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Abstract

Reinforcement learning (RL) has proven effective in incentiving the reasoning abil-1

ities of large language models (LLMs), but faces significant efficiency challenges2

due to its extensive trial-and-error nature. A common practice is to employ super-3

vised fine-tuning (SFT) as a warm-up stage; however, this decoupled two-stage4

approach limits interaction between SFT and RL, thereby constraining overall5

effectiveness. This study introduces a novel method for learning reasoning models6

that employs bilevel optimization to facilitate better cooperation between these7

training paradigms. Specifically, the SFT objective are explicitly conditioned on the8

optimal solution of the RL objective. During training, lower-level updates enable9

the model to receive SFT supervision concurrently with RL-based exploration,10

while upper-level updates are optimized to ensure that the joint training yields11

higher rewards than RL alone. Empirical evaluations on five reasoning benchmarks12

demonstrate that our method consistently outperforms baselines and achieves a13

better balance between effectiveness and efficiency.14

1 Introduction15

The emergence of OpenAI’s o1 [21] and DeepSeek-R1 [7] represents a profound paradigm shift in16

Large Language Models (LLMs). Test-time scaling enables these models to execute longer Chain-17

of-Thought reasoning, inducing sophisticated reasoning behaviors. This capability makes them18

particularly effective in challenging domains such as mathematics [5, 11] and programming problems19

[2, 6].20

The central technique driving this progress is is large-scale, rule-based reinforcement learning (RL),21

which induces sophisticated reasoning behaviors by exploring the reward signal. However, the22

inherently trial-and-error nature of RL renders the training process highly inefficient. An alternative23

approach is supervised fine-tuning (SFT) on curated long chain-of-thought (CoT) datasets, which24

enables models to rapidly acquire effective reasoning patterns through imitation learning. While more25

sample-efficient, SFT is typically less generalizable than RL. In practice, state-of-the-art training26

pipelines often adopt a two or multi-stage paradigm, using SFT as a warm-up phase before applying27

RL. For example, DeepSeek-R1 [7] undergoes multiple rounds of SFT and RL to refine reasoning28

performance. However, in these two or multi-stage pipelines, SFT and RL training are typically29

performed in a fully decoupled manner. This raises a natural question:30

Can we design a training method that enables meaningful information exchange31

between the SFT and RL paradigms?32

To investigate this, we first propose a simple baseline that alternates between SFT and RL updates33

during training. Despite its simplicity, this approach improves both convergence efficiency and final34
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performance. Building on this insight, we further develop a bilevel optimization framework, in which35

SFT is formulated as the upper-level problem and RL as the lower-level problem. By solving this36

nested optimization objective, the SFT updates are explicitly conditioned on the RL solution, allowing37

SFT to provide more targeted guidance to RL. This ultimately yields a model that aligns well with38

both supervised and reward-driven objectives.39

Specifically, we implement this bilevel structure using two learnable components: a base model and40

a set of LoRA modules, which together form an augmented model. The base model is optimized41

using RL as the lower-level objective, while the LoRA parameters are updated through a supervised42

upper-level objective. To make this bilevel optimization tractable, we introduce a penalty-based43

relaxation strategy, where the relaxed upper-level update explicitly encourages cooperation by44

maximizing the reward gap between joint SFT+RL training and RL-only optimization. In doing so,45

the upper-level optimization shapes the lower-level dynamics, fostering tighter alignment between46

supervised learning and reinforcement learning, and improving overall training efficiency.47

To validate the effectiveness of our approach, we conduct experiments using the Qwen-2.5 3B48

model trained on the LIMR dataset, a challenging mathematical reasoning benchmark constructed49

from MATH [10]. We evaluate performance across six diverse benchmark datasets covering both50

standard and competition-level tasks. Our results demonstrate consistent improvements over six51

strong baselines, including supervised fine-tuning, zero-shot RL, and multi-stage SFT+RL pipelines.52

Notably, our method achieves superior performance in terms of both accuracy and training efficiency,53

confirming the benefits of tightly integrating SFT and RL through bilevel optimization.54

Our work makes the following three contributions:55

1. Comparative analysis of reasoning training paradigms. We systematically analyze and56

compare three prevalent strategies for training reasoning-capable language models: super-57

vised fine-tuning (SFT), reinforcement learning (RL), and multi-stage SFT+RL pipelines.58

Based on this analysis, we introduce a simple yet effective alternative baseline that addresses59

the lack of interaction in conventional two-stage training setups.60

2. A bilevel optimization framework for integrating SFT and RL. To promote meaning-61

ful cooperation between SFT and RL, we propose a bilevel optimization method named62

BRIDGE. BRIDGE formalizes SFT as the upper-level objective and RL as the lower-level63

objective, and employs a penalty-based relaxation to explicitly encourage joint training to64

achieve higher rewards than RL alone by maximizing the reward gap between the two.65

3. Empirical validation on six mathematical reasoning benchmarks. We conduct extensive66

experiments using the Qwen-2.5 3B model trained on the LIMR dataset and evaluated across67

six diverse reasoning benchmarks. Our method consistently outperforms strong baselines in68

terms of both accuracy and training efficiency, demonstrating the practical benefits of tightly69

integrated SFT-RL optimization.70

2 Preliminaries71

We begin by reviewing three prevalent fine-tuning strategies for training reasoning models and72

conduct a comparative analysis. We then introduce a simple yet effective improved baseline.73

2.1 Fine-tuning Methods for Reasoning Models74

We consider a large language model (LLM) parameterized by θ, which defines a conditional distribu-75

tion π(y|x;θ) over output sequences y given input sequences x. This work focuses on three widely76

used methodologies for tuning θ to incentivize the model’s reasoning capabilities.77

Rule-based Reinforcement Learning. Reinforcement learning with verifiable rewards has gained78

increasing attention for its effectiveness in training advanced reasoning models such as DeepSeek-R179

[7]. Given a dataset DRL := {(x, y)} with verifiable outputs—such as mathematics competition80

problems or programming tasks—the objective of rule-based RL is formulated as:81

max
θ

JRL(θ) := E(x,y)∼DRL, ŷ∼π(·|x;θ) [r(ŷ, y)]

− E(x,y)∼DRL
[DKL (π(· | x;θ) ∥πref(· | x))]

(1)
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where πref is a fixed reference model, and r(ŷ, y) is a rule-based reward function that evaluates the82

correctness of predictions using a binary signal:83

r(ŷ, y) =

{
1, if ŷ ≡ y,

−1, otherwise
(2)

Here, y denotes the ground-truth answer and ŷ is the model’s predicted output. The equivalence84

relation ŷ ≡ y is typically computed by a domain-specific verifier (e.g., a symbolic math engine or85

code interpreter).86

Since the KL divergence term in (1) is generally not directly computable, this objective is often87

solved using policy optimization methods such as Proximal Policy Optimization (PPO) [22] and88

Group Relative Policy Optimization (GRPO) [7].89

Supervised Fine-Tuning. In supervised fine-tuning, we assume access to a curated dataset90

DSFT := {(x, r, y)} consisting of input prompts x, intermediate reasoning steps r distilled from91

larger reasoning models, and final answers y. The training objective maximizes the log-likelihood of92

generating both the reasoning process and the answer:93

max
θ

JSFT(θ) := E(x,r,y)∼DSFT
[log π (r, y | x;θ)] . (3)

This approach encourages the model to not only produce correct answers but also to imitate expert94

reasoning steps that lead to those answers.95

Two-Stage Cold Start. In practice, a common recipe is to use SFT as a warm-up stage before96

applying RL. This two-stage approach, often referred to as a “cold start” for RL. The SFT stage97

ensures that the model imitate expert reasoning patterns, which provides a good prior for subsequent98

reward-driven optimization.99
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Figure 1: Comparison of Training Methods.

Algorithm 1: A Simple Alternating Method
1: Initialize parameters θ0; learning rates αSFT,
αRL; datasets DSFT, DRL; total steps T
2: for t = 1 to T do
3: // RL step
4: Sample query xt ∼ DRL

5: Generate solution with πθt−1
(xt)

6: Compute reward rt
7: θ′t−1 ← θt−1 + αRL∇JRL(θt−1)
8: // SFT step
9: Sample example (xt, yt) ∼ DSFT

10: θt ← θ′t−1 + αSFT∇LSFT(θ
′
t−1)

11: end for

2.2 Comparative Analysis of Fine-Tuning Strategies100

We conduct a comparative study of fine-tuning strategies using the Qwen2.5-base model as the101

backbone. The training data consists of math problems at the grade 3–5 level, and evaluation is102

performed across five reasoning benchmarks, including Math500. Detailed experimental settings are103

provided in Section 4.1. Figure 1 illustrates how test accuracy on Math500 evolves during training.104

We observe that SFT exhibits rapid initial learning, while RL achieves better final convergence.105

As shown in Figure 1, SFT improves accuracy quickly during the early training stages but plateaus106

at a suboptimal level. In contrast, RL learns more slowly but eventually surpasses SFT in final107

performance.108

The two-stage cold start approach combines the strengths of both paradigms. Figure 1 further109

shows that the SFT warm-up phase significantly accelerates RL convergence and improves its final110

performance. This suggests that SFT provides a strong inductive prior, guiding the subsequent RL111

stage toward better optima.112

These results suggest that RL and SFT offer complementary advantages in reasoning tasks, motivating113

further exploration of their integration.114
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A Simple Alternating Baseline. To further investigate the supportive role of SFT in reinforcement115

learning, we design a simple alternating optimization strategy between the two methods, as outlined116

in Algorithm . This approach alternates between reinforcement learning steps, which explore novel117

reasoning traces, and supervised fine-tuning steps, which imitate expert reasoning patterns (see118

Section 4.1 for details on the SFT dataset). As shown in Figure 1, this alternating strategy converges119

faster than pure RL and achieves better final performance than both SFT and the two-stage Cold-start120

approach. While this integration leads to empirical performance gains, the current formulation treats121

SFT and RL as independent update processes, and there is no guarantee that alternating updates122

consistently outperform either method alone. This limitation raises a important question: How can123

we design training strategies that ensure the synergy between SFT and RL leads to guaranteed gains124

over standalone RL?125

3 Methodology126

Figure 2: Comparison of two
fine-tuning paradigms.

In this section, we propose BRIDGE, a framework that tightly cou-127

ples SFT and RL. We will first introduce the formulation, and then128

the learning algorithm and explanations.129

3.1 BRIDGE Framework130

We define an augmented model θ̄ := [θ, w], where θ denotes the base131

model parameters and w represents the LoRA weights [13]. Given132

a long-form chain-of-thought (CoT) dataset DSFT for supervised133

fine-tuning and a verifiable dataset DRL for reinforcement learning,134

our objective is to integrate the supervised learning objective in135

Eq. (3) with the policy optimization problem in Eq. (1). To do this,136

we propose to solve the following bilevel optimization problem:137

max
w

JSFT(θ, w) := E(x,r,y)∼DSFT
[log π (r, y | x; θ∗(w), w)]

s.t. θ∗(w) := argmax
θ

{
E(x,y)∼DRL, ŷ∼π(·|x;θ,w) [r(ŷ, y)]

− E(x,y)∼DRL
[DKL (π(· | x; θ, w) ∥πref(· | x))]

}
.

(4)
The above problem has a two-level structure that draws inspiration from the leader-follower problem138

in game theory. SFT serves as the leader with greater decision-making power, capable of predicting the139

RL component’s optimal response θ∗(w) for any given parameter set w during training. Meanwhile,140

RL acts as the follower, optimizing the base model parameters θ conditional on the SFT-determined141

parameters w. During training, these two components interact dynamically to achieve enhanced142

cooperation, resulting in improved learning outcomes. As shown in Figure 2, this structure enables a143

more coordinated fine-tuning process compared to the traditional two-stage recipe.144

By solving (4), we aim to find a augmented model θ̄ such that: if one trains the base parameter θ on145

DRL, then the fine-tuned model θ∗(w) needs to fit well with the long CoT dataset DSFT .146

3.2 Learning Algorithm147

Following the penalty-based methods [24, 26], we next consider reformulating (4) with penalty148

functions. Specifically, our first goal is to reformulate (4) to a closely related single-level problem149

that facilitates efficient gradient-based algorithms.150

We define the penalty function for the sub-optimality of the lower-level problem in (4) as:151

p(w, θ) = max
θ′

JRL(θ
′, w)− JRL(θ, w) (5)

Given a penalty constant γ ∈ (0, 1), penalizing p(w, θ) onto the upper-level objective yields the152

following penalized problem of (6):153

max
θ,w

(1− λ)JSFT (θ, w)− λ[max
θ′

JRL(θ
′, w)− JRL(θ, w)] (6)
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Note that in E.q. (6), the value of the term maxθ′ JRL(θ
′, w) is solely a function of w and is154

independent of θ. Then we can update θ iteratively by doing stochastic gradient ascent:155

θk+1 = θk + α [(1− λ)∇θJSFT(θ, w) + λ∇θJRL(θ, w)] (7)

The penalty strength γ can be scheduled to increase at each epoch from a small value: in earlier156

epochs, we warm-start the base parameter on the long-CoT examples. Then we gradually increase γ157

for increasing accuracy in solving for θ∗(w) and a solution for the original problem in (4).158

To evaluate the gradient for w, we need to evaluate ∇ω max′θ JRL(θ
′, w). We assume JRL(θ

′, w)159

satisfies the conditions for Danskin’s theorem, and then we can write ∇ω max′θ JRL(θ
′, w) ≈160

∇ωJRL(θ̂, w), and the above gradient approximation becomes exact if θ̂ = θ∗(ω). Given this161

closed-form gradient, we can update ω with the approximate stochastic gradient ascent:162

wk+1 = wk + β
[
(1− λ)∇wJSFT(θ, w) + λ(∇wJRL(θ, w)−∇wJRL(θ̂, w))

]
(8)

Where θ̂ is the approximation of θ∗(ω) obtained by taking one gradient ascend step on θ with respect163

to the JRL objective:164

θ̂k+1 = θ̂k − α∇θJRL(θ̂k, w) (9)

Algorithm 2: Learning Algorithm of BRIDGE
1: Initialize augmented parameters θ̄0 = (θ0, w0), and auxiliary parameters θ̂0 := θ0;

learning rates α, β; penalty weight λ; number of iterations K
2: for k = 0 to K − 1 do
3: Sample mini-batches DSFT and DRL.
4: Compute supervised objective JSFT(θ

k, wk) and reinforcement objective JRL(θ
k, wk).

5: Compute gradients w.r.t. augmented parameters θ̄k = (θk, wk):
∇θ̄JSFT(θ

k, wk) = [∇θJSFT, ∇wJSFT];
∇θ̄JRL(θ

k, wk) = [∇θJRL, ∇wJRL].
6: // Update lower-level variable (base parameters)
7: θk+1 ← θk + α

[
(1− λ)∇θJSFT(θ

k, wk) + λ∇θJRL(θ
k, wk)

]
.

8: // Update auxiliary θ̂ for upper-level (meta) gradient
9: θ̂k+1 ← θ̂k − α∇θJRL(θ̂

k, wk).
10: // Update upper-level variable (LoRA parameters)
11: wk+1 ← wk+β

[
(1− λ)∇wJSFT(θ

k, wk) + λ
(
∇wJRL(θ

k, wk)−∇wJRL(θ̂
k, wk)

)]
.

12: end for

The overall algorithm of BRIDGE is presented in Algorithm 2.165

3.3 Explanations of Update Rules166

What does the lower-level update do? The update rule for θ in E.q. (7) is a convex combination of167

the SFT and RL gradients. As λ increases from 0 to 1 during training, the algorithm gradually shifts168

from imitation learning to reinforcement learning.169

This curriculum learning–like transition [1] is meaningful: in the early training stages, the base170

model lacks strong reasoning abilities and benefits more from imitating expert reasoning patterns. As171

training progresses, the model becomes capable of generating the correct answers by exploring the172

reward signal , making RL updates more valuable.173

What does the higher-level update do? The update for w in Eq. (8) aims to solve the bilevel174

formulation in Eq. (4). Specifically, it seeks a LoRA module w such that, after training the base175

parameter θ on DRL, the resulting fine-tuned model θ∗(w) also performs well on the supervised176

dataset DSFT (i.e., expert demonstrations).177

The update in Eq. (8) can be interpreted as performing gradient ascent on the following objective:178

f(θ, w) = (1− λ) JSFT(θ, w)︸ ︷︷ ︸
↑ likelihood on expert data

+λ
[
JRL(θ, w)− JRL(θ̂, w)

]
︸ ︷︷ ︸

↑ reward gap between collaboration and solo

(10)
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The first term encourages maximizing the likelihood of expert reasoning patterns in DSFT, while the179

second term increases the gap between the joint optimization using both SFT and RL (parameter180

θ), versus using only RL (auxiliary parameter θ̂). This contrastive gap explicitly promotes synergy181

between the SFT and RL objectives—ensuring that their joint optimization yields better performance182

than optimizing RL alone.183

4 Experiment184

4.1 Settings185

Datasets. We adopt the LIMR dataset [18] for RL training, which is derived from MATH [10].186

Following their setup, we use the Hard subset (problems with MATH difficulty levels 3–5), which187

contains approximately 1.3k problems. For the SFT dataset, we follow the procedure used in188

DeepMath-103k [9] and distill intermediate expert reasoning steps using the R1 model.189

For evaluation, we use the MATH500 subset as the primary test set and uniformly sample an additional190

500 problems for validation. To assess generalization, we evaluate on a diverse set of mathematical191

reasoning benchmarks, including MATH500 [10], Minerva Math [16], and OlympiadBench [8], as192

well as competition-level datasets such as AIME 2024 and AMC 2023.193

Models. We conduct zero-shot RL training experiments using Qwen-2.5 models [30], selected for194

their demonstrated stability on mathematical reasoning tasks. The 3B model is used, with prompt195

formats consistent with SimpleRL.196

Reward. In line with SimpleRL-Zoo [31], we adopt a binary reward function based solely on197

answer correctness: correct final answers receive a reward of +1, while incorrect answers receive 0.198

We deliberately exclude format-based rewards, which have been shown to constrain exploration and199

reduce final performance, particularly for base models.200

Implementation Details. All models are trained using the verl framework [27] with unified201

hyperparameters: a prompt batch size of 64, 5 rollouts per prompt, a maximum rollout length of 3000202

tokens, and a mini-batch size of 64. For evaluation, we use greedy decoding with a temperature of 0203

and a maximum generation length of 5000 tokens. The learning rate is set to 5× 10−7, and for LoRA,204

both the rank and α are set to 16. The weighting coefficient λ is set to 0.5. Following SimpleRL-Zoo205

[31], we report pass@1 accuracy for most benchmarks. For AIME 2024, due to the limited number206

of test cases, we additionally report average accuracy over 8 samples (avg@8). All experiments are207

conducted on four NVIDIA A100 GPUs (80GB).208

4.2 Baselines209

We evaluate our approach against a comprehensive set of baselines, all built on the same base210

architecture. These comparisons are designed to isolate the specific contributions of our proposed211

bilevel optimization framework.212

Base / Instruct Model. The original performance of base model and its instruction version, without213

further reasoning-specific training. This serves as a lower-bound reference for evaluating reasoning214

capabilities.215

Supervised Fine-Tuning (SFT). A model trained solely via supervised fine-tuning on curated216

chain-of-thought (CoT) data, without any reinforcement learning. This highlights the benefits and217

limitations of pure imitation-based learning.218

RL-Zero. Reinforcement learning applied directly to the base model without any prior fine-tuning.219

This baseline evaluates the effectiveness of exploration from scratch, without initialization from220

expert demonstrations.221

Cold-Start A two-stage pipeline where SFT is used to pretrain the model, followed by RL fine-222

tuning. The two phases are fully decoupled, with no interaction between supervised and reward-based223

updates.224
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Naive Alternating. A simple training procedure that alternates between SFT and RL updates in225

fixed intervals, without any explicit coordination or shared optimization objective between the two226

paradigms.227

4.3 Main Results228

Method MATH
500

Minerva
Math

Olympiad
Bench

AIME24
(Avg@8) AMC23 Average

Base 32.4 11.8 7.9 0.0 20.0 14.4
Instruct 50.8 14.7 16.7 8.5 32.5 24.6

RL-zero 64.4 26.5 27.0 3.3 40.0 32.2
SFT 53.4 18.8 21.5 3.3 42.5 27.9(-13.4%)
Cold-start 66.0 24.3 26.8 9.0 35.0 32.2 (+0.0%)
Naive Alter. 65.2 25.3 27.1 6.7 42.5 33.4 (+3.1%)
BRIDGE 65.4 28.3 28.4 10.0 50.0 36.4 (+12.4%)

Table 1: Performance of our method compared to baselines methods across multiple math benchmarks.
The best performance in each column is highlighted in green bold, and performance improvements
(%) over RL-zero are shown in blue.

Generalization to Benchmarks. We evaluate the generalization ability of BRIDGE across five229

diverse mathematical reasoning benchmarks. As shown in Table 1, BRIDGE consistently outperforms230

baseline methods, achieving accuracy improvements of 6.8%, 12.0%, 203.0%, and 25.0% over RL-231

zero on Minerva Math, Olympiad Bench, AIME24, and AMC23, respectively. Overall, BRIDGE232

yields an average improvement of 12.4%, highlighting its effectiveness and robustness across tasks of233

varying difficulty.234

Baseline methods tend to yield larger improvements on relatively easier benchmarks but generalize235

poorly to more complex reasoning tasks. For example, the Cold-start method underperforms RL-zero236

on Minerva Math, Olympiad Bench, and AMC23, potentially due to overfitting during the prior SFT237

phase. While the Naive Alternative partially mitigates this issue—maintaining performance on harder238

benchmarks—its gains remain limited. In contrast, BRIDGE, which explicitly encourages cooperative239

behavior through a reward gap mechanism, achieves consistent and substantial improvements on240

the more challenging benchmarks. These results underscore BRIDGE’s superior generalizability in241

handling complex mathematical reasoning.242

Method Average Performance Average
Epoch=1 Epoch=3 Epoch=6

RL-zero 14.8 17.5 32.2 21.5
SFT 24.1 26.5 27.9 26.2 (+21.8%)

Cold-start 33.4 28.5 32.2 31.4 (+46.0%)
Naive Alter. 13.0 30.8 33.4 25.7 (+19.5%)

BRIDGE 32.3 33.3 36.4 34.0 (+69.3%)

Table 2: Performance progression across training epochs for different methods.

Performance on varied fine-tuning epochs. To evaluate the trade-off between performance and243

training efficiency, we assess the effectiveness of BRIDGE across different fine-tuning epochs. We244

consider the average performance across multiple epochs as a metric to reflect this trade-off. As245

shown in Table 2, BRIDGE achieves the best balance, with an average performance improvement of246

69.3% over RL-zere.247

Among the baselines, Cold-start yields the second-best trade-off. However, its performance becomes248

unstable as training progresses, eventually converging to the same final result as RL-zero. In249

contrast, BRIDGE demonstrates consistent improvement throughout training. Overall, nearly all250

hybrid baselines outperform RL-zero in terms of early-stage efficiency, highlighting the advantage of251

integrating supervised fine-tuning and reinforcement learning paradigms.252

7



5 Related Work253

Reinforcement Learning for Large Reasoning Models. Recent progress has highlighted the254

critical role of reinforcement learning in enhancing the reasoning capabilities of large language255

models [21, 7]. DeepSeek-R1 introduced a simple yet effective rule-based reward model and256

demonstrated further gains through multiple rounds of supervised distillation and RL training.257

LIMR [18] showed that complex reasoning behaviors can emerge from as few as one thousand258

curated examples from the MATH dataset [11].259

In parallel, substantial advances have been made in training recipes for large reasoning models. Chu260

et al. [4] compare SFT and RL for reasoning tasks and find that RL generalizes significantly better,261

whereas SFT is prone to overfitting. SimpleRL [31] observes that fine-tuning on short-CoT datasets262

can harm reasoning ability, while He et al. [9] find that fine-tuning on long-CoT distilled data can263

improve the reasoning performance of smaller models—especially when used as a warm-up stage264

before RL training. In practice, two-stage pipelines that combine SFT and RL are commonly used265

to balance stability and performance. However, existing approaches often rely solely on supervised266

fine-tuning, which tends to generalize poorly, or on pure RL, which suffers from sample inefficiency267

and unstable optimization. In this work, we propose the first unified training framework that enables268

explicit interaction between SFT and RL via a bilevel optimization formulation. This approach269

offers a new perspective on integrating imitation and exploration for reasoning-centric large language270

models.271

Bilevel Optimization in LLMs. Bilevel optimization (BLO) is a classical framework for modeling272

nested learning problems, where an upper-level objective depends on the solution to a lower-level273

optimization task. Two major classes of methods have been developed to solve BLO problems.274

Implicit gradient methods [12, 14, 23, 29] compute gradients through the lower-level problem275

using second-order derivatives. While theoretically robust, these methods are often computationally276

expensive and memory-prohibitive when applied to large-scale models such as LLMs. In contrast,277

penalty-based relaxation methods [24, 15, 25, 20] approximate the BLO formulation using only first-278

order gradients, making them substantially more scalable and thus better suited for LLM applications.279

Recent work has explored the use of bilevel optimization in LLMs for tasks such as data selection280

[19, 26], inverse reinforcement learning [17], and meta-learning [3, 28]. To the best of our knowledge,281

our work is the first to apply bilevel optimization to reasoning-oriented LLM training, providing a282

principled approach to integrating supervised and reinforcement learning in a unified framework.283

6 Conclusion284

This work investigates how to effectively integrate supervised fine-tuning and reinforcement learning285

to improve the reasoning capabilities of large language models. We begin by analyzing three widely286

used training paradigms and identify a key limitation of existing multi-stage pipelines: the lack of287

interaction between SFT and RL. To address this, we propose a simple alternating baseline and further288

introduce BRIDGE, a bilevel optimization framework that models SFT as the upper-level objective289

and RL as the lower-level objective. By employing a penalty-based relaxation, BRIDGE explicitly290

encourages joint training to outperform standalone RL, fostering tighter synergy between the two291

learning paradigms. Empirical results on six mathematical reasoning benchmarks demonstrate that292

our method consistently outperforms strong baselines in both accuracy and training efficiency. These293

findings underscore the potential of bilevel optimization as a unifying framework for combining294

supervised and reward-driven learning in complex reasoning tasks.295

Limitations. While BRIDGE demonstrates promising results, it introduces additional computational296

overhead due to its nested bilevel optimization structure. Future work includes extending the297

framework to larger-scale models and more diverse domains such as program synthesis, theorem298

proving, and scientific reasoning, as well as exploring more efficient optimization strategies to299

mitigate the computational cost.300
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NeurIPS Paper Checklist422

1. Claims423

Question: Do the main claims made in the abstract and introduction accurately reflect the424

paper’s contributions and scope?425

Answer: [Yes]426

Justification: The experiments support claims in the Abstract and Introduction. The abstract427

and introduction provide a comprehensive overview of the background and motivation of this428

study, effectively outlining its main contributions point by-point, thus accurately reflecting429

the paper’s scope and significance.430

Guidelines:431

• The answer NA means that the abstract and introduction do not include the claims432

made in the paper.433

• The abstract and/or introduction should clearly state the claims made, including the434

contributions made in the paper and important assumptions and limitations. A No or435

NA answer to this question will not be perceived well by the reviewers.436

• The claims made should match theoretical and experimental results, and reflect how437

much the results can be expected to generalize to other settings.438

• It is fine to include aspirational goals as motivation as long as it is clear that these goals439

are not attained by the paper.440

2. Limitations441

Question: Does the paper discuss the limitations of the work performed by the authors?442

Answer: [Yes]443

Justification: We primarily focused on discussing the limitations associated with this study444

in Section Conclusion.445

Guidelines:446

• The answer NA means that the paper has no limitation while the answer No means that447

the paper has limitations, but those are not discussed in the paper.448

• The authors are encouraged to create a separate "Limitations" section in their paper.449

• The paper should point out any strong assumptions and how robust the results are to450

violations of these assumptions (e.g., independence assumptions, noiseless settings,451

model well-specification, asymptotic approximations only holding locally). The authors452

should reflect on how these assumptions might be violated in practice and what the453

implications would be.454

• The authors should reflect on the scope of the claims made, e.g., if the approach was455

only tested on a few datasets or with a few runs. In general, empirical results often456

depend on implicit assumptions, which should be articulated.457

• The authors should reflect on the factors that influence the performance of the approach.458

For example, a facial recognition algorithm may perform poorly when image resolution459

is low or images are taken in low lighting. Or a speech-to-text system might not be460

used reliably to provide closed captions for online lectures because it fails to handle461

technical jargon.462

• The authors should discuss the computational efficiency of the proposed algorithms463

and how they scale with dataset size.464

• If applicable, the authors should discuss possible limitations of their approach to465

address problems of privacy and fairness.466

• While the authors might fear that complete honesty about limitations might be used by467

reviewers as grounds for rejection, a worse outcome might be that reviewers discover468

limitations that aren’t acknowledged in the paper. The authors should use their best469

judgment and recognize that individual actions in favor of transparency play an impor-470

tant role in developing norms that preserve the integrity of the community. Reviewers471

will be specifically instructed to not penalize honesty concerning limitations.472

3. Theory assumptions and proofs473
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Question: For each theoretical result, does the paper provide the full set of assumptions and474

a complete (and correct) proof?475

Answer: [Yes]476

Justification: The paper includes the full set of correct proofs for each theoretical result,477

primarily presented in Section ??. In particular, it covers the formulation of reward function478

and PPO algorithm, ensuring completeness and accuracy in the theoretical presentation.479

Guidelines:480

• The answer NA means that the paper does not include theoretical results.481

• All the theorems, formulas, and proofs in the paper should be numbered and cross-482

referenced.483

• All assumptions should be clearly stated or referenced in the statement of any theorems.484

• The proofs can either appear in the main paper or the supplemental material, but if485

they appear in the supplemental material, the authors are encouraged to provide a short486

proof sketch to provide intuition.487

• Inversely, any informal proof provided in the core of the paper should be complemented488

by formal proofs provided in appendix or supplemental material.489

• Theorems and Lemmas that the proof relies upon should be properly referenced.490

4. Experimental result reproducibility491

Question: Does the paper fully disclose all the information needed to reproduce the main ex-492

perimental results of the paper to the extent that it affects the main claims and/or conclusions493

of the paper (regardless of whether the code and data are provided or not)?494

Answer: [Yes]495

Justification: All information regarding the key contribution of this paper, have been fully496

disclosed (to the extent that it affects the main claims and/or conclusions of the paper).497

Data preprocessing steps are provided in Section 4.1. The code will be deanonymized upon498

acceptance.499

Guidelines:500

• The answer NA means that the paper does not include experiments.501

• If the paper includes experiments, a No answer to this question will not be perceived502

well by the reviewers: Making the paper reproducible is important, regardless of503

whether the code and data are provided or not.504

• If the contribution is a dataset and/or model, the authors should describe the steps taken505

to make their results reproducible or verifiable.506

• Depending on the contribution, reproducibility can be accomplished in various ways.507

For example, if the contribution is a novel architecture, describing the architecture fully508

might suffice, or if the contribution is a specific model and empirical evaluation, it may509

be necessary to either make it possible for others to replicate the model with the same510

dataset, or provide access to the model. In general. releasing code and data is often511

one good way to accomplish this, but reproducibility can also be provided via detailed512

instructions for how to replicate the results, access to a hosted model (e.g., in the case513

of a large language model), releasing of a model checkpoint, or other means that are514

appropriate to the research performed.515

• While NeurIPS does not require releasing code, the conference does require all submis-516

sions to provide some reasonable avenue for reproducibility, which may depend on the517

nature of the contribution. For example518

(a) If the contribution is primarily a new algorithm, the paper should make it clear how519

to reproduce that algorithm.520

(b) If the contribution is primarily a new model architecture, the paper should describe521

the architecture clearly and fully.522

(c) If the contribution is a new model (e.g., a large language model), then there should523

either be a way to access this model for reproducing the results or a way to reproduce524

the model (e.g., with an open-source dataset or instructions for how to construct525

the dataset).526
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(d) We recognize that reproducibility may be tricky in some cases, in which case527

authors are welcome to describe the particular way they provide for reproducibility.528

In the case of closed-source models, it may be that access to the model is limited in529

some way (e.g., to registered users), but it should be possible for other researchers530

to have some path to reproducing or verifying the results.531

5. Open access to data and code532

Question: Does the paper provide open access to the data and code, with sufficient instruc-533

tions to faithfully reproduce the main experimental results, as described in supplemental534

material?535

Answer: [Yes]536

Justification: The supplementary material submitted with the manuscript includes open537

access to all source code and scripts necessary to faithfully reproduce the main experimental538

results. Instructions for running the code are also provided within the scripts. We will also539

release the code on github after the notification decision.540

Guidelines:541

• The answer NA means that paper does not include experiments requiring code.542

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/543

public/guides/CodeSubmissionPolicy) for more details.544

• While we encourage the release of code and data, we understand that this might not be545

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not546

including code, unless this is central to the contribution (e.g., for a new open-source547

benchmark).548

• The instructions should contain the exact command and environment needed to run to549

reproduce the results. See the NeurIPS code and data submission guidelines (https:550

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.551

• The authors should provide instructions on data access and preparation, including how552

to access the raw data, preprocessed data, intermediate data, and generated data, etc.553

• The authors should provide scripts to reproduce all experimental results for the new554

proposed method and baselines. If only a subset of experiments are reproducible, they555

should state which ones are omitted from the script and why.556

• At submission time, to preserve anonymity, the authors should release anonymized557

versions (if applicable).558

• Providing as much information as possible in supplemental material (appended to the559

paper) is recommended, but including URLs to data and code is permitted.560

6. Experimental setting/details561

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-562

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the563

results?564

Answer: [Yes]565

Justification: The paper specifies detailed experimental configurations in Section ??, provid-566

ing readers with essential information to comprehend the results.567

Guidelines:568

• The answer NA means that the paper does not include experiments.569

• The experimental setting should be presented in the core of the paper to a level of detail570

that is necessary to appreciate the results and make sense of them.571

• The full details can be provided either with the code, in appendix, or as supplemental572

material.573

7. Experiment statistical significance574

Question: Does the paper report error bars suitably and correctly defined or other appropriate575

information about the statistical significance of the experiments?576

Answer: [No]577
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Justification: We did not include an analysis of the statistical significance of the experiments578

mainly due to the prohibitively expensive training cost of large language models and our579

limited computing resources. However, we have provided the code, hyperparameters, and580

random seeds used in our experiments to facilitate the reproducibility of our findings. We581

would like to point out that, due to the extensive amount of training data, the statistical582

patterns of the experiment results are likely to remain consistent across different trials.583

Guidelines:584

• The answer NA means that the paper does not include experiments.585

• The authors should answer "Yes" if the results are accompanied by error bars, confi-586

dence intervals, or statistical significance tests, at least for the experiments that support587

the main claims of the paper.588

• The factors of variability that the error bars are capturing should be clearly stated (for589

example, train/test split, initialization, random drawing of some parameter, or overall590

run with given experimental conditions).591

• The method for calculating the error bars should be explained (closed form formula,592

call to a library function, bootstrap, etc.)593

• The assumptions made should be given (e.g., Normally distributed errors).594

• It should be clear whether the error bar is the standard deviation or the standard error595

of the mean.596

• It is OK to report 1-sigma error bars, but one should state it. The authors should597

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis598

of Normality of errors is not verified.599

• For asymmetric distributions, the authors should be careful not to show in tables or600

figures symmetric error bars that would yield results that are out of range (e.g. negative601

error rates).602

• If error bars are reported in tables or plots, The authors should explain in the text how603

they were calculated and reference the corresponding figures or tables in the text.604

8. Experiments compute resources605

Question: For each experiment, does the paper provide sufficient information on the com-606

puter resources (type of compute workers, memory, time of execution) needed to reproduce607

the experiments?608

Answer: [Yes]609

Justification: All experiments were carried out on an 4 × A100 GPU server, as detailed at610

the beginning of the experiment section (Section ??).611

Guidelines:612

• The answer NA means that the paper does not include experiments.613

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,614

or cloud provider, including relevant memory and storage.615

• The paper should provide the amount of compute required for each of the individual616

experimental runs as well as estimate the total compute.617

• The paper should disclose whether the full research project required more compute618

than the experiments reported in the paper (e.g., preliminary or failed experiments that619

didn’t make it into the paper).620

9. Code of ethics621

Question: Does the research conducted in the paper conform, in every respect, with the622

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?623

Answer: [Yes]624

Justification: After carefully reviewing the referenced document, we certify that the research625

conducted in the paper conforms, in every respect, with the NeurIPS Code of Ethics.626

Guidelines:627

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.628

• If the authors answer No, they should explain the special circumstances that require a629

deviation from the Code of Ethics.630
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• The authors should make sure to preserve anonymity (e.g., if there is a special consid-631

eration due to laws or regulations in their jurisdiction).632

10. Broader impacts633

Question: Does the paper discuss both potential positive societal impacts and negative634

societal impacts of the work performed?635

Answer: [NA]636

Justification: The paper primarily focuses on math LLMs trained using publicly available637

datasets that have undergone thorough validation. While the code LLMs itself is not directly638

applicable to everyday scenarios, it serves as a neutral and valuable toolkit for further639

development and research.640

Guidelines:641

• The answer NA means that there is no societal impact of the work performed.642

• If the authors answer NA or No, they should explain why their work has no societal643

impact or why the paper does not address societal impact.644

• Examples of negative societal impacts include potential malicious or unintended uses645

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations646

(e.g., deployment of technologies that could make decisions that unfairly impact specific647

groups), privacy considerations, and security considerations.648

• The conference expects that many papers will be foundational research and not tied649

to particular applications, let alone deployments. However, if there is a direct path to650

any negative applications, the authors should point it out. For example, it is legitimate651

to point out that an improvement in the quality of generative models could be used to652

generate deepfakes for disinformation. On the other hand, it is not needed to point out653

that a generic algorithm for optimizing neural networks could enable people to train654

models that generate Deepfakes faster.655

• The authors should consider possible harms that could arise when the technology is656

being used as intended and functioning correctly, harms that could arise when the657

technology is being used as intended but gives incorrect results, and harms following658

from (intentional or unintentional) misuse of the technology.659

• If there are negative societal impacts, the authors could also discuss possible mitigation660

strategies (e.g., gated release of models, providing defenses in addition to attacks,661

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from662

feedback over time, improving the efficiency and accessibility of ML).663

11. Safeguards664

Question: Does the paper describe safeguards that have been put in place for responsible665

release of data or models that have a high risk for misuse (e.g., pretrained language models,666

image generators, or scraped datasets)?667

Answer: [NA]668

Justification: The proposed models are based on Qwen2.5 and trained on benchmark dataset669

MATH. The pretrain language models and dataset have been extensively used in the large670

language model community and have undergone comprehensive safety. risk assessments.671

Guidelines:672

• The answer NA means that the paper poses no such risks.673

• Released models that have a high risk for misuse or dual-use should be released with674

necessary safeguards to allow for controlled use of the model, for example by requiring675

that users adhere to usage guidelines or restrictions to access the model or implementing676

safety filters.677

• Datasets that have been scraped from the Internet could pose safety risks. The authors678

should describe how they avoided releasing unsafe images.679

• We recognize that providing effective safeguards is challenging, and many papers do680

not require this, but we encourage authors to take this into account and make a best681

faith effort.682

12. Licenses for existing assets683
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Question: Are the creators or original owners of assets (e.g., code, data, models), used in684

the paper, properly credited and are the license and terms of use explicitly mentioned and685

properly respected?686

Answer: [Yes]687

Justification: In the paper, we specified the pretrain language model, dataset and code sources688

used (e.g., verl), and provided appropriate citations in the reference section. Additionally,689

we ensured transparency by including the sources of any modified code files, making the690

changes traceable.691

Guidelines:692

• The answer NA means that the paper does not use existing assets.693

• The authors should cite the original paper that produced the code package or dataset.694

• The authors should state which version of the asset is used and, if possible, include a695

URL.696

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.697

• For scraped data from a particular source (e.g., website), the copyright and terms of698

service of that source should be provided.699

• If assets are released, the license, copyright information, and terms of use in the700

package should be provided. For popular datasets, paperswithcode.com/datasets701

has curated licenses for some datasets. Their licensing guide can help determine the702

license of a dataset.703

• For existing datasets that are re-packaged, both the original license and the license of704

the derived asset (if it has changed) should be provided.705

• If this information is not available online, the authors are encouraged to reach out to706

the asset’s creators.707

13. New assets708

Question: Are new assets introduced in the paper well documented and is the documentation709

provided alongside the assets?710

Answer: [Yes]711

Justification: We have included the code, along with detailed usage instructions, in the712

github. After the review process is completed, we will make the code publicly available to713

the community.714

Guidelines:715

• The answer NA means that the paper does not release new assets.716

• Researchers should communicate the details of the dataset/code/model as part of their717

submissions via structured templates. This includes details about training, license,718

limitations, etc.719

• The paper should discuss whether and how consent was obtained from people whose720

asset is used.721

• At submission time, remember to anonymize your assets (if applicable). You can either722

create an anonymized URL or include an anonymized zip file.723

14. Crowdsourcing and research with human subjects724

Question: For crowdsourcing experiments and research with human subjects, does the paper725

include the full text of instructions given to participants and screenshots, if applicable, as726

well as details about compensation (if any)?727

Answer: [NA]728

Justification: This study does not involve any crowdsourcing experiments or research with729

human subjects.730

Guidelines:731

• The answer NA means that the paper does not involve crowdsourcing nor research with732

human subjects.733
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• Including this information in the supplemental material is fine, but if the main contribu-734

tion of the paper involves human subjects, then as much detail as possible should be735

included in the main paper.736

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,737

or other labor should be paid at least the minimum wage in the country of the data738

collector.739

15. Institutional review board (IRB) approvals or equivalent for research with human740

subjects741

Question: Does the paper describe potential risks incurred by study participants, whether742

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)743

approvals (or an equivalent approval/review based on the requirements of your country or744

institution) were obtained?745

Answer: [NA]746

Justification: This study does not involve any crowdsourcing experiments or research with747

human subjects. All experiments were conducted using code and GPU servers.748

Guidelines:749

• The answer NA means that the paper does not involve crowdsourcing nor research with750

human subjects.751

• Depending on the country in which research is conducted, IRB approval (or equivalent)752

may be required for any human subjects research. If you obtained IRB approval, you753

should clearly state this in the paper.754

• We recognize that the procedures for this may vary significantly between institutions755

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the756

guidelines for their institution.757

• For initial submissions, do not include any information that would break anonymity (if758

applicable), such as the institution conducting the review.759

16. Declaration of LLM usage760

Question: Does the paper describe the usage of LLMs if it is an important, original, or761

non-standard component of the core methods in this research? Note that if the LLM is used762

only for writing, editing, or formatting purposes and does not impact the core methodology,763

scientific rigorousness, or originality of the research, declaration is not required.764

Answer: [Yes]765

Justification: The proposed models are based on Qwen2.5 LLMs. The paper specifies766

detailed experimental configurations, describing the usage of LLMs as a base model and an767

important component in our study.768

Guidelines:769

• The answer NA means that the core method development in this research does not770

involve LLMs as any important, original, or non-standard components.771

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)772

for what should or should not be described.773
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