
SENT-Map: Semantically Enhanced Topological Maps
with Foundation Models

Raj Surya Rajendran Kathirvel1, Zach Chavis2, Stephen J. Guy2, and Karthik Desingh1,2

(a) Operator’s perspective (b) Robot’s perspective (c) Topological map (d) Semantic node JSON

Fig. 1: SENT-Map overview. (a) An operator guides a robot throughout an environment, (b) stopping at task-relevant locations to take
a snapshot, (c) which is tagged with a location and appended to a graph, and (d) fed to a foundation model alongside human annotation
to generate a JSON description of the semantic context.

I. INTRODUCTION

We introduce SENT-Map, a semantically enhanced topo-
logical map for representing indoor environments, designed
to support autonomous robot navigation and manipulation
by leveraging advancements in foundational models (FMs).
The general semantic information and planning capabilities
found in modern FMs provide exciting potential for robots
operating in complex human environments to have power-
ful capabilities in unconstrained, open-world environments.
However, these FMs also come with notable risks related to
hallucination, false confidence, and other assurance-related
issues. We propose to address these issues by grounding
plans from FMs in the real-world locations as represented
through a topological map [1]. Additionally, we rely on
both vision-language models (VLMs) and human operators
to further enhance these topological maps with semantic
information, allowing a robot to build robust plans to account
for its navigation capabilities, manipulation affordances, and
other semantic information about objects, rooms, and people
in the robot’s environment. By incorporating these result-
ing SENT-Maps with a Large-Language Model (LLM) for
planning, the resulting system is able to execute a variety
of navigation-manipulation tasks in complex environments
specified through natural language commands.

At a high level, the proposed framework operates in two
stages: a mapping stage and a planning/execution stage.
The mapping stage begins with a navigational map build

1Minnesota Robotics Institute (MnRI), and 2Department
of Computer Science and Engineering (CS&E), Uni-
versity of Minnesota, Minneapolis, MN 55414 US.
(rajen064|chavi014|sjguy|kdesingh)@umn.edu

through an environmental walkthrough followed by the use
of an FM to construct the SENT-Map. The SENT-Map
construction process is human-guided in two ways: first,
a human operator is responsible for walking the robot
through the environment, and second, the operator highlights
various semantically interesting locations and objects. The
result of the mapping stage is a structured SENT-Map in
JSON format, representing the environment as a topological
graph with nodes containing robot affordances, navigability
links, and any additional environmental information useful
for mobile manipulation tasks such as people’s locations
or objects’ ownership. Critically, these node-based maps
can be easily visualized, checked, and edited by a human
for not only correctness, but also supplementary semantic
information not privy to FMs. The planning and execution
stage is executed by a Planning FM, in this case an LLM,
which takes the SENT-Map in JSON format, a description of
the robot’s known skills, and a natural language command
as input to generate and execute task plans. These actions
generated by the FM can be limited at plan creation time to
those allowed by the SENT-Map, eliminating the possibility
of hallucinations at plannign time related to affordances or
capabilities.

In summary, our contributions are as follows:

• SENT-Map, a Semantically-Enhanced Topological Map
in human-interpretable JSON for autonomous robot
navigation and manipulation

• A framework for constructing and planning over SENT-
Maps using existing foundation models.

• Experimental results showing SENT-Maps improve FM
planning success even on locally-deployable FMs.



II. RELATED WORKS

Liu et al. proposed FM-fusion [2], an instance-aware
semantic mapping framework combining vision-language
models with SLAM for camera pose estimation. While it
enables open-set labeling and dense segmentation, it suf-
fers from high computational demands, lacks embodiment-
specific affordance reasoning, and provides no assurances for
task execution. For building SENT-Maps, we utilize FMs
to generate a map in JSON, which is human-editable to
further enhance or correct the map to allow for assured task
execution.

Object-centric mapping approaches [3], [4] integrate rich
semantic information about objects into maps, making them
highly effective for manipulation tasks. While these methods
excel in supporting intricate manipulation scenarios, cur-
rent foundational models are not yet sufficiently advanced
for reliable open-set 3D reconstruction or pose estimation,
though promising progress has been made [5]. Our proposed
framework seeks to address this limitation by leveraging FM
models for 2D visual semantic understanding combined with
natural language utterances to construct sparse representa-
tions, as seen in SENT-Maps.

Several works leverage FMs to semantically represent
environments for visual navigation. CLIP-Fields [6] maps
3D spatial locations to high-dimensional feature vectors
embedding CLIP-based language and visual features, while
NLMap-SayCan [7] uses a 2D grid-based map with discrete
object representations derived from a region proposal net-
work and VLM features. VLMaps [8] represents fixed object
sets in a 2D grid as top-down projections, enabling spatial
goal navigation using language commands. Techniques like
3D-LLMs [9] and the real-time OpenFusion [10] offer open-
vocabulary 3D mapping and queryable scene representations
using RGB-D data. While these methods are effective, they
represent semantic information in feature space, making their
maps non-verifiable by humans and limiting their ability to
incorporate affordances. In contrast, our proposed framework
uses FM during mapping phase to achieve open-set seman-
tic enhancement, enabling the creation of human-verifiable
editable maps.

Graph-based methods represent scenes as 3D graphs,
embedding geometric and semantic information into nodes
for high-level task planning. Concept Graphs [11] constructs
3D graphs by leveraging 2D foundation models and fus-
ing their outputs into 3D through multi-view association,
enabling open-vocabulary representations without extensive
3D datasets. CLIO [12] builds task-driven 3D object-centric
maps, clustering object primitives into semantic regions
based on task specifications. While these methods create
object-centric topological maps, they require task speci-
fications during map creation, and are not designed for
editability, limiting their flexibility and usability. by enabling
open-set semantic enhancement during the mapping phase
and task specification through natural language interaction
in the execution phase, thereby improving adaptability and
task assurance.

III. SEMANTICALLY ENHANCED TOPOLOGICAL MAP

A. Problem Definition

Consider a topological map M represented as a graph
M = G(V,E), where V denotes the nodes the robot can
navigate to and E denotes the navigation actions it can per-
form to move between the vertices. The SENT-Map embeds
additional information into a subset of the vertices VSE ⊆ V ,
as illustrated in Fig. 1. Our framework has two phases and
hence two problems: one, constructing the map M, where a
human walks the robot in the indoor environment, facilitating
the capture of RGB observations Iv of the semantic node
locations v, which are then passed through an FM (Scene
Representation FM) M← {SFM (Iv) | v ∈ VSE} to output
the JSON-structured SENT-MapM; and two, planning with
the constructedM, where given the SENT-Map and a natural
language query, an FM (Planning FM) outputs the navigation
and manipulation sequence to complete the task. Given a
target node vtarget, a current node vcurrent, and the map
M, we assume that there exists a path planner that gives
the shortest path the robot can successfully execute to reach
vtarget.

B. Scene Representation (SENT-Map)

To enable reasoning by language models over physical
environments, the SENT-Map represents the environment as
a JSON-structured topological graph. It encodes spatial and
semantic information in a hierarchical format, grounded in
the robot’s navigation and interaction capabilities. At the top
level, the SENT-Map consists of navigation nodes, which
represent traversable waypoints in free space. Each naviga-
tion node specifies its connectivity to other nodes via directed
edges, forming the graph structure M = G(V,E) as shown
in Fig 2 (c). Each navigational node has the potential to be
a semantic node, representing nearby stationary entities such
as fridges, drawers, cabinets, tables, or desks that serve as po-
tential locations for robot interaction. As entities represented
by semantic nodes may require additional context (e.g., a
fridge must be opened to retrieve its contents), the semantic
node can indicate how the entity’s state can be changed by
the robot through manipulation. These semantic nodes may
also contain objects, which are movable, graspable entities
such as mugs, tissue boxes, bottles, or cans; these objects are
targets for high-level tasks such as “get,” “move,” or “clean.”
Each semantic node may further contain additional metadata
relevant for downstream tasks, such as tagging individual
objects with ownership, e.g. “Bob’s mug.” This structured
and interpretable representation enables foundational models
to reason over physical spaces using natural language, while
supporting efficient navigation and task planning.

C. Foundation Models Maps with Human Grounding

To construct a SENT-Map, an operator guides a robot
around an environment as shown in Fig 1 (a). As the robot
moves, navigational nodes are created, memorizing the free-
space of the environment. During mapping, the operator
stops at desired points of interest, which become semantic
nodes. To construct the semantic node, the robot first takes an



Fig. 2: SENT-Map Framework. (a) An operator defines a map alongside a robot. (b) Images and operator prompt are given to a Scene
Representation FM, which outputs a node in JSON. (c) A collection of nodes defines our semantic graph. Due to the interpretability of
JSON, the operator is free to make additions or corrections within the JSON. (d) The full JSON graph is fed to a planning FM alongside
a query, and a skill sequence is output. (e) The robot then executes the skill sequence within the environment.

RGB snapshot using onboard cameras as shown in Fig 1 (b).
The image is then passed to a Vision-FM along with a
prompt defining the JSON template, i.e. the structure of a
semantic node, as shown in Fig 1 (d). After mapping, the
collection of semantic nodes is represented as a Scene JSON,
a compressed-textual representation of the map.

As the JSON format is human-interpretable, during this
mapping phase the user can also modify/rectify the JSON
or add other additional information such as ownership tags
(“this is person A’s mug”), associated with the semantic
node or any of the objects it contains to enrich the SENT-
Map. Any hallucination or incorrect inference made by the
mapping FM can be corrected by the operator before the
planning stage. Hence, the JSON used during the planning
stage will be representative of the ground truth. An example
segment from a SENT-Map JSON file is shown in Fig 2 (c).

D. Planning with Foundation Models

For planning, we employ a text-only foundation model as
a Planning FM, which is tasked with determining the series
of steps that satisfy a task given the Scene JSON and user-
defined query as shown in Fig 2 (d). Following [13], we
ground the output actions to a skill API, which defines the
actions the robot can take, and a description of the robot’s
physical constraints (i.e. single arm). The final prompt for
the FM contains the scene, the skill API, the physical
robot constraints, and the user query. Once the FM returns
a plan, the robot executes the series of commands using
the navigation nodes for global motion planning, and off-
the-shelf methods for local collision avoidance and object
manipulation.

IV. EXPERIMENTAL RESULTS

To evaluate the impact of semantic enhancement for
planning, we compare the performance on the SENT-Map en-
vironment represented in Fig 3, consists of nine different se-
mantic nodes defined over three major zones (office, lounge
and kitchen). Each room has various items for a total of 23
objects as inferred by the Vision-FM (Llama 3.2 90B Vision
Instruct [14]) and verified by the operator. To evaluate the
impact of semantic enhancement for planning, we compare
the performance of 5 large language models: Llama 3.1 8B
and 405B Instruct [14], GPT 4o mini and o3 mini [15], and
Gemma 3 27B and Gemini Flash 2.0 [16], across three object
retrieval scenarios: Get-Sponge, Get-Coffee, and Get-Tissue.

The Get-Sponge task is an unambiguous reasoning instance
where the target object (a sponge) is placed in its logically
and semantically appropriate location—i.e., in the kitchen by
the sink. This makes it relatively straightforward for LLMs to
infer that the kitchen sink is the obvious place to search for
the sponge. In the Get-Coffee task, we introduce a misleading
association: the coffee powder is placed on a tray in the office
rather than in the lounge or kitchen. This reflects a common
real-world scenario where an object is not in a semantically
expected location, requiring the agent to rely on a prior
mapping phase to identify its placement. Finally, the Get-
Tissue task presents a many-to-one mapping scenario, where
multiple tables (at least one per location) could plausibly
contain a tissue box, but only one actually does. This setting
reflects a frequent occurrence in household environments,
where several semantically valid locations might exist for a
given object. In such cases, an accurate map with the object’s
current location is essential for efficient task completion.
Queries are given in natural language, and the model is asked
to reply with the skill sequence most likely to solve the task.

A. Baseline Performance

We define our baseline map as a Scene JSON with
no semantic enhancement, meaning only top-level location
information is provided (e.g., office desk, kitchen fridge),
inspired by techniques such as [13]. This consists of our
nine semantic nodes over three zones, but without object
context. As the baseline method lacks contextual information
about the objects present, the LLM is forced to infer where
an object may be located based on semantic cues com-
monly associated with each location. Usually in large indoor
environments, multiple similar locations exist, introducing
semantic ambiguity. For example, when asked to retrieve
a tissue, the language model understands that tables are a
common location for tissues to be located, but must guess
between the various tables within the environment as pictured
in Fig 3, leading to inconsistent task performance. This trend
is seen across all LLMs tested as shown in Table I.

In case of indirect queries – where the target object is not
explicitly stated (e.g., “I have a cold and I’m feeling a bit
sniffly.”, tissue implied) – the LLM was unable to answer
correctly using the baseline map as shown in Table II.



Baseline Semantic Enhancement

Model Sponge Coffee Tissue Average Sponge Coffee Tissue Average

Gemma 3 27B ✓ × ✓ 66.7% ✓ ✓ ✓ 100%
Gemini 2.0 Flash ∅ ∅ ∅ 0.0% ✓ ✓ ✓ 100%
Llama 3.1 8B × × ✓ 33.3% ✓ ✓ ✓ 100%
Llama 3.1 405B × × ✓ 33.3% ✓ ✓ ✓ 100%
GPT 4o mini × × ✓ 33.3% ✓ ✓ ✓ 100%
GPT o3 mini ✓ ✓ × 66.7% ✓ ✓ ✓ 100%

Average 38.9% 100%

TABLE I: Task success across several LLMs. A “✓” denotes task success, an “×” denotes task failure, and a “∅” denotes the model’s
refusal to output a solution due to requiring additional context.

Baseline Semantic Enhancement

Task Direct Indirect Direct Indirect

Watch TV × × ✓ ✓
Runny Nose ✓ × ✓ ✓
Private listening × × ✓ ✓
Sanitization × × ✓ ✓
Call a friend × × ✓ ✓
Flavor Coffee ✓ × ✓ ✓

SE SE + Ownership

Store Bob’s leftovers ✓ ✓ ✓ ✓
Get Bob his drink ✓ × ✓ ✓
Bob’s things to Alice ✓ × ✓ ✓

TABLE II: Direct-query and indirect-query task success for small
foundation model. Gemma 3 27B was prompted with two types
of queries, one directly asking for the objects, and one indirectly
suggesting the object without naming it. Results indicate that
semantic enhancement enables even a small FM to reason about
complex tasks.

Fig. 3: Semantic Ambiguity. The topological map of our indoor
environment contains several instances of drinks and tables, two
nodes of which are pictured here. When given a task asking for a
“tissue”, each FM knows that a desk or table is a likely location for a
tissue box, but is forced to make a guess without additional semantic
context. Similarly, the FM must guess between drinks when queried
for a beverage with no context of who a drink belongs to.

B. Semantic Enhancement

When provided with semantic context about the objects
present at each node, all LLMs are able to correctly infer
the target skill sequence even in adversarial cases like the
Get-Coffee or Get-Tissue scenarios. The semantic context

also allows even a relatively small LLM (like Gemma 3
27 B) to accurately plan the correct skill sequence even in
cases of tricky indirect queries as shown in Table II. We also
explore queries that require knowledge of object ownership.
By including two people, Bob and Alice, into the Scene
JSON and tagging two of Bob’s items, we can plan for tasks
involving someone’s items or current locations. While the
FM can plan for direct object queries on the SENT-Map, lack
of ownership and location tagging causes hallucinations in
ambiguous scenarios, such as assuming anything near Bob’s
is owned by him. Results are shown in Table II.

V. CONCLUSION AND FUTURE WORK

We introduced SENT-Maps, Semantically-Enhanced
Topological Maps for autonomous robot navigation and
manipulation. SENT-Maps represent the environment in
JSON format, enabling humans to edit and foundation
models to parse the environment for downstream planning.
We demonstrate a framework for constructing a SENT-Map
using an operator guided mapping phase, and a planning
phase, both assisted by foundation models. Through
semantic enhancement, we showed foundation models were
able to plan more effectively for locally-deployable (27B
param) FMs and from indirect queries.

An important limitation of this work is the effort required
from an operator to attain sufficient semantic enhancement.
This may be especially limiting in large or complex envi-
ronments where the required operator effort may not scale
well with the environment. Additionally, the SENT-Maps
resulting from complex environments may result in long or
complex JSON files that smaller LLMs could have trouble
parsing correctly or that may confuse the human operator.
To address these limitations, we hope to explore a tradeoff
between operator-level semantic enhancement and scalable
mapping methods for robots such as Hydra [5], as well as
the semantic complexity tradeoff. We also hope to further
investigate the ability for users to interpret and augment the
SENT-Map, allowing them to alter the map through a user
interface during and after mapping, as well as while planning.
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