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Abstract

We perform a study of large language model (LLM) templating and data
presentation in the field of chemistry and materials science by analyzing
memorization and generalization performance of a LlaMa model fine-tuned on
34 unique datasets. As application domains for LLMs become more specialized,
it becomes more and more important to understand the impacts of training data,
templates, and evaluations. While many pretrained LLMs have observed enormous
corpora of text data, they are not guaranteed to be useful in domain specific tasks
which may involve specialized data and prompts, such as chemistry and materials
science. To further understand the capabilities of LLMs, we study the performance
of various fine-tuned base models and show how differences in template styles with
varying molecular string representations affect model performance. We hope that
these insights may serve as a helpful path towards future larger scale training for
chemistry and materials science specific LLMs.

1 Introduction

Recent breakthroughs in natural language processing (NLP) have opened up new possibilities for
automating technical tasks using language models. Large language models (LLMs), in particular,
have shown great promise in solving complex problems across various domains such as education,
finance, and software development [1]. In the scientific domains of chemistry and material science,
LLM:s are being applied to problems in climate change, materials discovery, and property prediction
[2-7]. While advancements have continued, the need for high-quality data and evaluation pipelines
are needed, particularly when the data representations become specialized such that the model has
never encountered them before [8, 9]. In these nascent application fields, understanding how input
data representations and prompts are learned is an important consideration for domain researchers to
develop practical tools that solve real-world science challenges [10—13].

2 Background

Recent work by Mirza et al. [10] provides a greater understanding of the capabilities of LLMs
for the chemistry domain. Mirza et al. [10]’s analysis showed that larger models that are likely
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to have observed a greater amount of chemistry-related text in their training data perform better
in many chemistry tasks. Mirza et al. [10], however, did not perform any domain-specific fine-
tuning or detailed prompt evaluation on the benchmarked LLMs. Prior work has shown that LLM
fine-tuning can imbue LLMs for domain-specific language that leads to better performance on domain-
specific tasks [9, 14, 15]. On top of that, prompt engineering has shown a significant impact on
modeling performance for diverse LLM applications, including chemistry and materials science
[16,2,17,9, 13].

3 Dataset

Building on top of chemical data from Mirza et al. [10], Xu et al. [18], OpenBioML [19], we
construct various structured prompt templates based on tabular data that provide concrete answers.
Our sampling pipeline consists of several steps: First, we create data samples from the diverse
molecular text representations [20] (e.g., SMILES, canonical SMILES, DeepSMILES, SELFIES,
InChl, and the IUPAC nomenclature) using common computational tools, such as RDKit [21].
Additionally, we split the dataset into train, validation, and test subsets based on the Murcko scaffolds
of the molecules taking into account potentially pre-defined splits [22] . Next, we insert the sampled
chemical structure into the defined placeholders of the prompt templates. The final templates then
consist of the prompt template itself with all placeholders filled in, including the different molecular
representations, as well as relevant answers based on multiple choice format or true/false statements.
For the multiple-choice format, the enumeration symbol, i.e., lower (abc. . .) and upper case letters
(ABC. . .) or numeric characters (123. . .), and additional wrapping characters, i.e., ., .), ), :, (),
[1, are sampled. The prompt templates used for fine-tuning are shown in Appendix A.1.

4 Experiments

To assess the ability of an LLM to learn from chemistry-related data, we perform two key experiments:
first, to evaluate how effectively the LLM retains and memorizes its training data; second, to measure
how well it can generalize and apply this learned knowledge to novel contexts and unseen data. To
do this, we first present various prompting templates as well as different chemical representations to
a model during fine-tuning, and then evaluate the fine-tuned model both on its own training data, as
well as a holdout test dataset. By evaluating the model’s ability to both memorize its own training
data and generalize to unseen data, we aim to provide a deeper understanding of how models best
learn and understand textual knowledge in the chemistry domain, thereby helping to set a path toward
future LLM model training and deployment.

4.1 Templates

For the primary task, the main objective of the LLM is to determine whether a particular molecule
has the characteristic of being mutagenic. The prompt templates used to construct datasets take a
few different forms, which range in difficulty, and are showing in Appendix A.1. The most basic
templates are simply a statement about whether a particular molecule exhibits mutagenic properties
or not, for example, template 0. Other templates use a statement-response format with different forms
of context and model expectations contained in the statement itself. The objective of these templates
is to determine whether the statement is true or false, as seen in template 5. Finally, the majority
of other templates take the form of question-answer prompts, with context and model expectations
mixed in. All multiple-choice style templates have two options and one correct answer choice as an
output, except for template 15 which may have multiple choices and multiple correct answers as an
expected output.

A set of 16 prompting templates are used to structure the training and test data, each of which relies
on different methods of presenting the question, data, context, and expected model output. Out of the
16 templates, four are chosen to benchmark the fine-tuned models. In terms of benchmark difficulty,
template O is considered “easy”, templates 5 and 8 are considered “medium”, and template 15 is
considered “hard”. On top of the predefined templates, a concatenation of all data from templates
0-15 is constructed to show how a model fine-tuned on all input data performs, and is called ”All
Combined”.. The datasets are then prepared using two collections of molecule string representations.
One set of experiments uses only the SMILES representation, while the second set uses a combination



of SMILES, Deep SMILES, canonical SMILES, SELFIES, InChl, and IUPAC molecular string
conventions. The result of using 17 templates and two molecular representation collections is 34 total
datasets used to independently fine-tune the base model.

4.2 Fine-Tuning with LLama2-7B

The templates and data representations are used to fine-tune the pretrained LLama2-7B [23] model
using LoRA [24] with the default tokenizer. Model configuration and hyper-parameters for fine-tuning
may be found in Appendix A.3. For each template, the base model instance is fine-tuned for 10 total
epochs, resulting in 17 models for the two collections of data representations.

After all models have been fine-tuned on their respective templates, each model is evaluated using the
four benchmarking templates using the model completions only. Note that in these evaluations, the
benchmarking data is the same as the train data for templates 1, 5, 8, and 15. For models that have
not been trained on a template that is also used as a benchmark, the context and question style have
not been seen during training, however the specific molecular data strings are the same. The base
rate of the unmodified original model is also calculated and compared to each fine-tuned model. The
evaluation metric used is accuracy, in which the model output is compared directly to the expected
output and scored as either O or 1 for 0% accurate or 100% accurate. In the template 15 benchmark,
where more than one answer choice may be correct, the exact-match accuracy is used.
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Figure 1: Each fine-tuned model is evaluated against the four benchmarking templates for both of the
data representation collections, as well as the base rate for each template (dashed lines). On the left,
the SMILES only collection shows high memorization accuracy for templates 1 and 5 and 15 relative
to the base rate, while the full data collection (right) shows high memorization accuracy for templates
5 and 15. In both data collections, the memorization rate for the model fine-tuned on the collection of
templates (All Combined) shows high memorization accuracy.

First, looking at models trained on the same template in which they are evaluated on shows that
models are memorizing some of the information which is presented, however the overall accuracy
score is far lower than 100% meaning that even after 10 full epochs of training, the information is
not fully retained by the model. Second, some templates seem to have a negative effect on model
memorization, seen by accuracy scores falling below the base rate. Third, the model fine-tuned on the
combination of all templates reaches near-perfect memorization on all templates, except for template
15, which does, however, still see a significant improvement from the base rate. These observations
hold true across both collections of molecular representations, with the SMILES only string collection
performing slightly better. The benchmark for template 15 is clearly much harder for both the base
and fine-tuned models.

In addition to fine-tuning the full set of train data for 10 epochs, a reduced set of training data
containing 100 total samples for each template is used for fine-tuning over 1,000 epochs to see if
the models are able to fully memorize the training data, and if training longer may boost the overall
performance of models trained on templates not in the benchmark set.
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Figure 2: In 2a and 2b, the memorization accuracy is high for many templates, and some correlation
can be seen by accuracies peaking for multiple fine-tuned models on the same benchmark. In 2c and
2d, performance on the holdout test set is poor across all models, with on only the template 15 and
combined dataset fine-tuned models showing any significant improvement. This may be a result of
severe over-fitting or simply not enough training data.

While training for more epochs on less data seems to help the performance of models evaluated
against the templates in which they were trained on, there is not a significant boost to all other
fine-tuned models with the exception of a few templates. In the SMILES representation collection,
the correlation between some templates becomes easier to see. For example, models fine-tuned on
template 1 and template 7 both achieve a high level of memorization when evaluated on template
1. Additionally, the models which were fine-tuned on the concatenation of all templates have near-
perfect memorization, similar to the prior experiments. Interestingly, for both data representation
collections, the model fine-tuned on template 8 and evaluated on its own training data does not
show any sign of memorization. In the collection of all molecular string representations, all models
evaluated on template 8 fall below the base rate, except the ”All Combined” model.

Overall, models evaluated against the template in which they were fine-tuned with will perform
better than models fine-tuned with another template, regardless of their similarity. Additionally,
models fine-tuned using samples from each template perform just as well, or better, than the models
fine-tuned on individual templates. Due to these observations, simply using one template for training
LLM’s in this domain may lead to results that may sometimes be worse than the starting base model.

5 Discussion

In the fields of chemistry and material science, LLMs show promise in complimenting molecular
discovery, property prediction, and general educational workflows, however base foundation models
may lack the expert level domain knowledge to be useful to their fullest extent. In this work, a



study on how LLMs learn from various domain specific prompts, contexts, and datasets is used to
get a better understanding of what may or may not work when fine-tuning an off the shelf model.
While memorization performance is high among many of the fine-tuned models, their generalization
performance to unseen data is still lacking, leading to more questions about how best to structure
and present chemistry datasets. Models fine-tuned on the combination of all templates show strong
performance in memorization and better performance in generalization as compared to fine-tuned and
base models, solidifying the general understanding that more and diverse data inputs lead to more
performant models.
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A Appendix
A.1 Templates

Each of the 16 templates used for fine-tuning and benchmarking is summarized below.

A.2 Figure Data

The data from each figure is presented in the following tables.

A.3 Fine-Tuning Hyper-Parameters

For all experiments, the same set of hyper-parameters is used with the exception of number of epochs,
where the first set of experiments uses 10, and the second set of experiments uses 1,000.
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Table 1: Templates arranged by number, and indicating if the particular template was used for
benchmarking or not.

Template Number Template Benchmark?

0 The {#molecule I'}{SMILES__description} {SMILES#} is {mutagenic#not
&NULL}{mutagenic__names__adjective}.
Is the {SMILES__description} {SMILES#} {mutagenic__names__adjective}: {mutagenic#no&yes} Yes

2 The molecule with the {SMILES_ description} {#representation of [|!}{SMILES#}
{#showslexhibitsldisplays!} {mutagenic#no &NULL}{mutagenic__names__adjective} properties.

3 Based on the {SMILES__ description} ({#representation |!}{SMILES#}, the molecule has
{mutagenic#no & NULL}{mutagenic__names__adjective} {#propertiesicharacteristicslfeatures!}.

4 The {SMILES__description} {SMILES#} {#representslis from!} a molecule that is {mutagenic#not

&NULL }identified as {mutagenic__names__adjective}.

5 Task: Please classify a molecule based on the description. Description: A molecule that is Yes
{mutagenic__names__adjective}. {#Molecule I!} {SMILES__description}: {SMILES#} Constraint:
Even if you are {#uncertainlnot sure!}, you must pick either "True" or "False" without using any
{#otherladditional!} words. Result: {mutagenic#False&True}

6 User: Can you {#tell melderivelestimate!} if the molecule with the {SMILES__description}
{SMILES#} is {mutagenic__names__adjective}? Assistant: {mutagenic#No&Yes}, this molecule is
{mutagenic#not &NULL}{mutagenic__names__adjective}.

7 User: Is the molecule with the {SMILES__description} {SMILES#}
{mutagenic__names__adjective}?  Assistant: {mutagenic#No&Yes}, it is {mutagenic#not
&NULL} {mutagenic__names__adjective}.

8 Task: Please answer the multiple choice question. Question: Is the molecule with the Yes
{SMILES__description} {#representation of I!'}{SMILES#} {mutagenic__names__adjective}?
Constraint: Even if you are ({#uncertaininot sure!}, you must pick -either

{ %omultiple_choice_enum%2%aAl} without using any {#otherladditional!} words. Options:
{mutagenic%} Answer: {%multiple_choice_result}

9 Task: Please classify a molecule based on the description. Description: A molecule that is
{mutagenic__names__adjective}. {#Molecule |!}{SMILES__description}: {SMILES#} Constraint:
Answer the question in a {#fulllcomplete!} sentence. Result: This molecule is {mutagenic#not
&NULL} {mutagenic__names__adjective}.

10 Task: Please {#give melcreatelgenerate!} a {#molecule I!}{SMILES__description} based on
the {#text |!}description{# belowl!}.  Description: A molecule that is {mutagenic#not
&NULL } {mutagenic__names__adjective}. Result: {SMILES#}

11 User: Can you {#give melcreatelgenerate!} the {SMILES__description} of a molecule that is
{mutagenic#not &NULL } {mutagenic__names__adjective}? Assistant: {#YeslOf courselSurelYes,
I’'m happy to help!}, here you go: { SMILES#}

12 User: I'm ({#searchingllooking!} for the {SMILES__ description} of a molecule that is
{mutagenic#not &NULL}{mutagenic__names__adjective}? Assistant: This is a molecule that
is {mutagenic#not &NULL } {mutagenic__names__adjective}: {SMILES#}

13 User: I want to {#come up withlcreatelgenerate!} a {#molecule |!}{SMILES__description}.
Assistant:  {#This sounds very exciting. IThis sounds very interesting. !}Should I
consider any {#constraintsispecific points!} for the {#generationlcreation!}?  User: Yes,
please. The molecule should {mutagenic#not &NULL}be {mutagenic__names__adjective}.
Assistant:  {#OkIGot it!},{# here you go,l!} this {SMILES__description} is {mutagenic#not
&NULL } {mutagenic__names__adjective}: {SMILES#}

14 User: I want to {#come up withlcreatelgenerate!} a {#molecule |!}{SMILES__description}.
Assistant:  {#This sounds very exciting. IThis sounds very interesting. !}Should it be
a special {#moleculelone!}? User: Yes, the molecule should {mutagenic#not &NULL }be
{mutagenic__names__adjective}. Assistant: {#Understood|Got itlOk!}, this {SMILES__description}
is {mutagenic#not &NULL}{mutagenic__names__adjective}: {SMILES#}

15 Task: Please answer the multiple choice question. Question: Which molecules are {mutagenic#not Yes
&NULL} {mutagenic__names__adjective}? Constraint: You must select none, one or more options
from {%multiple_choice_enum%2-5%aAl} without using any {#otherladditional!} words. Options:
{SMILES%mutagenic%} Answer: {%multiple_choice_result}

Table 2: Data for figure 1a.

Template 2 Templatc 3 Template 11

Template 13 Templae 15__All Combined
930420721 99,938 20,036
0705 1000200
0714 1000200
0099 65640685 9054320422

5605920716

082072 60861070
72 436520715 4323420714

0720 SLITHE0T 52652072
00830082 00200 085240133

9 56475207
7

SL65220721
3908 £0.279

SLo
0.436 £ 0095
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Table 3: Data for figure 1b.

Template 4 Template 7

18

50717+
0748 £0.124

512580721
1975 £ 0201

509250721
123 230207

9% 0191
33672026 0681 73561 £0636

Table 4: Data for figure 2a.

3 Template 14 Template 15 All Combined

Benchmark Template | Base Rate  Template 0 Template |  Template2  Template3  Template4  TemplateS  Template6  Template7  Templaie8  Templuie9 Template 10 Template 11 Template 12 Template |
s o8 2.

1407 4805021 480%5021 4905024 440%4989 7.
5024 49.0£5024 460£5009 500

13 960%1969 5005025 740%4.408 S
24 70024606 S20£5021 920£2727 5.

520£5021 520+

1000£0.0
1000£0.0
1 55050 57.0£4976 5604989 S 5904943 51 24 580£496 S30£5016 54025009 S 9 49 580496
Template 15 0£0 00£00  00£00  00£00  00£00  00£00  00£00  10£10 301714 11053145 10£10 00200 1010 0000  00£00  00£00 210:4094 180%3861

100000 60

21




Table 5: Data for figure 2b.

Benchmark Template | Base Rate  Template 0 Template | Template 2 Template3  Templated  Templaies  Templaie6  Templaie7  Templaie8  Templaie9 Template 10 Template 11 Template 12 Template 13 Template 14 Template 15 All Combined
Template 1 47045016 5305016 7204513 480£5021 480£5021 49045024 59044943 78044163 460£5009 48045021 47045016 54045009 450450 53045016 6044989 51045024 9504219
Template 5 50045025 51045024 550450 48045021 48045021 480+5021 50055025 57024976 51025024 500£5025 SLO£5024 52085021 S20£5021 S20£5021 S20£5021 60024924 0950219
Template 8 550£50 41044943 490£5024 410£4943 44054980 44024989 43024976 40024924 4802502 480502 41024943 460£5009 4605009 420£496 430%4. 04, 0£5009 930+2.564
Template 15 0x0 00£00  10£10 301714 00200  10£10 30174  10+10 301714 802727  00£00  00£00 0000 0000 0000  00+00 1504358 2004402
Benchmark Template | BascRate  Tomplaic0 Templatc | Templaic2  Tomplte3  Templaicd  TomplacS  Templic6  Templue]  Templaics  Templucd  Templae 10 Template 11 Tomplatc 12 Template 13 Template 14 Templtc 15 All Combined

Template | SL06E 1197 SSGTTELI9 500722 195 S30392 1195 SILS55% 1195 S2IT9E0196 63321194 47936% 1197 SISIS: 1197 5378421190 S2523%1196 47076% 119 4696121195 46904 1195 46961 %1195 46961 1195 980 % 1192
Template 5 4931251198 4696141195 4696151195 195992 1198 477634119 499431195 S9404%1176 4862421197 SASITLLI92 4TSMELI% S6SELISS  S00£LI98 4830421097 S2T2:119 4696121195 46961 %1195 SEO8S £ 1152
Template 8 490421097 5126141197 S06882 1195 49083%1197 SO344 1198 49427+ 1098 SL663=1197 48509+ 1197 SLSAELIST SLAOI< 1197 SISH+1197 SLOS:1197 SIAO2£1197 5252321196 S2122+1197 500571198 499435 1198
Templae 15 020 011520081 00200 00£00  0287+0128 13190273 080320214 00570057 309650415 07482071 074550206 126120267 0631019 005720057 0057005 086%02: 19.266.+0.945

Benchmurk Template | BaseRate  Templue0  Tomplae | Templaie?  Templute3  Templaied  TemplaeS  Templae6  Templaie?  Tomplate8  Templaed  Templae 10 Template ]l Template 12 Templaie 13 Template 14 Template 15 Al Combined

Template 1 GST965 1197 491351197 SAETS 1192 303921095 SI09L 0195 S25K+1196 ATOISE 1195 SL433= 1197 SO0T4% 1171 5424321193 49771% 1198 493695 1198 482222 1197 49KKSS 1198 477062 119 4701851195 539562 1194

Template 5 A94BEE 1108 SARIEDI96 27251196 S3A4x 1195 S3096£ 1195 SE039% 1195 SA0x 1198 S2007£1197 47076+ 1196 527251196 S3326% 1195 SI6T 1193 469611195 4696151195 46273+ 1194 4696151195 S0.1152 1198

Template § FLT64%1196 SIT6E119T 4799321197 SI433%1197 48509 1197 50459+ 1198 SI204% 1197 S2638%1196 47764+ 1196 S14332 1197 SI3T6+1197 49.656% 1198 46789% 1195 5154821197 48108+ 1197 49,083 1197 221197

Template 15 020 028740128 040150.15 068820198 00150081 17220311 47592051 126130267 20070336 928950695 0290015 17220311 0270128 00ST£005  L0N£0242 034004 1580720936

Table 8: LoRA Parameters.

8
0.1
16

Alpha
Dropout
r

Table 9: Trainer Hyper-Parameters.

Batch Size
Learning Rate
Weight Decay
Max Grad Norm
Warmup Ratio
LR Scheduler

2
2e-4
0.001
0.3
0.3
Linear
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