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Abstract

Reinforcement learning (RL) has proven effective in incentiving the reasoning abil-
ities of large language models (LLMs), but faces significant efficiency challenges
due to its extensive trial-and-error nature. A common practice is to employ super-
vised fine-tuning (SFT) as a warm-up stage; however, this decoupled two-stage
approach limits interaction between SFT and RL, thereby constraining overall
effectiveness. This study introduces a novel method for learning reasoning models
that employs bilevel optimization to facilitate better cooperation between these
training paradigms. Specifically, the SFT objective are explicitly conditioned on the
optimal solution of the RL objective. During training, lower-level updates enable
the model to receive SFT supervision concurrently with RL-based exploration,
while upper-level updates are optimized to ensure that the joint training yields
higher rewards than RL alone. Empirical evaluations on five reasoning benchmarks
demonstrate that our method consistently outperforms baselines and achieves a
better balance between effectiveness and efficiency.

1 Introduction

The emergence of OpenATI’s ol [21] and DeepSeek-R1 [7] represents a profound paradigm shift in
Large Language Models (LLMs). Test-time scaling enables these models to execute longer Chain-
of-Thought reasoning, inducing sophisticated reasoning behaviors. This capability makes them
particularly effective in challenging domains such as mathematics [5,|11]] and programming problems
(2, l6].

The central technique driving this progress is is large-scale, rule-based reinforcement learning (RL),
which induces sophisticated reasoning behaviors by exploring the reward signal. However, the
inherently trial-and-error nature of RL renders the training process highly inefficient. An alternative
approach is supervised fine-tuning (SFT) on curated long chain-of-thought (CoT) datasets, which
enables models to rapidly acquire effective reasoning patterns through imitation learning. While more
sample-efficient, SFT is typically less generalizable than RL. In practice, state-of-the-art training
pipelines often adopt a two or multi-stage paradigm, using SFT as a warm-up phase before applying
RL. For example, DeepSeek-R1 [7]] undergoes multiple rounds of SFT and RL to refine reasoning
performance. However, in these two or multi-stage pipelines, SFT and RL training are typically
performed in a fully decoupled manner. This raises a natural question:

Can we design a training method that enables meaningful information exchange
between the SFT and RL paradigms?

To investigate this, we first propose a simple baseline that alternates between SFT and RL updates
during training. Despite its simplicity, this approach improves both convergence efficiency and final

Submitted to 39th Conference on Neural Information Processing Systems (NeurIPS 2025). Do not distribute.



35
36
37
38
39

40
41
42
43
44
45
46
47

48
49
50
51
52
53
54

55

57
58
59
60

61
62
63
64
65

66
67
68
69
70

72
73

74

75
76
77

78
79
80
81

performance. Building on this insight, we further develop a bilevel optimization framework, in which
SFT is formulated as the upper-level problem and RL as the lower-level problem. By solving this
nested optimization objective, the SFT updates are explicitly conditioned on the RL solution, allowing
SFT to provide more targeted guidance to RL. This ultimately yields a model that aligns well with
both supervised and reward-driven objectives.

Specifically, we implement this bilevel structure using two learnable components: a base model and
a set of LoRA modules, which together form an augmented model. The base model is optimized
using RL as the lower-level objective, while the LoRA parameters are updated through a supervised
upper-level objective. To make this bilevel optimization tractable, we introduce a penalty-based
relaxation strategy, where the relaxed upper-level update explicitly encourages cooperation by
maximizing the reward gap between joint SFT+RL training and RL-only optimization. In doing so,
the upper-level optimization shapes the lower-level dynamics, fostering tighter alignment between
supervised learning and reinforcement learning, and improving overall training efficiency.

To validate the effectiveness of our approach, we conduct experiments using the Qwen-2.5 3B
model trained on the LIMR dataset, a challenging mathematical reasoning benchmark constructed
from MATH [10]]. We evaluate performance across six diverse benchmark datasets covering both
standard and competition-level tasks. Our results demonstrate consistent improvements over six
strong baselines, including supervised fine-tuning, zero-shot RL, and multi-stage SFT+RL pipelines.
Notably, our method achieves superior performance in terms of both accuracy and training efficiency,
confirming the benefits of tightly integrating SFT and RL through bilevel optimization.

Our work makes the following three contributions:

1. Comparative analysis of reasoning training paradigms. We systematically analyze and
compare three prevalent strategies for training reasoning-capable language models: super-
vised fine-tuning (SFT), reinforcement learning (RL), and multi-stage SFT+RL pipelines.
Based on this analysis, we introduce a simple yet effective alternative baseline that addresses
the lack of interaction in conventional two-stage training setups.

2. A bilevel optimization framework for integrating SFT and RL. To promote meaning-
ful cooperation between SFT and RL, we propose a bilevel optimization method named
BRIDGE. BRIDGE formalizes SFT as the upper-level objective and RL as the lower-level
objective, and employs a penalty-based relaxation to explicitly encourage joint training to
achieve higher rewards than RL alone by maximizing the reward gap between the two.

3. Empirical validation on six mathematical reasoning benchmarks. We conduct extensive
experiments using the Qwen-2.5 3B model trained on the LIMR dataset and evaluated across
six diverse reasoning benchmarks. Our method consistently outperforms strong baselines in
terms of both accuracy and training efficiency, demonstrating the practical benefits of tightly
integrated SFT-RL optimization.

2 Preliminaries

We begin by reviewing three prevalent fine-tuning strategies for training reasoning models and
conduct a comparative analysis. We then introduce a simple yet effective improved baseline.

2.1 Fine-tuning Methods for Reasoning Models

We consider a large language model (LLM) parameterized by 6, which defines a conditional distribu-
tion 7(y|x; @) over output sequences y given input sequences 2. This work focuses on three widely
used methodologies for tuning € to incentivize the model’s reasoning capabilities.

Rule-based Reinforcement Learning. Reinforcement learning with verifiable rewards has gained
increasing attention for its effectiveness in training advanced reasoning models such as DeepSeek-R1
[7]. Given a dataset Dgy, := {(x,y)} with verifiable outputs—such as mathematics competition
problems or programming tasks—the objective of rule-based RL is formulated as:

mgux JRL(B) = E(x,y)NDRL, gror(-|z;0) [r(g), y)]

ey
= E(a.g)~pps [Dxr (7 [ 250) [ et (- | 2))]
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where 7. i a fixed reference model, and r(§, y) is a rule-based reward function that evaluates the
correctness of predictions using a binary signal:

. {1, ifg =y,

= 2
r(9) —1, otherwise 2

Here, y denotes the ground-truth answer and ¢ is the model’s predicted output. The equivalence
relation g = y is typically computed by a domain-specific verifier (e.g., a symbolic math engine or
code interpreter).

Since the KL divergence term in (I) is generally not directly computable, this objective is often
solved using policy optimization methods such as Proximal Policy Optimization (PPO) [22]] and
Group Relative Policy Optimization (GRPO) [7]).

Supervised Fine-Tuning. In supervised fine-tuning, we assume access to a curated dataset
Dsrr := {(x,r,y)} consisting of input prompts z, intermediate reasoning steps r distilled from
larger reasoning models, and final answers y. The training objective maximizes the log-likelihood of
generating both the reasoning process and the answer:

max Jsr1(0) := E(3 1) ~Dspr ogm (1,4 | 2;0)] . 3)

This approach encourages the model to not only produce correct answers but also to imitate expert
reasoning steps that lead to those answers.

Two-Stage Cold Start. In practice, a common recipe is to use SFT as a warm-up stage before
applying RL. This two-stage approach, often referred to as a “cold start” for RL. The SFT stage
ensures that the model imitate expert reasoning patterns, which provides a good prior for subsequent
reward-driven optimization.

071 Algorithm 1: A Simple Alternating Method
1: Initialize parameters 0y; learning rates aspr,
- 06 7 arr; datasets Dgpr, DRr; total steps 7'
8 2:fort =1to 7T do
é 0.5 1 3:  //RL step
g ——— 4:  Sample query Ty~ .DRL
0.4 4 RL-zero 5:  Generate solution with g, _, ()
— | Cold start 6:  Compute reward 7,
0.3 4 —— Naive Alter. 7 91/&71 — 0,1 + OéRLVJRL(thl)
' y y ' 8:  // SFT step
0 20 Step 40 60 9:  Sample example (x¢,y:) ~ Dspr
10: 0 <+ 0,1 + asprVLsrr(0;_;)
11: end for

Figure 1: Comparison of Training Methods.

2.2 Comparative Analysis of Fine-Tuning Strategies

We conduct a comparative study of fine-tuning strategies using the Qwen2.5-base model as the
backbone. The training data consists of math problems at the grade 3-5 level, and evaluation is
performed across five reasoning benchmarks, including Math500. Detailed experimental settings are
provided in Section[d.1] Figure[I]illustrates how test accuracy on Math500 evolves during training.

We observe that SFT exhibits rapid initial learning, while RL achieves better final convergence.
As shown in Figure[I] SFT improves accuracy quickly during the early training stages but plateaus
at a suboptimal level. In contrast, RL learns more slowly but eventually surpasses SFT in final
performance.

The two-stage cold start approach combines the strengths of both paradigms. Figure [I]further
shows that the SFT warm-up phase significantly accelerates RL convergence and improves its final
performance. This suggests that SFT provides a strong inductive prior, guiding the subsequent RL
stage toward better optima.

These results suggest that RL and SFT offer complementary advantages in reasoning tasks, motivating
further exploration of their integration.
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A Simple Alternating Baseline. To further investigate the supportive role of SFT in reinforcement
learning, we design a simple alternating optimization strategy between the two methods, as outlined
in Algorithm . This approach alternates between reinforcement learning steps, which explore novel
reasoning traces, and supervised fine-tuning steps, which imitate expert reasoning patterns (see
Section[4.T] for details on the SFT dataset). As shown in Figure[T} this alternating strategy converges
faster than pure RL and achieves better final performance than both SFT and the two-stage Cold-start
approach. While this integration leads to empirical performance gains, the current formulation treats
SFT and RL as independent update processes, and there is no guarantee that alternating updates
consistently outperform either method alone. This limitation raises a important question: How can
we design training strategies that ensure the synergy between SFT and RL leads to guaranteed gains
over standalone RL?

3 Methodology

SFT RL
/]
In this section, we propose BRIDGE, a framework that tightly cou- >
ples SFT and RL. We will first introduce the formulation, and then

the learning algorithm and explanations.
Two-stage Training

3.1 BRIDGE Framework

SFT RL
We define an augmented model 6 := [0, w], where 6 denotes the base ®
model parameters and w represents the LoRA weights [[13]. Given —
a long-form chain-of-thought (CoT) dataset Dgpr for supervised ;;
w

fine-tuning and a verifiable dataset Dry, for reinforcement learning,
our objective is to integrate the supervised learning objective in
Eq. (3) with the policy optimization problem in Eq. (I). To do this, Bilevel Optimization

we propose to solve the following bilevel optimization problem: . .
Figure 2: Comparison of two

max Jspr (0, w) = E py)pDgpr log 7 (1, y | 25 6% (w), w)] fine-tuning paradigms.
st. 0% (w) := arg max {E(z,y)~DRL, o (-|z30,w) [T (05 Y)]

~ Efpyptne, [Dict (- | 30, 0) | meee (- [ )] .
“4)
The above problem has a two-level structure that draws inspiration from the leader-follower problem
in game theory. SFT serves as the leader with greater decision-making power, capable of predicting the
RL component’s optimal response 6* (w) for any given parameter set w during training. Meanwhile,
RL acts as the follower, optimizing the base model parameters 6 conditional on the SFT-determined
parameters w. During training, these two components interact dynamically to achieve enhanced
cooperation, resulting in improved learning outcomes. As shown in Figure[2] this structure enables a
more coordinated fine-tuning process compared to the traditional two-stage recipe.

By solving [@), we aim to find a augmented model 6 such that: if one trains the base parameter 6 on
Dgy,, then the fine-tuned model 6*(w) needs to fit well with the long CoT dataset Dg pr.

3.2 Learning Algorithm

Following the penalty-based methods [24} 26], we next consider reformulating (@) with penalty
functions. Specifically, our first goal is to reformulate (@) to a closely related single-level problem
that facilitates efficient gradient-based algorithms.

We define the penalty function for the sub-optimality of the lower-level problem in (@) as:
p(w, ) :rrloz}xJRL(Q’7w) — Jrr(0,w) 5)
Given a penalty constant v € (0, 1), penalizing p(w, #) onto the upper-level objective yields the

following penalized problem of (6):
max(l — A)Jspr (0, w) — Almax Jre(8',w) — Jrp(0,w)] (6)
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Note that in E.q. (6), the value of the term maxg Jrr (6, w) is solely a function of w and is
independent of 6. Then we can update 6 iteratively by doing stochastic gradient ascent:

OF1 = 0% 1 o [(1 — \)VyJser (0, w) + AVoJrr, (6, w)] 7

The penalty strength v can be scheduled to increase at each epoch from a small value: in earlier
epochs, we warm-start the base parameter on the long-CoT examples. Then we gradually increase ~y
for increasing accuracy in solving for 6* (w) and a solution for the original problem in ().

To evaluate the gradient for w, we need to evaluate V,, maxj, Jrr(¢', w). We assume J (6, w)
satisfies the conditions for Danskin’s theorem, and then we can write V,, maxj Jrr(0',w) ~

V.Jro(0,w), and the above gradient approximation becomes exact if § = 0*(w). Given this
closed-form gradient, we can update w with the approximate stochastic gradient ascent:

Wt = wP 4+ 8 |(1 = M)V Jser (0, w) + MV JrL (6, w) — Vi Jr(f,w)) (8)

Where 6 is the approximation of 6*(w) obtained by taking one gradient ascend step on 6 with respect
to the Jr1, objective:

k1 = Ok — aVoJrL Ok, w) ©)

Algorithm 2: Learning Algorithm of BRIDGE

1: Initialize augmented parameters #° = (6%, w°), and auxiliary parameters 60 := 0°;
learning rates «, [3; penalty weight A; number of iterations K

2 fork=0to K —1do

Sample mini-batches Dgpr and Dgy..

Compute supervised objective Jspr (6%, w*) and reinforcement objective Jgy, (6%, w*).

Compute gradlents w.r.t. augmented parameters 0¥ = (0%, w"):

ViJser (0%, w") = [VoJsrr, Vuserl;

VaJry(0F, w*) = [VoJrL, VJrL]-

// Update lower-level variable (base parameters)

Or+1 — gk +« [(1 - )\)V@JSFT(Gk7 wk) + )\V@JRL(ek, wk)}

/I Update auxiliary 6 for upper-level (meta) gradient

9: 9k+1 — Hk — aVeJRL(Hk, wk)

10:  // Update upper-level variable (LoRA parameters)

11wt e whig [(1 — AV Jspr(0F, w*) + A (vaRL(ok,wk) - vaRL(ék,wk))]

12: end for

AN

® 3

The overall algorithm of BRIDGE is presented in Algorithm 2.

3.3 Explanations of Update Rules

What does the lower-level update do? The update rule for 6 in E.q. (7) is a convex combination of
the SFT and RL gradients. As A increases from O to 1 during training, the algorithm gradually shifts
from imitation learning to reinforcement learning.

This curriculum learning—like transition [[1]] is meaningful: in the early training stages, the base
model lacks strong reasoning abilities and benefits more from imitating expert reasoning patterns. As
training progresses, the model becomes capable of generating the correct answers by exploring the
reward signal , making RL updates more valuable.

What does the higher-level update do? The update for w in Eq. (8) aims to solve the bilevel
formulation in Eq. (). Specifically, it seeks a LoORA module w such that, after training the base
parameter 6 on Dgy,, the resulting fine-tuned model §*(w) also performs well on the supervised
dataset Dgpr (i.e., expert demonstrations).

The update in Eq. (8)) can be interpreted as performing gradient ascent on the following objective:

FOw) =1-X)  Jgpr(f,w)  +A JRL(G,w)fJRL(QA,w)} (10)

1 likelihood on expert data

1 reward gap between collaboration and solo
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The first term encourages maximizing the likelihood of expert reasoning patterns in Dgpr, while the
second term increases the gap between the joint optimization using both SFT and RL (parameter

), versus using only RL (auxiliary parameter ¢). This contrastive gap explicitly promotes synergy
between the SFT and RL objectives—ensuring that their joint optimization yields better performance
than optimizing RL alone.

4 Experiment

4.1 Settings

Datasets. We adopt the LIMR dataset [[18] for RL training, which is derived from MATH [10].
Following their setup, we use the Hard subset (problems with MATH difficulty levels 3-5), which
contains approximately 1.3k problems. For the SFT dataset, we follow the procedure used in
DeepMath-103k [9] and distill intermediate expert reasoning steps using the R1 model.

For evaluation, we use the MATH500 subset as the primary test set and uniformly sample an additional
500 problems for validation. To assess generalization, we evaluate on a diverse set of mathematical
reasoning benchmarks, including MATHS00 [[10], Minerva Math [16]], and OlympiadBench [§], as
well as competition-level datasets such as AIME 2024 and AMC 2023.

Models. We conduct zero-shot RL training experiments using Qwen-2.5 models [30], selected for
their demonstrated stability on mathematical reasoning tasks. The 3B model is used, with prompt
formats consistent with SimpleRL.

Reward. In line with SimpleRL-Zoo [31], we adopt a binary reward function based solely on
answer correctness: correct final answers receive a reward of +1, while incorrect answers receive 0.
We deliberately exclude format-based rewards, which have been shown to constrain exploration and
reduce final performance, particularly for base models.

Implementation Details. All models are trained using the verl framework [27] with unified
hyperparameters: a prompt batch size of 64, 5 rollouts per prompt, a maximum rollout length of 3000
tokens, and a mini-batch size of 64. For evaluation, we use greedy decoding with a temperature of 0
and a maximum generation length of 5000 tokens. The learning rate is set to 5 x 10~7, and for LoRA,
both the rank and « are set to 16. The weighting coefficient A is set to 0.5. Following SimpleRL-Zoo
[31], we report pass@1 accuracy for most benchmarks. For AIME 2024, due to the limited number
of test cases, we additionally report average accuracy over 8 samples (avg@8). All experiments are
conducted on four NVIDIA A100 GPUs (80GB).

4.2 Baselines

We evaluate our approach against a comprehensive set of baselines, all built on the same base
architecture. These comparisons are designed to isolate the specific contributions of our proposed
bilevel optimization framework.

Base / Instruct Model. The original performance of base model and its instruction version, without
further reasoning-specific training. This serves as a lower-bound reference for evaluating reasoning
capabilities.

Supervised Fine-Tuning (SFT). A model trained solely via supervised fine-tuning on curated
chain-of-thought (CoT) data, without any reinforcement learning. This highlights the benefits and
limitations of pure imitation-based learning.

RL-Zero. Reinforcement learning applied directly to the base model without any prior fine-tuning.
This baseline evaluates the effectiveness of exploration from scratch, without initialization from
expert demonstrations.

Cold-Start A two-stage pipeline where SFT is used to pretrain the model, followed by RL fine-
tuning. The two phases are fully decoupled, with no interaction between supervised and reward-based
updates.
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Naive Alternating. A simple training procedure that alternates between SFT and RL updates in
fixed intervals, without any explicit coordination or shared optimization objective between the two
paradigms.

4.3 Main Results

MATH Minerva Olympiad AIME24

Method 500 Math Bench (Avg@8) AMC23 Average
Base 324 11.8 7.9 0.0 20.0 14.4
Instruct 50.8 14.7 16.7 8.5 32.5 24.6
RL-zero 64.4 26.5 27.0 33 40.0 322
SFT 53.4 18.8 21.5 3.3 42.5 27.9(-13.4%)
Cold-start 66.0 24.3 26.8 9.0 35.0 32.2 (+0.0%)
Naive Alter.  65.2 25.3 27.1 6.7 42.5 33.4 (+3.1%)
BRIDGE 65.4 28.3 28.4 10.0 50.0 364 (+12.4%)

Table 1: Performance of our method compared to baselines methods across multiple math benchmarks.
The best performance in each column is highlighted in green bold, and performance improvements
(%) over RL-zero are shown in blue.

Generalization to Benchmarks. We evaluate the generalization ability of BRIDGE across five
diverse mathematical reasoning benchmarks. As shown in Table[I] BRIDGE consistently outperforms
baseline methods, achieving accuracy improvements of 6.8%, 12.0%, 203.0%, and 25.0% over RL-
zero on Minerva Math, Olympiad Bench, AIME24, and AMC23, respectively. Overall, BRIDGE
yields an average improvement of 12.4%, highlighting its effectiveness and robustness across tasks of
varying difficulty.

Baseline methods tend to yield larger improvements on relatively easier benchmarks but generalize
poorly to more complex reasoning tasks. For example, the Cold-start method underperforms RL-zero
on Minerva Math, Olympiad Bench, and AMC23, potentially due to overfitting during the prior SFT
phase. While the Naive Alternative partially mitigates this issue—maintaining performance on harder
benchmarks—its gains remain limited. In contrast, BRIDGE, which explicitly encourages cooperative
behavior through a reward gap mechanism, achieves consistent and substantial improvements on
the more challenging benchmarks. These results underscore BRIDGE’s superior generalizability in
handling complex mathematical reasoning.

Average Performance

Method Average
Epoch=1 Epoch=3 Epoch=6
RL-zero 14.8 17.5 32.2 21.5
SFT 24.1 26.5 27.9 26.2 (+21.8%)
Cold-start 334 28.5 322 31.4 (+46.0%)
Naive Alter. 13.0 30.8 334 25.7 (+19.5%)
BRIDGE 323 333 364 34.0 (+69.3%)

Table 2: Performance progression across training epochs for different methods.

Performance on varied fine-tuning epochs. To evaluate the trade-off between performance and
training efficiency, we assess the effectiveness of BRIDGE across different fine-tuning epochs. We
consider the average performance across multiple epochs as a metric to reflect this trade-off. As
shown in Table[2} BRIDGE achieves the best balance, with an average performance improvement of
69.3% over RL-zere.

Among the baselines, Cold-start yields the second-best trade-off. However, its performance becomes
unstable as training progresses, eventually converging to the same final result as RL-zero. In
contrast, BRIDGE demonstrates consistent improvement throughout training. Overall, nearly all
hybrid baselines outperform RL-zero in terms of early-stage efficiency, highlighting the advantage of
integrating supervised fine-tuning and reinforcement learning paradigms.
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5 Related Work

Reinforcement Learning for Large Reasoning Models. Recent progress has highlighted the
critical role of reinforcement learning in enhancing the reasoning capabilities of large language
models [21} [7]. DeepSeek-R1 introduced a simple yet effective rule-based reward model and
demonstrated further gains through multiple rounds of supervised distillation and RL training.
LIMR [18] showed that complex reasoning behaviors can emerge from as few as one thousand
curated examples from the MATH dataset [11]].

In parallel, substantial advances have been made in training recipes for large reasoning models. Chu
et al. [4] compare SFT and RL for reasoning tasks and find that RL generalizes significantly better,
whereas SFT is prone to overfitting. SimpleRL [31] observes that fine-tuning on short-CoT datasets
can harm reasoning ability, while He et al. [9] find that fine-tuning on long-CoT distilled data can
improve the reasoning performance of smaller models—especially when used as a warm-up stage
before RL training. In practice, two-stage pipelines that combine SFT and RL are commonly used
to balance stability and performance. However, existing approaches often rely solely on supervised
fine-tuning, which tends to generalize poorly, or on pure RL, which suffers from sample inefficiency
and unstable optimization. In this work, we propose the first unified training framework that enables
explicit interaction between SFT and RL via a bilevel optimization formulation. This approach
offers a new perspective on integrating imitation and exploration for reasoning-centric large language
models.

Bilevel Optimization in LLMs. Bilevel optimization (BLO) is a classical framework for modeling
nested learning problems, where an upper-level objective depends on the solution to a lower-level
optimization task. Two major classes of methods have been developed to solve BLO problems.
Implicit gradient methods [12, 14, 23l 29] compute gradients through the lower-level problem
using second-order derivatives. While theoretically robust, these methods are often computationally
expensive and memory-prohibitive when applied to large-scale models such as LLMs. In contrast,
penalty-based relaxation methods [24, |15/ 25| 20] approximate the BLO formulation using only first-
order gradients, making them substantially more scalable and thus better suited for LLM applications.
Recent work has explored the use of bilevel optimization in LL.Ms for tasks such as data selection
[19L26]], inverse reinforcement learning [[17]], and meta-learning [3}[28]]. To the best of our knowledge,
our work is the first to apply bilevel optimization to reasoning-oriented LLM training, providing a
principled approach to integrating supervised and reinforcement learning in a unified framework.

6 Conclusion

This work investigates how to effectively integrate supervised fine-tuning and reinforcement learning
to improve the reasoning capabilities of large language models. We begin by analyzing three widely
used training paradigms and identify a key limitation of existing multi-stage pipelines: the lack of
interaction between SFT and RL. To address this, we propose a simple alternating baseline and further
introduce BRIDGE, a bilevel optimization framework that models SFT as the upper-level objective
and RL as the lower-level objective. By employing a penalty-based relaxation, BRIDGE explicitly
encourages joint training to outperform standalone RL, fostering tighter synergy between the two
learning paradigms. Empirical results on six mathematical reasoning benchmarks demonstrate that
our method consistently outperforms strong baselines in both accuracy and training efficiency. These
findings underscore the potential of bilevel optimization as a unifying framework for combining
supervised and reward-driven learning in complex reasoning tasks.

Limitations. While BRIDGE demonstrates promising results, it introduces additional computational
overhead due to its nested bilevel optimization structure. Future work includes extending the
framework to larger-scale models and more diverse domains such as program synthesis, theorem
proving, and scientific reasoning, as well as exploring more efficient optimization strategies to
mitigate the computational cost.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The experiments support claims in the Abstract and Introduction. The abstract
and introduction provide a comprehensive overview of the background and motivation of this
study, effectively outlining its main contributions point by-point, thus accurately reflecting
the paper’s scope and significance.

Guidelines:
e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: We primarily focused on discussing the limitations associated with this study
in Section Conclusion.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: The paper includes the full set of correct proofs for each theoretical result,
primarily presented in Section ??. In particular, it covers the formulation of reward function
and PPO algorithm, ensuring completeness and accuracy in the theoretical presentation.

Guidelines:

» The answer NA means that the paper does not include theoretical results.

 All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: All information regarding the key contribution of this paper, have been fully
disclosed (to the extent that it affects the main claims and/or conclusions of the paper).
Data preprocessing steps are provided in Section The code will be deanonymized upon
acceptance.

Guidelines:

» The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).
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(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The supplementary material submitted with the manuscript includes open
access to all source code and scripts necessary to faithfully reproduce the main experimental
results. Instructions for running the code are also provided within the scripts. We will also
release the code on github after the notification decision.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The paper specifies detailed experimental configurations in Section ??, provid-
ing readers with essential information to comprehend the results.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:
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Justification: We did not include an analysis of the statistical significance of the experiments
mainly due to the prohibitively expensive training cost of large language models and our
limited computing resources. However, we have provided the code, hyperparameters, and
random seeds used in our experiments to facilitate the reproducibility of our findings. We
would like to point out that, due to the extensive amount of training data, the statistical
patterns of the experiment results are likely to remain consistent across different trials.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: All experiments were carried out on an 4 x A100 GPU server, as detailed at
the beginning of the experiment section (Section ??).

Guidelines:

» The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]

Justification: After carefully reviewing the referenced document, we certify that the research
conducted in the paper conforms, in every respect, with the NeurIPS Code of Ethics.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.
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631 * The authors should make sure to preserve anonymity (e.g., if there is a special consid-

632 eration due to laws or regulations in their jurisdiction).

633 10. Broader impacts

634 Question: Does the paper discuss both potential positive societal impacts and negative
635 societal impacts of the work performed?

636 Answer: [NA]

637 Justification: The paper primarily focuses on math LL.Ms trained using publicly available
638 datasets that have undergone thorough validation. While the code LLMs itself is not directly
639 applicable to everyday scenarios, it serves as a neutral and valuable toolkit for further
640 development and research.

641 Guidelines:

642 » The answer NA means that there is no societal impact of the work performed.

643 * If the authors answer NA or No, they should explain why their work has no societal
644 impact or why the paper does not address societal impact.

645 * Examples of negative societal impacts include potential malicious or unintended uses
646 (e.g., disinformation, generating fake profiles, surveillance), fairness considerations
647 (e.g., deployment of technologies that could make decisions that unfairly impact specific
648 groups), privacy considerations, and security considerations.

649 * The conference expects that many papers will be foundational research and not tied
650 to particular applications, let alone deployments. However, if there is a direct path to
651 any negative applications, the authors should point it out. For example, it is legitimate
652 to point out that an improvement in the quality of generative models could be used to
653 generate deepfakes for disinformation. On the other hand, it is not needed to point out
654 that a generic algorithm for optimizing neural networks could enable people to train
655 models that generate Deepfakes faster.

656 * The authors should consider possible harms that could arise when the technology is
657 being used as intended and functioning correctly, harms that could arise when the
658 technology is being used as intended but gives incorrect results, and harms following
659 from (intentional or unintentional) misuse of the technology.

660 * If there are negative societal impacts, the authors could also discuss possible mitigation
661 strategies (e.g., gated release of models, providing defenses in addition to attacks,
662 mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
663 feedback over time, improving the efficiency and accessibility of ML).

664 11. Safeguards

665 Question: Does the paper describe safeguards that have been put in place for responsible
666 release of data or models that have a high risk for misuse (e.g., pretrained language models,
667 image generators, or scraped datasets)?

668 Answer: [NA]

669 Justification: The proposed models are based on Qwen2.5 and trained on benchmark dataset
670 MATH. The pretrain language models and dataset have been extensively used in the large
671 language model community and have undergone comprehensive safety. risk assessments.
672 Guidelines:

673 * The answer NA means that the paper poses no such risks.

674 * Released models that have a high risk for misuse or dual-use should be released with
675 necessary safeguards to allow for controlled use of the model, for example by requiring
676 that users adhere to usage guidelines or restrictions to access the model or implementing
677 safety filters.

678  Datasets that have been scraped from the Internet could pose safety risks. The authors
679 should describe how they avoided releasing unsafe images.

680 * We recognize that providing effective safeguards is challenging, and many papers do
681 not require this, but we encourage authors to take this into account and make a best
682 faith effort.

683 12. Licenses for existing assets
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13.

14.

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: In the paper, we specified the pretrain language model, dataset and code sources
used (e.g., verl), and provided appropriate citations in the reference section. Additionally,

we ensured transparency by including the sources of any modified code files, making the
changes traceable.

Guidelines:

» The answer NA means that the paper does not use existing assets.
 The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We have included the code, along with detailed usage instructions, in the
github. After the review process is completed, we will make the code publicly available to
the community.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

 The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: This study does not involve any crowdsourcing experiments or research with
human subjects.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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15.

16.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: This study does not involve any crowdsourcing experiments or research with
human subjects. All experiments were conducted using code and GPU servers.

Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [Yes]

Justification: The proposed models are based on Qwen2.5 LLMs. The paper specifies
detailed experimental configurations, describing the usage of LLMs as a base model and an
important component in our study.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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