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Abstract

Disordered (amorphous) materials, such as glasses, are emerging as promising
candidates for applications within energy storage, nonlinear optics, and catalysis.
Inverse design aims to directly predict the composition and structure of new ma-
terials with targeted properties using machine learning models. This avoids the
time-consuming trial-and-error process of traditional materials design and has the
potential to significantly accelerate the discovery of new materials.

In this work, we introduce AMDEN (Amorphous Material DEnoising Network), a
diffusion model-based framework that generates structures of amorphous materials
and can be conditioned on target properties. We demonstrate inherent challenges
for diffusion models to generate relaxed structures. These low-energy configura-
tions are typically obtained through a thermal motion-driven random search-like
process that cannot be replicated by standard denoising procedures. We therefore
introduce an energy-based AMDEN variant that implements Hamiltonian Monte
Carlo refinement for generating these relaxed structures. We further introduce
several amorphous material datasets with diverse properties and compositions to
evaluate our framework and support future development.

1 Introduction

Amorphous materials are solids that lack a periodic atomic arrangement (i.e., long-range atomic
order), yet exhibit complex short- and medium-range order. They have shown great potential in
diverse domains including batteries, non-linear optics, and catalysis [[1].

Traditional materials design relies on a trial-and-error approach, where candidate materials are
synthesized or simulated to determine their properties. Inverse design aims to reverse this process
using machine learning methods by directly predicting the composition and structure of new materials
with targeted properties. This has the potential to significantly accelerate the materials discovery
process [2]. One promising way to implement this approach is through probabilistic generative
models [3, 4], in particular diffusion models [Sl], which generate atomic positions and elements
conditioned on desired properties by transforming random noise to target material samples through a
multi-step Markov process. Such models have shown success in generating crystalline materials [6, (7]
and molecules [8H10], but remain under-developed for amorphous materials due to the lack of
large-scale datasets and their unique atomic ordering characteristics.

There are a few existing efforts in generating atomic configurations of amorphous materials, based on
variational autoencoders (VAEs) [3]], generative adversarial networks (GANs) [4]], or diffusion models.

*These authors contributed equally to this work

39th Conference on Neural Information Processing Systems (NeurIPS 2025) Workshop: Al4Mat.



n -step Markov process —

Properties — Z‘i\(‘qu Atom Types
O e P2y
¥ Y R ?sz‘zs A @O
v PR @5 @ ¢
a b eS|
> . > s9(z) > fl"“‘g'g % ﬁ‘, Be Si
b ’ Score S b vl Ca Ti
S 2 AR i B S
S i Function 2 e ® K OGhost
- I Li atoms
Random Sample T Noisy Sample Less Noisy Sample Clean Sample =

Figure 1: Pipeline of AMDEN model. A reverse-time stochastic differential equation is solved to
transform an initially completely random sample into a valid materials sample.

However, the effectiveness of existing VAE-based methods [11H14] and GAN-based methods [[15] is
challenged by the limitations of the underlying VAE and GAN frameworks [16H20]. Meanwhile, ex-
isting diffusion model-based methods [21H23] have focused on relatively narrow types of amorphous
materials and properties, leaving the generation of diverse amorphous materials largely unexplored.

In this work, we propose and validate an inverse design framework for amorphous materials. Our
framework, named AMDEN (Amorphous Material DEnoising Network), is a diffusion model-based
framework that generates structures of multi-element amorphous materials with desired properties.
Figure [T]illustrates the pipeline of AMDEN. To effectively train and validate AMDEN and to support
future development in inverse design of amorphous materials, we generated several amorphous
material datasets with diverse properties and compositions. We first introduce three datasets of pure
amorphous silicon with differing thermal histories to demonstrate the inherent challenges for diffusion
models to generate relaxed structures. We further developed a multi-element glass dataset covering a
wide range of compositions to test AMDEN’s inverse design capabilities.

The standard implementation of AMDEN is not able to generate low-energy structures, which are
obtained when the material is quenched at a low cooling rate. We therefore developed an energy-
based variant of the score function, which incorporates Hamiltonian Monte Carlo refinement into the
material diffusion process. This modified AMDEN implementation is able to generate samples that
match the reference data closely in terms on energy and structure.

2 AMDEN Model

AMDEN generates amorphous materials samples z = (C, X, E), consisting of cell vectors C' €
R3*3, atomic positions X € R™*3, and one-hot element embeddings E € R™*?, The generation
process can be conditioned on target properties y, which are represented as an m-dimensional vector.
We employ a stochastic differential equation (SDE) framework [24] with score-matching [25]], where
a learnable score function syp(z) ~ V. lnp(z) guides the reverse diffusion from noise to valid
samples following the target distribution p(z). The stochastic nature provides flexibility for exploring
optimal structures. To sample from p(z), we start from a noisy sample Z = (C, X, E) with random
positions and elements, then solve a reverse-time SDE through an n-step Markov process guided by
sg(x). Note that the cell C remains intact throughout the process. We introduce ghost atoms that
enable density control without changing the number of atoms in each sample (see Appendix [C.4).

The score function uses an Equivariant Graph Neural Network (EGNN) [26] backbone to preserve
translational, rotational and permutational invariances, processing a graph G = (V, £) where edges
connect atoms within a cutoff radius. The nodes contain element embeddings E, desired properties y,
and diffusion progress information, while edge features encode interatomic distances. Implementation
details of AMDEN are provided in Appendix [C]

3 Results

We first trained unconditional AMDEN models on datasets of amorphous Si samples obtained from
melt-quench simulations. We developed three datasets which are identical in terms of composition
and samples size but differ in the samples’ thermal history. While samples of the melt variant are
obtained from a melt at 2500 K, the guench variant is obtained after an almost instantaneous quench
to 300 K and the anneal variant is obtained after quenching the melted structures to 300 K at 1 K/ps.



Details about the dataset generation are given in Appendix [A.T} For inference, the unit cells C' of the
training samples were used and the number of atoms was kept fixed at 256.
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Figure 2: a, Radial distribution functions and b potential energy distributions after local geometry
optimization for all three amorphous Si datasets (solid lines) and samples generated by AMDEN
(dashed lines) using the standard denoising procedure. Panels ¢ and d show the same analysis using
HMC denoising. e, Noise energy Ey predicted by the model trained on the anneal Si dataset plotted
against diffusion time ¢. f, Young’s moduli of samples generated by AMDEN trained on the MEG
dataset plotted against the target value used for conditioning.

To assess the quality of the generated samples, we computed radial distribution functions (RDFs),
bond angle distributions and structure factors for the original data as well as after a local geometry
optimization. Fig.[Zh shows the RDFs after a local geometry optimization, while the other structural
features and analysis of the unoptimized structures are provided in Appendix |B} Local geometry
optimizations were used to remove the influence of small residual noise and thermal motions and
instead focus on the inherent structures. As expected, peaks in the RDF of Si become more intense and
narrower as the extent of relaxation increases from melt to quench and anneal datasets. Interestingly,
the discrepancy between the generated and reference samples follows the same trend. Considering
the distribution of the potential energy of the geometry optimized samples shown in Fig. b, we
observe that the energy of the training samples decreases with increasing extent of relaxation, while
samples generated by AMDEN have an almost identical energy distribution for all three datasets.
AMDEN thus appears unable to generate the low-energy structures that are reached through relaxation
processes.

3.1 Relaxation Denoising

During relaxation the potential energy of a glassy system is gradually lowered, as the system explores
configuration space, driven by thermal motion. A key feature of glassy potential energy landscapes
(PEL) is the lack of a so-called funnel structure of the PEL, i.e., pathways to low energy minima
through a sequence of catchment basins with continuously decreasing energy [27]]. This PEL structure
allows for incremental improvements in lowering the system’s energy. In glassy systems, however,
this is not possible, as many funnels are present with varying depth, separated by high barriers [28].
This is problematic for diffusion models, which rely on the assumption that samples can be generated
by incrementally improving the previous state in the denoising process.

To address this, we propose a new variant of AMDEN, which instead of directly predicting the score
function, predicts a so-called noise energy Fy(z), from which the score sq(z) is calculated as

1 .
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Here, kg7 are normalization constants and set to 1 in our implementation. We note that Eg(x) is
usually not a potential energy. Only in the case of an unconditional model, trained on Boltzmann



distributed samples, will Ey (z) recover the potential energy of the system, given that kg and T are
set to the Boltzmann constant and the equilibrium temperature of the training data, respectively.

Fig.[2e shows Ey as predicted by a model trained on the anneal Si dataset. The values are plotted
against the diffusion coordinate ¢ and obtained by averaging over ten forward noising trajectories,
serving as ground truth, and ten denoising trajectories labeled as forward and std denoising, respec-

tively. As seen in the plot, both curves diverge around ¢ = 0.4 and the model ascribes a higher Ey
and thus lower probability to the samples obtained from the standard denoising procedure. This

indicates that the generated intermediate samples are not properly equilibrated on Ee(l‘) and thus
are not representative of the target distribution p(x). We therefore implement a modified variant of
the denoising process, labeled HMC denoising in the figure, which incorporates Hamiltonian Monte
Carlo [29] (HMC) steps on Ey to equilibrate the structures during denoising and sample from the
true target distribution p(x). As shown in Fig. 2k, the HMC denoising process is able to recover

noise-energies matching the forward trajectory by overcoming barriers of higher Fy as illustrated in
the figure inset. RDFs shown in Fig. 2k and bond angle distributions shown in Fig.[2ld confirm that
the samples obtained through HMC denoising are also structurally similar to those of the training
data, while the standard denoising samples deviate significantly from the training data as shown in
Figs.[Za and [2p. As seen in Fig.[2d, HMC denoising also lowers the potential energy of the generated
quench and anneal samples, recovering the expected trend of lower potential energies with lower
cooling rates. This is remarkable as neither the potential energy nor forces are seen by the model
during training, underlining the high quality of the generated structures.

To test the inverse design capabilities of AMDEN, we created the multi-element glass dataset using
classical MD simulations (see Appendix [A.2]for details). It features a large variety of compositions,
containing eleven different elements. We then trained AMDEN on the MEG dataset and conditioned
the model on the Young’s modulus E. Inference results using both the standard and our newly
developed HMC denoising procedures are shown in Fig. . The results show that including relaxation
in the generation process is necessary, not only to reproduce the correct atomic structure of the sample
but also macroscopic properties, which are the main target for inverse design. Without HMC
denoising, the Young’s moduli of the generated samples is consistently below the targeted value.
With HMC denoising, this discrepancy is significantly reduced although a small offset still remains.
The remaining discrepancy might be due to an insufficient number of HMC iterations or limitations
of the model and will be subject to future investigations.

4 Discussion

We hypothesize that generating relaxed configurations beyond the training data is an inherent limita-
tion of diffusion generative models, similar to their inability to sample spin glasses below a critical
temperature [30] and not the result of an insufficiently expressive model as suggested by Comin and
Lewis [31]. As observed by Lei et al. [22], diffusion models can also fail to generate crystalline
structures by getting trapped in local minima when the crystalline order is removed from the structure,
initializing the reverse diffusion process. Recently, it has been shown that a diffusion generative model
was able to reproduce structural features and properties of amorphous SiO, across a range of cooling
rates [23]]. The authors report that “extra noise” is required during the denoising process to escape
local minima in the learned score function and short MD simulations were used to further refine the
final structures and remove outlier environments. Overall, these results match our observation that
unmodified denoising procedures are insufficient to produce high quality amorphous structures that
reproduce macroscopic properties.

While AMDEN is an important step towards the inverse design of amorphous materials, many
challenges remain. Our proposed HMC denoising process is able to circumvent the limitation of the
traditional approach in generating relaxed structures, but it comes with a significant computational
cost. During training, backpropagation has to be performed twice, i.e., first to derive the score function
from the noise energy, and second to update the weights of the denoiser network. Similarly, inference
cost is increased as many evaluations of the model are required for each HMC update. Potential
solutions include shrinking the model size through neural network quantization techniques [32]
or employing shallower architectures, but these approaches may compromise model expressivity
and generation performance. Another factor hindering computational efficiency is that the model
is not guaranteed to generate charge-balanced samples due to the stochastic nature of generative



models. This may necessitate that multiple sampling rounds are performed to obtain perfectly
charge-balanced samples. Guiding generative models with charge balance, a non-differentiable target,
presents challenges, but we note that recent progress has been made in this area [33} 34].
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A Data Set Generation

A.1 Amorphous Silicon Data Sets

We created three data sets (melt, quench and anneal) of amorphous silicon to study the effects of
relaxation on the generation performance. All three data sets were created using LAMMPS [35]
software with the Stillinger—Weber potential [36] and consist of 10 000 samples each. The simulations
were initialized with a unit cell containing 256 atoms of crystalline silicon, but different thermal
schedules were applied to obtain the final samples. All MD simulations were performed in the NPT
ensemble at zero pressure.

The melt data set was generated by heating the crystalline silicon from 2500 K, to 3000 K over 200 ps,
equilibrating the melt for 300 ps, and then cooling it down again to 2500 K at a rate of 10'2 K/s. The
final samples were taken after equilibrating for another 300 ps at 2500 K.



The anneal and quench data sets were both initialized at 300 K, heated to 2500 K over 200 ps, and
equilibrated for 300 ps. Samples for the anneal data set were then cooled down at a rate of 10*2 K/s
to 300 K and equilibrated for another 300 ps, while the cooling step was omitted for samples for the
quench data set. The structures of the anneal data set were thus allowed to relax during the cooling
period, while the guench samples were obtained from an almost instantaneous quenching procedure.
However, a small amount of relaxation is still expected during the time period taken by the thermostat
to adjust the temperature of the system to the lower target value.

A.2 Multi Element Glass Data Set

We created the multi element glass (MEG) data set to test our model’s performance on data including
a larger variety of elements. The data set consists of 9,027 samples, containing 11 different elements.
Initial structures were generated from varying compositions of the glass formers SiO, and P,0s, and
the modifiers Al,O5 Li,O, BeO, K,0, CaO, TiO,, BaO and ZnO.

Structural samples and corresponding properties of the MEG data set were obtained using the
workflow described below. Simulations were performed using LAMMPS [335]] software and the
Bertain—-Menziani—Pedone (BMP)-shrm potential [37]].

1. Elemental compositions were generated to include different ratios of the three glass formers,
up to four different modifiers with total concentration of 40 % relative to the glass former
concentration.

2. Initial structures of the generated compositions, containing roughly 800 atoms, were created
by randomly placing the atoms in a simulation cell with a volume V' =3)", %wr?, with r;
being the covalent radius of atom 7. The atoms positions were then adjusted to ensure that
no two atoms were closer than the sum of their respective covalent radii. Finally, a local
geometry optimization was performed to optimize the atomic positions and cell dimensions.

3. To ensure proper melting while avoiding evaporation, an initial temperature for the melt-
quench procedure needed to be determined for each composition. For this task, the initial
cells were doubled in size along one dimension to form a vacuum region. A short molecular
dynamics (MD) simulation was then performed in the NVT ensemble during which the tem-
perature was increased up to 8000 K for a duration of 100 ps. The evaporation temperature
Tevap Was then identified at the onset of pressure increase during the dynamics simulation.

4. Structural samples were obtained from a melt-quench simulation in the NPT ensemble,
initialized at T;,;, = %Tevap. The samples were first melted for 400 ps, then quenched to
300K at 5 K/ps and finally equilibrated for 300 ps. Out of 9,240 compositions, 213 samples
were identified that did not melt property during the initial phase of the simulation and were
excluded from the final data set.

5. Melt-quenched samples were then equilibrated at 50 K for 100 ps and subsequently heated
to 500 K over 500 ps to extract heat capacities and thermal expansion coefficients.

6. Samples were also relaxed to compute the elasticity tensor using finite differences of the
stress tensor.

Due to the finite number of atoms, some amount of uncertainty in the computed properties is
expected. To assess these, we performed two independent runs of the workflow for a random subset
of compositions, resulting in two sets of structural samples for which properties were calculated. For
one set of samples, the final heating simulation of the workflow was then repeated with the same
initial structure but using a different random seed to assess the variability introduced by the heating
simulation. Correlation plots of all properties and corresponding Pearson correlation coefficients are
shown in Fig.[3] The elastic constants, which were deterministically computed from the structural
samples, correlate well between the independent runs of the workflow, indicating a strong dependence
on the composition. Similarly, the evaporation temperature shows a strong correlation between the
independent runs. The thermal expansion coefficient and the molar heat capacity show a weaker
correlation between the independent runs but a good agreement between the two heating simulations.
Overall, this indicates that the simulation workflows to obtain glass properties work reliably, with
variability being attributed to differences between the structures of the samples.

Heat capacities were obtained as the gradient of a linear fit to the total energy versus temperature of
the heating simulation in step 5 of the workflow. Similarly, the thermal expansion coefficient at room



temperature was obtained from a linear fit V(7T') to the volume versus temperature of the heating
simulation and calculated as

Elastic constants were obtained as

a V(T) or T=300K .
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Figure 3: Correlation plots of the independent elastic constants C1; (a), C12 (b) and Cyy (c), the
evaporation temperature Tey,p (d), the thermal expansion coefficient (e), and the molar heat capacity
(f) for a random subset of samples of the MEG data set. The properties were computed from two
independent runs of the workflow, initialized with the same compositions. Properties obtained
from the heating simulation of the workflow were computed a third time by re-running the heating
simulation initialized with the same structural sample but using a different random seed. Pearson
correlation coefficients p are shown in the figure legends.

A.3 Mechanical properties

Young’s and shear moduli were computed using the strain tensor Cj;i;. First, a local geometry
optimization was performed on the structural samples to obtain the relaxed atomic positions and
lattice vectors. The strain tensor was calculated as the derivative of the stress tensor o;; with respect
to the strain 4, i.e.,

80' ij

Cijr = Doy 5:0. 3)

Finite differences were used to calculate the derivatives and atomic positions were relaxed after
straining the unit cell before the stress tensor was computed.

Since the investigated samples are largely isotropic, we can reduce Cjji; to C;; using Voigt notation,
averaging redundant entries in the full tensor. The Young’s and shear moduli are then computed as
(C11 — C12) - (C11 +2C12)

Jo
C11 + Ch2

“

and

G=Cu &)



respectively [38].

B Structural features of the amorphous Si data set

To analyze the quality of the structures generated by AMDEN, we computed radial distribution
functions, bond angle distributions, structure factors and the potential energy distribution of the
generated and the training samples. All features were computed before and after performing a local
geometry optimization of the structures. Features obtained from the standard denoising procedure are
shown in Fig. [ while those obtained from the Hamiltonian Monte Carlo (HMC) denoising procedure
are shown in Fig.[3] Figures shown in the main text are included here again for completeness.
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Figure 4: Radial distribution function (a), bond angle distribution (b), structure factor (c) and energies
(d) of the generated structures compared to the training data. Panels (e), (f), (g) and (h) show the
features in the same order after performing a local geometry optimization using the Tersoff potential
used for generating the training data. RDF and energy distributions of the training data are shown by
solid lines, while dashed lines are obtained from the AMDEN-generated samples.
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Figure 5: Radial distribution function (a), bond angle distribution (b), structure factor (c) and energies
(d) of the structures generated using Hamiltonian Monte Carlo (HMC) denoising compared to the
training data. Panels (e), (f), (g) and (h) show the features in the same order after performing a local
geometry optimization using the Tersoff potential used for generating the training data. RDF and

energy distributions of the training data are shown by solid lines, while dashed lines are obtained
from the AMDEN-generated samples.
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C Implementation Details of AMDEN

C.1 Materials diffusion process

Following the SDE framework [24} 25]], our materials diffusion process is composed of two subpro-
cesses: a forward diffusion process and a reverse denoising diffusion process. The forward diffusion
process provides ground truth for noisy samples at intermediate steps x; and noise components to
supervise the score function sg.

The forward diffusion process gradually transformed a clean material sample x into random noise
Z through a sequence of time step ¢t € [tmin, tmax|- Formally, given a clean sample x = (C, X, E),
the positions and element embeddings of the noisy sample z; at time step ¢ were calculated as,

X; = Ozx(t) . X+Ux(t) -€x,

6

B, =ag(t) E+og(l) s, ©
where ex and eg are noise components sampled from N'(0,I), and « and o are time-dependent
scaling factors specific to each noise schedule.

For atomic positions, we employed a variance exploding (VE) schedule [39],
ax(t) =1, ox(t)=ont, (™)

where 0X | was set to 1.7 A for models trained on the MEG dataset and 1.5 A for all other models.
For element embeddings, we implemented a variance preserving (VP) schedule [39] with a cosine

progression,

ag(t) = cos (gt) , og(t)=sin (gt) ol 8)
where o was set to 1.5. Combined with the periodic boundary condition, the two schedules
determine the positions X and element embeddings E;  of the sample x; . At the last step
of the forward diffusion process the atomic position and element embeddings follow a uniform
distribution within the cell C and standard Gaussian distribution N (0, I), respectively. This created
a starting point for the reverse denoising diffusion process that can be sampled trivially.

The reverse denoising process gradually transforms random noise into a material sample through
iterative denoising manipulated by the learnable score function sg. To progress the process at ¢ by
At, the Euler-Maruyama method was applied to solve the reverse SDE [24]],

Xiae=X; — (fX(taXt)'At‘f'gX(t)'Zx-\/E), o
)
By s =B — (fu(t,B) - At +gp(t) 25 VAT),

where zx and zg are noises sampled independently from a standard normal distribution, f and g are
coefficients defined as,

fX(tht) = _g_%((t) : 85{7

gx(t) =\/20X > - t,

fo(t, B) = == tan (5t) - By - gi(t) - 5F. (10)

gE(t) = \/w ~ag(t) - op(t) - Omx + T - tan (gt) cop(t)2.

In these equations, sg( and sf are position and element components of the score function, respectively.

The complete reverse denoising process started from a noise sample z = (C, X;__, E;_ ) where
X, was sampled from uniform random distributed in C and E;__ was sampled from A/ (0, 1),
aligning with the sample x; _produced at the last step of the forward diffusion process. The reverse
process progressed sequentially from ¢,,,x = 0.99 to ¢y, = 0.01 with n = 200 evenly spaced
intervals and a final step to ¢ = 0.
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C.2 Equivariant graph neural network

The EGNN serves as the equivariant backbone of the score function. The graph G = (V, £) provided
to EGNN is a graph of the atoms in each sample z, calculated with a cutoff radius ., = 6.5 A. The
cutoff radius was chosen to ensures that all bonded and strongly interacting atoms share a direct
edge connection while still keeping the graph sufficiently sparse. Our EGNN implementation was
composed of I = 4 EGNN layers. The [-th layer takes as input: 1) Node features H(!) € R™*
containing information of the corresponding atoms; 2) Positional coordinates X () € R™*#*3 of the
atoms, where k£ = 8 is the number of vector channels [40]; and 3) Edge set £ of the graph G.

For the initial layer, the positions X (%) were replicated original positions X for k channels. The
edge attributes e;; were derived from the distance embedding,

X, — X; —o;?
eij:tanh<|| 2j 0l >~2—1 (11

T

cut
where o;; is the offset vector accounting for periodic boundary conditions.

Each layer updated the node features and positional coordinates, incorporating self-attention [41]]
with a hidden dimension of 128 as,

m{) = ¢O(H! HV e;),

af) = o(MLP, (m{))),

ij
) = ay - mi),

w(d0) Y
JEN(®) Tnorm )
(I)Eé) = 1v[LPC00rd([ITI-Z-(l)7 Hj(.l)’ eij]) c ]Rk’xlc7

(1) _ »(-1) (-1 -
dij =X, —Xj — 0y,
W _ L 0. 4q0
J %
x® = x4 xOs
where N (i) represents the neighbors of atom i, derived from the edge set £ and o is the sigmoid acti-
vation function for self-attention. nomy is @ normalization factor (typically proportional to the average
number of neighbors) to ensure numerical stability, which we set to 40. (bg), (b;l[) are implemented as

multi-layer perceptrons (MLPs) with SiLU activation functions and layer normalization. i’gé) isa
learned transformation matrix that maps between the k vector channels. A smooth cutoff function
is used to prevent discontinuities when atoms leave or enter the cutoff radius, which is defined as
follows.

. 2
fou(r) = 2tanh (1 - mm(r“‘“)) . (13)

Tcut
In our implementation, the learnable functions were structured as follows,
¢V (H;, Hj, e;;) = MLPeyyo([H;, Hj, e5)),

0 (14)
1 (H i, mygg) = MLPyoqe ([Hi, mMgg)).

At the last layer, EGNN outputs H (%) and X (%) as the final node features and positional coordinates,
respectively.

C.3 Score function

The score function extended the EGNN framework to predict noise components in both positions and
element embeddings during the reverse denoising diffusion process, optionally conditioned on desired
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properties. The score function sy mapped a noisy material sample z; = (C, X;, E;), diffusion step
t, and desired properties y to position and element components,

s0: (C, Xy, Bi,tyy) = (57, 8), (15)
which we implemented with the following three main components.

First, the property embedding layer transformed material properties into a continuous embedding
space. For each property y; in the property set Y, we implemented,

h,, = LayerNorm(Linear(y;)), (16)

where Linear is a fully-connected linear layer that maps the property y; into a dey,, = 8-dimensional
embedding vector.

Second, the feature assembly layer combined time embeddings, element representations, and property
embeddings. The initial node features provided to the EGNN backbone were assembled by concate-
nating, 1) diffusion time step ¢; 2) element embeddings: e; € R9; and 3) property embeddings:
hy, ,hy,,... hy (for each property in Y). Formally, the initial node features H l_(o) for atom ¢ were
given by,
0
H"” = [t,e;,hy,,hy,,....h, ]. (17)

Third, the EGNN backbone processed the assembled features while preserving geometric equivariance.
The assembled node features, along with the raw noisy material sample x;, were processed through
the EGNN backbone. We calculated the predicted noise components for positions and elements as,

XK =X-XE0  F_ gl (18)

where for positions we used the deviation between the original positions and the first channel of
output positions, and for elements we directly used the output node features. The score was then
calculated as sy = —eg /o (t) for both positions and elements.

We further incorporate classifier-free guidance (CFG) [42] to enhance the calculation of conditioned
scores. Denoting the unconditioned noise as €g( and éf , the final noise under CFG is calculated as,
b'e X X
6‘/9 = (1 + wcond)ee — Weond€y > (19)
E E ~E
61«9 = (1 + wcond)ee — Weond€y 5

where w¢ong 18 the condition weight. The unconditioned noise can be calculated by using a dedicated
unconditioned model trained without the properties y, or by leveraging the independent condition
guidance (ICG) [43]]-feeding the model with random properties sampled from the distribution of the
training set. For the MEG dataset, we use the ICG technique and set weong = 0.25.

The training of the score function was done by supervising the reverse denoising process at randomly
sampled time steps. Specifically, for each training sample, we: 1) randomly generated a diffusion
time step ¢ ~ M(tmin, fmax); 2) applied the forward diffusion process to obtain the noisy sample and
ground truth noise components; 3) fed the noisy sample into the score function to predict the noise
components; and 4) computed the loss as the mean squared error between the prediction and ground
truth.

Formally, the training objective was,
L(0) =Eay|lex — & |+ Ales — ||, (20)

where A\ = 0.5 is a weighting factor balancing the importance of position and element noise prediction.
The training was performed with the Adam optimizer [44] for 400, 500, and 1000 epochs with batch
sizes of 2 and 8, and learning rates of 10~3 and 10~ for the MEG and Si datasets, respectively.
Virtual machines each with one NVIDIA A40 or V100 GPUs, 8 CPU cores, and 48 GB of RAM are
used for both training and inference.

C.4 Density control via ghost atoms

A unique feature of AMDEN is its ability to control material density during inference through a
ghost atom mechanism. This approach enables generating materials with specific density targets,
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addressing the fundamental limitation that diffusion models cannot alter the number of atoms in
generated structures. In our context, diffusion models manipulate samples by adding or removing
noise from atomic positions and element embeddings, but cannot add or remove atoms to change
sample densities. Existing solutions include voxel-based approaches [22] that enable diffusion models
to decide whether an atom exists in each small cell. However, voxel-based approaches cannot preserve
the equivariance of amorphous materials. In contrast, the ghost atom approach maintains a fixed total
number of atoms and preserves AMDEN’s equivariant architecture. It introduces a special type of
atom that is removed from the final generated samples. Given a sample z and a target maximum
density prarger, We first calculate the desired number of atoms based on piree; and cell volume as
Narget = | Prarget - Yolume(C') |. If nyareer €Xceeds the number of actual atoms in the generated structure,
we supplement with ghost atoms. A number of ghost atoms, ngnost = max(0, Ntarget — Nactual ) ATE
then randomly positioned within the cell. During training and denoising, ghost atoms are treated
like normal atoms but are assigned a special chemical element class. The model can thus adjust the
density of the sample by increasing or decreasing the fraction of atoms that are assigned the ghost
atom type. As a final step after denoising, ghost atoms are removed from the sample.

For the MEG dataset, we set pyrgee = 0.11. Since the Si datasets are designed specifically for
evaluating the structural accuracy of generation, ghost atoms are not used there.

C.5 Hamiltonian Monte Carlo refinement

The energy-based score function was introduced to support the prediction of noise energy utilized
in Section[3.1] The key difference between the standard score function and the energy-based variant
lies in how noise components are predicted. While the standard score function directly predicted
position and element noise components, the energy-based variant reformulated the noise prediction

problem using an energy function FEy and then computed noise as derivatives of this energy. It should

be noted that £y does not necessarily relate to any physical energy, such as the potential energy. Only
in the special case, when the model was trained on Boltzmann distributed samples and ¢ = 0, the
model would learn the potential energy of the system, up to an additive constant.

The standard score function sy was defined through the targeted distribution p(zx) as,

sgp(x) = V. Inp(x). 1)

In the energy-based variant, p(z) was predicted through Ey as,

1 —E
p(x) = — exp <k:;x)> : (22)

where Z is the unknown partition function normalizing p(x), kg is the Boltzmann constant, and 7" is

the temperature. Since Ey does not match the potential energy kg and T are arbitrary normalization
constants and chosen to be kg’ = 1, we thus obtain

1 L

sp(x) = 7]%7TVIE9 (). (23)

Specifically, the score function was reconfigured to output a scalar atomic energy value for each atom,
instead of directly outputting noise vectors. For each atom 7, the noise energy was constructed as

a combination of: 1) position-based energy [43]: eX = %||Xl - X Z.(L) |? , derived from squared
distances between original positions and EGNN-output positions; and 2) atomic energy: 3™ =

H i(L), EGNN-output node features.

The total system noise energy was given by,

r i S atom
Ey( 70(“; oy elom) (24)

where ~y is a learnable scale factor balancing the contribution of atomic energies.
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Then, the position and element components of the score function were computed through automatic
differentiation,

1 .
Sg( = 7]%71_’VXE9(I),
(25)
Sg = —7VEE9(JZ)
kgT

We note that the energy-based score function was computationally heavier compared to the standard
variant, thus its training was performed with smaller batch sizes: 1 and 4 for MEG and Si datasets,
respectively. For the same reason it is trained for fewer (i.e., 150 epochs) on the MEG dataset, and
utilized virtual machines each with one NVIDIA A100 GPU for training. Other hardware configures
were kept the same.

Hamiltonian Monte Carlo denoising. As discussed in previous sections, the standard denoising
procedure outlined in Section [C.I| was unable to produce samples of relaxed structures. This was
because the model failed to steer the denoising trajectory towards relaxed samples in the early stages
of denoising. However, analysis of energy-based score function shows that the model is able to assign
a higher probability to relaxed samples at later stages of the denoising process. This allowed us to
refine the generated samples by equilibrating on the predicted distribution p(x) during the denoising
process using Hamiltonian Monte Carlo (HMC).

A series of HMC iterations were therefore performed between the traditional denoising iterations.
The application of HMC iterations can be limited to a range of diffusion time steps ¢ within a specified

range [tHMC HMCT {6 reduce the computational cost. We set t1MC = 0.0 and ¢!MC = 0.5, respectively.

Exactly one HMC iteration is performed before each diffusion denoising step within the range.

In each HMC iteration, atomic coordinates were updated using the following steps:

1. Initializing momenta from a Maxwell-Boltzmann distribution: p ~ A(0, kg T M), where
M is the diagonal mass matrix chosen as M = I;

2. Computing the initial energy Ey and total energy Eio = Fp + %||PH2§
3. Evolving the system using velocity Verlet integration with 15 steps,

1
X<—X+p-dt+§F~dt2,
F + -VxEp(X), (26)
1
P< P+ E(F'i‘Fiast) - dt;

4. Computing the final energy and accepting or rejecting the final structure according to the
Metropolis—Hastings criterion with probability,

_ Eﬁnal _ Einitial
« = min [1,exp< ( mthT ot )>} . (27)

To ensure a consistent acceptance rate of roughly 0.5, the timestep dt was adjusted using dt = o,dt°,
where dtV is a constant. This accounted for the fact that Eg becomes less smooth for lower o;. We
set dt® = 0.2 for the MEG dataset and dt° = 0.4 for Si datasets. We set the number of diffusion
steps to n = 2000 when performing HMC refinement to ensure there are enough HMC iterations for
finding lower energy structures. We also set weong = 0, i.e., we do not use CFG when performing
HMC refinement to avoid adding further computational burden.

This physics-inspired sampling approach enabled the generation of more stable and realistic material
structures by allowing the system to explore the energy landscape at each diffusion step, effectively
annealing the structure as the noise level decreased. On the other hand, since the energy was provided
by the denoiser network conditioned on properties , incorporation of HMC sampling preserved the
property-conditioned generation process.

D Broader Impacts

Positive Societal Impacts: AMDEN contributes to accelerating the discovery of amorphous materials
for applications in batteries, non-linear optics, and catalysis, as highlighted in our introduction. By
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enabling computational screening of material compositions and properties before synthesis, our
approach reduces the time and resources required for materials development compared to traditional
trial-and-error methods. This computational approach also provides an alternative pathway for
materials exploration when experimental facilities are limited.

Potential Negative Impacts: While AMDEN is designed for beneficial applications, we acknowledge
several potential risks. The ability to rapidly generate novel material structures could potentially
be misused to design materials with harmful properties, although the significant barrier of actual
synthesis provides some protection against malicious use. The high computational requirements of our
method, particularly for HMC denoising, may create access barriers for researchers at under-resourced
institutions, potentially exacerbating existing inequalities in scientific research.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The major claims of the paper are to introduce a diffusion model-based
framework that generates structures of amorphous materials and can be conditioned on
target properties, and to demonstrate the inherent challenges for diffusion models to generate
relaxed structures. All claims accurately reflect the paper’s contributions and scope.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitations of this work in Section 4l
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

¢ The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]
Justification: The paper does not introduce theoretical proofs.
Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Implementation, data preparation, and experiment details are given in the paper
and appendix, which provide sufficient information to reproduce the results presented in the

paper.
Guidelines:

» The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer:

Justification: This work presents ongoing research submitted to a NeurIPS workshop. The
implementation is currently under active development. Code and datasets will be made
available upon completion of the ongoing research efforts.

Guidelines:

» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: The detailed experimental settings are given in the Appendix.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Our analysis uses structural features (RDF and bond angle distributions) and energy dis-
tributions. These are obtained from 10 000 samples and thus converged to an accuracy of
the magnitude of the line width shown in the figures. Since our analysis is based on the
qualitative discrepancy and agreement of these features, error bars would not enhance the
understanding of the results. For the reported Young’s moduli of generated MEG samples,
target and resulting moduli of each sample are shown in the scatter plot and no averaging
was performed.

Guidelines:

* The answer NA means that the paper does not include experiments.
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8.

10.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: The detailed experimental hardware configuration is given in Appendix
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]

Justification: We ensured that the study complied with the NeurIPS Code of Ethics in all
respects.

Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We discuss both potential positive and negative societal impacts in the Broader
Impacts section (Section D)) of the Appendix.
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11.

12.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper does not suffer from this risk.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]
Justification: The paper does not use existing assets.
Guidelines:

» The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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14.

15.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used

only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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