geng and J. Z. Kolter. TorchDEQ: A Library for Deep Equilibrium Models, Oct. 2023.
 arXiv:2310.18605 [cs].
- [35] Z. Geng, X.-Y. Zhang, S. Bai, Y. Wang, and Z. Lin. On training implicit models. *Advances in Neural Information Processing Systems*, 34:24247–24260, 2021.
- [36] A. Gholipour, N. Kehtarnavaz, R. Briggs, M. Devous, and K. Gopinath. Brain functional
 localization: a survey of image registration techniques. *IEEE transactions on medical imaging*,
 26(4):427–451, 2007.
- [37] D. Gilton, G. Ongie, and R. Willett. Deep equilibrium architectures for inverse problems in imaging. *IEEE Transactions on Computational Imaging*, 7:1123–1133, 2021.
- [38] M. Goubran, C. Crukley, S. De Ribaupierre, T. M. Peters, and A. R. Khan. Image registration
 of ex-vivo mri to sparsely sectioned histology of hippocampal and neocortical temporal lobe
 specimens. *Neuroimage*, 83:770–781, 2013.
- [39] U. Grenander and M. I. Miller. Computational anatomy: An emerging discipline. *Quarterly of applied mathematics*, 56(4):617–694, 1998.

- [40] G. Haskins, J. Kruecker, U. Kruger, S. Xu, P. A. Pinto, B. J. Wood, and P. Yan. Learning deep
 similarity metric for 3d mr-trus image registration. *International journal of computer assisted radiology and surgery*, 14:417–425, 2019.
- [41] G. Haskins, U. Kruger, and P. Yan. Deep learning in medical image registration: a survey.
 Machine Vision and Applications, 31(1):8, Jan. 2020.
- [42] A. Hering, L. Hansen, T. C. Mok, A. C. Chung, H. Siebert, S. Häger, A. Lange, S. Kuckertz,
 S. Heldmann, W. Shao, et al. Learn2reg: comprehensive multi-task medical image registration
 challenge, dataset and evaluation in the era of deep learning. *IEEE Transactions on Medical Imaging*, 42(3):697–712, 2022.
- [43] M. Hoffmann, B. Billot, D. N. Greve, J. E. Iglesias, B. Fischl, and A. V. Dalca. Synthmorph:
 learning contrast-invariant registration without acquired images. *IEEE transactions on medical imaging*, 41(3):543–558, 2021.
- [44] A. Hoopes, M. Hoffmann, B. Fischl, J. Guttag, and A. V. Dalca. Hypermorph: Amortized hyperparameter learning for image registration. In *Information Processing in Medical Imaging:* 27th International Conference, IPMI 2021, Virtual Event, June 28–June 30, 2021, Proceedings 27, pages 3–17. Springer, 2021.
- [45] J. Hu, W. Gan, Z. Sun, H. An, and U. S. Kamilov. A Plug-and-Play Image Registration
 Network, Mar. 2024. arXiv:2310.04297 [eess].
- [46] R. Jena, P. Chaudhari, and J. C. Gee. Fireants: Adaptive riemannian optimization for multi scale diffeomorphic registration. *arXiv preprint arXiv:2404.01249*, 2024.
- [47] Z. Ji and M. Telgarsky. Gradient descent aligns the layers of deep linear networks. *arXiv* preprint arXiv:1810.02032, 2018.
- [48] X. Jia, J. Bartlett, T. Zhang, W. Lu, Z. Qiu, and J. Duan. U-net vs transformer: Is u-net outdated in medical image registration? *arXiv preprint arXiv:2208.04939*, 2022.
- [49] A. Joshi and Y. Hong. Diffeomorphic Image Registration using Lipschitz Continuous Residual
 Networks. page 13.
- [50] M. L. Kessler. Image registration and data fusion in radiation therapy. *The British journal of radiology*, 79(special_issue_1):S99–S108, 2006.
- [51] B. Kim, D. H. Kim, S. H. Park, J. Kim, J.-G. Lee, and J. C. Ye. Cyclemorph: cycle consistent unsupervised deformable image registration. *Medical image analysis*, 71:102036, 2021.
- [52] B. Kim, J. Kim, J.-G. Lee, D. H. Kim, S. H. Park, and J. C. Ye. Unsupervised deformable image registration using cycle-consistent cnn. In *Medical Image Computing and Computer Assisted Intervention–MICCAI 2019: 22nd International Conference, Shenzhen, China, October 13–17, 2019, Proceedings, Part VI 22*, pages 166–174. Springer, 2019.
- [53] A. Klein, J. Andersson, B. A. Ardekani, J. Ashburner, B. Avants, M.-C. Chiang, G. E. Christensen, D. L. Collins, J. Gee, P. Hellier, J. H. Song, M. Jenkinson, C. Lepage, D. Rueckert, P. Thompson, T. Vercauteren, R. P. Woods, J. J. Mann, and R. V. Parsey. Evaluation of 14 nonlinear deformation algorithms applied to human brain MRI registration. *NeuroImage*, 46(3):786–802, July 2009.
- [54] S. G. Krantz and H. R. Parks. *The implicit function theorem: history, theory, and applications*.
 Springer Science & Business Media, 2002.
- [55] J. Krebs, T. Mansi, H. Delingette, L. Zhang, F. C. Ghesu, S. Miao, A. K. Maier, N. Ayache,
 R. Liao, and A. Kamen. Robust non-rigid registration through agent-based action learning.
 In *Medical Image Computing and Computer Assisted Intervention- MICCAI 2017: 20th International Conference, Quebec City, QC, Canada, September 11-13, 2017, Proceedings, Part I 20*, pages 344–352. Springer, 2017.
- [56] L. Lebrat, R. Santa Cruz, F. de Gournay, D. Fu, P. Bourgeat, J. Fripp, C. Fookes, and O. Salvado.
 CorticalFlow: A Diffeomorphic Mesh Transformer Network for Cortical Surface Reconstruction. In *Advances in Neural Information Processing Systems*, volume 34, pages 29491–29505.
 Curran Associates, Inc., 2021.
- [57] F. Liu, K. Yan, A. P. Harrison, D. Guo, L. Lu, A. L. Yuille, L. Huang, G. Xie, J. Xiao, X. Ye, and D. Jin. SAME: Deformable Image Registration Based on Self-supervised Anatomical Embeddings. In M. de Bruijne, P. C. Cattin, S. Cotin, N. Padoy, S. Speidel, Y. Zheng, and

- C. Essert, editors, *Medical Image Computing and Computer Assisted Intervention MICCAI* 2021, Lecture Notes in Computer Science, pages 87–97, Cham, 2021. Springer International
 Publishing.
- [58] J. Lv, Z. Wang, H. Shi, H. Zhang, S. Wang, Y. Wang, and Q. Li. Joint progressive and coarse-to-fine registration of brain mri via deformation field integration and non-rigid feature fusion. *IEEE Transactions on Medical Imaging*, 41(10):2788–2802, 2022.
- [59] J. Ma, X. Jiang, A. Fan, J. Jiang, and J. Yan. Image matching from handcrafted to deep features: A survey. *International Journal of Computer Vision*, 129(1):23–79, 2021.
- [60] A. Mang, A. Gholami, C. Davatzikos, and G. Biros. CLAIRE: A distributed-memory solver for
 constrained large deformation diffeomorphic image registration. *SIAM Journal on Scientific Computing*, 41(5):C548–C584, Jan. 2019. arXiv:1808.04487 [cs, math].
- [61] A. Mang and L. Ruthotto. A lagrangian gauss–newton–krylov solver for mass-and intensity preserving diffeomorphic image registration. *SIAM Journal on Scientific Computing*,
 39(5):B860–B885, 2017.
- [62] D. S. Marcus, T. H. Wang, J. Parker, J. G. Csernansky, J. C. Morris, and R. L. Buckner.
 Open access series of imaging studies (oasis): cross-sectional mri data in young, middle aged,
 nondemented, and demented older adults. *Journal of cognitive neuroscience*, 19(9):1498–1507,
 2007.
- [63] M. I. Miller, A. Trouvé, and L. Younes. On the Metrics and Euler-Lagrange Equations of
 Computational Anatomy. *Annual Review of Biomedical Engineering*, 4(1):375–405, 2002.
 _____eprint: https://doi.org/10.1146/annurev.bioeng.4.092101.125733.
- [64] M. Modat, G. R. Ridgway, Z. A. Taylor, M. Lehmann, J. Barnes, D. J. Hawkes, N. C. Fox, and
 S. Ourselin. Fast free-form deformation using graphics processing units. *Computer methods* and programs in biomedicine, 98(3):278–284, 2010.
- [65] T. C. Mok and A. Chung. Fast symmetric diffeomorphic image registration with convolutional
 neural networks. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pages 4644–4653, 2020.
- [66] T. C. Mok and A. Chung. Affine medical image registration with coarse-to-fine vision
 transformer. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 20835–20844, 2022.
- [67] T. C. Mok and A. C. Chung. Conditional deformable image registration with convolutional
 neural network. pages 35–45, 2021.
- [68] T. C. W. Mok and A. C. S. Chung. Large Deformation Diffeomorphic Image Registration with
 Laplacian Pyramid Networks, June 2020. arXiv:2006.16148 [cs, eess].
- [69] D. Moyer, E. Abaci Turk, P. E. Grant, W. M. Wells, and P. Golland. Equivariant filters
 for efficient tracking in 3d imaging. In *Medical Image Computing and Computer Assisted Intervention–MICCAI 2021: 24th International Conference, Strasbourg, France, September* 27–October 1, 2021, Proceedings, Part IV 24, pages 193–202. Springer, 2021.
- [70] K. Murphy, B. Van Ginneken, J. M. Reinhardt, S. Kabus, K. Ding, X. Deng, K. Cao, K. Du,
 G. E. Christensen, V. Garcia, et al. Evaluation of registration methods on thoracic ct: the
 empire10 challenge. *IEEE transactions on medical imaging*, 30(11):1901–1920, 2011.
- [71] S. Oh and S. Kim. Deformable image registration in radiation therapy. *Radiation oncology journal*, 35(2):101, 2017.
- [72] H. Peng, P. Chung, F. Long, L. Qu, A. Jenett, A. M. Seeds, E. W. Myers, and J. H. Simpson.
 Brainaligner: 3d registration atlases of drosophila brains. *Nature methods*, 8(6):493–498, 2011.
- [73] J. Pérez de Frutos, A. Pedersen, E. Pelanis, D. Bouget, S. Survarachakan, T. Langø, O.-J. Elle, and F. Lindseth. Learning deep abdominal ct registration through adaptive loss weighting and synthetic data generation. *Plos one*, 18(2):e0282110, 2023.
- [74] S. Pesme, L. Pillaud-Vivien, and N. Flammarion. Implicit bias of sgd for diagonal linear
 networks: a provable benefit of stochasticity. *Advances in Neural Information Processing Systems*, 34:29218–29230, 2021.

- [75] A. Pokle, Z. Geng, and J. Z. Kolter. Deep equilibrium approaches to diffusion models.
 Advances in Neural Information Processing Systems, 35:37975–37990, 2022.
- [76] Y. Qiao, B. P. Lelieveldt, and M. Staring. An efficient preconditioner for stochastic gradient descent optimization of image registration. *IEEE transactions on medical imaging*, 38(10):2314–2325, 2019.
- [77] C. Qin, S. Wang, C. Chen, W. Bai, and D. Rueckert. Generative Myocardial Motion Tracking
 via Latent Space Exploration with Biomechanics-informed Prior, June 2022. arXiv:2206.03830
 [cs, eess].
- [78] C. Qin, S. Wang, C. Chen, H. Qiu, W. Bai, and D. Rueckert. Biomechanics-informed Neural
 Networks for Myocardial Motion Tracking in MRI, July 2020. arXiv:2006.04725 [cs, eess].
- [79] H. Qiu, C. Qin, A. Schuh, K. Hammernik, and D. Rueckert. Learning diffeomorphic and
 modality-invariant registration using b-splines. 2021.
- [80] L. Qu, F. Long, and H. Peng. 3-d registration of biological images and models: registration
 of microscopic images and its uses in segmentation and annotation. *IEEE Signal Processing Magazine*, 32(1):70–77, 2014.
- [81] D. Quan, H. Wei, S. Wang, R. Lei, B. Duan, Y. Li, B. Hou, and L. Jiao. Self-distillation feature
 learning network for optical and sar image registration. *IEEE Transactions on Geoscience and Remote Sensing*, 60:1–18, 2022.
- [82] M.-M. Rohé, M. Datar, T. Heimann, M. Sermesant, and X. Pennec. Svf-net: learning de formable image registration using shape matching. In *Medical Image Computing and Com- puter Assisted Intervention- MICCAI 2017: 20th International Conference, Quebec City, QC, Canada, September 11-13, 2017, Proceedings, Part I 20*, pages 266–274. Springer, 2017.
- [83] O. Ronneberger, P. Fischer, and T. Brox. U-net: Convolutional networks for biomedical image
 segmentation. In *Medical image computing and computer-assisted intervention-MICCAI* 2015: 18th international conference, Munich, Germany, October 5-9, 2015, proceedings, part
 III 18, pages 234–241. Springer, 2015.
- [84] J. G. Rosenman, E. P. Miller, and T. J. Cullip. Image registration: an essential part of radiation
 therapy treatment planning. *International Journal of Radiation Oncology* Biology* Physics*,
 40(1):197–205, 1998.
- [85] D. W. Shattuck, M. Mirza, V. Adisetiyo, C. Hojatkashani, G. Salamon, K. L. Narr, R. A.
 Poldrack, R. M. Bilder, and A. W. Toga. Construction of a 3d probabilistic atlas of human
 cortical structures. *Neuroimage*, 39(3):1064–1080, 2008.
- [86] A. Siarohin. cuda-gridsample-grad2. GitHub Repository, 2023.
- [87] H. Siebert, L. Hansen, and M. P. Heinrich. Fast 3d registration with accurate optimisation and
 little learning for learn2reg 2021. In *International Conference on Medical Image Computing and Computer-Assisted Intervention*, pages 174–179. Springer, 2021.
- [88] H. Sokooti, B. De Vos, F. Berendsen, B. P. Lelieveldt, I. Išgum, and M. Staring. Nonrigid image
 registration using multi-scale 3d convolutional neural networks. In *Medical Image Computing and Computer Assisted Intervention- MICCAI 2017: 20th International Conference, Quebec City, QC, Canada, September 11-13, 2017, Proceedings, Part I 20*, pages 232–239. Springer,
 2017.
- [89] J. H. Song, G. E. Christensen, J. A. Hawley, Y. Wei, and J. G. Kuhl. Evaluating image
 registration using nirep. In *Biomedical Image Registration: 4th International Workshop, WBIR* 2010, Lübeck, Germany, July 11-13, 2010. Proceedings 4, pages 140–150. Springer, 2010.
- [90] D. Soudry, E. Hoffer, M. S. Nacson, S. Gunasekar, and N. Srebro. The implicit bias of gradient
 descent on separable data. *Journal of Machine Learning Research*, 19(70):1–57, 2018.
- [91] Z. Teed and J. Deng. RAFT: Recurrent All-Pairs Field Transforms for Optical Flow, Aug.
 2020. arXiv:2003.12039 [cs].
- [92] L. Tian, H. Greer, F.-X. Vialard, R. Kwitt, R. S. J. Estépar, R. J. Rushmore, N. Makris,
 S. Bouix, and M. Niethammer. Gradicon: Approximate diffeomorphisms via gradient inverse
 consistency. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 18084–18094, 2023.

- [93] L. Tian, Z. Li, F. Liu, X. Bai, J. Ge, L. Lu, M. Niethammer, X. Ye, K. Yan, and D. Jin. SAME++:
 A Self-supervised Anatomical eMbeddings Enhanced medical image registration framework
 using stable sampling and regularized transformation, Nov. 2023. arXiv:2311.14986 [cs].
- [94] A. W. Toga and P. M. Thompson. The role of image registration in brain mapping. *Image and vision computing*, 19(1-2):3–24, 2001.
- [95] D. Ulyanov, A. Vedaldi, and V. Lempitsky. Deep Image Prior. *International Journal of Computer Vision*, 128(7):1867–1888, July 2020. arXiv:1711.10925 [cs, stat].
- [96] H. Uzunova, M. Wilms, H. Handels, and J. Ehrhardt. Training cnns for image registration
 from few samples with model-based data augmentation. In *Medical Image Computing and Computer Assisted Intervention- MICCAI 2017: 20th International Conference, Quebec City, QC, Canada, September 11-13, 2017, Proceedings, Part I 20,* pages 223–231. Springer, 2017.
- [97] D. C. Van Essen, H. A. Drury, S. Joshi, and M. I. Miller. Functional and structural mapping of
 human cerebral cortex: solutions are in the surfaces. *Proceedings of the National Academy of Sciences*, 95(3):788–795, 1998.
- [98] E. Varol, A. Nejatbakhsh, R. Sun, G. Mena, E. Yemini, O. Hobert, and L. Paninski. Statistical atlas of c. elegans neurons. In *Medical Image Computing and Computer Assisted Intervention– MICCAI 2020: 23rd International Conference, Lima, Peru, October 4–8, 2020, Proceedings, Part V 23*, pages 119–129. Springer, 2020.
- [99] V. Venkatachalam, N. Ji, X. Wang, C. Clark, J. K. Mitchell, M. Klein, C. J. Tabone, J. Florman, H. Ji, J. Greenwood, et al. Pan-neuronal imaging in roaming caenorhabditis elegans.
 Proceedings of the National Academy of Sciences, 113(8):E1082–E1088, 2016.
- [100] T. Vercauteren, X. Pennec, A. Perchant, and N. Ayache. Symmetric Log-Domain Diffeomor phic Registration: A Demons-Based Approach. In D. Metaxas, L. Axel, G. Fichtinger, and
 G. Székely, editors, *Medical Image Computing and Computer-Assisted Intervention MICCAI* 2008, Lecture Notes in Computer Science, pages 754–761, Berlin, Heidelberg, 2008. Springer.
- [101] T. Vercauteren, X. Pennec, A. Perchant, and N. Ayache. Diffeomorphic demons: Efficient non-parametric image registration. *NeuroImage*, 45(1):S61–S72, Mar. 2009.
- [102] T. Vercauteren, X. Pennec, A. Perchant, N. Ayache, et al. Diffeomorphic demons using itk's finite difference solver hierarchy. *The Insight Journal*, 1, 2007.
- [103] A. Q. Wang, M. Y. Evan, A. V. Dalca, and M. R. Sabuncu. A robust and interpretable deep
 learning framework for multi-modal registration via keypoints. *Medical Image Analysis*,
 90:102962, 2023.
- [104] Q. Wang, S.-L. Ding, Y. Li, J. Royall, D. Feng, P. Lesnar, N. Graddis, M. Naeemi, B. Facer,
 A. Ho, T. Dolbeare, B. Blanchard, N. Dee, W. Wakeman, K. E. Hirokawa, A. Szafer, S. M.
 Sunkin, S. W. Oh, A. Bernard, J. W. Phillips, M. Hawrylycz, C. Koch, H. Zeng, J. A. Harris,
 and L. Ng. The Allen Mouse Brain Common Coordinate Framework: A 3D Reference Atlas. *Cell*, 181(4):936–953.e20, May 2020.
- [105] Y. Wang, X. Wei, F. Liu, J. Chen, Y. Zhou, W. Shen, E. K. Fishman, and A. L. Yuille. Deep
 Distance Transform for Tubular Structure Segmentation in CT Scans. In 2020 IEEE/CVF
 Conference on Computer Vision and Pattern Recognition (CVPR), pages 3832–3841, Seattle,
 WA, USA, June 2020. IEEE.
- [106] J. M. Wolterink, J. C. Zwienenberg, and C. Brune. Implicit Neural Representations for
 Deformable Image Registration. page 11.
- [107] G. Wu, M. Kim, Q. Wang, Y. Gao, S. Liao, and D. Shen. Unsupervised deep feature learning
 for deformable registration of mr brain images. In *Medical Image Computing and Computer- Assisted Intervention–MICCAI 2013: 16th International Conference, Nagoya, Japan, Septem-* ber 22-26, 2013, Proceedings, Part II 16, pages 649–656. Springer, 2013.
- [108] G. Wu, M. Kim, Q. Wang, B. C. Munsell, and D. Shen. Scalable high-performance image reg istration framework by unsupervised deep feature representations learning. *IEEE transactions on biomedical engineering*, 63(7):1505–1516, 2015.
- [109] J. Wu, D. Zou, V. Braverman, and Q. Gu. Direction matters: On the implicit bias of stochastic
 gradient descent with moderate learning rate. *arXiv preprint arXiv:2011.02538*, 2020.

- [110] Y. Wu, T. Z. Jiahao, J. Wang, P. A. Yushkevich, M. A. Hsieh, and J. C. Gee. NODEO: A
 Neural Ordinary Differential Equation Based Optimization Framework for Deformable Image
 Registration. *arXiv:2108.03443 [cs]*, Feb. 2022. arXiv: 2108.03443.
- [111] Z. Yang, T. Pang, and Y. Liu. A closer look at the adversarial robustness of deep equilibrium models. *Advances in Neural Information Processing Systems*, 35:10448–10461, 2022.
- [112] I. Yoo, D. G. Hildebrand, W. F. Tobin, W.-C. A. Lee, and W.-K. Jeong. ssemnet: Serial-section
 electron microscopy image registration using a spatial transformer network with learned
 features. pages 249–257, 2017.
- [113] C. Zhang, S. Bengio, M. Hardt, B. Recht, and O. Vinyals. Understanding deep learning (still)
 requires rethinking generalization. *Communications of the ACM*, 64(3):107–115, 2021.
- [114] L. Zhang, L. Zhou, R. Li, X. Wang, B. Han, and H. Liao. Cascaded feature warping network
 for unsupervised medical image registration. In 2021 IEEE 18th International Symposium on
 Biomedical Imaging (ISBI), pages 913–916. IEEE, 2021.
- [115] S. Zhao, Y. Dong, E. I.-C. Chang, and Y. Xu. Recursive cascaded networks for unsupervised
 medical image registration. In *Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)*, October 2019.
- [116] S. Zhao, T. Lau, J. Luo, I. Eric, C. Chang, and Y. Xu. Unsupervised 3d end-to-end medical image registration with volume tweening network. *IEEE journal of biomedical and health informatics*, 24(5):1394–1404, 2019.

725 A Appendix

726 A.1 Implicit bias of optimization for registration

Model based systems, such as deep networks are not immune to inductive biases due to architecture, 727 loss functions, and optimization algorithms used to train them. Functional forms of the deep 728 network induce constraints on the solution space, but optimization algorithms are not excluded 729 from such biases either. The implicit bias for Gradient Descent is a well-studied phenomena for 730 overparameterized linear and shallow networks. Gradient Descent for linear systems leads to an 731 optimum that is in the span of the input data starting from the initialization [113, 90, 47, 74, 109]. 732 This bias is also dependent on the chosen representation, since that defines the functional relationship 733 of the gradients with the parameters and inputs. This limits the reachable set of solutions by the 734 optimization algorithm when multiple local minima exist. 735

In the case of image registration, the optimization limits the space of solutions (warps) that can be obtained by the SGD algorithm. To show this, we consider the transformation φ as a set of particles in a Langrangian frame that are displaced by the optimization algorithm to align the moving image to the fixed image. Consider a regular grid of particles, whose locations specify the warp field. Let the location of *i*-th particle at iteration *t* be $\varphi^{(t)}(\mathbf{x}_i)$. For a fixed feature image F_f , moving image F_m and current iterate $\varphi^{(t)}$, the gradient of the registration loss with respect to particle *i* at iteration *t* is given by

$$\frac{\partial C(F_f, F_m \circ \varphi^{(t)})}{\partial \varphi^{(t)}(\mathbf{x}_i)} = C'_i(F_f, F_m \circ \varphi^{(t)}) \nabla F_m(\varphi^{(t)}(\mathbf{x}_i))$$
(5)

where

$$C_i'(F_f, F_m \circ \varphi^{(t)}) = \frac{\partial C(F_f, F_m \circ \varphi^{(t)})}{\partial M(\varphi^{(t)}(\mathbf{x}_i))}$$

is the (scalar) derivative of scalar loss C with respect to the intensity of *i*-th particle computed at 743 the current iterate, and $\nabla F_m(\varphi^{(t)}(\mathbf{x}_i))$ is the spatial gradient of the moving image at the location of 744 the particle. Note that the **direction** of the gradient of particle *i* is *independent* of the fixed image, 745 loss function, and location of other particles - it only depends on the spatial gradient of the moving 746 image at the location of the particle. This restricts the movement of a particle located at any given 747 location along a 1D line whose direction is the spatial gradient of the moving image at that location. 748 Since F_f and F_m are computed independently of each other (and therefore no information of F_f and 749 F_m is contained in each other), the space of solutions of φ is restricted by this implicit bias. This 750 is restrictive because the similarity function and fixed image do not influence the direction of the 751 gradient, and the optimization algorithm is biased towards solutions that are in the direction of the 752 gradient of the moving image. 753

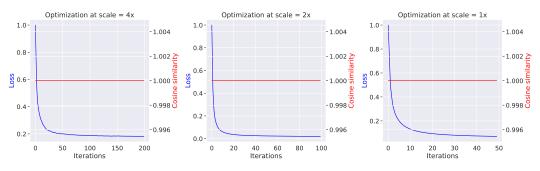


Figure 5: **Implicit bias in SGD for image registration.** The plot shows the loss curves for a multi-scale optimization of two feature images. Each plot also shows the absolute cosine similarity of per-pixel gradients obtained by C and $C_{\text{surrogate}}$ at each iteration. Note that over the course of optimization, the cosine similarity is always 1 – demonstrating the implicit bias of the optimization for registration.

We show this bias empirically – we perform multi-scale optimization algorithm using feature maps obtained from the network. We keep track of two gradients, one obtained by the loss function, and another obtained by the gradient of a surrogate loss $C_{\text{surrogate}}(F_m, \varphi^{(t)}) = \sum_i F_m(\varphi^{(t)}(\mathbf{x}_i))$. Note that $C_{\text{surrogate}}$ does not depend on the fixed image or the loss function. The gradient of $C_{\text{surrogate}}$ with respect to the *i*-th particle is given by $\nabla F_m(\varphi^{(t)}(\mathbf{x}_i))$. At each iteration, we compute the magnitude of cosine similarly between the gradients of *C* and *C*_{surrogate}. Fig. 5 shows that the loss converges, and the per-pixel gradients can be predicted by *C*_{surrogate} alone, as depicted by the magnitude and standard deviation of cosine similarity between *C* and *C*_{surrogate}. This limits the movement of each particle along a 1D line in an *N*-D space, and limits the degrees of freedom of the optimization by *N*-fold for *N*-D images. Future work will aim at alleviating this implicit bias to allow for more flexible solutions.

765 A.2 Algorithm details

DIO is a learnable framework that leverages implicit differentiation of an arbitrary black-box optimiza-766 tion solver to learn features such that registration in this feature space corresponds to good registration 767 of the images and additional label maps. This additional indirection leads to learnable features that 768 are registration-aware, interpretable, and the framework inherits the optimization solver's versatility 769 to variability in the data like difference in contrast, anisotropy, and difference in sizes of the fixed and 770 moving images. We contrast our approach with a typical classical optimization-based registration 771 algorithm in Fig. 6. A classical multi-scale optimization routine *indiscriminately* downsamples the 772 intensity images, and does not retain discriminative information that is useful for registration. Since 773 our method is trained to maximize label alignment from all scales, multi-scale features obtained from 774 our method are more discriminative and registration-aware. We also compare DIO with a typical 775 DLIR method in Fig. 7. Note that the fixed end-to-end architecture and functional form of a deep 776 network subsumes the representation choice into the architecture as well, limiting its ability to switch 777 to arbitrary transformation representations at inference time without additional retraining. Our frame-778 work therefore combines the benefits of both classical (robustness to out-of-distribution datasets, 779 and zero-shot transfer to other optimization routines) and learning-based methods (high-fidelity, 780 label-aware, and registration-aware). 781

782 A.3 Implementation Details

For all experiments, we use downsampling scales of 1, 2, 4 for the multi-scale optimization. All our 783 methods are implemented in PvTorch, and use the Adam optimizer for learning the parameters of the 784 feature network. Note that in Eq. (3), ρ is the partial derivative of the loss function C with respect 785 to the transformation φ , which contains a $\nabla(F_m \circ \varphi)$ term, which is the backward transform of the 786 grid_sample operator in PyTorch. Since this operation is not implemented using PyTorch primitives, 787 a backward pass for the gradient operation does not exist in PyTorch. We use the gridsample_grad2 788 library [86] to compute the gradients of the backward pass of the grid_sample operator, used in 789 Eq. (3). All experiments are performed on a single NVIDIA A6000 GPU. 790

791 A.4 Toy example

Fig. 8 shows the loss curves for the toy dataset described in Section 4.1. An image-based optimization algorithm would correspond to the green curve being a flat line at 1 due to the flat landscape of the intensity-based loss function.

795 A.5 Quantitative Results

Table 4 shows the quantitative results of our method for out-of-distribution performance on the IBSR18, CUMC12, and LPBA40 datasets. In 9 out of 10 cases, DIO demonstrates the best accuracy with fairly lower standard deviations, highlighting the robustness of the model. DIO therefore serves as a strong candidate for out-of-distribution performance, and can be used in a variety of settings where the training and test distributions differ.

801 A.6 Datasets

We consider four brain MRI datasets in this paper: OASIS dataset for in-distribution performance, and LPBA40, IBSR18, and CUMC12 datasets for out-of-distribution performance [85, 1, 53, 62]. More details about the datasets are provided below.

- **OASIS**. The Open Access Series of Imaging Studies (OASIS) dataset contains 414 T1-weighted brain images in Young, Middle Aged, Nondemented, and Demented Older adults. The images are skull-stripped and bias-corrected, followed by a resampling and afine alignment to the FreeSurfer's Talairach atlas. Label segmentations of 35 subcortical structures were obtained using automatic commentation using Erectures
- sog segmentation using Freesurfer software.

Algorithm 1 Classical registration pipeline

1: **Input:** Fixed image I_f , Moving image I_m 2: Scales $[s_1, s_2, \ldots, s_n]$, Iterations $[T_1, T_2, \ldots, T_n]$, *n* levels. 3: Initialize $\varphi = \mathbf{Id}_{s_1}$. ▷ Initialize warp to identity at first scale 4: Initialize l = 1. ▷ Initialize current scale 5: while $l \leq n$ do 6: Initialize i = 0Initialize $I_f^l, I_m^l = \text{downsample}(I_f, s_l), \text{downsample}(I_m, s_l)$ 7: while $i < \mathring{T}_l$ do 8: $L_i = C(I_f^l, I_m^l \circ \varphi^i)$ 9: Compute $\nabla_{\varphi}L$ 10: Update $\varphi^{(i+1)} = \text{Optimize}(\varphi^i, \nabla_{\varphi} L_i)$ 11: ▷ Optimization algorithm i = i + 112: 13: end while 14: if l < n then $\varphi = \text{Upsample}(\varphi, s_{(l+1)})$ 15: \triangleright Upsample warp to next level 16: end if 17: l = l + 118: end while

Algorithm 2 Differentiable Implicit Optimization for Registration (Our algorithm)

1: Input: Fixed features $\mathcal{F}_f = [F_f^1, F_f^2 \dots F_f^n]$, Moving features $\mathcal{F}_f = [F_f^1, F_f^2 \dots F_f^n]$ 2: Scales $[s_1, s_2, \ldots, s_n]$, Iterations $[T_1, T_2, \ldots, T_n]$, *n* levels. 3: Initialize $\varphi = \mathbf{Id}_{s_1}$. Initialize warp to identity at first scale 4: Initialize l = 1. ▷ Initialize current scale > Save intermediate outputs for backpropagation 5: Outputs = []. 6: while $l \leq n$ do Initialize i = 07: Initialize $I_f^l, I_m^l = F_f^l, F_m^l$ while $i < T_l$ do 8: 9: $L_i = C(I_f^l, I_m^l \circ \varphi^i)$ Compute $\nabla_{\varphi} L$ 10: 11: Update $\varphi^{(i+1)} = \text{Optimize}(\varphi^i, \nabla_{\varphi} L_i)$ 12: ▷ Optimization algorithm i = i + 113: end while 14: Outputs.append $\left(\varphi^{(T_l)}\right)$ 15: ▷ Save final warp at this level for backpropagation 16: if l < n then 17: $\varphi = \text{Upsample}(\varphi, s_{(l+1)})$ ▷ Upsample warp for next level 18: end if 19: l = l + 120: end while

Figure 6: Comparison of a typical classical registration algorithm and DIO: Algorithm 1 shows a typical classical registration algorithm that uses a multi-scale optimization routine to register the fixed and moving images. At each level l, the fixed and moving images are downsampled by a factor of s_l , therefore trading off between discriminative information and vulnerability to local minima. Algorithm 2 shows our algorithm (red text highlights differences compared to Algorithm 1) that uses a separate scale-space feature at each level. Unlike classical methods, the scale-space feature can capture different discriminative features at each level to maximize label alignment and the multi-scale nature helps avoid local minima.

LPBA40. 40 brain images and their labels are used to construct the LONI Probabilistic Brain Atlas
 (LPBA40) dataset at the Laboratory of Neuroimaging (LONI) at UCLA [85]. All volumes are
 preprocessed according to LONI protocols to produce skull-stripped volumes. These volumes are
 aligned to the MNI305 atlas – this is relevant since existing DLIR methods may be biased towards

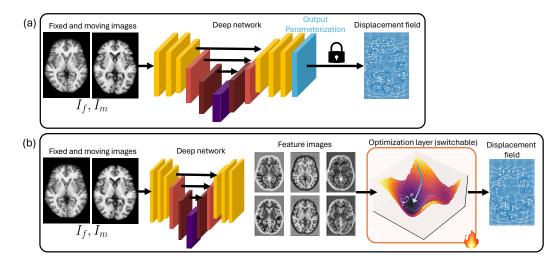
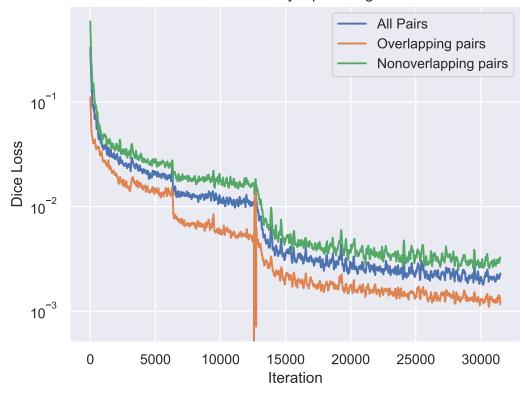


Figure 7: **Comparison of typical DLIR method and our method.** (a) shows the pipeline of a typical deep network. The neural network architecture takes the channelwise concatenation of the fixed and moving images as input, and outputs a warp field, which has a *fixed* transformation representation (SVF, free-form, B-splines, affine, etc. denoted as the blue locked layer). This representation is fixed throughout training and cannot be switched at test-time, without additional finetuning of the network. (b) shows our framework wherein the fixed and moving images are input *separately* into a feature extraction network that outputs multi-scale features. These features are then passed onto an iterative black-box solver than can be *implicitly differentiated* to backpropagate the gradients from the optimized warp field back to the feature network. This allows for a more flexible transformation representation, and the optimization solver can be switched at test-time with zero finetuning.

- images that are aligned to the Talairach and Tournoux (1988) atlas which is used to align the images
 in the OASIS dataset. This is followed by a custom manual labelling protocol of 56 structures from
 each of the volumes. Bias correction is perfrmed using the BrainSuite's Bias Field Corrector.
- **IBSR18**. the Internet Brain Segmentation Repository contains 18 different brain images acquired at different laboratories as IBSRv2.0. The dataset consists of T1-weighted brains aligned to the Talairach and Tournoux (1988) atlas, and manually segmented into 84 labelled regions. Bias correction of the images are performed using the 'autoseg' bias field correction algorithm.
- **CUMC12**. The Columbia University Medical Center dataset contains 12 T1-weighted brain images with manual segmentation of 128 regions. The images were scanned on a 1.5T GE scanner, and the images were resliced coronally to a slice thickness of 3mm, rotated into cardinal orientation, and segmented by a technician trained according to the Cardviews labelling scheme.



Validation score on toy square alignment task

Figure 8: Loss curves for toy dataset. Plot shows three curves - the Dice score for (a) all validation image pairs, (b) image pairs that have non-zero overlap in the image space (therefore a gradient-based affine solver will recover a transform from intensity images), and (c) image pairs that have zero overlap in the image space (therefore any gradient-based solver using intensity images will fail). Our feature network recovers dense multi-scale features (see Fig. 2) which allows all subsets to be registered with >0.99 Dice score.

Method	Dice	Isot	ropic	Anisotropic	
	supervision	Crop	No Crop	Crop	No Crop
Conditional LapIRN	×	0.7367 ± 0.0237	X	0.7269 ± 0.0328	0.7317 ± 0.0303
LapIRN	X	0.5257 ± 0.1316	×	0.5435 ± 0.1266	0.5001 ± 0.1271
LapIRN	1	0.6259 ± 0.1238	×	0.6209 ± 0.1163	0.5759 ± 0.1207
LKU-Net	×	0.6309 ± 0.0839	×	0.6276 ± 0.0838	0.6072 ± 0.0787
LKU-Net	1	0.6267 ± 0.0776	×	0.6231 ± 0.0730	0.5992 ± 0.0757
SymNet	X	0.7213 ± 0.0273	×	0.7116 ± 0.0398	0.7117 ± 0.0398
SymNet	1	0.6731 ± 0.0688	×	0.6672 ± 0.0731	0.6674 ± 0.0728
TransMorph Large	1	0.7383 ± 0.0353	X	0.7312 ± 0.0405	X
TransMorph Regular	X	0.7221 ± 0.0400	×	0.7289 ± 0.0417	X
TransMorph Regular	1	0.7293 ± 0.0370	×	0.7113 ± 0.0520	X
VoxelMorph	X	0.5118 ± 0.1774	×	0.5233 ± 0.1693	X
SynthMorph	1	0.7423 ± 0.0225	X	0.7476 ± 0.0238	X
Ours (LKU)	1	0.7698 ± 0.0193	0.7587 ± 0.0208	0.7728 ± 0.0219	0.7572 ± 0.0369
Conditional LapIRN	X	0.4793 ± 0.0373	0.4804 ± 0.0368	0.4880 ± 0.0416	0.4827 ± 0.0408
LapIRN	X	0.3719 ± 0.0897	0.3491 ± 0.0895	0.3524 ± 0.1001	0.3556 ± 0.0989
LapIRN	1	0.4121 ± 0.0907	0.3838 ± 0.0929	0.3911 ± 0.1060	0.3896 ± 0.1063
LKU-Net	×	0.4054 ± 0.0641	0.3922 ± 0.0679	0.4086 ± 0.0732	0.3999 ± 0.0697
LKU-Net	1	0.3904 ± 0.0547	0.3827 ± 0.0574	0.3967 ± 0.0745	0.3960 ± 0.0678
SymNet	×	0.4761 ± 0.0524	0.4761 ± 0.0524	0.4822 ± 0.0565	0.4820 ± 0.0565
SymNet	1	0.4457 ± 0.0675	0.4457 ± 0.0675	0.4518 ± 0.0787	0.4521 ± 0.0786
TransMorph Large	1	0.4827 ± 0.0531	×	0.4858 ± 0.0587	X
TransMorph Regular	X	0.4929 ± 0.0502	×	0.4967 ± 0.0540	X
TransMorph Regular	1	0.4737 ± 0.0549	X	0.4741 ± 0.0628	X
VoxelMorph	X	0.3519 ± 0.1271	×	0.3469 ± 0.1308	X
SynthMorph	1	0.4761 ± 0.0397	×	0.4797 ± 0.0426	X
Ours (LKU)	1	0.5137 ± 0.0410	0.5126 ± 0.0412	0.5237 ± 0.0433	0.5162 ± 0.0448
Conditional LapIRN	X	0.7113 ± 0.0178	0.7109 ± 0.0178	-	-
LapIRN	X	0.6026 ± 0.0317	0.5878 ± 0.0325	-	-
LapIRN	1	0.6395 ± 0.0269	0.6211 ± 0.0294	-	-
LKU-Net	X	0.6746 ± 0.0230	0.6708 ± 0.0249	-	-
LKU-Net	1	0.6266 ± 0.0299	0.6220 ± 0.0296	-	-
SymNet	X	0.6797 ± 0.0239	0.6797 ± 0.0238	-	-
SymNet	1	0.6700 ± 0.0248	0.6698 ± 0.0248	-	-
TransMorph Large	1	0.6918 ± 0.0219	×	-	-
TransMorph Regular	×	0.6919 ± 0.0191	×	-	-
TransMorph Regular	1	0.6855 ± 0.0225	×	-	-
VoxelMorph	×	0.6776 ± 0.0365	×	-	-
SynthMorph	1	0.7189 ± 0.0172	×	-	-
Ours (LKU)	1	0.7139 ± 0.0181	0.7131 ± 0.0181	-	-

Table 4: Quantitative evaluation on out-of-distribution performance on IBSR18, CUMC12, and LPBA40 datasets. We compare DIO with other state-of-the-art DLIR methods. The 'Dice supervision' column shows if the method is trained with label matching on the OASIS dataset. We evaluate the performance of the methods with and without isotropic and anisotropic data resampling. The results are reported as mean \pm standard deviation. \blacksquare = First, \blacksquare = Second, \blacksquare = Third best result.

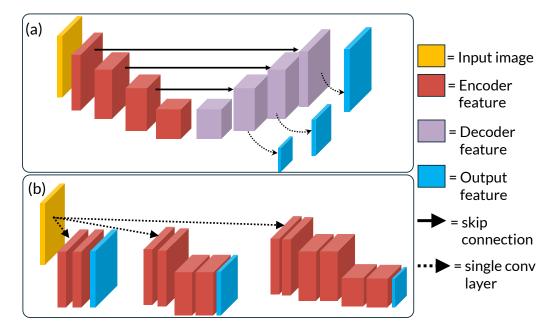


Figure 9: Architecture details. (a) illustrates the UNet and Large Kernel U-Net (LKUNet) architecture designs, which consists of encoder blocks (red) and decoder blocks (purple) linked using skip connections. Multi-scale features are extracted from the intermediate decoder layers using a single convolutional layer. This design leads to shared features across multiple scales. UNet and LKUNet differ in the kernel parameters within each encoder and decoder blocks. (b) illustrates the 'Encoder-Only' versions of the same networks. The decoder path is entirely discarded, and each feature image is extracted using a separate encoder. This design enables independent learning of each multi-scale feature.

825 NeurIPS Paper Checklist

826	1.	Claims
827 828		Question: Do the main claims made in the abstract and introduction accurately reflect the paper's contributions and scope?
829		Answer: [Yes]
		Justification: Yes. Experiments are shown on community-standard, out-of-distribution
830 831		datasets for demonstrating robustness. Zero-shot performance by switching optimizers at
832		test time is shown.
833		Guidelines:
834 835		• The answer NA means that the abstract and introduction do not include the claims made in the paper.
836		• The abstract and/or introduction should clearly state the claims made, including the
837		contributions made in the paper and important assumptions and limitations. A No or NA answer to this question will not be perceived well by the reviewers.
838 839		 The claims made should match theoretical and experimental results, and reflect how
839 840		much the results can be expected to generalize to other settings.
841 842		• It is fine to include aspirational goals as motivation as long as it is clear that these goals are not attained by the paper.
843	2.	Limitations
844		Question: Does the paper discuss the limitations of the work performed by the authors?
845		Answer: [Yes]
846 847		Justification: An implicit bias of the representation and optimization algorithm is discussed in the Discussion and Appendix.
848		Guidelines:
849		• The answer NA means that the paper has no limitation while the answer No means that
850		the paper has limitations, but those are not discussed in the paper.
851		• The authors are encouraged to create a separate "Limitations" section in their paper.
852 853		• The paper should point out any strong assumptions and how robust the results are to violations of these assumptions (e.g., independence assumptions, noiseless settings,
854		model well-specification, asymptotic approximations only holding locally). The authors
855		should reflect on how these assumptions might be violated in practice and what the
856		implications would be.
857		• The authors should reflect on the scope of the claims made, e.g., if the approach was
858 859		only tested on a few datasets or with a few runs. In general, empirical results often depend on implicit assumptions, which should be articulated.
860		 The authors should reflect on the factors that influence the performance of the approach.
861		For example, a facial recognition algorithm may perform poorly when image resolution
862		is low or images are taken in low lighting. Or a speech-to-text system might not be
863		used reliably to provide closed captions for online lectures because it fails to handle
864		technical jargon.
865		• The authors should discuss the computational efficiency of the proposed algorithms
866		and how they scale with dataset size.
867 868		• If applicable, the authors should discuss possible limitations of their approach to address problems of privacy and fairness.
869		• While the authors might fear that complete honesty about limitations might be used by
870		reviewers as grounds for rejection, a worse outcome might be that reviewers discover
871		limitations that aren't acknowledged in the paper. The authors should use their best
872		judgment and recognize that individual actions in favor of transparency play an impor-
873		tant role in developing norms that preserve the integrity of the community. Reviewers
874		will be specifically instructed to not penalize honesty concerning limitations.
875	3.	Theory Assumptions and Proofs
		Quastian: For each theoretical result, does the paper provide the full set of assumptions and

876Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

878	Answer: [Yes]
879	Justification: Only Implicit Function Theorem is used with all its assumptions.
880	Guidelines:
881	• The answer NA means that the paper does not include theoretical results.
882	 All the theorems, formulas, and proofs in the paper should be numbered and cross-
883	referenced.
884	• All assumptions should be clearly stated or referenced in the statement of any theorems.
885	• The proofs can either appear in the main paper or the supplemental material, but if
886	they appear in the supplemental material, the authors are encouraged to provide a short
887	proof sketch to provide intuition.
888	• Inversely, any informal proof provided in the core of the paper should be complemented
889	by formal proofs provided in appendix or supplemental material. • Theorems and Lemmas that the proof ratios upon should be preparly referenced
890	• Theorems and Lemmas that the proof relies upon should be properly referenced.
891	4. Experimental Result Reproducibility
892 802	Question: Does the paper fully disclose all the information needed to reproduce the main ex- perimental results of the paper to the extent that it affects the main claims and/or conclusions
893 894	of the paper (regardless of whether the code and data are provided or not)?
	Answer: [Yes]
895	
896 897	Justification: Code contains scripts to reproduce all experiments of the paper. Appendix con- tains algorithm details. Code will be published to Github upon acceptance, with additional
898	documentation, tutorials and instructions. Data is publicly available.
899	Guidelines:
900	• The answer NA means that the paper does not include experiments.
901	• If the paper includes experiments, a No answer to this question will not be perceived
902	well by the reviewers: Making the paper reproducible is important, regardless of
903	whether the code and data are provided or not.
904	• If the contribution is a dataset and/or model, the authors should describe the steps taken
905	to make their results reproducible or verifiable.
906	• Depending on the contribution, reproducibility can be accomplished in various ways.
907 908	For example, if the contribution is a novel architecture, describing the architecture fully might suffice, or if the contribution is a specific model and empirical evaluation, it may
909	be necessary to either make it possible for others to replicate the model with the same
910	dataset, or provide access to the model. In general. releasing code and data is often
911	one good way to accomplish this, but reproducibility can also be provided via detailed
912	instructions for how to replicate the results, access to a hosted model (e.g., in the case
913 914	of a large language model), releasing of a model checkpoint, or other means that are appropriate to the research performed.
915	• While NeurIPS does not require releasing code, the conference does require all submis-
916	sions to provide some reasonable avenue for reproducibility, which may depend on the
917	nature of the contribution. For example
918	(a) If the contribution is primarily a new algorithm, the paper should make it clear how
919	to reproduce that algorithm.
920	(b) If the contribution is primarily a new model architecture, the paper should describe the architecture clearly and fully.
921 922	(c) If the contribution is a new model (e.g., a large language model), then there should
923	either be a way to access this model for reproducing the results or a way to reproduce
924	the model (e.g., with an open-source dataset or instructions for how to construct
925	the dataset).
926	(d) We recognize that reproducibility may be tricky in some cases, in which case
927	authors are welcome to describe the particular way they provide for reproducibility. In the case of closed-source models, it may be that access to the model is limited in
928 929	some way (e.g., to registered users), but it should be possible for other researchers
930	to have some path to reproducing or verifying the results.
931	5. Open access to data and code
	-

932	Question: Does the paper provide open access to the data and code, with sufficient instruc- tions to faithfully reproduce the main experimental results, as described in supplemental
933 934	tions to faithfully reproduce the main experimental results, as described in supplemental material?
935	Answer: [Yes]
936	Justification: Code is provided in the supplemental material. Data is publicly available and
937	instructions are provided in the supplemental material.
938	Guidelines:
939	• The answer NA means that paper does not include experiments requiring code.
940 941	 Please see the NeurIPS code and data submission guidelines (https://nips.cc/ public/guides/CodeSubmissionPolicy) for more details.
942	• While we encourage the release of code and data, we understand that this might not be
943	possible, so "No" is an acceptable answer. Papers cannot be rejected simply for not
944	including code, unless this is central to the contribution (e.g., for a new open-source benchmark).
945 946	 The instructions should contain the exact command and environment needed to run to
940 947	reproduce the results. See the NeurIPS code and data submission guidelines (https:
948	//nips.cc/public/guides/CodeSubmissionPolicy) for more details.
949	• The authors should provide instructions on data access and preparation, including how
950	to access the raw data, preprocessed data, intermediate data, and generated data, etc.The authors should provide scripts to reproduce all experimental results for the new
951 952	proposed method and baselines. If only a subset of experimental results for the new
953	should state which ones are omitted from the script and why.
954	• At submission time, to preserve anonymity, the authors should release anonymized
955	versions (if applicable).
956	• Providing as much information as possible in supplemental material (appended to the paper) is recommended, but including URLs to data and code is permitted.
957	
958	6. Experimental Setting/Details
959 960	Question: Does the paper specify all the training and test details (e.g., data splits, hyper- parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
961	results?
962	Answer: [Yes]
963	Justification: Implementation details are provided in Appendix and supplemental material.
964	Guidelines:
965	• The answer NA means that the paper does not include experiments.
966	• The experimental setting should be presented in the core of the paper to a level of detail
967	that is necessary to appreciate the results and make sense of them.
968	 The full details can be provided either with the code, in appendix, or as supplemental material.
969	
970	7. Experiment Statistical Significance
971 972	Question: Does the paper report error bars suitably and correctly defined or other appropriate information about the statistical significance of the experiments?
973	Answer: [Yes]
974	Justification: All results are reported either with an error bar of one standard deviation, or
975	boxplots with interquartile ranges and outliers are reported.
976	Guidelines:
977	• The answer NA means that the paper does not include experiments.
978	• The authors should answer "Yes" if the results are accompanied by error bars, confi-
979	dence intervals, or statistical significance tests, at least for the experiments that support
980	the main claims of the paper. The factors of variability that the error here are conturing should be clearly stated (for
981 982	• The factors of variability that the error bars are capturing should be clearly stated (for example, train/test split, initialization, random drawing of some parameter, or overall
982 983	run with given experimental conditions).

984 985		• The method for calculating the error bars should be explained (closed form formula, call to a library function, bootstrap, etc.)
986		• The assumptions made should be given (e.g., Normally distributed errors).
987		• It should be clear whether the error bar is the standard deviation or the standard error
988		of the mean.
989		• It is OK to report 1-sigma error bars, but one should state it. The authors should
990		preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
991		of Normality of errors is not verified.
992		• For asymmetric distributions, the authors should be careful not to show in tables or
993		figures symmetric error bars that would yield results that are out of range (e.g. negative
994		error rates).
995 996		• If error bars are reported in tables or plots, The authors should explain in the text how they were calculated and reference the corresponding figures or tables in the text.
997	8.	Experiments Compute Resources
998		Question: For each experiment, does the paper provide sufficient information on the com-
999 1000		puter resources (type of compute workers, memory, time of execution) needed to reproduce the experiments?
1001		Answer: [Yes]
1002		Justification: Compute resources are provided in the Appendix.
1003		Guidelines:
1004		• The answer NA means that the paper does not include experiments.
1005		• The paper should indicate the type of compute workers CPU or GPU, internal cluster,
1006		or cloud provider, including relevant memory and storage.
1007		• The paper should provide the amount of compute required for each of the individual experimental runs as well as estimate the total compute.
1008		• The paper should disclose whether the full research project required more compute
1009 1010		than the experiments reported in the paper (e.g., preliminary or failed experiments that
1010		didn't make it into the paper).
1012	9.	Code Of Ethics
1013		Question: Does the research conducted in the paper conform, in every respect, with the
1014		NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
1015		Answer: [Yes]
1016		Justification: No research is performed involving new human subjects, animals, or environ-
1017		mental impact. Existing datasets comply with Code of Ethics. The proposed research is
1018		theoretical and computational. The proposed research has no immediate negative societal
1019		impact.
1020		Guidelines:
1021		• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
1022		• If the authors answer No, they should explain the special circumstances that require a
1023		deviation from the Code of Ethics.
1024		• The authors should make sure to preserve anonymity (e.g., if there is a special consid-
1025		eration due to laws or regulations in their jurisdiction).
1026	10.	Broader Impacts
1027 1028		Question: Does the paper discuss both potential positive societal impacts and negative societal impacts of the work performed?
1029		Answer: [No]
1030		Justification: Medical image registration has no immediate negative societal impact necessi-
1031		tating a dedicated discussion.
1032		Guidelines:
1033		 The answer NA means that there is no societal impact of the work performed.

1034 1035	• If the authors answer NA or No, they should explain why their work has no societal impact or why the paper does not address societal impact.
1036	• Examples of negative societal impacts include potential malicious or unintended uses
1037	(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
1038	(e.g., deployment of technologies that could make decisions that unfairly impact specific
1039	groups), privacy considerations, and security considerations.
1040	• The conference expects that many papers will be foundational research and not tied
1041	to particular applications, let alone deployments. However, if there is a direct path to
1042	any negative applications, the authors should point it out. For example, it is legitimate
1043	to point out that an improvement in the quality of generative models could be used to
1044	generate deepfakes for disinformation. On the other hand, it is not needed to point out
1045 1046	that a generic algorithm for optimizing neural networks could enable people to train models that generate Deepfakes faster.
1047	• The authors should consider possible harms that could arise when the technology is
1048	being used as intended and functioning correctly, harms that could arise when the
1049	technology is being used as intended but gives incorrect results, and harms following
1050	from (intentional or unintentional) misuse of the technology.
	• If there are negative societal impacts, the authors could also discuss possible mitigation
1051	strategies (e.g., gated release of models, providing defenses in addition to attacks,
1052	mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
1053	feedback over time, improving the efficiency and accessibility of ML).
1054	recuback over time, improving the emercicle y and accessionity of ME).
1055	11. Safeguards Question: Does the paper describe safeguards that have been put in place for responsible
1056	release of data or models that have a high risk for misuse (e.g., pretrained language models,
1057	
1058	image generators, or scraped datasets)?
1059	Answer: [NA]
1060	Justification: [NA]
1061	Guidelines:
1062	 The answer NA means that the paper poses no such risks.
1063	• Released models that have a high risk for misuse or dual-use should be released with
1064	necessary safeguards to allow for controlled use of the model, for example by requiring
1065	that users adhere to usage guidelines or restrictions to access the model or implementing
1066	safety filters.
1067	• Datasets that have been scraped from the Internet could pose safety risks. The authors
1068	should describe how they avoided releasing unsafe images.
1069	• We recognize that providing effective safeguards is challenging, and many papers do
1070	not require this, but we encourage authors to take this into account and make a best
1070	faith effort.
10/1	
1072	12. Licenses for existing assets
1073	Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper property and ited and are the license and terms of use explicitly mentioned and
1074	the paper, properly credited and are the license and terms of use explicitly mentioned and
1075	properly respected?
1076	Answer: [Yes]
1077	Justification: Appropriate citations are provided for existing code and data.
1078	Guidelines:
1079	• The answer NA means that the paper does not use existing assets.
1080	• The authors should cite the original paper that produced the code package or dataset.
1081	
1001	• The authors should state which version of the asset is used and, if possible, include a
1082	• The authors should state which version of the asset is used and, if possible, include a URL.
1082	URL.
	*

1086	• If assets are released, the license, copyright information, and terms of use in the
1087	package should be provided. For popular datasets, paperswithcode.com/datasets
1088	has curated licenses for some datasets. Their licensing guide can help determine the
1089	license of a dataset.
1090 1091	• For existing datasets that are re-packaged, both the original license and the license of the derived asset (if it has changed) should be provided.
1091	 If this information is not available online, the authors are encouraged to reach out to
1092	the asset's creators.
1094	13. New Assets
1095	Question: Are new assets introduced in the paper well documented and is the documentation
1096	provided alongside the assets?
1097	Answer: [Yes]
1098 1099	Justification: Code is reasonably commented for a new reader to understand the implemen- tation.
1100	Guidelines:
1101	• The answer NA means that the paper does not release new assets.
1102	• Researchers should communicate the details of the dataset/code/model as part of their
1103	submissions via structured templates. This includes details about training, license,
1104	limitations, etc.
1105	• The paper should discuss whether and how consent was obtained from people whose
1106	asset is used.
1107 1108	• At submission time, remember to anonymize your assets (if applicable). You can either create an anonymized URL or include an anonymized zip file.
1109	14. Crowdsourcing and Research with Human Subjects
1110	Question: For crowdsourcing experiments and research with human subjects, does the paper
1111	include the full text of instructions given to participants and screenshots, if applicable, as
1112	well as details about compensation (if any)?
1113	Answer: [NA]
1114	Justification: [NA]
1115	Guidelines:
1116	• The answer NA means that the paper does not involve crowdsourcing nor research with
1117	human subjects.
1118	• Including this information in the supplemental material is fine, but if the main contribu-
1119 1120	tion of the paper involves human subjects, then as much detail as possible should be included in the main paper.
1121	 According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
1122	or other labor should be paid at least the minimum wage in the country of the data
1123	collector.
1124	15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
1125	Subjects
1126	Question: Does the paper describe potential risks incurred by study participants, whether
1127	such risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an equivalent approval/review based on the requirements of your country or
1128 1129	institution) were obtained?
1130	Answer: [NA]
1131	Justification: [NA]
1132	Guidelines:
1102	• The answer NA means that the paper does not involve crowdsourcing nor research with
1133	
1133 1134	human subjects.
1134	human subjects.

1138	• We recognize that the procedures for this may vary significantly between institutions
1139	and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
1140	guidelines for their institution.
1141	• For initial submissions, do not include any information that would break anonymity (if
1142	applicable), such as the institution conducting the review.