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Abstract

We perform a study of large language model (LLM) templating and data
presentation in the field of chemistry and materials science by analyzing
memorization and generalization performance of a LlaMa model fine-tuned on
34 unique datasets. As application domains for LLMs become more specialized,
it becomes more and more important to understand the impacts of training data,
templates, and evaluations. While many pretrained LLMs have observed enormous
corpora of text data, they are not guaranteed to be useful in domain specific tasks
which may involve specialized data and prompts, such as chemistry and materials
science. To further understand the capabilities of LLMs, we study the performance
of various fine-tuned base models and show how differences in template styles with
varying molecular string representations affect model performance. We hope that
these insights may serve as a helpful path towards future larger scale training for
chemistry and materials science specific LLMs.

1 Introduction

Recent breakthroughs in natural language processing (NLP) have opened up new possibilities for
automating technical tasks using language models. Large language models (LLMs), in particular,
have shown great promise in solving complex problems across various domains such as education,
finance, and software development [1]. In the scientific domains of chemistry and material science,
LLMs are being applied to problems in climate change, materials discovery, and property prediction
[2–7]. While advancements have continued, the need for high-quality data and evaluation pipelines
are needed, particularly when the data representations become specialized such that the model has
never encountered them before [8, 9]. In these nascent application fields, understanding how input
data representations and prompts are learned is an important consideration for domain researchers to
develop practical tools that solve real-world science challenges [10–13].

2 Background

Recent work by Mirza et al. [10] provides a greater understanding of the capabilities of LLMs
for the chemistry domain. Mirza et al. [10]’s analysis showed that larger models that are likely
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to have observed a greater amount of chemistry-related text in their training data perform better
in many chemistry tasks. Mirza et al. [10], however, did not perform any domain-specific fine-
tuning or detailed prompt evaluation on the benchmarked LLMs. Prior work has shown that LLM
fine-tuning can imbue LLMs for domain-specific language that leads to better performance on domain-
specific tasks [9, 14, 15]. On top of that, prompt engineering has shown a significant impact on
modeling performance for diverse LLM applications, including chemistry and materials science
[16, 2, 17, 9, 13].

3 Dataset

Building on top of chemical data from Mirza et al. [10], Xu et al. [18], OpenBioML [19], we
construct various structured prompt templates based on tabular data that provide concrete answers.
Our sampling pipeline consists of several steps: First, we create data samples from the diverse
molecular text representations [20] (e.g., SMILES, canonical SMILES, DeepSMILES, SELFIES,
InChI, and the IUPAC nomenclature) using common computational tools, such as RDKit [21].
Additionally, we split the dataset into train, validation, and test subsets based on the Murcko scaffolds
of the molecules taking into account potentially pre-defined splits [22] . Next, we insert the sampled
chemical structure into the defined placeholders of the prompt templates. The final templates then
consist of the prompt template itself with all placeholders filled in, including the different molecular
representations, as well as relevant answers based on multiple choice format or true/false statements.
For the multiple-choice format, the enumeration symbol, i.e., lower (abc...) and upper case letters
(ABC...) or numeric characters (123...), and additional wrapping characters, i.e., ., .), ), :, (),
[], are sampled. The prompt templates used for fine-tuning are shown in Appendix A.1.

4 Experiments

To assess the ability of an LLM to learn from chemistry-related data, we perform two key experiments:
first, to evaluate how effectively the LLM retains and memorizes its training data; second, to measure
how well it can generalize and apply this learned knowledge to novel contexts and unseen data. To
do this, we first present various prompting templates as well as different chemical representations to
a model during fine-tuning, and then evaluate the fine-tuned model both on its own training data, as
well as a holdout test dataset. By evaluating the model’s ability to both memorize its own training
data and generalize to unseen data, we aim to provide a deeper understanding of how models best
learn and understand textual knowledge in the chemistry domain, thereby helping to set a path toward
future LLM model training and deployment.

4.1 Templates

For the primary task, the main objective of the LLM is to determine whether a particular molecule
has the characteristic of being mutagenic. The prompt templates used to construct datasets take a
few different forms, which range in difficulty, and are showing in Appendix A.1. The most basic
templates are simply a statement about whether a particular molecule exhibits mutagenic properties
or not, for example, template 0. Other templates use a statement-response format with different forms
of context and model expectations contained in the statement itself. The objective of these templates
is to determine whether the statement is true or false, as seen in template 5. Finally, the majority
of other templates take the form of question-answer prompts, with context and model expectations
mixed in. All multiple-choice style templates have two options and one correct answer choice as an
output, except for template 15 which may have multiple choices and multiple correct answers as an
expected output.

A set of 16 prompting templates are used to structure the training and test data, each of which relies
on different methods of presenting the question, data, context, and expected model output. Out of the
16 templates, four are chosen to benchmark the fine-tuned models. In terms of benchmark difficulty,
template 0 is considered ”easy”, templates 5 and 8 are considered ”medium”, and template 15 is
considered ”hard”. On top of the predefined templates, a concatenation of all data from templates
0-15 is constructed to show how a model fine-tuned on all input data performs, and is called ”All
Combined”.. The datasets are then prepared using two collections of molecule string representations.
One set of experiments uses only the SMILES representation, while the second set uses a combination
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of SMILES, Deep SMILES, canonical SMILES, SELFIES, InChI, and IUPAC molecular string
conventions. The result of using 17 templates and two molecular representation collections is 34 total
datasets used to independently fine-tune the base model.

4.2 Fine-Tuning with LLama2-7B

The templates and data representations are used to fine-tune the pretrained LLama2-7B [23] model
using LoRA [24] with the default tokenizer. Model configuration and hyper-parameters for fine-tuning
may be found in Appendix A.3. For each template, the base model instance is fine-tuned for 10 total
epochs, resulting in 17 models for the two collections of data representations.

After all models have been fine-tuned on their respective templates, each model is evaluated using the
four benchmarking templates using the model completions only. Note that in these evaluations, the
benchmarking data is the same as the train data for templates 1, 5, 8, and 15. For models that have
not been trained on a template that is also used as a benchmark, the context and question style have
not been seen during training, however the specific molecular data strings are the same. The base
rate of the unmodified original model is also calculated and compared to each fine-tuned model. The
evaluation metric used is accuracy, in which the model output is compared directly to the expected
output and scored as either 0 or 1 for 0% accurate or 100% accurate. In the template 15 benchmark,
where more than one answer choice may be correct, the exact-match accuracy is used.

(a) Evaluation on SMILES Train Data (b) Evaluation on All Train Data

Figure 1: Each fine-tuned model is evaluated against the four benchmarking templates for both of the
data representation collections, as well as the base rate for each template (dashed lines). On the left,
the SMILES only collection shows high memorization accuracy for templates 1 and 5 and 15 relative
to the base rate, while the full data collection (right) shows high memorization accuracy for templates
5 and 15. In both data collections, the memorization rate for the model fine-tuned on the collection of
templates (All Combined) shows high memorization accuracy.

First, looking at models trained on the same template in which they are evaluated on shows that
models are memorizing some of the information which is presented, however the overall accuracy
score is far lower than 100% meaning that even after 10 full epochs of training, the information is
not fully retained by the model. Second, some templates seem to have a negative effect on model
memorization, seen by accuracy scores falling below the base rate. Third, the model fine-tuned on the
combination of all templates reaches near-perfect memorization on all templates, except for template
15, which does, however, still see a significant improvement from the base rate. These observations
hold true across both collections of molecular representations, with the SMILES only string collection
performing slightly better. The benchmark for template 15 is clearly much harder for both the base
and fine-tuned models.

In addition to fine-tuning the full set of train data for 10 epochs, a reduced set of training data
containing 100 total samples for each template is used for fine-tuning over 1,000 epochs to see if
the models are able to fully memorize the training data, and if training longer may boost the overall
performance of models trained on templates not in the benchmark set.
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(a) Evaluation on SMILES Downsampled Train Data (b) Evaluation on All Downsampled Train Data

(c) Evaluation on SMILES Downsampled Test Data (d) Evaluation on All Downsampled Test Data

Figure 2: In 2a and 2b, the memorization accuracy is high for many templates, and some correlation
can be seen by accuracies peaking for multiple fine-tuned models on the same benchmark. In 2c and
2d, performance on the holdout test set is poor across all models, with on only the template 15 and
combined dataset fine-tuned models showing any significant improvement. This may be a result of
severe over-fitting or simply not enough training data.

While training for more epochs on less data seems to help the performance of models evaluated
against the templates in which they were trained on, there is not a significant boost to all other
fine-tuned models with the exception of a few templates. In the SMILES representation collection,
the correlation between some templates becomes easier to see. For example, models fine-tuned on
template 1 and template 7 both achieve a high level of memorization when evaluated on template
1. Additionally, the models which were fine-tuned on the concatenation of all templates have near-
perfect memorization, similar to the prior experiments. Interestingly, for both data representation
collections, the model fine-tuned on template 8 and evaluated on its own training data does not
show any sign of memorization. In the collection of all molecular string representations, all models
evaluated on template 8 fall below the base rate, except the ”All Combined” model.

Overall, models evaluated against the template in which they were fine-tuned with will perform
better than models fine-tuned with another template, regardless of their similarity. Additionally,
models fine-tuned using samples from each template perform just as well, or better, than the models
fine-tuned on individual templates. Due to these observations, simply using one template for training
LLM’s in this domain may lead to results that may sometimes be worse than the starting base model.

5 Discussion

In the fields of chemistry and material science, LLMs show promise in complimenting molecular
discovery, property prediction, and general educational workflows, however base foundation models
may lack the expert level domain knowledge to be useful to their fullest extent. In this work, a
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study on how LLMs learn from various domain specific prompts, contexts, and datasets is used to
get a better understanding of what may or may not work when fine-tuning an off the shelf model.
While memorization performance is high among many of the fine-tuned models, their generalization
performance to unseen data is still lacking, leading to more questions about how best to structure
and present chemistry datasets. Models fine-tuned on the combination of all templates show strong
performance in memorization and better performance in generalization as compared to fine-tuned and
base models, solidifying the general understanding that more and diverse data inputs lead to more
performant models.
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A Appendix

A.1 Templates

Each of the 16 templates used for fine-tuning and benchmarking is summarized below.

A.2 Figure Data

The data from each figure is presented in the following tables.

A.3 Fine-Tuning Hyper-Parameters

For all experiments, the same set of hyper-parameters is used with the exception of number of epochs,
where the first set of experiments uses 10, and the second set of experiments uses 1,000.
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Table 1: Templates arranged by number, and indicating if the particular template was used for
benchmarking or not.

Template Number Template Benchmark?

0 The {#molecule |!}{SMILES__description} {SMILES#} is {mutagenic#not
&NULL}{mutagenic__names__adjective}.

1 Is the {SMILES__description} {SMILES#} {mutagenic__names__adjective}: {mutagenic#no&yes} Yes

2 The molecule with the {SMILES__description} {#representation of |!}{SMILES#}
{#shows|exhibits|displays!} {mutagenic#no &NULL}{mutagenic__names__adjective} properties.

3 Based on the {SMILES__description} {#representation |!}{SMILES#}, the molecule has
{mutagenic#no &NULL}{mutagenic__names__adjective} {#properties|characteristics|features!}.

4 The {SMILES__description} {SMILES#} {#represents|is from!} a molecule that is {mutagenic#not
&NULL}identified as {mutagenic__names__adjective}.

5 Task: Please classify a molecule based on the description. Description: A molecule that is
{mutagenic__names__adjective}. {#Molecule |!}{SMILES__description}: {SMILES#} Constraint:
Even if you are {#uncertain|not sure!}, you must pick either "True" or "False" without using any
{#other|additional!} words. Result: {mutagenic#False&True}

Yes

6 User: Can you {#tell me|derive|estimate!} if the molecule with the {SMILES__description}
{SMILES#} is {mutagenic__names__adjective}? Assistant: {mutagenic#No&Yes}, this molecule is
{mutagenic#not &NULL}{mutagenic__names__adjective}.

7 User: Is the molecule with the {SMILES__description} {SMILES#}
{mutagenic__names__adjective}? Assistant: {mutagenic#No&Yes}, it is {mutagenic#not
&NULL}{mutagenic__names__adjective}.

8 Task: Please answer the multiple choice question. Question: Is the molecule with the
{SMILES__description} {#representation of |!}{SMILES#} {mutagenic__names__adjective}?
Constraint: Even if you are {#uncertain|not sure!}, you must pick either
{%multiple_choice_enum%2%aA1} without using any {#other|additional!} words. Options:
{mutagenic%} Answer: {%multiple_choice_result}

Yes

9 Task: Please classify a molecule based on the description. Description: A molecule that is
{mutagenic__names__adjective}. {#Molecule |!}{SMILES__description}: {SMILES#} Constraint:
Answer the question in a {#full|complete!} sentence. Result: This molecule is {mutagenic#not
&NULL}{mutagenic__names__adjective}.

10 Task: Please {#give me|create|generate!} a {#molecule |!}{SMILES__description} based on
the {#text |!}description{# below|!}. Description: A molecule that is {mutagenic#not
&NULL}{mutagenic__names__adjective}. Result: {SMILES#}

11 User: Can you {#give me|create|generate!} the {SMILES__description} of a molecule that is
{mutagenic#not &NULL}{mutagenic__names__adjective}? Assistant: {#Yes|Of course|Sure|Yes,
I’m happy to help!}, here you go: {SMILES#}

12 User: I’m {#searching|looking!} for the {SMILES__description} of a molecule that is
{mutagenic#not &NULL}{mutagenic__names__adjective}? Assistant: This is a molecule that
is {mutagenic#not &NULL}{mutagenic__names__adjective}: {SMILES#}

13 User: I want to {#come up with|create|generate!} a {#molecule |!}{SMILES__description}.
Assistant: {#This sounds very exciting. |This sounds very interesting. !}Should I
consider any {#constraints|specific points!} for the {#generation|creation!}? User: Yes,
please. The molecule should {mutagenic#not &NULL}be {mutagenic__names__adjective}.
Assistant: {#Ok|Got it!},{# here you go,|!} this {SMILES__description} is {mutagenic#not
&NULL}{mutagenic__names__adjective}: {SMILES#}

14 User: I want to {#come up with|create|generate!} a {#molecule |!}{SMILES__description}.
Assistant: {#This sounds very exciting. |This sounds very interesting. !}Should it be
a special {#molecule|one!}? User: Yes, the molecule should {mutagenic#not &NULL}be
{mutagenic__names__adjective}. Assistant: {#Understood|Got it|Ok!}, this {SMILES__description}
is {mutagenic#not &NULL}{mutagenic__names__adjective}: {SMILES#}

15 Task: Please answer the multiple choice question. Question: Which molecules are {mutagenic#not
&NULL}{mutagenic__names__adjective}? Constraint: You must select none, one or more options
from {%multiple_choice_enum%2-5%aA1} without using any {#other|additional!} words. Options:
{SMILES%mutagenic%} Answer: {%multiple_choice_result}

Yes

Table 2: Data for figure 1a.

Benchmark Template Base Rate Template 0 Template 1 Template 2 Template 3 Template 4 Template 5 Template 6 Template 7 Template 8 Template 9 Template 10 Template 11 Template 12 Template 13 Template 14 Template 15 All Combined

Template 1 53.045 ± 0.72 55.041 ± 0.717 88.215 ± 0.465 47.08 ± 0.72 60.861 ± 0.704 53.378 ± 0.719 62.399 ± 0.698 70.193 ± 0.66 73.02 ± 0.64 48.971 ± 0.721 56.08 ± 0.716 53.669 ± 0.719 56.475 ± 0.715 51.07 ± 0.721 56.059 ± 0.716 56.225 ± 0.715 49.304 ± 0.721 99.938 ± 0.036
Template 5 51.299 ± 0.721 49.283 ± 0.721 52.255 ± 0.72 43.65 ± 0.715 43.234 ± 0.714 43.297 ± 0.714 97.152 ± 0.24 55.352 ± 0.717 43.733 ± 0.715 43.193 ± 0.714 52.11 ± 0.72 55.519 ± 0.717 50.904 ± 0.721 45.271 ± 0.718 55.041 ± 0.717 49.387 ± 0.721 60.424 ± 0.705 100.0 ± 0.0
Template 8 51.029 ± 0.721 51.902 ± 0.72 51.507 ± 0.721 51.174 ± 0.721 52.65 ± 0.72 50.883 ± 0.721 57.223 ± 0.713 51.507 ± 0.721 50.821 ± 0.721 64.872 ± 0.688 51.819 ± 0.72 51.652 ± 0.721 51.777 ± 0.72 53.024 ± 0.72 51.881 ± 0.72 52.006 ± 0.72 56.724 ± 0.714 100.0 ± 0.0
Template 15 0 ± 0 0.436 ± 0.095 0.083 ± 0.042 0.0 ± 0.0 0.852 ± 0.133 0.0 ± 0.0 6.838 ± 0.364 1.434 ± 0.171 1.476 ± 0.174 9.208 ± 0.417 2.494 ± 0.225 3.908 ± 0.279 0.852 ± 0.133 3.513 ± 0.265 1.455 ± 0.173 0.478 ± 0.099 65.6 ± 0.685 90.543 ± 0.422

Table 3: Data for figure 1b.

Benchmark Template Base Rate Template 0 Template 1 Template 2 Template 3 Template 4 Template 5 Template 6 Template 7 Template 8 Template 9 Template 10 Template 11 Template 12 Template 13 Template 14 Template 15 All Combined

Template 1 50.904 ± 0.721 56.62 ± 0.715 62.461 ± 0.698 44.627 ± 0.717 51.86 ± 0.72 49.969 ± 0.721 55.373 ± 0.717 57.161 ± 0.714 55.498 ± 0.717 45.271 ± 0.718 56.724 ± 0.714 48.95 ± 0.721 50.031 ± 0.721 51.84 ± 0.72 51.798 ± 0.72 53.877 ± 0.719 50.53 ± 0.721 95.843 ± 0.288
Template 5 50.01 ± 0.721 48.95 ± 0.721 47.537 ± 0.72 43.047 ± 0.714 46.04 ± 0.719 44.336 ± 0.716 78.674 ± 0.591 54.355 ± 0.718 44.232 ± 0.716 43.193 ± 0.714 62.794 ± 0.697 43.047 ± 0.714 52.92 ± 0.72 45.396 ± 0.718 52.567 ± 0.72 51.341 ± 0.721 60.05 ± 0.706 97.818 ± 0.211
Template 8 51.549 ± 0.721 50.509 ± 0.721 51.694 ± 0.721 51.05 ± 0.721 50.925 ± 0.721 50.281 ± 0.721 51.465 ± 0.721 50.8 ± 0.721 51.59 ± 0.721 56.994 ± 0.714 51.299 ± 0.721 51.258 ± 0.721 51.299 ± 0.721 49.99 ± 0.721 51.216 ± 0.721 50.717 ± 0.721 56.911 ± 0.714 98.212 ± 0.191
Template 15 0 ± 0 2.037 ± 0.204 0.478 ± 0.099 0.727 ± 0.123 2.328 ± 0.217 0.852 ± 0.133 6.402 ± 0.353 4.677 ± 0.304 1.995 ± 0.202 9.645 ± 0.426 2.931 ± 0.243 1.975 ± 0.201 3.367 ± 0.26 3.367 ± 0.26 1.164 ± 0.155 0.748 ± 0.124 33.569 ± 0.681 73.561 ± 0.636

Table 4: Data for figure 2a.

Benchmark Template Base Rate Template 0 Template 1 Template 2 Template 3 Template 4 Template 5 Template 6 Template 7 Template 8 Template 9 Template 10 Template 11 Template 12 Template 13 Template 14 Template 15 All Combined

Template 1 49.0 ± 5.024 50.0 ± 5.025 98.0 ± 1.407 48.0 ± 5.021 48.0 ± 5.021 49.0 ± 5.024 44.0 ± 4.989 72.0 ± 4.513 96.0 ± 1.969 50.0 ± 5.025 74.0 ± 4.408 53.0 ± 5.016 52.0 ± 5.021 52.0 ± 5.021 52.0 ± 5.021 52.0 ± 5.021 51.0 ± 5.024 100.0 ± 0.0
Template 5 53.0 ± 5.016 52.0 ± 5.021 51.0 ± 5.024 49.0 ± 5.024 46.0 ± 5.009 50.0 ± 5.025 100.0 ± 0.0 60.0 ± 4.924 70.0 ± 4.606 52.0 ± 5.021 92.0 ± 2.727 54.0 ± 5.009 47.0 ± 5.016 54.0 ± 5.009 52.0 ± 5.021 52.0 ± 5.021 52.0 ± 5.021 100.0 ± 0.0
Template 8 55.0 ± 5.0 51.0 ± 5.024 55.0 ± 5.0 57.0 ± 4.976 56.0 ± 4.989 59.0 ± 4.943 59.0 ± 4.943 51.0 ± 5.024 58.0 ± 4.96 53.0 ± 5.016 54.0 ± 5.009 59.0 ± 4.943 59.0 ± 4.943 56.0 ± 4.989 59.0 ± 4.943 52.0 ± 5.021 46.0 ± 5.009 58.0 ± 4.96
Template 15 0 ± 0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 1.0 ± 1.0 3.0 ± 1.714 11.0 ± 3.145 1.0 ± 1.0 0.0 ± 0.0 1.0 ± 1.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 21.0 ± 4.094 18.0 ± 3.861
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Table 5: Data for figure 2b.

Benchmark Template Base Rate Template 0 Template 1 Template 2 Template 3 Template 4 Template 5 Template 6 Template 7 Template 8 Template 9 Template 10 Template 11 Template 12 Template 13 Template 14 Template 15 All Combined

Template 1 47.0 ± 5.016 53.0 ± 5.016 72.0 ± 4.513 48.0 ± 5.021 48.0 ± 5.021 49.0 ± 5.024 52.0 ± 5.021 59.0 ± 4.943 78.0 ± 4.163 46.0 ± 5.009 48.0 ± 5.021 47.0 ± 5.016 54.0 ± 5.009 45.0 ± 5.0 53.0 ± 5.016 56.0 ± 4.989 51.0 ± 5.024 95.0 ± 2.19
Template 5 50.0 ± 5.025 51.0 ± 5.024 55.0 ± 5.0 48.0 ± 5.021 48.0 ± 5.021 48.0 ± 5.021 66.0 ± 4.761 50.0 ± 5.025 57.0 ± 4.976 51.0 ± 5.024 50.0 ± 5.025 51.0 ± 5.024 52.0 ± 5.021 52.0 ± 5.021 52.0 ± 5.021 52.0 ± 5.021 60.0 ± 4.924 95.0 ± 2.19
Template 8 55.0 ± 5.0 41.0 ± 4.943 49.0 ± 5.024 41.0 ± 4.943 44.0 ± 4.989 44.0 ± 4.989 43.0 ± 4.976 40.0 ± 4.924 48.0 ± 5.021 48.0 ± 5.021 41.0 ± 4.943 46.0 ± 5.009 46.0 ± 5.009 42.0 ± 4.96 43.0 ± 4.976 43.0 ± 4.976 54.0 ± 5.009 93.0 ± 2.564
Template 15 0 ± 0 0.0 ± 0.0 1.0 ± 1.0 3.0 ± 1.714 0.0 ± 0.0 1.0 ± 1.0 3.0 ± 1.714 1.0 ± 1.0 3.0 ± 1.714 8.0 ± 2.727 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 15.0 ± 3.589 20.0 ± 4.02

Table 6: Data for figure 2c.

Benchmark Template Base Rate Template 0 Template 1 Template 2 Template 3 Template 4 Template 5 Template 6 Template 7 Template 8 Template 9 Template 10 Template 11 Template 12 Template 13 Template 14 Template 15 All Combined

Template 1 51.606 ± 1.197 55.677 ± 1.19 50.172 ± 1.198 53.039 ± 1.195 53.555 ± 1.195 52.179 ± 1.196 46.33 ± 1.194 47.936 ± 1.197 51.835 ± 1.197 53.784 ± 1.194 52.523 ± 1.196 47.076 ± 1.196 46.961 ± 1.195 46.904 ± 1.195 46.961 ± 1.195 46.961 ± 1.195 48.108 ± 1.197 54.989 ± 1.192
Template 5 49.312 ± 1.198 46.961 ± 1.195 46.961 ± 1.195 49.599 ± 1.198 47.764 ± 1.196 49.943 ± 1.198 59.404 ± 1.176 48.624 ± 1.197 54.817 ± 1.192 47.534 ± 1.196 56.25 ± 1.188 50.0 ± 1.198 48.394 ± 1.197 52.752 ± 1.196 46.961 ± 1.195 46.961 ± 1.195 47.018 ± 1.195 58.085 ± 1.182
Template 8 49.14 ± 1.197 51.261 ± 1.197 50.688 ± 1.198 49.083 ± 1.197 50.344 ± 1.198 49.427 ± 1.198 51.663 ± 1.197 48.509 ± 1.197 51.548 ± 1.197 51.491 ± 1.197 51.548 ± 1.197 51.95 ± 1.197 51.892 ± 1.197 52.523 ± 1.196 52.122 ± 1.197 50.057 ± 1.198 51.204 ± 1.197 49.943 ± 1.198
Template 15 0 ± 0 0.115 ± 0.081 0.0 ± 0.0 0.0 ± 0.0 0.287 ± 0.128 1.319 ± 0.273 0.803 ± 0.214 0.057 ± 0.057 3.096 ± 0.415 9.748 ± 0.71 0.745 ± 0.206 1.261 ± 0.267 0.631 ± 0.19 0.057 ± 0.057 0.057 ± 0.057 0.86 ± 0.221 18.234 ± 0.925 19.266 ± 0.945

Table 7: Data for figure 2d.

Benchmark Template Base Rate Template 0 Template 1 Template 2 Template 3 Template 4 Template 5 Template 6 Template 7 Template 8 Template 9 Template 10 Template 11 Template 12 Template 13 Template 14 Template 15 All Combined

Template 1 48.796 ± 1.197 49.14 ± 1.197 54.874 ± 1.192 53.039 ± 1.195 53.039 ± 1.195 52.58 ± 1.196 47.018 ± 1.195 51.433 ± 1.197 59.174 ± 1.177 54.243 ± 1.193 49.771 ± 1.198 49.369 ± 1.198 48.222 ± 1.197 49.885 ± 1.198 47.706 ± 1.196 47.018 ± 1.195 53.956 ± 1.194 56.651 ± 1.187
Template 5 49.484 ± 1.198 52.81 ± 1.196 52.752 ± 1.196 53.44 ± 1.195 53.096 ± 1.195 53.039 ± 1.195 54.014 ± 1.194 52.007 ± 1.197 47.076 ± 1.196 52.752 ± 1.196 53.326 ± 1.195 53.67 ± 1.194 46.961 ± 1.195 46.961 ± 1.195 46.273 ± 1.194 46.961 ± 1.195 50.115 ± 1.198 57.339 ± 1.185
Template 8 47.764 ± 1.196 51.376 ± 1.197 47.993 ± 1.197 51.433 ± 1.197 48.509 ± 1.197 50.459 ± 1.198 51.204 ± 1.197 52.638 ± 1.196 47.764 ± 1.196 51.433 ± 1.197 51.376 ± 1.197 49.656 ± 1.198 46.789 ± 1.195 51.548 ± 1.197 48.108 ± 1.197 49.083 ± 1.197 48.452 ± 1.197 56.021 ± 1.189
Template 15 0 ± 0 0.287 ± 0.128 0.401 ± 0.151 0.688 ± 0.198 0.115 ± 0.081 1.72 ± 0.311 4.759 ± 0.51 1.261 ± 0.267 2.007 ± 0.336 9.289 ± 0.695 0.229 ± 0.115 1.72 ± 0.311 0.287 ± 0.128 0.057 ± 0.057 1.032 ± 0.242 0.344 ± 0.14 18.807 ± 0.936 20.528 ± 0.967

Table 8: LoRA Parameters.

Alpha 8
Dropout 0.1
r 16

Table 9: Trainer Hyper-Parameters.

Batch Size 2
Learning Rate 2e-4
Weight Decay 0.001
Max Grad Norm 0.3
Warmup Ratio 0.3
LR Scheduler Linear
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